1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Cryptographic API.
4 //
5 // Support for Samsung S5PV210 and Exynos HW acceleration.
6 //
7 // Copyright (C) 2011 NetUP Inc. All rights reserved.
8 // Copyright (c) 2017 Samsung Electronics Co., Ltd. All rights reserved.
9 //
10 // Hash part based on omap-sham.c driver.
11
12 #include <linux/clk.h>
13 #include <linux/crypto.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/errno.h>
17 #include <linux/init.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/platform_device.h>
24 #include <linux/scatterlist.h>
25
26 #include <crypto/ctr.h>
27 #include <crypto/aes.h>
28 #include <crypto/algapi.h>
29 #include <crypto/scatterwalk.h>
30
31 #include <crypto/hash.h>
32 #include <crypto/md5.h>
33 #include <crypto/sha1.h>
34 #include <crypto/sha2.h>
35 #include <crypto/internal/hash.h>
36
37 #define _SBF(s, v) ((v) << (s))
38
39 /* Feed control registers */
40 #define SSS_REG_FCINTSTAT 0x0000
41 #define SSS_FCINTSTAT_HPARTINT BIT(7)
42 #define SSS_FCINTSTAT_HDONEINT BIT(5)
43 #define SSS_FCINTSTAT_BRDMAINT BIT(3)
44 #define SSS_FCINTSTAT_BTDMAINT BIT(2)
45 #define SSS_FCINTSTAT_HRDMAINT BIT(1)
46 #define SSS_FCINTSTAT_PKDMAINT BIT(0)
47
48 #define SSS_REG_FCINTENSET 0x0004
49 #define SSS_FCINTENSET_HPARTINTENSET BIT(7)
50 #define SSS_FCINTENSET_HDONEINTENSET BIT(5)
51 #define SSS_FCINTENSET_BRDMAINTENSET BIT(3)
52 #define SSS_FCINTENSET_BTDMAINTENSET BIT(2)
53 #define SSS_FCINTENSET_HRDMAINTENSET BIT(1)
54 #define SSS_FCINTENSET_PKDMAINTENSET BIT(0)
55
56 #define SSS_REG_FCINTENCLR 0x0008
57 #define SSS_FCINTENCLR_HPARTINTENCLR BIT(7)
58 #define SSS_FCINTENCLR_HDONEINTENCLR BIT(5)
59 #define SSS_FCINTENCLR_BRDMAINTENCLR BIT(3)
60 #define SSS_FCINTENCLR_BTDMAINTENCLR BIT(2)
61 #define SSS_FCINTENCLR_HRDMAINTENCLR BIT(1)
62 #define SSS_FCINTENCLR_PKDMAINTENCLR BIT(0)
63
64 #define SSS_REG_FCINTPEND 0x000C
65 #define SSS_FCINTPEND_HPARTINTP BIT(7)
66 #define SSS_FCINTPEND_HDONEINTP BIT(5)
67 #define SSS_FCINTPEND_BRDMAINTP BIT(3)
68 #define SSS_FCINTPEND_BTDMAINTP BIT(2)
69 #define SSS_FCINTPEND_HRDMAINTP BIT(1)
70 #define SSS_FCINTPEND_PKDMAINTP BIT(0)
71
72 #define SSS_REG_FCFIFOSTAT 0x0010
73 #define SSS_FCFIFOSTAT_BRFIFOFUL BIT(7)
74 #define SSS_FCFIFOSTAT_BRFIFOEMP BIT(6)
75 #define SSS_FCFIFOSTAT_BTFIFOFUL BIT(5)
76 #define SSS_FCFIFOSTAT_BTFIFOEMP BIT(4)
77 #define SSS_FCFIFOSTAT_HRFIFOFUL BIT(3)
78 #define SSS_FCFIFOSTAT_HRFIFOEMP BIT(2)
79 #define SSS_FCFIFOSTAT_PKFIFOFUL BIT(1)
80 #define SSS_FCFIFOSTAT_PKFIFOEMP BIT(0)
81
82 #define SSS_REG_FCFIFOCTRL 0x0014
83 #define SSS_FCFIFOCTRL_DESSEL BIT(2)
84 #define SSS_HASHIN_INDEPENDENT _SBF(0, 0x00)
85 #define SSS_HASHIN_CIPHER_INPUT _SBF(0, 0x01)
86 #define SSS_HASHIN_CIPHER_OUTPUT _SBF(0, 0x02)
87 #define SSS_HASHIN_MASK _SBF(0, 0x03)
88
89 #define SSS_REG_FCBRDMAS 0x0020
90 #define SSS_REG_FCBRDMAL 0x0024
91 #define SSS_REG_FCBRDMAC 0x0028
92 #define SSS_FCBRDMAC_BYTESWAP BIT(1)
93 #define SSS_FCBRDMAC_FLUSH BIT(0)
94
95 #define SSS_REG_FCBTDMAS 0x0030
96 #define SSS_REG_FCBTDMAL 0x0034
97 #define SSS_REG_FCBTDMAC 0x0038
98 #define SSS_FCBTDMAC_BYTESWAP BIT(1)
99 #define SSS_FCBTDMAC_FLUSH BIT(0)
100
101 #define SSS_REG_FCHRDMAS 0x0040
102 #define SSS_REG_FCHRDMAL 0x0044
103 #define SSS_REG_FCHRDMAC 0x0048
104 #define SSS_FCHRDMAC_BYTESWAP BIT(1)
105 #define SSS_FCHRDMAC_FLUSH BIT(0)
106
107 #define SSS_REG_FCPKDMAS 0x0050
108 #define SSS_REG_FCPKDMAL 0x0054
109 #define SSS_REG_FCPKDMAC 0x0058
110 #define SSS_FCPKDMAC_BYTESWAP BIT(3)
111 #define SSS_FCPKDMAC_DESCEND BIT(2)
112 #define SSS_FCPKDMAC_TRANSMIT BIT(1)
113 #define SSS_FCPKDMAC_FLUSH BIT(0)
114
115 #define SSS_REG_FCPKDMAO 0x005C
116
117 /* AES registers */
118 #define SSS_REG_AES_CONTROL 0x00
119 #define SSS_AES_BYTESWAP_DI BIT(11)
120 #define SSS_AES_BYTESWAP_DO BIT(10)
121 #define SSS_AES_BYTESWAP_IV BIT(9)
122 #define SSS_AES_BYTESWAP_CNT BIT(8)
123 #define SSS_AES_BYTESWAP_KEY BIT(7)
124 #define SSS_AES_KEY_CHANGE_MODE BIT(6)
125 #define SSS_AES_KEY_SIZE_128 _SBF(4, 0x00)
126 #define SSS_AES_KEY_SIZE_192 _SBF(4, 0x01)
127 #define SSS_AES_KEY_SIZE_256 _SBF(4, 0x02)
128 #define SSS_AES_FIFO_MODE BIT(3)
129 #define SSS_AES_CHAIN_MODE_ECB _SBF(1, 0x00)
130 #define SSS_AES_CHAIN_MODE_CBC _SBF(1, 0x01)
131 #define SSS_AES_CHAIN_MODE_CTR _SBF(1, 0x02)
132 #define SSS_AES_MODE_DECRYPT BIT(0)
133
134 #define SSS_REG_AES_STATUS 0x04
135 #define SSS_AES_BUSY BIT(2)
136 #define SSS_AES_INPUT_READY BIT(1)
137 #define SSS_AES_OUTPUT_READY BIT(0)
138
139 #define SSS_REG_AES_IN_DATA(s) (0x10 + (s << 2))
140 #define SSS_REG_AES_OUT_DATA(s) (0x20 + (s << 2))
141 #define SSS_REG_AES_IV_DATA(s) (0x30 + (s << 2))
142 #define SSS_REG_AES_CNT_DATA(s) (0x40 + (s << 2))
143 #define SSS_REG_AES_KEY_DATA(s) (0x80 + (s << 2))
144
145 #define SSS_REG(dev, reg) ((dev)->ioaddr + (SSS_REG_##reg))
146 #define SSS_READ(dev, reg) __raw_readl(SSS_REG(dev, reg))
147 #define SSS_WRITE(dev, reg, val) __raw_writel((val), SSS_REG(dev, reg))
148
149 #define SSS_AES_REG(dev, reg) ((dev)->aes_ioaddr + SSS_REG_##reg)
150 #define SSS_AES_WRITE(dev, reg, val) __raw_writel((val), \
151 SSS_AES_REG(dev, reg))
152
153 /* HW engine modes */
154 #define FLAGS_AES_DECRYPT BIT(0)
155 #define FLAGS_AES_MODE_MASK _SBF(1, 0x03)
156 #define FLAGS_AES_CBC _SBF(1, 0x01)
157 #define FLAGS_AES_CTR _SBF(1, 0x02)
158
159 #define AES_KEY_LEN 16
160 #define CRYPTO_QUEUE_LEN 1
161
162 /* HASH registers */
163 #define SSS_REG_HASH_CTRL 0x00
164
165 #define SSS_HASH_USER_IV_EN BIT(5)
166 #define SSS_HASH_INIT_BIT BIT(4)
167 #define SSS_HASH_ENGINE_SHA1 _SBF(1, 0x00)
168 #define SSS_HASH_ENGINE_MD5 _SBF(1, 0x01)
169 #define SSS_HASH_ENGINE_SHA256 _SBF(1, 0x02)
170
171 #define SSS_HASH_ENGINE_MASK _SBF(1, 0x03)
172
173 #define SSS_REG_HASH_CTRL_PAUSE 0x04
174
175 #define SSS_HASH_PAUSE BIT(0)
176
177 #define SSS_REG_HASH_CTRL_FIFO 0x08
178
179 #define SSS_HASH_FIFO_MODE_DMA BIT(0)
180 #define SSS_HASH_FIFO_MODE_CPU 0
181
182 #define SSS_REG_HASH_CTRL_SWAP 0x0C
183
184 #define SSS_HASH_BYTESWAP_DI BIT(3)
185 #define SSS_HASH_BYTESWAP_DO BIT(2)
186 #define SSS_HASH_BYTESWAP_IV BIT(1)
187 #define SSS_HASH_BYTESWAP_KEY BIT(0)
188
189 #define SSS_REG_HASH_STATUS 0x10
190
191 #define SSS_HASH_STATUS_MSG_DONE BIT(6)
192 #define SSS_HASH_STATUS_PARTIAL_DONE BIT(4)
193 #define SSS_HASH_STATUS_BUFFER_READY BIT(0)
194
195 #define SSS_REG_HASH_MSG_SIZE_LOW 0x20
196 #define SSS_REG_HASH_MSG_SIZE_HIGH 0x24
197
198 #define SSS_REG_HASH_PRE_MSG_SIZE_LOW 0x28
199 #define SSS_REG_HASH_PRE_MSG_SIZE_HIGH 0x2C
200
201 #define SSS_REG_HASH_IV(s) (0xB0 + ((s) << 2))
202 #define SSS_REG_HASH_OUT(s) (0x100 + ((s) << 2))
203
204 #define HASH_BLOCK_SIZE 64
205 #define HASH_REG_SIZEOF 4
206 #define HASH_MD5_MAX_REG (MD5_DIGEST_SIZE / HASH_REG_SIZEOF)
207 #define HASH_SHA1_MAX_REG (SHA1_DIGEST_SIZE / HASH_REG_SIZEOF)
208 #define HASH_SHA256_MAX_REG (SHA256_DIGEST_SIZE / HASH_REG_SIZEOF)
209
210 /*
211 * HASH bit numbers, used by device, setting in dev->hash_flags with
212 * functions set_bit(), clear_bit() or tested with test_bit() or BIT(),
213 * to keep HASH state BUSY or FREE, or to signal state from irq_handler
214 * to hash_tasklet. SGS keep track of allocated memory for scatterlist
215 */
216 #define HASH_FLAGS_BUSY 0
217 #define HASH_FLAGS_FINAL 1
218 #define HASH_FLAGS_DMA_ACTIVE 2
219 #define HASH_FLAGS_OUTPUT_READY 3
220 #define HASH_FLAGS_DMA_READY 4
221 #define HASH_FLAGS_SGS_COPIED 5
222 #define HASH_FLAGS_SGS_ALLOCED 6
223
224 /* HASH HW constants */
225 #define BUFLEN HASH_BLOCK_SIZE
226
227 #define SSS_HASH_QUEUE_LENGTH 10
228
229 /**
230 * struct samsung_aes_variant - platform specific SSS driver data
231 * @aes_offset: AES register offset from SSS module's base.
232 * @hash_offset: HASH register offset from SSS module's base.
233 * @clk_names: names of clocks needed to run SSS IP
234 *
235 * Specifies platform specific configuration of SSS module.
236 * Note: A structure for driver specific platform data is used for future
237 * expansion of its usage.
238 */
239 struct samsung_aes_variant {
240 unsigned int aes_offset;
241 unsigned int hash_offset;
242 const char *clk_names[2];
243 };
244
245 struct s5p_aes_reqctx {
246 unsigned long mode;
247 };
248
249 struct s5p_aes_ctx {
250 struct s5p_aes_dev *dev;
251
252 u8 aes_key[AES_MAX_KEY_SIZE];
253 u8 nonce[CTR_RFC3686_NONCE_SIZE];
254 int keylen;
255 };
256
257 /**
258 * struct s5p_aes_dev - Crypto device state container
259 * @dev: Associated device
260 * @clk: Clock for accessing hardware
261 * @pclk: APB bus clock necessary to access the hardware
262 * @ioaddr: Mapped IO memory region
263 * @aes_ioaddr: Per-varian offset for AES block IO memory
264 * @irq_fc: Feed control interrupt line
265 * @req: Crypto request currently handled by the device
266 * @ctx: Configuration for currently handled crypto request
267 * @sg_src: Scatter list with source data for currently handled block
268 * in device. This is DMA-mapped into device.
269 * @sg_dst: Scatter list with destination data for currently handled block
270 * in device. This is DMA-mapped into device.
271 * @sg_src_cpy: In case of unaligned access, copied scatter list
272 * with source data.
273 * @sg_dst_cpy: In case of unaligned access, copied scatter list
274 * with destination data.
275 * @tasklet: New request scheduling jib
276 * @queue: Crypto queue
277 * @busy: Indicates whether the device is currently handling some request
278 * thus it uses some of the fields from this state, like:
279 * req, ctx, sg_src/dst (and copies). This essentially
280 * protects against concurrent access to these fields.
281 * @lock: Lock for protecting both access to device hardware registers
282 * and fields related to current request (including the busy field).
283 * @res: Resources for hash.
284 * @io_hash_base: Per-variant offset for HASH block IO memory.
285 * @hash_lock: Lock for protecting hash_req, hash_queue and hash_flags
286 * variable.
287 * @hash_flags: Flags for current HASH op.
288 * @hash_queue: Async hash queue.
289 * @hash_tasklet: New HASH request scheduling job.
290 * @xmit_buf: Buffer for current HASH request transfer into SSS block.
291 * @hash_req: Current request sending to SSS HASH block.
292 * @hash_sg_iter: Scatterlist transferred through DMA into SSS HASH block.
293 * @hash_sg_cnt: Counter for hash_sg_iter.
294 *
295 * @use_hash: true if HASH algs enabled
296 */
297 struct s5p_aes_dev {
298 struct device *dev;
299 struct clk *clk;
300 struct clk *pclk;
301 void __iomem *ioaddr;
302 void __iomem *aes_ioaddr;
303 int irq_fc;
304
305 struct skcipher_request *req;
306 struct s5p_aes_ctx *ctx;
307 struct scatterlist *sg_src;
308 struct scatterlist *sg_dst;
309
310 struct scatterlist *sg_src_cpy;
311 struct scatterlist *sg_dst_cpy;
312
313 struct tasklet_struct tasklet;
314 struct crypto_queue queue;
315 bool busy;
316 spinlock_t lock;
317
318 struct resource *res;
319 void __iomem *io_hash_base;
320
321 spinlock_t hash_lock; /* protect hash_ vars */
322 unsigned long hash_flags;
323 struct crypto_queue hash_queue;
324 struct tasklet_struct hash_tasklet;
325
326 u8 xmit_buf[BUFLEN];
327 struct ahash_request *hash_req;
328 struct scatterlist *hash_sg_iter;
329 unsigned int hash_sg_cnt;
330
331 bool use_hash;
332 };
333
334 /**
335 * struct s5p_hash_reqctx - HASH request context
336 * @dd: Associated device
337 * @op_update: Current request operation (OP_UPDATE or OP_FINAL)
338 * @digcnt: Number of bytes processed by HW (without buffer[] ones)
339 * @digest: Digest message or IV for partial result
340 * @nregs: Number of HW registers for digest or IV read/write
341 * @engine: Bits for selecting type of HASH in SSS block
342 * @sg: sg for DMA transfer
343 * @sg_len: Length of sg for DMA transfer
344 * @sgl: sg for joining buffer and req->src scatterlist
345 * @skip: Skip offset in req->src for current op
346 * @total: Total number of bytes for current request
347 * @finup: Keep state for finup or final.
348 * @error: Keep track of error.
349 * @bufcnt: Number of bytes holded in buffer[]
350 * @buffer: For byte(s) from end of req->src in UPDATE op
351 */
352 struct s5p_hash_reqctx {
353 struct s5p_aes_dev *dd;
354 bool op_update;
355
356 u64 digcnt;
357 u8 digest[SHA256_DIGEST_SIZE];
358
359 unsigned int nregs; /* digest_size / sizeof(reg) */
360 u32 engine;
361
362 struct scatterlist *sg;
363 unsigned int sg_len;
364 struct scatterlist sgl[2];
365 unsigned int skip;
366 unsigned int total;
367 bool finup;
368 bool error;
369
370 u32 bufcnt;
371 u8 buffer[];
372 };
373
374 /**
375 * struct s5p_hash_ctx - HASH transformation context
376 * @dd: Associated device
377 * @flags: Bits for algorithm HASH.
378 * @fallback: Software transformation for zero message or size < BUFLEN.
379 */
380 struct s5p_hash_ctx {
381 struct s5p_aes_dev *dd;
382 unsigned long flags;
383 struct crypto_shash *fallback;
384 };
385
386 static const struct samsung_aes_variant s5p_aes_data = {
387 .aes_offset = 0x4000,
388 .hash_offset = 0x6000,
389 .clk_names = { "secss", },
390 };
391
392 static const struct samsung_aes_variant exynos_aes_data = {
393 .aes_offset = 0x200,
394 .hash_offset = 0x400,
395 .clk_names = { "secss", },
396 };
397
398 static const struct samsung_aes_variant exynos5433_slim_aes_data = {
399 .aes_offset = 0x400,
400 .hash_offset = 0x800,
401 .clk_names = { "aclk", "pclk", },
402 };
403
404 static const struct of_device_id s5p_sss_dt_match[] = {
405 {
406 .compatible = "samsung,s5pv210-secss",
407 .data = &s5p_aes_data,
408 },
409 {
410 .compatible = "samsung,exynos4210-secss",
411 .data = &exynos_aes_data,
412 },
413 {
414 .compatible = "samsung,exynos5433-slim-sss",
415 .data = &exynos5433_slim_aes_data,
416 },
417 { },
418 };
419 MODULE_DEVICE_TABLE(of, s5p_sss_dt_match);
420
find_s5p_sss_version(const struct platform_device * pdev)421 static inline const struct samsung_aes_variant *find_s5p_sss_version
422 (const struct platform_device *pdev)
423 {
424 if (IS_ENABLED(CONFIG_OF) && (pdev->dev.of_node))
425 return of_device_get_match_data(&pdev->dev);
426
427 return (const struct samsung_aes_variant *)
428 platform_get_device_id(pdev)->driver_data;
429 }
430
431 static struct s5p_aes_dev *s5p_dev;
432
s5p_set_dma_indata(struct s5p_aes_dev * dev,const struct scatterlist * sg)433 static void s5p_set_dma_indata(struct s5p_aes_dev *dev,
434 const struct scatterlist *sg)
435 {
436 SSS_WRITE(dev, FCBRDMAS, sg_dma_address(sg));
437 SSS_WRITE(dev, FCBRDMAL, sg_dma_len(sg));
438 }
439
s5p_set_dma_outdata(struct s5p_aes_dev * dev,const struct scatterlist * sg)440 static void s5p_set_dma_outdata(struct s5p_aes_dev *dev,
441 const struct scatterlist *sg)
442 {
443 SSS_WRITE(dev, FCBTDMAS, sg_dma_address(sg));
444 SSS_WRITE(dev, FCBTDMAL, sg_dma_len(sg));
445 }
446
s5p_free_sg_cpy(struct s5p_aes_dev * dev,struct scatterlist ** sg)447 static void s5p_free_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist **sg)
448 {
449 int len;
450
451 if (!*sg)
452 return;
453
454 len = ALIGN(dev->req->cryptlen, AES_BLOCK_SIZE);
455 free_pages((unsigned long)sg_virt(*sg), get_order(len));
456
457 kfree(*sg);
458 *sg = NULL;
459 }
460
s5p_sg_done(struct s5p_aes_dev * dev)461 static void s5p_sg_done(struct s5p_aes_dev *dev)
462 {
463 struct skcipher_request *req = dev->req;
464 struct s5p_aes_reqctx *reqctx = skcipher_request_ctx(req);
465
466 if (dev->sg_dst_cpy) {
467 dev_dbg(dev->dev,
468 "Copying %d bytes of output data back to original place\n",
469 dev->req->cryptlen);
470 memcpy_to_sglist(dev->req->dst, 0, sg_virt(dev->sg_dst_cpy),
471 dev->req->cryptlen);
472 }
473 s5p_free_sg_cpy(dev, &dev->sg_src_cpy);
474 s5p_free_sg_cpy(dev, &dev->sg_dst_cpy);
475 if (reqctx->mode & FLAGS_AES_CBC)
476 memcpy_fromio(req->iv, dev->aes_ioaddr + SSS_REG_AES_IV_DATA(0), AES_BLOCK_SIZE);
477
478 else if (reqctx->mode & FLAGS_AES_CTR)
479 memcpy_fromio(req->iv, dev->aes_ioaddr + SSS_REG_AES_CNT_DATA(0), AES_BLOCK_SIZE);
480 }
481
482 /* Calls the completion. Cannot be called with dev->lock hold. */
s5p_aes_complete(struct skcipher_request * req,int err)483 static void s5p_aes_complete(struct skcipher_request *req, int err)
484 {
485 skcipher_request_complete(req, err);
486 }
487
s5p_unset_outdata(struct s5p_aes_dev * dev)488 static void s5p_unset_outdata(struct s5p_aes_dev *dev)
489 {
490 dma_unmap_sg(dev->dev, dev->sg_dst, 1, DMA_FROM_DEVICE);
491 }
492
s5p_unset_indata(struct s5p_aes_dev * dev)493 static void s5p_unset_indata(struct s5p_aes_dev *dev)
494 {
495 dma_unmap_sg(dev->dev, dev->sg_src, 1, DMA_TO_DEVICE);
496 }
497
s5p_make_sg_cpy(struct s5p_aes_dev * dev,struct scatterlist * src,struct scatterlist ** dst)498 static int s5p_make_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist *src,
499 struct scatterlist **dst)
500 {
501 void *pages;
502 int len;
503
504 *dst = kmalloc(sizeof(**dst), GFP_ATOMIC);
505 if (!*dst)
506 return -ENOMEM;
507
508 len = ALIGN(dev->req->cryptlen, AES_BLOCK_SIZE);
509 pages = (void *)__get_free_pages(GFP_ATOMIC, get_order(len));
510 if (!pages) {
511 kfree(*dst);
512 *dst = NULL;
513 return -ENOMEM;
514 }
515
516 memcpy_from_sglist(pages, src, 0, dev->req->cryptlen);
517
518 sg_init_table(*dst, 1);
519 sg_set_buf(*dst, pages, len);
520
521 return 0;
522 }
523
s5p_set_outdata(struct s5p_aes_dev * dev,struct scatterlist * sg)524 static int s5p_set_outdata(struct s5p_aes_dev *dev, struct scatterlist *sg)
525 {
526 if (!sg->length)
527 return -EINVAL;
528
529 if (!dma_map_sg(dev->dev, sg, 1, DMA_FROM_DEVICE))
530 return -ENOMEM;
531
532 dev->sg_dst = sg;
533
534 return 0;
535 }
536
s5p_set_indata(struct s5p_aes_dev * dev,struct scatterlist * sg)537 static int s5p_set_indata(struct s5p_aes_dev *dev, struct scatterlist *sg)
538 {
539 if (!sg->length)
540 return -EINVAL;
541
542 if (!dma_map_sg(dev->dev, sg, 1, DMA_TO_DEVICE))
543 return -ENOMEM;
544
545 dev->sg_src = sg;
546
547 return 0;
548 }
549
550 /*
551 * Returns -ERRNO on error (mapping of new data failed).
552 * On success returns:
553 * - 0 if there is no more data,
554 * - 1 if new transmitting (output) data is ready and its address+length
555 * have to be written to device (by calling s5p_set_dma_outdata()).
556 */
s5p_aes_tx(struct s5p_aes_dev * dev)557 static int s5p_aes_tx(struct s5p_aes_dev *dev)
558 {
559 int ret = 0;
560
561 s5p_unset_outdata(dev);
562
563 if (!sg_is_last(dev->sg_dst)) {
564 ret = s5p_set_outdata(dev, sg_next(dev->sg_dst));
565 if (!ret)
566 ret = 1;
567 }
568
569 return ret;
570 }
571
572 /*
573 * Returns -ERRNO on error (mapping of new data failed).
574 * On success returns:
575 * - 0 if there is no more data,
576 * - 1 if new receiving (input) data is ready and its address+length
577 * have to be written to device (by calling s5p_set_dma_indata()).
578 */
s5p_aes_rx(struct s5p_aes_dev * dev)579 static int s5p_aes_rx(struct s5p_aes_dev *dev/*, bool *set_dma*/)
580 {
581 int ret = 0;
582
583 s5p_unset_indata(dev);
584
585 if (!sg_is_last(dev->sg_src)) {
586 ret = s5p_set_indata(dev, sg_next(dev->sg_src));
587 if (!ret)
588 ret = 1;
589 }
590
591 return ret;
592 }
593
s5p_hash_read(struct s5p_aes_dev * dd,u32 offset)594 static inline u32 s5p_hash_read(struct s5p_aes_dev *dd, u32 offset)
595 {
596 return __raw_readl(dd->io_hash_base + offset);
597 }
598
s5p_hash_write(struct s5p_aes_dev * dd,u32 offset,u32 value)599 static inline void s5p_hash_write(struct s5p_aes_dev *dd,
600 u32 offset, u32 value)
601 {
602 __raw_writel(value, dd->io_hash_base + offset);
603 }
604
605 /**
606 * s5p_set_dma_hashdata() - start DMA with sg
607 * @dev: device
608 * @sg: scatterlist ready to DMA transmit
609 */
s5p_set_dma_hashdata(struct s5p_aes_dev * dev,const struct scatterlist * sg)610 static void s5p_set_dma_hashdata(struct s5p_aes_dev *dev,
611 const struct scatterlist *sg)
612 {
613 dev->hash_sg_cnt--;
614 SSS_WRITE(dev, FCHRDMAS, sg_dma_address(sg));
615 SSS_WRITE(dev, FCHRDMAL, sg_dma_len(sg)); /* DMA starts */
616 }
617
618 /**
619 * s5p_hash_rx() - get next hash_sg_iter
620 * @dev: device
621 *
622 * Return:
623 * 2 if there is no more data and it is UPDATE op
624 * 1 if new receiving (input) data is ready and can be written to device
625 * 0 if there is no more data and it is FINAL op
626 */
s5p_hash_rx(struct s5p_aes_dev * dev)627 static int s5p_hash_rx(struct s5p_aes_dev *dev)
628 {
629 if (dev->hash_sg_cnt > 0) {
630 dev->hash_sg_iter = sg_next(dev->hash_sg_iter);
631 return 1;
632 }
633
634 set_bit(HASH_FLAGS_DMA_READY, &dev->hash_flags);
635 if (test_bit(HASH_FLAGS_FINAL, &dev->hash_flags))
636 return 0;
637
638 return 2;
639 }
640
s5p_aes_interrupt(int irq,void * dev_id)641 static irqreturn_t s5p_aes_interrupt(int irq, void *dev_id)
642 {
643 struct platform_device *pdev = dev_id;
644 struct s5p_aes_dev *dev = platform_get_drvdata(pdev);
645 struct skcipher_request *req;
646 int err_dma_tx = 0;
647 int err_dma_rx = 0;
648 int err_dma_hx = 0;
649 bool tx_end = false;
650 bool hx_end = false;
651 unsigned long flags;
652 u32 status, st_bits;
653 int err;
654
655 spin_lock_irqsave(&dev->lock, flags);
656
657 /*
658 * Handle rx or tx interrupt. If there is still data (scatterlist did not
659 * reach end), then map next scatterlist entry.
660 * In case of such mapping error, s5p_aes_complete() should be called.
661 *
662 * If there is no more data in tx scatter list, call s5p_aes_complete()
663 * and schedule new tasklet.
664 *
665 * Handle hx interrupt. If there is still data map next entry.
666 */
667 status = SSS_READ(dev, FCINTSTAT);
668 if (status & SSS_FCINTSTAT_BRDMAINT)
669 err_dma_rx = s5p_aes_rx(dev);
670
671 if (status & SSS_FCINTSTAT_BTDMAINT) {
672 if (sg_is_last(dev->sg_dst))
673 tx_end = true;
674 err_dma_tx = s5p_aes_tx(dev);
675 }
676
677 if (status & SSS_FCINTSTAT_HRDMAINT)
678 err_dma_hx = s5p_hash_rx(dev);
679
680 st_bits = status & (SSS_FCINTSTAT_BRDMAINT | SSS_FCINTSTAT_BTDMAINT |
681 SSS_FCINTSTAT_HRDMAINT);
682 /* clear DMA bits */
683 SSS_WRITE(dev, FCINTPEND, st_bits);
684
685 /* clear HASH irq bits */
686 if (status & (SSS_FCINTSTAT_HDONEINT | SSS_FCINTSTAT_HPARTINT)) {
687 /* cannot have both HPART and HDONE */
688 if (status & SSS_FCINTSTAT_HPARTINT)
689 st_bits = SSS_HASH_STATUS_PARTIAL_DONE;
690
691 if (status & SSS_FCINTSTAT_HDONEINT)
692 st_bits = SSS_HASH_STATUS_MSG_DONE;
693
694 set_bit(HASH_FLAGS_OUTPUT_READY, &dev->hash_flags);
695 s5p_hash_write(dev, SSS_REG_HASH_STATUS, st_bits);
696 hx_end = true;
697 /* when DONE or PART, do not handle HASH DMA */
698 err_dma_hx = 0;
699 }
700
701 if (err_dma_rx < 0) {
702 err = err_dma_rx;
703 goto error;
704 }
705 if (err_dma_tx < 0) {
706 err = err_dma_tx;
707 goto error;
708 }
709
710 if (tx_end) {
711 s5p_sg_done(dev);
712 if (err_dma_hx == 1)
713 s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
714
715 spin_unlock_irqrestore(&dev->lock, flags);
716
717 s5p_aes_complete(dev->req, 0);
718 /* Device is still busy */
719 tasklet_schedule(&dev->tasklet);
720 } else {
721 /*
722 * Writing length of DMA block (either receiving or
723 * transmitting) will start the operation immediately, so this
724 * should be done at the end (even after clearing pending
725 * interrupts to not miss the interrupt).
726 */
727 if (err_dma_tx == 1)
728 s5p_set_dma_outdata(dev, dev->sg_dst);
729 if (err_dma_rx == 1)
730 s5p_set_dma_indata(dev, dev->sg_src);
731 if (err_dma_hx == 1)
732 s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
733
734 spin_unlock_irqrestore(&dev->lock, flags);
735 }
736
737 goto hash_irq_end;
738
739 error:
740 s5p_sg_done(dev);
741 dev->busy = false;
742 req = dev->req;
743 if (err_dma_hx == 1)
744 s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
745
746 spin_unlock_irqrestore(&dev->lock, flags);
747 s5p_aes_complete(req, err);
748
749 hash_irq_end:
750 /*
751 * Note about else if:
752 * when hash_sg_iter reaches end and its UPDATE op,
753 * issue SSS_HASH_PAUSE and wait for HPART irq
754 */
755 if (hx_end)
756 tasklet_schedule(&dev->hash_tasklet);
757 else if (err_dma_hx == 2)
758 s5p_hash_write(dev, SSS_REG_HASH_CTRL_PAUSE,
759 SSS_HASH_PAUSE);
760
761 return IRQ_HANDLED;
762 }
763
764 /**
765 * s5p_hash_read_msg() - read message or IV from HW
766 * @req: AHASH request
767 */
s5p_hash_read_msg(struct ahash_request * req)768 static void s5p_hash_read_msg(struct ahash_request *req)
769 {
770 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
771 struct s5p_aes_dev *dd = ctx->dd;
772 u32 *hash = (u32 *)ctx->digest;
773 unsigned int i;
774
775 for (i = 0; i < ctx->nregs; i++)
776 hash[i] = s5p_hash_read(dd, SSS_REG_HASH_OUT(i));
777 }
778
779 /**
780 * s5p_hash_write_ctx_iv() - write IV for next partial/finup op.
781 * @dd: device
782 * @ctx: request context
783 */
s5p_hash_write_ctx_iv(struct s5p_aes_dev * dd,const struct s5p_hash_reqctx * ctx)784 static void s5p_hash_write_ctx_iv(struct s5p_aes_dev *dd,
785 const struct s5p_hash_reqctx *ctx)
786 {
787 const u32 *hash = (const u32 *)ctx->digest;
788 unsigned int i;
789
790 for (i = 0; i < ctx->nregs; i++)
791 s5p_hash_write(dd, SSS_REG_HASH_IV(i), hash[i]);
792 }
793
794 /**
795 * s5p_hash_write_iv() - write IV for next partial/finup op.
796 * @req: AHASH request
797 */
s5p_hash_write_iv(struct ahash_request * req)798 static void s5p_hash_write_iv(struct ahash_request *req)
799 {
800 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
801
802 s5p_hash_write_ctx_iv(ctx->dd, ctx);
803 }
804
805 /**
806 * s5p_hash_copy_result() - copy digest into req->result
807 * @req: AHASH request
808 */
s5p_hash_copy_result(struct ahash_request * req)809 static void s5p_hash_copy_result(struct ahash_request *req)
810 {
811 const struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
812
813 if (!req->result)
814 return;
815
816 memcpy(req->result, ctx->digest, ctx->nregs * HASH_REG_SIZEOF);
817 }
818
819 /**
820 * s5p_hash_dma_flush() - flush HASH DMA
821 * @dev: secss device
822 */
s5p_hash_dma_flush(struct s5p_aes_dev * dev)823 static void s5p_hash_dma_flush(struct s5p_aes_dev *dev)
824 {
825 SSS_WRITE(dev, FCHRDMAC, SSS_FCHRDMAC_FLUSH);
826 }
827
828 /**
829 * s5p_hash_dma_enable() - enable DMA mode for HASH
830 * @dev: secss device
831 *
832 * enable DMA mode for HASH
833 */
s5p_hash_dma_enable(struct s5p_aes_dev * dev)834 static void s5p_hash_dma_enable(struct s5p_aes_dev *dev)
835 {
836 s5p_hash_write(dev, SSS_REG_HASH_CTRL_FIFO, SSS_HASH_FIFO_MODE_DMA);
837 }
838
839 /**
840 * s5p_hash_irq_disable() - disable irq HASH signals
841 * @dev: secss device
842 * @flags: bitfield with irq's to be disabled
843 */
s5p_hash_irq_disable(struct s5p_aes_dev * dev,u32 flags)844 static void s5p_hash_irq_disable(struct s5p_aes_dev *dev, u32 flags)
845 {
846 SSS_WRITE(dev, FCINTENCLR, flags);
847 }
848
849 /**
850 * s5p_hash_irq_enable() - enable irq signals
851 * @dev: secss device
852 * @flags: bitfield with irq's to be enabled
853 */
s5p_hash_irq_enable(struct s5p_aes_dev * dev,int flags)854 static void s5p_hash_irq_enable(struct s5p_aes_dev *dev, int flags)
855 {
856 SSS_WRITE(dev, FCINTENSET, flags);
857 }
858
859 /**
860 * s5p_hash_set_flow() - set flow inside SecSS AES/DES with/without HASH
861 * @dev: secss device
862 * @hashflow: HASH stream flow with/without crypto AES/DES
863 */
s5p_hash_set_flow(struct s5p_aes_dev * dev,u32 hashflow)864 static void s5p_hash_set_flow(struct s5p_aes_dev *dev, u32 hashflow)
865 {
866 unsigned long flags;
867 u32 flow;
868
869 spin_lock_irqsave(&dev->lock, flags);
870
871 flow = SSS_READ(dev, FCFIFOCTRL);
872 flow &= ~SSS_HASHIN_MASK;
873 flow |= hashflow;
874 SSS_WRITE(dev, FCFIFOCTRL, flow);
875
876 spin_unlock_irqrestore(&dev->lock, flags);
877 }
878
879 /**
880 * s5p_ahash_dma_init() - enable DMA and set HASH flow inside SecSS
881 * @dev: secss device
882 * @hashflow: HASH stream flow with/without AES/DES
883 *
884 * flush HASH DMA and enable DMA, set HASH stream flow inside SecSS HW,
885 * enable HASH irq's HRDMA, HDONE, HPART
886 */
s5p_ahash_dma_init(struct s5p_aes_dev * dev,u32 hashflow)887 static void s5p_ahash_dma_init(struct s5p_aes_dev *dev, u32 hashflow)
888 {
889 s5p_hash_irq_disable(dev, SSS_FCINTENCLR_HRDMAINTENCLR |
890 SSS_FCINTENCLR_HDONEINTENCLR |
891 SSS_FCINTENCLR_HPARTINTENCLR);
892 s5p_hash_dma_flush(dev);
893
894 s5p_hash_dma_enable(dev);
895 s5p_hash_set_flow(dev, hashflow & SSS_HASHIN_MASK);
896 s5p_hash_irq_enable(dev, SSS_FCINTENSET_HRDMAINTENSET |
897 SSS_FCINTENSET_HDONEINTENSET |
898 SSS_FCINTENSET_HPARTINTENSET);
899 }
900
901 /**
902 * s5p_hash_write_ctrl() - prepare HASH block in SecSS for processing
903 * @dd: secss device
904 * @length: length for request
905 * @final: true if final op
906 *
907 * Prepare SSS HASH block for processing bytes in DMA mode. If it is called
908 * after previous updates, fill up IV words. For final, calculate and set
909 * lengths for HASH so SecSS can finalize hash. For partial, set SSS HASH
910 * length as 2^63 so it will be never reached and set to zero prelow and
911 * prehigh.
912 *
913 * This function does not start DMA transfer.
914 */
s5p_hash_write_ctrl(struct s5p_aes_dev * dd,size_t length,bool final)915 static void s5p_hash_write_ctrl(struct s5p_aes_dev *dd, size_t length,
916 bool final)
917 {
918 struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
919 u32 prelow, prehigh, low, high;
920 u32 configflags, swapflags;
921 u64 tmplen;
922
923 configflags = ctx->engine | SSS_HASH_INIT_BIT;
924
925 if (likely(ctx->digcnt)) {
926 s5p_hash_write_ctx_iv(dd, ctx);
927 configflags |= SSS_HASH_USER_IV_EN;
928 }
929
930 if (final) {
931 /* number of bytes for last part */
932 low = length;
933 high = 0;
934 /* total number of bits prev hashed */
935 tmplen = ctx->digcnt * 8;
936 prelow = (u32)tmplen;
937 prehigh = (u32)(tmplen >> 32);
938 } else {
939 prelow = 0;
940 prehigh = 0;
941 low = 0;
942 high = BIT(31);
943 }
944
945 swapflags = SSS_HASH_BYTESWAP_DI | SSS_HASH_BYTESWAP_DO |
946 SSS_HASH_BYTESWAP_IV | SSS_HASH_BYTESWAP_KEY;
947
948 s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_LOW, low);
949 s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_HIGH, high);
950 s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_LOW, prelow);
951 s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_HIGH, prehigh);
952
953 s5p_hash_write(dd, SSS_REG_HASH_CTRL_SWAP, swapflags);
954 s5p_hash_write(dd, SSS_REG_HASH_CTRL, configflags);
955 }
956
957 /**
958 * s5p_hash_xmit_dma() - start DMA hash processing
959 * @dd: secss device
960 * @length: length for request
961 * @final: true if final op
962 *
963 * Update digcnt here, as it is needed for finup/final op.
964 */
s5p_hash_xmit_dma(struct s5p_aes_dev * dd,size_t length,bool final)965 static int s5p_hash_xmit_dma(struct s5p_aes_dev *dd, size_t length,
966 bool final)
967 {
968 struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
969 unsigned int cnt;
970
971 cnt = dma_map_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE);
972 if (!cnt) {
973 dev_err(dd->dev, "dma_map_sg error\n");
974 ctx->error = true;
975 return -EINVAL;
976 }
977
978 set_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags);
979 dd->hash_sg_iter = ctx->sg;
980 dd->hash_sg_cnt = cnt;
981 s5p_hash_write_ctrl(dd, length, final);
982 ctx->digcnt += length;
983 ctx->total -= length;
984
985 /* catch last interrupt */
986 if (final)
987 set_bit(HASH_FLAGS_FINAL, &dd->hash_flags);
988
989 s5p_set_dma_hashdata(dd, dd->hash_sg_iter); /* DMA starts */
990
991 return -EINPROGRESS;
992 }
993
994 /**
995 * s5p_hash_copy_sgs() - copy request's bytes into new buffer
996 * @ctx: request context
997 * @sg: source scatterlist request
998 * @new_len: number of bytes to process from sg
999 *
1000 * Allocate new buffer, copy data for HASH into it. If there was xmit_buf
1001 * filled, copy it first, then copy data from sg into it. Prepare one sgl[0]
1002 * with allocated buffer.
1003 *
1004 * Set bit in dd->hash_flag so we can free it after irq ends processing.
1005 */
s5p_hash_copy_sgs(struct s5p_hash_reqctx * ctx,struct scatterlist * sg,unsigned int new_len)1006 static int s5p_hash_copy_sgs(struct s5p_hash_reqctx *ctx,
1007 struct scatterlist *sg, unsigned int new_len)
1008 {
1009 unsigned int pages, len;
1010 void *buf;
1011
1012 len = new_len + ctx->bufcnt;
1013 pages = get_order(len);
1014
1015 buf = (void *)__get_free_pages(GFP_ATOMIC, pages);
1016 if (!buf) {
1017 dev_err(ctx->dd->dev, "alloc pages for unaligned case.\n");
1018 ctx->error = true;
1019 return -ENOMEM;
1020 }
1021
1022 if (ctx->bufcnt)
1023 memcpy(buf, ctx->dd->xmit_buf, ctx->bufcnt);
1024
1025 memcpy_from_sglist(buf + ctx->bufcnt, sg, ctx->skip, new_len);
1026 sg_init_table(ctx->sgl, 1);
1027 sg_set_buf(ctx->sgl, buf, len);
1028 ctx->sg = ctx->sgl;
1029 ctx->sg_len = 1;
1030 ctx->bufcnt = 0;
1031 ctx->skip = 0;
1032 set_bit(HASH_FLAGS_SGS_COPIED, &ctx->dd->hash_flags);
1033
1034 return 0;
1035 }
1036
1037 /**
1038 * s5p_hash_copy_sg_lists() - copy sg list and make fixes in copy
1039 * @ctx: request context
1040 * @sg: source scatterlist request
1041 * @new_len: number of bytes to process from sg
1042 *
1043 * Allocate new scatterlist table, copy data for HASH into it. If there was
1044 * xmit_buf filled, prepare it first, then copy page, length and offset from
1045 * source sg into it, adjusting begin and/or end for skip offset and
1046 * hash_later value.
1047 *
1048 * Resulting sg table will be assigned to ctx->sg. Set flag so we can free
1049 * it after irq ends processing.
1050 */
s5p_hash_copy_sg_lists(struct s5p_hash_reqctx * ctx,struct scatterlist * sg,unsigned int new_len)1051 static int s5p_hash_copy_sg_lists(struct s5p_hash_reqctx *ctx,
1052 struct scatterlist *sg, unsigned int new_len)
1053 {
1054 unsigned int skip = ctx->skip, n = sg_nents(sg);
1055 struct scatterlist *tmp;
1056 unsigned int len;
1057
1058 if (ctx->bufcnt)
1059 n++;
1060
1061 ctx->sg = kmalloc_array(n, sizeof(*sg), GFP_KERNEL);
1062 if (!ctx->sg) {
1063 ctx->error = true;
1064 return -ENOMEM;
1065 }
1066
1067 sg_init_table(ctx->sg, n);
1068
1069 tmp = ctx->sg;
1070
1071 ctx->sg_len = 0;
1072
1073 if (ctx->bufcnt) {
1074 sg_set_buf(tmp, ctx->dd->xmit_buf, ctx->bufcnt);
1075 tmp = sg_next(tmp);
1076 ctx->sg_len++;
1077 }
1078
1079 while (sg && skip >= sg->length) {
1080 skip -= sg->length;
1081 sg = sg_next(sg);
1082 }
1083
1084 while (sg && new_len) {
1085 len = sg->length - skip;
1086 if (new_len < len)
1087 len = new_len;
1088
1089 new_len -= len;
1090 sg_set_page(tmp, sg_page(sg), len, sg->offset + skip);
1091 skip = 0;
1092 if (new_len <= 0)
1093 sg_mark_end(tmp);
1094
1095 tmp = sg_next(tmp);
1096 ctx->sg_len++;
1097 sg = sg_next(sg);
1098 }
1099
1100 set_bit(HASH_FLAGS_SGS_ALLOCED, &ctx->dd->hash_flags);
1101
1102 return 0;
1103 }
1104
1105 /**
1106 * s5p_hash_prepare_sgs() - prepare sg for processing
1107 * @ctx: request context
1108 * @sg: source scatterlist request
1109 * @new_len: number of bytes to process from sg
1110 * @final: final flag
1111 *
1112 * Check two conditions: (1) if buffers in sg have len aligned data, and (2)
1113 * sg table have good aligned elements (list_ok). If one of this checks fails,
1114 * then either (1) allocates new buffer for data with s5p_hash_copy_sgs, copy
1115 * data into this buffer and prepare request in sgl, or (2) allocates new sg
1116 * table and prepare sg elements.
1117 *
1118 * For digest or finup all conditions can be good, and we may not need any
1119 * fixes.
1120 */
s5p_hash_prepare_sgs(struct s5p_hash_reqctx * ctx,struct scatterlist * sg,unsigned int new_len,bool final)1121 static int s5p_hash_prepare_sgs(struct s5p_hash_reqctx *ctx,
1122 struct scatterlist *sg,
1123 unsigned int new_len, bool final)
1124 {
1125 unsigned int skip = ctx->skip, nbytes = new_len, n = 0;
1126 bool aligned = true, list_ok = true;
1127 struct scatterlist *sg_tmp = sg;
1128
1129 if (!sg || !sg->length || !new_len)
1130 return 0;
1131
1132 if (skip || !final)
1133 list_ok = false;
1134
1135 while (nbytes > 0 && sg_tmp) {
1136 n++;
1137 if (skip >= sg_tmp->length) {
1138 skip -= sg_tmp->length;
1139 if (!sg_tmp->length) {
1140 aligned = false;
1141 break;
1142 }
1143 } else {
1144 if (!IS_ALIGNED(sg_tmp->length - skip, BUFLEN)) {
1145 aligned = false;
1146 break;
1147 }
1148
1149 if (nbytes < sg_tmp->length - skip) {
1150 list_ok = false;
1151 break;
1152 }
1153
1154 nbytes -= sg_tmp->length - skip;
1155 skip = 0;
1156 }
1157
1158 sg_tmp = sg_next(sg_tmp);
1159 }
1160
1161 if (!aligned)
1162 return s5p_hash_copy_sgs(ctx, sg, new_len);
1163 else if (!list_ok)
1164 return s5p_hash_copy_sg_lists(ctx, sg, new_len);
1165
1166 /*
1167 * Have aligned data from previous operation and/or current
1168 * Note: will enter here only if (digest or finup) and aligned
1169 */
1170 if (ctx->bufcnt) {
1171 ctx->sg_len = n;
1172 sg_init_table(ctx->sgl, 2);
1173 sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, ctx->bufcnt);
1174 sg_chain(ctx->sgl, 2, sg);
1175 ctx->sg = ctx->sgl;
1176 ctx->sg_len++;
1177 } else {
1178 ctx->sg = sg;
1179 ctx->sg_len = n;
1180 }
1181
1182 return 0;
1183 }
1184
1185 /**
1186 * s5p_hash_prepare_request() - prepare request for processing
1187 * @req: AHASH request
1188 * @update: true if UPDATE op
1189 *
1190 * Note 1: we can have update flag _and_ final flag at the same time.
1191 * Note 2: we enter here when digcnt > BUFLEN (=HASH_BLOCK_SIZE) or
1192 * either req->nbytes or ctx->bufcnt + req->nbytes is > BUFLEN or
1193 * we have final op
1194 */
s5p_hash_prepare_request(struct ahash_request * req,bool update)1195 static int s5p_hash_prepare_request(struct ahash_request *req, bool update)
1196 {
1197 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1198 bool final = ctx->finup;
1199 int xmit_len, hash_later, nbytes;
1200 int ret;
1201
1202 if (update)
1203 nbytes = req->nbytes;
1204 else
1205 nbytes = 0;
1206
1207 ctx->total = nbytes + ctx->bufcnt;
1208 if (!ctx->total)
1209 return 0;
1210
1211 if (nbytes && (!IS_ALIGNED(ctx->bufcnt, BUFLEN))) {
1212 /* bytes left from previous request, so fill up to BUFLEN */
1213 int len = BUFLEN - ctx->bufcnt % BUFLEN;
1214
1215 if (len > nbytes)
1216 len = nbytes;
1217
1218 memcpy_from_sglist(ctx->buffer + ctx->bufcnt, req->src, 0, len);
1219 ctx->bufcnt += len;
1220 nbytes -= len;
1221 ctx->skip = len;
1222 } else {
1223 ctx->skip = 0;
1224 }
1225
1226 if (ctx->bufcnt)
1227 memcpy(ctx->dd->xmit_buf, ctx->buffer, ctx->bufcnt);
1228
1229 xmit_len = ctx->total;
1230 if (final) {
1231 hash_later = 0;
1232 } else {
1233 if (IS_ALIGNED(xmit_len, BUFLEN))
1234 xmit_len -= BUFLEN;
1235 else
1236 xmit_len -= xmit_len & (BUFLEN - 1);
1237
1238 hash_later = ctx->total - xmit_len;
1239 /* copy hash_later bytes from end of req->src */
1240 /* previous bytes are in xmit_buf, so no overwrite */
1241 memcpy_from_sglist(ctx->buffer, req->src,
1242 req->nbytes - hash_later, hash_later);
1243 }
1244
1245 if (xmit_len > BUFLEN) {
1246 ret = s5p_hash_prepare_sgs(ctx, req->src, nbytes - hash_later,
1247 final);
1248 if (ret)
1249 return ret;
1250 } else {
1251 /* have buffered data only */
1252 if (unlikely(!ctx->bufcnt)) {
1253 /* first update didn't fill up buffer */
1254 memcpy_from_sglist(ctx->dd->xmit_buf, req->src,
1255 0, xmit_len);
1256 }
1257
1258 sg_init_table(ctx->sgl, 1);
1259 sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, xmit_len);
1260
1261 ctx->sg = ctx->sgl;
1262 ctx->sg_len = 1;
1263 }
1264
1265 ctx->bufcnt = hash_later;
1266 if (!final)
1267 ctx->total = xmit_len;
1268
1269 return 0;
1270 }
1271
1272 /**
1273 * s5p_hash_update_dma_stop() - unmap DMA
1274 * @dd: secss device
1275 *
1276 * Unmap scatterlist ctx->sg.
1277 */
s5p_hash_update_dma_stop(struct s5p_aes_dev * dd)1278 static void s5p_hash_update_dma_stop(struct s5p_aes_dev *dd)
1279 {
1280 const struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
1281
1282 dma_unmap_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE);
1283 clear_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags);
1284 }
1285
1286 /**
1287 * s5p_hash_finish() - copy calculated digest to crypto layer
1288 * @req: AHASH request
1289 */
s5p_hash_finish(struct ahash_request * req)1290 static void s5p_hash_finish(struct ahash_request *req)
1291 {
1292 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1293 struct s5p_aes_dev *dd = ctx->dd;
1294
1295 if (ctx->digcnt)
1296 s5p_hash_copy_result(req);
1297
1298 dev_dbg(dd->dev, "hash_finish digcnt: %lld\n", ctx->digcnt);
1299 }
1300
1301 /**
1302 * s5p_hash_finish_req() - finish request
1303 * @req: AHASH request
1304 * @err: error
1305 */
s5p_hash_finish_req(struct ahash_request * req,int err)1306 static void s5p_hash_finish_req(struct ahash_request *req, int err)
1307 {
1308 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1309 struct s5p_aes_dev *dd = ctx->dd;
1310 unsigned long flags;
1311
1312 if (test_bit(HASH_FLAGS_SGS_COPIED, &dd->hash_flags))
1313 free_pages((unsigned long)sg_virt(ctx->sg),
1314 get_order(ctx->sg->length));
1315
1316 if (test_bit(HASH_FLAGS_SGS_ALLOCED, &dd->hash_flags))
1317 kfree(ctx->sg);
1318
1319 ctx->sg = NULL;
1320 dd->hash_flags &= ~(BIT(HASH_FLAGS_SGS_ALLOCED) |
1321 BIT(HASH_FLAGS_SGS_COPIED));
1322
1323 if (!err && !ctx->error) {
1324 s5p_hash_read_msg(req);
1325 if (test_bit(HASH_FLAGS_FINAL, &dd->hash_flags))
1326 s5p_hash_finish(req);
1327 } else {
1328 ctx->error = true;
1329 }
1330
1331 spin_lock_irqsave(&dd->hash_lock, flags);
1332 dd->hash_flags &= ~(BIT(HASH_FLAGS_BUSY) | BIT(HASH_FLAGS_FINAL) |
1333 BIT(HASH_FLAGS_DMA_READY) |
1334 BIT(HASH_FLAGS_OUTPUT_READY));
1335 spin_unlock_irqrestore(&dd->hash_lock, flags);
1336
1337 if (req->base.complete)
1338 ahash_request_complete(req, err);
1339 }
1340
1341 /**
1342 * s5p_hash_handle_queue() - handle hash queue
1343 * @dd: device s5p_aes_dev
1344 * @req: AHASH request
1345 *
1346 * If req!=NULL enqueue it on dd->queue, if FLAGS_BUSY is not set on the
1347 * device then processes the first request from the dd->queue
1348 *
1349 * Returns: see s5p_hash_final below.
1350 */
s5p_hash_handle_queue(struct s5p_aes_dev * dd,struct ahash_request * req)1351 static int s5p_hash_handle_queue(struct s5p_aes_dev *dd,
1352 struct ahash_request *req)
1353 {
1354 struct crypto_async_request *async_req, *backlog;
1355 struct s5p_hash_reqctx *ctx;
1356 unsigned long flags;
1357 int err = 0, ret = 0;
1358
1359 retry:
1360 spin_lock_irqsave(&dd->hash_lock, flags);
1361 if (req)
1362 ret = ahash_enqueue_request(&dd->hash_queue, req);
1363
1364 if (test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) {
1365 spin_unlock_irqrestore(&dd->hash_lock, flags);
1366 return ret;
1367 }
1368
1369 backlog = crypto_get_backlog(&dd->hash_queue);
1370 async_req = crypto_dequeue_request(&dd->hash_queue);
1371 if (async_req)
1372 set_bit(HASH_FLAGS_BUSY, &dd->hash_flags);
1373
1374 spin_unlock_irqrestore(&dd->hash_lock, flags);
1375
1376 if (!async_req)
1377 return ret;
1378
1379 if (backlog)
1380 crypto_request_complete(backlog, -EINPROGRESS);
1381
1382 req = ahash_request_cast(async_req);
1383 dd->hash_req = req;
1384 ctx = ahash_request_ctx(req);
1385
1386 err = s5p_hash_prepare_request(req, ctx->op_update);
1387 if (err || !ctx->total)
1388 goto out;
1389
1390 dev_dbg(dd->dev, "handling new req, op_update: %u, nbytes: %d\n",
1391 ctx->op_update, req->nbytes);
1392
1393 s5p_ahash_dma_init(dd, SSS_HASHIN_INDEPENDENT);
1394 if (ctx->digcnt)
1395 s5p_hash_write_iv(req); /* restore hash IV */
1396
1397 if (ctx->op_update) { /* HASH_OP_UPDATE */
1398 err = s5p_hash_xmit_dma(dd, ctx->total, ctx->finup);
1399 if (err != -EINPROGRESS && ctx->finup && !ctx->error)
1400 /* no final() after finup() */
1401 err = s5p_hash_xmit_dma(dd, ctx->total, true);
1402 } else { /* HASH_OP_FINAL */
1403 err = s5p_hash_xmit_dma(dd, ctx->total, true);
1404 }
1405 out:
1406 if (err != -EINPROGRESS) {
1407 /* hash_tasklet_cb will not finish it, so do it here */
1408 s5p_hash_finish_req(req, err);
1409 req = NULL;
1410
1411 /*
1412 * Execute next request immediately if there is anything
1413 * in queue.
1414 */
1415 goto retry;
1416 }
1417
1418 return ret;
1419 }
1420
1421 /**
1422 * s5p_hash_tasklet_cb() - hash tasklet
1423 * @data: ptr to s5p_aes_dev
1424 */
s5p_hash_tasklet_cb(unsigned long data)1425 static void s5p_hash_tasklet_cb(unsigned long data)
1426 {
1427 struct s5p_aes_dev *dd = (struct s5p_aes_dev *)data;
1428
1429 if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) {
1430 s5p_hash_handle_queue(dd, NULL);
1431 return;
1432 }
1433
1434 if (test_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags)) {
1435 if (test_and_clear_bit(HASH_FLAGS_DMA_ACTIVE,
1436 &dd->hash_flags)) {
1437 s5p_hash_update_dma_stop(dd);
1438 }
1439
1440 if (test_and_clear_bit(HASH_FLAGS_OUTPUT_READY,
1441 &dd->hash_flags)) {
1442 /* hash or semi-hash ready */
1443 clear_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags);
1444 goto finish;
1445 }
1446 }
1447
1448 return;
1449
1450 finish:
1451 /* finish curent request */
1452 s5p_hash_finish_req(dd->hash_req, 0);
1453
1454 /* If we are not busy, process next req */
1455 if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags))
1456 s5p_hash_handle_queue(dd, NULL);
1457 }
1458
1459 /**
1460 * s5p_hash_enqueue() - enqueue request
1461 * @req: AHASH request
1462 * @op: operation UPDATE (true) or FINAL (false)
1463 *
1464 * Returns: see s5p_hash_final below.
1465 */
s5p_hash_enqueue(struct ahash_request * req,bool op)1466 static int s5p_hash_enqueue(struct ahash_request *req, bool op)
1467 {
1468 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1469 struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1470
1471 ctx->op_update = op;
1472
1473 return s5p_hash_handle_queue(tctx->dd, req);
1474 }
1475
1476 /**
1477 * s5p_hash_update() - process the hash input data
1478 * @req: AHASH request
1479 *
1480 * If request will fit in buffer, copy it and return immediately
1481 * else enqueue it with OP_UPDATE.
1482 *
1483 * Returns: see s5p_hash_final below.
1484 */
s5p_hash_update(struct ahash_request * req)1485 static int s5p_hash_update(struct ahash_request *req)
1486 {
1487 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1488
1489 if (!req->nbytes)
1490 return 0;
1491
1492 if (ctx->bufcnt + req->nbytes <= BUFLEN) {
1493 memcpy_from_sglist(ctx->buffer + ctx->bufcnt, req->src,
1494 0, req->nbytes);
1495 ctx->bufcnt += req->nbytes;
1496 return 0;
1497 }
1498
1499 return s5p_hash_enqueue(req, true); /* HASH_OP_UPDATE */
1500 }
1501
1502 /**
1503 * s5p_hash_final() - close up hash and calculate digest
1504 * @req: AHASH request
1505 *
1506 * Note: in final req->src do not have any data, and req->nbytes can be
1507 * non-zero.
1508 *
1509 * If there were no input data processed yet and the buffered hash data is
1510 * less than BUFLEN (64) then calculate the final hash immediately by using
1511 * SW algorithm fallback.
1512 *
1513 * Otherwise enqueues the current AHASH request with OP_FINAL operation op
1514 * and finalize hash message in HW. Note that if digcnt!=0 then there were
1515 * previous update op, so there are always some buffered bytes in ctx->buffer,
1516 * which means that ctx->bufcnt!=0
1517 *
1518 * Returns:
1519 * 0 if the request has been processed immediately,
1520 * -EINPROGRESS if the operation has been queued for later execution or is set
1521 * to processing by HW,
1522 * -EBUSY if queue is full and request should be resubmitted later,
1523 * other negative values denotes an error.
1524 */
s5p_hash_final(struct ahash_request * req)1525 static int s5p_hash_final(struct ahash_request *req)
1526 {
1527 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1528
1529 ctx->finup = true;
1530 if (ctx->error)
1531 return -EINVAL; /* uncompleted hash is not needed */
1532
1533 if (!ctx->digcnt && ctx->bufcnt < BUFLEN) {
1534 struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1535
1536 return crypto_shash_tfm_digest(tctx->fallback, ctx->buffer,
1537 ctx->bufcnt, req->result);
1538 }
1539
1540 return s5p_hash_enqueue(req, false); /* HASH_OP_FINAL */
1541 }
1542
1543 /**
1544 * s5p_hash_finup() - process last req->src and calculate digest
1545 * @req: AHASH request containing the last update data
1546 *
1547 * Return values: see s5p_hash_final above.
1548 */
s5p_hash_finup(struct ahash_request * req)1549 static int s5p_hash_finup(struct ahash_request *req)
1550 {
1551 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1552 int err1, err2;
1553
1554 ctx->finup = true;
1555
1556 err1 = s5p_hash_update(req);
1557 if (err1 == -EINPROGRESS || err1 == -EBUSY)
1558 return err1;
1559
1560 /*
1561 * final() has to be always called to cleanup resources even if
1562 * update() failed, except EINPROGRESS or calculate digest for small
1563 * size
1564 */
1565 err2 = s5p_hash_final(req);
1566
1567 return err1 ?: err2;
1568 }
1569
1570 /**
1571 * s5p_hash_init() - initialize AHASH request contex
1572 * @req: AHASH request
1573 *
1574 * Init async hash request context.
1575 */
s5p_hash_init(struct ahash_request * req)1576 static int s5p_hash_init(struct ahash_request *req)
1577 {
1578 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1579 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1580 struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm);
1581
1582 ctx->dd = tctx->dd;
1583 ctx->error = false;
1584 ctx->finup = false;
1585 ctx->bufcnt = 0;
1586 ctx->digcnt = 0;
1587 ctx->total = 0;
1588 ctx->skip = 0;
1589
1590 dev_dbg(tctx->dd->dev, "init: digest size: %d\n",
1591 crypto_ahash_digestsize(tfm));
1592
1593 switch (crypto_ahash_digestsize(tfm)) {
1594 case MD5_DIGEST_SIZE:
1595 ctx->engine = SSS_HASH_ENGINE_MD5;
1596 ctx->nregs = HASH_MD5_MAX_REG;
1597 break;
1598 case SHA1_DIGEST_SIZE:
1599 ctx->engine = SSS_HASH_ENGINE_SHA1;
1600 ctx->nregs = HASH_SHA1_MAX_REG;
1601 break;
1602 case SHA256_DIGEST_SIZE:
1603 ctx->engine = SSS_HASH_ENGINE_SHA256;
1604 ctx->nregs = HASH_SHA256_MAX_REG;
1605 break;
1606 default:
1607 ctx->error = true;
1608 return -EINVAL;
1609 }
1610
1611 return 0;
1612 }
1613
1614 /**
1615 * s5p_hash_digest - calculate digest from req->src
1616 * @req: AHASH request
1617 *
1618 * Return values: see s5p_hash_final above.
1619 */
s5p_hash_digest(struct ahash_request * req)1620 static int s5p_hash_digest(struct ahash_request *req)
1621 {
1622 return s5p_hash_init(req) ?: s5p_hash_finup(req);
1623 }
1624
1625 /**
1626 * s5p_hash_cra_init_alg - init crypto alg transformation
1627 * @tfm: crypto transformation
1628 */
s5p_hash_cra_init_alg(struct crypto_tfm * tfm)1629 static int s5p_hash_cra_init_alg(struct crypto_tfm *tfm)
1630 {
1631 struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm);
1632 const char *alg_name = crypto_tfm_alg_name(tfm);
1633
1634 tctx->dd = s5p_dev;
1635 /* Allocate a fallback and abort if it failed. */
1636 tctx->fallback = crypto_alloc_shash(alg_name, 0,
1637 CRYPTO_ALG_NEED_FALLBACK);
1638 if (IS_ERR(tctx->fallback)) {
1639 pr_err("fallback alloc fails for '%s'\n", alg_name);
1640 return PTR_ERR(tctx->fallback);
1641 }
1642
1643 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1644 sizeof(struct s5p_hash_reqctx) + BUFLEN);
1645
1646 return 0;
1647 }
1648
1649 /**
1650 * s5p_hash_cra_init - init crypto tfm
1651 * @tfm: crypto transformation
1652 */
s5p_hash_cra_init(struct crypto_tfm * tfm)1653 static int s5p_hash_cra_init(struct crypto_tfm *tfm)
1654 {
1655 return s5p_hash_cra_init_alg(tfm);
1656 }
1657
1658 /**
1659 * s5p_hash_cra_exit - exit crypto tfm
1660 * @tfm: crypto transformation
1661 *
1662 * free allocated fallback
1663 */
s5p_hash_cra_exit(struct crypto_tfm * tfm)1664 static void s5p_hash_cra_exit(struct crypto_tfm *tfm)
1665 {
1666 struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm);
1667
1668 crypto_free_shash(tctx->fallback);
1669 tctx->fallback = NULL;
1670 }
1671
1672 /**
1673 * s5p_hash_export - export hash state
1674 * @req: AHASH request
1675 * @out: buffer for exported state
1676 */
s5p_hash_export(struct ahash_request * req,void * out)1677 static int s5p_hash_export(struct ahash_request *req, void *out)
1678 {
1679 const struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1680
1681 memcpy(out, ctx, sizeof(*ctx) + ctx->bufcnt);
1682
1683 return 0;
1684 }
1685
1686 /**
1687 * s5p_hash_import - import hash state
1688 * @req: AHASH request
1689 * @in: buffer with state to be imported from
1690 */
s5p_hash_import(struct ahash_request * req,const void * in)1691 static int s5p_hash_import(struct ahash_request *req, const void *in)
1692 {
1693 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1694 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1695 struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm);
1696 const struct s5p_hash_reqctx *ctx_in = in;
1697
1698 memcpy(ctx, in, sizeof(*ctx) + BUFLEN);
1699 if (ctx_in->bufcnt > BUFLEN) {
1700 ctx->error = true;
1701 return -EINVAL;
1702 }
1703
1704 ctx->dd = tctx->dd;
1705 ctx->error = false;
1706
1707 return 0;
1708 }
1709
1710 static struct ahash_alg algs_sha1_md5_sha256[] = {
1711 {
1712 .init = s5p_hash_init,
1713 .update = s5p_hash_update,
1714 .final = s5p_hash_final,
1715 .finup = s5p_hash_finup,
1716 .digest = s5p_hash_digest,
1717 .export = s5p_hash_export,
1718 .import = s5p_hash_import,
1719 .halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1720 .halg.digestsize = SHA1_DIGEST_SIZE,
1721 .halg.base = {
1722 .cra_name = "sha1",
1723 .cra_driver_name = "exynos-sha1",
1724 .cra_priority = 100,
1725 .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1726 CRYPTO_ALG_ASYNC |
1727 CRYPTO_ALG_NEED_FALLBACK,
1728 .cra_blocksize = HASH_BLOCK_SIZE,
1729 .cra_ctxsize = sizeof(struct s5p_hash_ctx),
1730 .cra_module = THIS_MODULE,
1731 .cra_init = s5p_hash_cra_init,
1732 .cra_exit = s5p_hash_cra_exit,
1733 }
1734 },
1735 {
1736 .init = s5p_hash_init,
1737 .update = s5p_hash_update,
1738 .final = s5p_hash_final,
1739 .finup = s5p_hash_finup,
1740 .digest = s5p_hash_digest,
1741 .export = s5p_hash_export,
1742 .import = s5p_hash_import,
1743 .halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1744 .halg.digestsize = MD5_DIGEST_SIZE,
1745 .halg.base = {
1746 .cra_name = "md5",
1747 .cra_driver_name = "exynos-md5",
1748 .cra_priority = 100,
1749 .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1750 CRYPTO_ALG_ASYNC |
1751 CRYPTO_ALG_NEED_FALLBACK,
1752 .cra_blocksize = HASH_BLOCK_SIZE,
1753 .cra_ctxsize = sizeof(struct s5p_hash_ctx),
1754 .cra_module = THIS_MODULE,
1755 .cra_init = s5p_hash_cra_init,
1756 .cra_exit = s5p_hash_cra_exit,
1757 }
1758 },
1759 {
1760 .init = s5p_hash_init,
1761 .update = s5p_hash_update,
1762 .final = s5p_hash_final,
1763 .finup = s5p_hash_finup,
1764 .digest = s5p_hash_digest,
1765 .export = s5p_hash_export,
1766 .import = s5p_hash_import,
1767 .halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1768 .halg.digestsize = SHA256_DIGEST_SIZE,
1769 .halg.base = {
1770 .cra_name = "sha256",
1771 .cra_driver_name = "exynos-sha256",
1772 .cra_priority = 100,
1773 .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1774 CRYPTO_ALG_ASYNC |
1775 CRYPTO_ALG_NEED_FALLBACK,
1776 .cra_blocksize = HASH_BLOCK_SIZE,
1777 .cra_ctxsize = sizeof(struct s5p_hash_ctx),
1778 .cra_module = THIS_MODULE,
1779 .cra_init = s5p_hash_cra_init,
1780 .cra_exit = s5p_hash_cra_exit,
1781 }
1782 }
1783
1784 };
1785
s5p_set_aes(struct s5p_aes_dev * dev,const u8 * key,const u8 * iv,const u8 * ctr,unsigned int keylen)1786 static void s5p_set_aes(struct s5p_aes_dev *dev,
1787 const u8 *key, const u8 *iv, const u8 *ctr,
1788 unsigned int keylen)
1789 {
1790 void __iomem *keystart;
1791
1792 if (iv)
1793 memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_IV_DATA(0), iv,
1794 AES_BLOCK_SIZE);
1795
1796 if (ctr)
1797 memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_CNT_DATA(0), ctr,
1798 AES_BLOCK_SIZE);
1799
1800 if (keylen == AES_KEYSIZE_256)
1801 keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(0);
1802 else if (keylen == AES_KEYSIZE_192)
1803 keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(2);
1804 else
1805 keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(4);
1806
1807 memcpy_toio(keystart, key, keylen);
1808 }
1809
s5p_is_sg_aligned(struct scatterlist * sg)1810 static bool s5p_is_sg_aligned(struct scatterlist *sg)
1811 {
1812 while (sg) {
1813 if (!IS_ALIGNED(sg->length, AES_BLOCK_SIZE))
1814 return false;
1815 sg = sg_next(sg);
1816 }
1817
1818 return true;
1819 }
1820
s5p_set_indata_start(struct s5p_aes_dev * dev,struct skcipher_request * req)1821 static int s5p_set_indata_start(struct s5p_aes_dev *dev,
1822 struct skcipher_request *req)
1823 {
1824 struct scatterlist *sg;
1825 int err;
1826
1827 dev->sg_src_cpy = NULL;
1828 sg = req->src;
1829 if (!s5p_is_sg_aligned(sg)) {
1830 dev_dbg(dev->dev,
1831 "At least one unaligned source scatter list, making a copy\n");
1832 err = s5p_make_sg_cpy(dev, sg, &dev->sg_src_cpy);
1833 if (err)
1834 return err;
1835
1836 sg = dev->sg_src_cpy;
1837 }
1838
1839 err = s5p_set_indata(dev, sg);
1840 if (err) {
1841 s5p_free_sg_cpy(dev, &dev->sg_src_cpy);
1842 return err;
1843 }
1844
1845 return 0;
1846 }
1847
s5p_set_outdata_start(struct s5p_aes_dev * dev,struct skcipher_request * req)1848 static int s5p_set_outdata_start(struct s5p_aes_dev *dev,
1849 struct skcipher_request *req)
1850 {
1851 struct scatterlist *sg;
1852 int err;
1853
1854 dev->sg_dst_cpy = NULL;
1855 sg = req->dst;
1856 if (!s5p_is_sg_aligned(sg)) {
1857 dev_dbg(dev->dev,
1858 "At least one unaligned dest scatter list, making a copy\n");
1859 err = s5p_make_sg_cpy(dev, sg, &dev->sg_dst_cpy);
1860 if (err)
1861 return err;
1862
1863 sg = dev->sg_dst_cpy;
1864 }
1865
1866 err = s5p_set_outdata(dev, sg);
1867 if (err) {
1868 s5p_free_sg_cpy(dev, &dev->sg_dst_cpy);
1869 return err;
1870 }
1871
1872 return 0;
1873 }
1874
s5p_aes_crypt_start(struct s5p_aes_dev * dev,unsigned long mode)1875 static void s5p_aes_crypt_start(struct s5p_aes_dev *dev, unsigned long mode)
1876 {
1877 struct skcipher_request *req = dev->req;
1878 u32 aes_control;
1879 unsigned long flags;
1880 int err;
1881 u8 *iv, *ctr;
1882
1883 /* This sets bit [13:12] to 00, which selects 128-bit counter */
1884 aes_control = SSS_AES_KEY_CHANGE_MODE;
1885 if (mode & FLAGS_AES_DECRYPT)
1886 aes_control |= SSS_AES_MODE_DECRYPT;
1887
1888 if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CBC) {
1889 aes_control |= SSS_AES_CHAIN_MODE_CBC;
1890 iv = req->iv;
1891 ctr = NULL;
1892 } else if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CTR) {
1893 aes_control |= SSS_AES_CHAIN_MODE_CTR;
1894 iv = NULL;
1895 ctr = req->iv;
1896 } else {
1897 iv = NULL; /* AES_ECB */
1898 ctr = NULL;
1899 }
1900
1901 if (dev->ctx->keylen == AES_KEYSIZE_192)
1902 aes_control |= SSS_AES_KEY_SIZE_192;
1903 else if (dev->ctx->keylen == AES_KEYSIZE_256)
1904 aes_control |= SSS_AES_KEY_SIZE_256;
1905
1906 aes_control |= SSS_AES_FIFO_MODE;
1907
1908 /* as a variant it is possible to use byte swapping on DMA side */
1909 aes_control |= SSS_AES_BYTESWAP_DI
1910 | SSS_AES_BYTESWAP_DO
1911 | SSS_AES_BYTESWAP_IV
1912 | SSS_AES_BYTESWAP_KEY
1913 | SSS_AES_BYTESWAP_CNT;
1914
1915 spin_lock_irqsave(&dev->lock, flags);
1916
1917 SSS_WRITE(dev, FCINTENCLR,
1918 SSS_FCINTENCLR_BTDMAINTENCLR | SSS_FCINTENCLR_BRDMAINTENCLR);
1919 SSS_WRITE(dev, FCFIFOCTRL, 0x00);
1920
1921 err = s5p_set_indata_start(dev, req);
1922 if (err)
1923 goto indata_error;
1924
1925 err = s5p_set_outdata_start(dev, req);
1926 if (err)
1927 goto outdata_error;
1928
1929 SSS_AES_WRITE(dev, AES_CONTROL, aes_control);
1930 s5p_set_aes(dev, dev->ctx->aes_key, iv, ctr, dev->ctx->keylen);
1931
1932 s5p_set_dma_indata(dev, dev->sg_src);
1933 s5p_set_dma_outdata(dev, dev->sg_dst);
1934
1935 SSS_WRITE(dev, FCINTENSET,
1936 SSS_FCINTENSET_BTDMAINTENSET | SSS_FCINTENSET_BRDMAINTENSET);
1937
1938 spin_unlock_irqrestore(&dev->lock, flags);
1939
1940 return;
1941
1942 outdata_error:
1943 s5p_unset_indata(dev);
1944
1945 indata_error:
1946 s5p_sg_done(dev);
1947 dev->busy = false;
1948 spin_unlock_irqrestore(&dev->lock, flags);
1949 s5p_aes_complete(req, err);
1950 }
1951
s5p_tasklet_cb(unsigned long data)1952 static void s5p_tasklet_cb(unsigned long data)
1953 {
1954 struct s5p_aes_dev *dev = (struct s5p_aes_dev *)data;
1955 struct crypto_async_request *async_req, *backlog;
1956 struct s5p_aes_reqctx *reqctx;
1957 unsigned long flags;
1958
1959 spin_lock_irqsave(&dev->lock, flags);
1960 backlog = crypto_get_backlog(&dev->queue);
1961 async_req = crypto_dequeue_request(&dev->queue);
1962
1963 if (!async_req) {
1964 dev->busy = false;
1965 spin_unlock_irqrestore(&dev->lock, flags);
1966 return;
1967 }
1968 spin_unlock_irqrestore(&dev->lock, flags);
1969
1970 if (backlog)
1971 crypto_request_complete(backlog, -EINPROGRESS);
1972
1973 dev->req = skcipher_request_cast(async_req);
1974 dev->ctx = crypto_tfm_ctx(dev->req->base.tfm);
1975 reqctx = skcipher_request_ctx(dev->req);
1976
1977 s5p_aes_crypt_start(dev, reqctx->mode);
1978 }
1979
s5p_aes_handle_req(struct s5p_aes_dev * dev,struct skcipher_request * req)1980 static int s5p_aes_handle_req(struct s5p_aes_dev *dev,
1981 struct skcipher_request *req)
1982 {
1983 unsigned long flags;
1984 int err;
1985
1986 spin_lock_irqsave(&dev->lock, flags);
1987 err = crypto_enqueue_request(&dev->queue, &req->base);
1988 if (dev->busy) {
1989 spin_unlock_irqrestore(&dev->lock, flags);
1990 return err;
1991 }
1992 dev->busy = true;
1993
1994 spin_unlock_irqrestore(&dev->lock, flags);
1995
1996 tasklet_schedule(&dev->tasklet);
1997
1998 return err;
1999 }
2000
s5p_aes_crypt(struct skcipher_request * req,unsigned long mode)2001 static int s5p_aes_crypt(struct skcipher_request *req, unsigned long mode)
2002 {
2003 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
2004 struct s5p_aes_reqctx *reqctx = skcipher_request_ctx(req);
2005 struct s5p_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
2006 struct s5p_aes_dev *dev = ctx->dev;
2007
2008 if (!req->cryptlen)
2009 return 0;
2010
2011 if (!IS_ALIGNED(req->cryptlen, AES_BLOCK_SIZE) &&
2012 ((mode & FLAGS_AES_MODE_MASK) != FLAGS_AES_CTR)) {
2013 dev_dbg(dev->dev, "request size is not exact amount of AES blocks\n");
2014 return -EINVAL;
2015 }
2016
2017 reqctx->mode = mode;
2018
2019 return s5p_aes_handle_req(dev, req);
2020 }
2021
s5p_aes_setkey(struct crypto_skcipher * cipher,const u8 * key,unsigned int keylen)2022 static int s5p_aes_setkey(struct crypto_skcipher *cipher,
2023 const u8 *key, unsigned int keylen)
2024 {
2025 struct crypto_tfm *tfm = crypto_skcipher_tfm(cipher);
2026 struct s5p_aes_ctx *ctx = crypto_tfm_ctx(tfm);
2027
2028 if (keylen != AES_KEYSIZE_128 &&
2029 keylen != AES_KEYSIZE_192 &&
2030 keylen != AES_KEYSIZE_256)
2031 return -EINVAL;
2032
2033 memcpy(ctx->aes_key, key, keylen);
2034 ctx->keylen = keylen;
2035
2036 return 0;
2037 }
2038
s5p_aes_ecb_encrypt(struct skcipher_request * req)2039 static int s5p_aes_ecb_encrypt(struct skcipher_request *req)
2040 {
2041 return s5p_aes_crypt(req, 0);
2042 }
2043
s5p_aes_ecb_decrypt(struct skcipher_request * req)2044 static int s5p_aes_ecb_decrypt(struct skcipher_request *req)
2045 {
2046 return s5p_aes_crypt(req, FLAGS_AES_DECRYPT);
2047 }
2048
s5p_aes_cbc_encrypt(struct skcipher_request * req)2049 static int s5p_aes_cbc_encrypt(struct skcipher_request *req)
2050 {
2051 return s5p_aes_crypt(req, FLAGS_AES_CBC);
2052 }
2053
s5p_aes_cbc_decrypt(struct skcipher_request * req)2054 static int s5p_aes_cbc_decrypt(struct skcipher_request *req)
2055 {
2056 return s5p_aes_crypt(req, FLAGS_AES_DECRYPT | FLAGS_AES_CBC);
2057 }
2058
s5p_aes_ctr_crypt(struct skcipher_request * req)2059 static int s5p_aes_ctr_crypt(struct skcipher_request *req)
2060 {
2061 return s5p_aes_crypt(req, FLAGS_AES_CTR);
2062 }
2063
s5p_aes_init_tfm(struct crypto_skcipher * tfm)2064 static int s5p_aes_init_tfm(struct crypto_skcipher *tfm)
2065 {
2066 struct s5p_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
2067
2068 ctx->dev = s5p_dev;
2069 crypto_skcipher_set_reqsize(tfm, sizeof(struct s5p_aes_reqctx));
2070
2071 return 0;
2072 }
2073
2074 static struct skcipher_alg algs[] = {
2075 {
2076 .base.cra_name = "ecb(aes)",
2077 .base.cra_driver_name = "ecb-aes-s5p",
2078 .base.cra_priority = 100,
2079 .base.cra_flags = CRYPTO_ALG_ASYNC |
2080 CRYPTO_ALG_KERN_DRIVER_ONLY,
2081 .base.cra_blocksize = AES_BLOCK_SIZE,
2082 .base.cra_ctxsize = sizeof(struct s5p_aes_ctx),
2083 .base.cra_alignmask = 0x0f,
2084 .base.cra_module = THIS_MODULE,
2085
2086 .min_keysize = AES_MIN_KEY_SIZE,
2087 .max_keysize = AES_MAX_KEY_SIZE,
2088 .setkey = s5p_aes_setkey,
2089 .encrypt = s5p_aes_ecb_encrypt,
2090 .decrypt = s5p_aes_ecb_decrypt,
2091 .init = s5p_aes_init_tfm,
2092 },
2093 {
2094 .base.cra_name = "cbc(aes)",
2095 .base.cra_driver_name = "cbc-aes-s5p",
2096 .base.cra_priority = 100,
2097 .base.cra_flags = CRYPTO_ALG_ASYNC |
2098 CRYPTO_ALG_KERN_DRIVER_ONLY,
2099 .base.cra_blocksize = AES_BLOCK_SIZE,
2100 .base.cra_ctxsize = sizeof(struct s5p_aes_ctx),
2101 .base.cra_alignmask = 0x0f,
2102 .base.cra_module = THIS_MODULE,
2103
2104 .min_keysize = AES_MIN_KEY_SIZE,
2105 .max_keysize = AES_MAX_KEY_SIZE,
2106 .ivsize = AES_BLOCK_SIZE,
2107 .setkey = s5p_aes_setkey,
2108 .encrypt = s5p_aes_cbc_encrypt,
2109 .decrypt = s5p_aes_cbc_decrypt,
2110 .init = s5p_aes_init_tfm,
2111 },
2112 {
2113 .base.cra_name = "ctr(aes)",
2114 .base.cra_driver_name = "ctr-aes-s5p",
2115 .base.cra_priority = 100,
2116 .base.cra_flags = CRYPTO_ALG_ASYNC |
2117 CRYPTO_ALG_KERN_DRIVER_ONLY,
2118 .base.cra_blocksize = 1,
2119 .base.cra_ctxsize = sizeof(struct s5p_aes_ctx),
2120 .base.cra_alignmask = 0x0f,
2121 .base.cra_module = THIS_MODULE,
2122
2123 .min_keysize = AES_MIN_KEY_SIZE,
2124 .max_keysize = AES_MAX_KEY_SIZE,
2125 .ivsize = AES_BLOCK_SIZE,
2126 .setkey = s5p_aes_setkey,
2127 .encrypt = s5p_aes_ctr_crypt,
2128 .decrypt = s5p_aes_ctr_crypt,
2129 .init = s5p_aes_init_tfm,
2130 },
2131 };
2132
s5p_aes_probe(struct platform_device * pdev)2133 static int s5p_aes_probe(struct platform_device *pdev)
2134 {
2135 struct device *dev = &pdev->dev;
2136 int i, j, err;
2137 const struct samsung_aes_variant *variant;
2138 struct s5p_aes_dev *pdata;
2139 struct resource *res;
2140 unsigned int hash_i;
2141
2142 if (s5p_dev)
2143 return -EEXIST;
2144
2145 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2146 if (!pdata)
2147 return -ENOMEM;
2148
2149 variant = find_s5p_sss_version(pdev);
2150 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2151 if (!res)
2152 return -EINVAL;
2153
2154 /*
2155 * Note: HASH and PRNG uses the same registers in secss, avoid
2156 * overwrite each other. This will drop HASH when CONFIG_EXYNOS_RNG
2157 * is enabled in config. We need larger size for HASH registers in
2158 * secss, current describe only AES/DES
2159 */
2160 if (IS_ENABLED(CONFIG_CRYPTO_DEV_EXYNOS_HASH)) {
2161 if (variant == &exynos_aes_data) {
2162 res->end += 0x300;
2163 pdata->use_hash = true;
2164 }
2165 }
2166
2167 pdata->res = res;
2168 pdata->ioaddr = devm_ioremap_resource(dev, res);
2169 if (IS_ERR(pdata->ioaddr)) {
2170 if (!pdata->use_hash)
2171 return PTR_ERR(pdata->ioaddr);
2172 /* try AES without HASH */
2173 res->end -= 0x300;
2174 pdata->use_hash = false;
2175 pdata->ioaddr = devm_ioremap_resource(dev, res);
2176 if (IS_ERR(pdata->ioaddr))
2177 return PTR_ERR(pdata->ioaddr);
2178 }
2179
2180 pdata->clk = devm_clk_get(dev, variant->clk_names[0]);
2181 if (IS_ERR(pdata->clk))
2182 return dev_err_probe(dev, PTR_ERR(pdata->clk),
2183 "failed to find secss clock %s\n",
2184 variant->clk_names[0]);
2185
2186 err = clk_prepare_enable(pdata->clk);
2187 if (err < 0) {
2188 dev_err(dev, "Enabling clock %s failed, err %d\n",
2189 variant->clk_names[0], err);
2190 return err;
2191 }
2192
2193 if (variant->clk_names[1]) {
2194 pdata->pclk = devm_clk_get(dev, variant->clk_names[1]);
2195 if (IS_ERR(pdata->pclk)) {
2196 err = dev_err_probe(dev, PTR_ERR(pdata->pclk),
2197 "failed to find clock %s\n",
2198 variant->clk_names[1]);
2199 goto err_clk;
2200 }
2201
2202 err = clk_prepare_enable(pdata->pclk);
2203 if (err < 0) {
2204 dev_err(dev, "Enabling clock %s failed, err %d\n",
2205 variant->clk_names[0], err);
2206 goto err_clk;
2207 }
2208 } else {
2209 pdata->pclk = NULL;
2210 }
2211
2212 spin_lock_init(&pdata->lock);
2213 spin_lock_init(&pdata->hash_lock);
2214
2215 pdata->aes_ioaddr = pdata->ioaddr + variant->aes_offset;
2216 pdata->io_hash_base = pdata->ioaddr + variant->hash_offset;
2217
2218 pdata->irq_fc = platform_get_irq(pdev, 0);
2219 if (pdata->irq_fc < 0) {
2220 err = pdata->irq_fc;
2221 dev_warn(dev, "feed control interrupt is not available.\n");
2222 goto err_irq;
2223 }
2224 err = devm_request_threaded_irq(dev, pdata->irq_fc, NULL,
2225 s5p_aes_interrupt, IRQF_ONESHOT,
2226 pdev->name, pdev);
2227 if (err < 0) {
2228 dev_warn(dev, "feed control interrupt is not available.\n");
2229 goto err_irq;
2230 }
2231
2232 pdata->busy = false;
2233 pdata->dev = dev;
2234 platform_set_drvdata(pdev, pdata);
2235 s5p_dev = pdata;
2236
2237 tasklet_init(&pdata->tasklet, s5p_tasklet_cb, (unsigned long)pdata);
2238 crypto_init_queue(&pdata->queue, CRYPTO_QUEUE_LEN);
2239
2240 for (i = 0; i < ARRAY_SIZE(algs); i++) {
2241 err = crypto_register_skcipher(&algs[i]);
2242 if (err)
2243 goto err_algs;
2244 }
2245
2246 if (pdata->use_hash) {
2247 tasklet_init(&pdata->hash_tasklet, s5p_hash_tasklet_cb,
2248 (unsigned long)pdata);
2249 crypto_init_queue(&pdata->hash_queue, SSS_HASH_QUEUE_LENGTH);
2250
2251 for (hash_i = 0; hash_i < ARRAY_SIZE(algs_sha1_md5_sha256);
2252 hash_i++) {
2253 struct ahash_alg *alg;
2254
2255 alg = &algs_sha1_md5_sha256[hash_i];
2256 err = crypto_register_ahash(alg);
2257 if (err) {
2258 dev_err(dev, "can't register '%s': %d\n",
2259 alg->halg.base.cra_driver_name, err);
2260 goto err_hash;
2261 }
2262 }
2263 }
2264
2265 dev_info(dev, "s5p-sss driver registered\n");
2266
2267 return 0;
2268
2269 err_hash:
2270 for (j = hash_i - 1; j >= 0; j--)
2271 crypto_unregister_ahash(&algs_sha1_md5_sha256[j]);
2272
2273 tasklet_kill(&pdata->hash_tasklet);
2274 res->end -= 0x300;
2275
2276 err_algs:
2277 if (i < ARRAY_SIZE(algs))
2278 dev_err(dev, "can't register '%s': %d\n", algs[i].base.cra_name,
2279 err);
2280
2281 for (j = 0; j < i; j++)
2282 crypto_unregister_skcipher(&algs[j]);
2283
2284 tasklet_kill(&pdata->tasklet);
2285
2286 err_irq:
2287 clk_disable_unprepare(pdata->pclk);
2288
2289 err_clk:
2290 clk_disable_unprepare(pdata->clk);
2291 s5p_dev = NULL;
2292
2293 return err;
2294 }
2295
s5p_aes_remove(struct platform_device * pdev)2296 static void s5p_aes_remove(struct platform_device *pdev)
2297 {
2298 struct s5p_aes_dev *pdata = platform_get_drvdata(pdev);
2299 int i;
2300
2301 for (i = 0; i < ARRAY_SIZE(algs); i++)
2302 crypto_unregister_skcipher(&algs[i]);
2303
2304 tasklet_kill(&pdata->tasklet);
2305 if (pdata->use_hash) {
2306 for (i = ARRAY_SIZE(algs_sha1_md5_sha256) - 1; i >= 0; i--)
2307 crypto_unregister_ahash(&algs_sha1_md5_sha256[i]);
2308
2309 pdata->res->end -= 0x300;
2310 tasklet_kill(&pdata->hash_tasklet);
2311 pdata->use_hash = false;
2312 }
2313
2314 clk_disable_unprepare(pdata->pclk);
2315
2316 clk_disable_unprepare(pdata->clk);
2317 s5p_dev = NULL;
2318 }
2319
2320 static struct platform_driver s5p_aes_crypto = {
2321 .probe = s5p_aes_probe,
2322 .remove = s5p_aes_remove,
2323 .driver = {
2324 .name = "s5p-secss",
2325 .of_match_table = s5p_sss_dt_match,
2326 },
2327 };
2328
2329 module_platform_driver(s5p_aes_crypto);
2330
2331 MODULE_DESCRIPTION("S5PV210 AES hw acceleration support.");
2332 MODULE_LICENSE("GPL v2");
2333 MODULE_AUTHOR("Vladimir Zapolskiy <vzapolskiy@gmail.com>");
2334 MODULE_AUTHOR("Kamil Konieczny <k.konieczny@partner.samsung.com>");
2335