1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Cryptographic API.
4 //
5 // Support for Samsung S5PV210 and Exynos HW acceleration.
6 //
7 // Copyright (C) 2011 NetUP Inc. All rights reserved.
8 // Copyright (c) 2017 Samsung Electronics Co., Ltd. All rights reserved.
9 //
10 // Hash part based on omap-sham.c driver.
11 
12 #include <linux/clk.h>
13 #include <linux/crypto.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/errno.h>
17 #include <linux/init.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/platform_device.h>
24 #include <linux/scatterlist.h>
25 
26 #include <crypto/ctr.h>
27 #include <crypto/aes.h>
28 #include <crypto/algapi.h>
29 #include <crypto/scatterwalk.h>
30 
31 #include <crypto/hash.h>
32 #include <crypto/md5.h>
33 #include <crypto/sha1.h>
34 #include <crypto/sha2.h>
35 #include <crypto/internal/hash.h>
36 
37 #define _SBF(s, v)			((v) << (s))
38 
39 /* Feed control registers */
40 #define SSS_REG_FCINTSTAT		0x0000
41 #define SSS_FCINTSTAT_HPARTINT		BIT(7)
42 #define SSS_FCINTSTAT_HDONEINT		BIT(5)
43 #define SSS_FCINTSTAT_BRDMAINT		BIT(3)
44 #define SSS_FCINTSTAT_BTDMAINT		BIT(2)
45 #define SSS_FCINTSTAT_HRDMAINT		BIT(1)
46 #define SSS_FCINTSTAT_PKDMAINT		BIT(0)
47 
48 #define SSS_REG_FCINTENSET		0x0004
49 #define SSS_FCINTENSET_HPARTINTENSET	BIT(7)
50 #define SSS_FCINTENSET_HDONEINTENSET	BIT(5)
51 #define SSS_FCINTENSET_BRDMAINTENSET	BIT(3)
52 #define SSS_FCINTENSET_BTDMAINTENSET	BIT(2)
53 #define SSS_FCINTENSET_HRDMAINTENSET	BIT(1)
54 #define SSS_FCINTENSET_PKDMAINTENSET	BIT(0)
55 
56 #define SSS_REG_FCINTENCLR		0x0008
57 #define SSS_FCINTENCLR_HPARTINTENCLR	BIT(7)
58 #define SSS_FCINTENCLR_HDONEINTENCLR	BIT(5)
59 #define SSS_FCINTENCLR_BRDMAINTENCLR	BIT(3)
60 #define SSS_FCINTENCLR_BTDMAINTENCLR	BIT(2)
61 #define SSS_FCINTENCLR_HRDMAINTENCLR	BIT(1)
62 #define SSS_FCINTENCLR_PKDMAINTENCLR	BIT(0)
63 
64 #define SSS_REG_FCINTPEND		0x000C
65 #define SSS_FCINTPEND_HPARTINTP		BIT(7)
66 #define SSS_FCINTPEND_HDONEINTP		BIT(5)
67 #define SSS_FCINTPEND_BRDMAINTP		BIT(3)
68 #define SSS_FCINTPEND_BTDMAINTP		BIT(2)
69 #define SSS_FCINTPEND_HRDMAINTP		BIT(1)
70 #define SSS_FCINTPEND_PKDMAINTP		BIT(0)
71 
72 #define SSS_REG_FCFIFOSTAT		0x0010
73 #define SSS_FCFIFOSTAT_BRFIFOFUL	BIT(7)
74 #define SSS_FCFIFOSTAT_BRFIFOEMP	BIT(6)
75 #define SSS_FCFIFOSTAT_BTFIFOFUL	BIT(5)
76 #define SSS_FCFIFOSTAT_BTFIFOEMP	BIT(4)
77 #define SSS_FCFIFOSTAT_HRFIFOFUL	BIT(3)
78 #define SSS_FCFIFOSTAT_HRFIFOEMP	BIT(2)
79 #define SSS_FCFIFOSTAT_PKFIFOFUL	BIT(1)
80 #define SSS_FCFIFOSTAT_PKFIFOEMP	BIT(0)
81 
82 #define SSS_REG_FCFIFOCTRL		0x0014
83 #define SSS_FCFIFOCTRL_DESSEL		BIT(2)
84 #define SSS_HASHIN_INDEPENDENT		_SBF(0, 0x00)
85 #define SSS_HASHIN_CIPHER_INPUT		_SBF(0, 0x01)
86 #define SSS_HASHIN_CIPHER_OUTPUT	_SBF(0, 0x02)
87 #define SSS_HASHIN_MASK			_SBF(0, 0x03)
88 
89 #define SSS_REG_FCBRDMAS		0x0020
90 #define SSS_REG_FCBRDMAL		0x0024
91 #define SSS_REG_FCBRDMAC		0x0028
92 #define SSS_FCBRDMAC_BYTESWAP		BIT(1)
93 #define SSS_FCBRDMAC_FLUSH		BIT(0)
94 
95 #define SSS_REG_FCBTDMAS		0x0030
96 #define SSS_REG_FCBTDMAL		0x0034
97 #define SSS_REG_FCBTDMAC		0x0038
98 #define SSS_FCBTDMAC_BYTESWAP		BIT(1)
99 #define SSS_FCBTDMAC_FLUSH		BIT(0)
100 
101 #define SSS_REG_FCHRDMAS		0x0040
102 #define SSS_REG_FCHRDMAL		0x0044
103 #define SSS_REG_FCHRDMAC		0x0048
104 #define SSS_FCHRDMAC_BYTESWAP		BIT(1)
105 #define SSS_FCHRDMAC_FLUSH		BIT(0)
106 
107 #define SSS_REG_FCPKDMAS		0x0050
108 #define SSS_REG_FCPKDMAL		0x0054
109 #define SSS_REG_FCPKDMAC		0x0058
110 #define SSS_FCPKDMAC_BYTESWAP		BIT(3)
111 #define SSS_FCPKDMAC_DESCEND		BIT(2)
112 #define SSS_FCPKDMAC_TRANSMIT		BIT(1)
113 #define SSS_FCPKDMAC_FLUSH		BIT(0)
114 
115 #define SSS_REG_FCPKDMAO		0x005C
116 
117 /* AES registers */
118 #define SSS_REG_AES_CONTROL		0x00
119 #define SSS_AES_BYTESWAP_DI		BIT(11)
120 #define SSS_AES_BYTESWAP_DO		BIT(10)
121 #define SSS_AES_BYTESWAP_IV		BIT(9)
122 #define SSS_AES_BYTESWAP_CNT		BIT(8)
123 #define SSS_AES_BYTESWAP_KEY		BIT(7)
124 #define SSS_AES_KEY_CHANGE_MODE		BIT(6)
125 #define SSS_AES_KEY_SIZE_128		_SBF(4, 0x00)
126 #define SSS_AES_KEY_SIZE_192		_SBF(4, 0x01)
127 #define SSS_AES_KEY_SIZE_256		_SBF(4, 0x02)
128 #define SSS_AES_FIFO_MODE		BIT(3)
129 #define SSS_AES_CHAIN_MODE_ECB		_SBF(1, 0x00)
130 #define SSS_AES_CHAIN_MODE_CBC		_SBF(1, 0x01)
131 #define SSS_AES_CHAIN_MODE_CTR		_SBF(1, 0x02)
132 #define SSS_AES_MODE_DECRYPT		BIT(0)
133 
134 #define SSS_REG_AES_STATUS		0x04
135 #define SSS_AES_BUSY			BIT(2)
136 #define SSS_AES_INPUT_READY		BIT(1)
137 #define SSS_AES_OUTPUT_READY		BIT(0)
138 
139 #define SSS_REG_AES_IN_DATA(s)		(0x10 + (s << 2))
140 #define SSS_REG_AES_OUT_DATA(s)		(0x20 + (s << 2))
141 #define SSS_REG_AES_IV_DATA(s)		(0x30 + (s << 2))
142 #define SSS_REG_AES_CNT_DATA(s)		(0x40 + (s << 2))
143 #define SSS_REG_AES_KEY_DATA(s)		(0x80 + (s << 2))
144 
145 #define SSS_REG(dev, reg)		((dev)->ioaddr + (SSS_REG_##reg))
146 #define SSS_READ(dev, reg)		__raw_readl(SSS_REG(dev, reg))
147 #define SSS_WRITE(dev, reg, val)	__raw_writel((val), SSS_REG(dev, reg))
148 
149 #define SSS_AES_REG(dev, reg)		((dev)->aes_ioaddr + SSS_REG_##reg)
150 #define SSS_AES_WRITE(dev, reg, val)    __raw_writel((val), \
151 						SSS_AES_REG(dev, reg))
152 
153 /* HW engine modes */
154 #define FLAGS_AES_DECRYPT		BIT(0)
155 #define FLAGS_AES_MODE_MASK		_SBF(1, 0x03)
156 #define FLAGS_AES_CBC			_SBF(1, 0x01)
157 #define FLAGS_AES_CTR			_SBF(1, 0x02)
158 
159 #define AES_KEY_LEN			16
160 #define CRYPTO_QUEUE_LEN		1
161 
162 /* HASH registers */
163 #define SSS_REG_HASH_CTRL		0x00
164 
165 #define SSS_HASH_USER_IV_EN		BIT(5)
166 #define SSS_HASH_INIT_BIT		BIT(4)
167 #define SSS_HASH_ENGINE_SHA1		_SBF(1, 0x00)
168 #define SSS_HASH_ENGINE_MD5		_SBF(1, 0x01)
169 #define SSS_HASH_ENGINE_SHA256		_SBF(1, 0x02)
170 
171 #define SSS_HASH_ENGINE_MASK		_SBF(1, 0x03)
172 
173 #define SSS_REG_HASH_CTRL_PAUSE		0x04
174 
175 #define SSS_HASH_PAUSE			BIT(0)
176 
177 #define SSS_REG_HASH_CTRL_FIFO		0x08
178 
179 #define SSS_HASH_FIFO_MODE_DMA		BIT(0)
180 #define SSS_HASH_FIFO_MODE_CPU          0
181 
182 #define SSS_REG_HASH_CTRL_SWAP		0x0C
183 
184 #define SSS_HASH_BYTESWAP_DI		BIT(3)
185 #define SSS_HASH_BYTESWAP_DO		BIT(2)
186 #define SSS_HASH_BYTESWAP_IV		BIT(1)
187 #define SSS_HASH_BYTESWAP_KEY		BIT(0)
188 
189 #define SSS_REG_HASH_STATUS		0x10
190 
191 #define SSS_HASH_STATUS_MSG_DONE	BIT(6)
192 #define SSS_HASH_STATUS_PARTIAL_DONE	BIT(4)
193 #define SSS_HASH_STATUS_BUFFER_READY	BIT(0)
194 
195 #define SSS_REG_HASH_MSG_SIZE_LOW	0x20
196 #define SSS_REG_HASH_MSG_SIZE_HIGH	0x24
197 
198 #define SSS_REG_HASH_PRE_MSG_SIZE_LOW	0x28
199 #define SSS_REG_HASH_PRE_MSG_SIZE_HIGH	0x2C
200 
201 #define SSS_REG_HASH_IV(s)		(0xB0 + ((s) << 2))
202 #define SSS_REG_HASH_OUT(s)		(0x100 + ((s) << 2))
203 
204 #define HASH_BLOCK_SIZE			64
205 #define HASH_REG_SIZEOF			4
206 #define HASH_MD5_MAX_REG		(MD5_DIGEST_SIZE / HASH_REG_SIZEOF)
207 #define HASH_SHA1_MAX_REG		(SHA1_DIGEST_SIZE / HASH_REG_SIZEOF)
208 #define HASH_SHA256_MAX_REG		(SHA256_DIGEST_SIZE / HASH_REG_SIZEOF)
209 
210 /*
211  * HASH bit numbers, used by device, setting in dev->hash_flags with
212  * functions set_bit(), clear_bit() or tested with test_bit() or BIT(),
213  * to keep HASH state BUSY or FREE, or to signal state from irq_handler
214  * to hash_tasklet. SGS keep track of allocated memory for scatterlist
215  */
216 #define HASH_FLAGS_BUSY		0
217 #define HASH_FLAGS_FINAL	1
218 #define HASH_FLAGS_DMA_ACTIVE	2
219 #define HASH_FLAGS_OUTPUT_READY	3
220 #define HASH_FLAGS_DMA_READY	4
221 #define HASH_FLAGS_SGS_COPIED	5
222 #define HASH_FLAGS_SGS_ALLOCED	6
223 
224 /* HASH HW constants */
225 #define BUFLEN			HASH_BLOCK_SIZE
226 
227 #define SSS_HASH_QUEUE_LENGTH	10
228 
229 /**
230  * struct samsung_aes_variant - platform specific SSS driver data
231  * @aes_offset: AES register offset from SSS module's base.
232  * @hash_offset: HASH register offset from SSS module's base.
233  * @clk_names: names of clocks needed to run SSS IP
234  *
235  * Specifies platform specific configuration of SSS module.
236  * Note: A structure for driver specific platform data is used for future
237  * expansion of its usage.
238  */
239 struct samsung_aes_variant {
240 	unsigned int			aes_offset;
241 	unsigned int			hash_offset;
242 	const char			*clk_names[2];
243 };
244 
245 struct s5p_aes_reqctx {
246 	unsigned long			mode;
247 };
248 
249 struct s5p_aes_ctx {
250 	struct s5p_aes_dev		*dev;
251 
252 	u8				aes_key[AES_MAX_KEY_SIZE];
253 	u8				nonce[CTR_RFC3686_NONCE_SIZE];
254 	int				keylen;
255 };
256 
257 /**
258  * struct s5p_aes_dev - Crypto device state container
259  * @dev:	Associated device
260  * @clk:	Clock for accessing hardware
261  * @pclk:	APB bus clock necessary to access the hardware
262  * @ioaddr:	Mapped IO memory region
263  * @aes_ioaddr:	Per-varian offset for AES block IO memory
264  * @irq_fc:	Feed control interrupt line
265  * @req:	Crypto request currently handled by the device
266  * @ctx:	Configuration for currently handled crypto request
267  * @sg_src:	Scatter list with source data for currently handled block
268  *		in device.  This is DMA-mapped into device.
269  * @sg_dst:	Scatter list with destination data for currently handled block
270  *		in device. This is DMA-mapped into device.
271  * @sg_src_cpy:	In case of unaligned access, copied scatter list
272  *		with source data.
273  * @sg_dst_cpy:	In case of unaligned access, copied scatter list
274  *		with destination data.
275  * @tasklet:	New request scheduling jib
276  * @queue:	Crypto queue
277  * @busy:	Indicates whether the device is currently handling some request
278  *		thus it uses some of the fields from this state, like:
279  *		req, ctx, sg_src/dst (and copies).  This essentially
280  *		protects against concurrent access to these fields.
281  * @lock:	Lock for protecting both access to device hardware registers
282  *		and fields related to current request (including the busy field).
283  * @res:	Resources for hash.
284  * @io_hash_base: Per-variant offset for HASH block IO memory.
285  * @hash_lock:	Lock for protecting hash_req, hash_queue and hash_flags
286  *		variable.
287  * @hash_flags:	Flags for current HASH op.
288  * @hash_queue:	Async hash queue.
289  * @hash_tasklet: New HASH request scheduling job.
290  * @xmit_buf:	Buffer for current HASH request transfer into SSS block.
291  * @hash_req:	Current request sending to SSS HASH block.
292  * @hash_sg_iter: Scatterlist transferred through DMA into SSS HASH block.
293  * @hash_sg_cnt: Counter for hash_sg_iter.
294  *
295  * @use_hash:	true if HASH algs enabled
296  */
297 struct s5p_aes_dev {
298 	struct device			*dev;
299 	struct clk			*clk;
300 	struct clk			*pclk;
301 	void __iomem			*ioaddr;
302 	void __iomem			*aes_ioaddr;
303 	int				irq_fc;
304 
305 	struct skcipher_request		*req;
306 	struct s5p_aes_ctx		*ctx;
307 	struct scatterlist		*sg_src;
308 	struct scatterlist		*sg_dst;
309 
310 	struct scatterlist		*sg_src_cpy;
311 	struct scatterlist		*sg_dst_cpy;
312 
313 	struct tasklet_struct		tasklet;
314 	struct crypto_queue		queue;
315 	bool				busy;
316 	spinlock_t			lock;
317 
318 	struct resource			*res;
319 	void __iomem			*io_hash_base;
320 
321 	spinlock_t			hash_lock; /* protect hash_ vars */
322 	unsigned long			hash_flags;
323 	struct crypto_queue		hash_queue;
324 	struct tasklet_struct		hash_tasklet;
325 
326 	u8				xmit_buf[BUFLEN];
327 	struct ahash_request		*hash_req;
328 	struct scatterlist		*hash_sg_iter;
329 	unsigned int			hash_sg_cnt;
330 
331 	bool				use_hash;
332 };
333 
334 /**
335  * struct s5p_hash_reqctx - HASH request context
336  * @dd:		Associated device
337  * @op_update:	Current request operation (OP_UPDATE or OP_FINAL)
338  * @digcnt:	Number of bytes processed by HW (without buffer[] ones)
339  * @digest:	Digest message or IV for partial result
340  * @nregs:	Number of HW registers for digest or IV read/write
341  * @engine:	Bits for selecting type of HASH in SSS block
342  * @sg:		sg for DMA transfer
343  * @sg_len:	Length of sg for DMA transfer
344  * @sgl:	sg for joining buffer and req->src scatterlist
345  * @skip:	Skip offset in req->src for current op
346  * @total:	Total number of bytes for current request
347  * @finup:	Keep state for finup or final.
348  * @error:	Keep track of error.
349  * @bufcnt:	Number of bytes holded in buffer[]
350  * @buffer:	For byte(s) from end of req->src in UPDATE op
351  */
352 struct s5p_hash_reqctx {
353 	struct s5p_aes_dev	*dd;
354 	bool			op_update;
355 
356 	u64			digcnt;
357 	u8			digest[SHA256_DIGEST_SIZE];
358 
359 	unsigned int		nregs; /* digest_size / sizeof(reg) */
360 	u32			engine;
361 
362 	struct scatterlist	*sg;
363 	unsigned int		sg_len;
364 	struct scatterlist	sgl[2];
365 	unsigned int		skip;
366 	unsigned int		total;
367 	bool			finup;
368 	bool			error;
369 
370 	u32			bufcnt;
371 	u8			buffer[];
372 };
373 
374 /**
375  * struct s5p_hash_ctx - HASH transformation context
376  * @dd:		Associated device
377  * @flags:	Bits for algorithm HASH.
378  * @fallback:	Software transformation for zero message or size < BUFLEN.
379  */
380 struct s5p_hash_ctx {
381 	struct s5p_aes_dev	*dd;
382 	unsigned long		flags;
383 	struct crypto_shash	*fallback;
384 };
385 
386 static const struct samsung_aes_variant s5p_aes_data = {
387 	.aes_offset	= 0x4000,
388 	.hash_offset	= 0x6000,
389 	.clk_names	= { "secss", },
390 };
391 
392 static const struct samsung_aes_variant exynos_aes_data = {
393 	.aes_offset	= 0x200,
394 	.hash_offset	= 0x400,
395 	.clk_names	= { "secss", },
396 };
397 
398 static const struct samsung_aes_variant exynos5433_slim_aes_data = {
399 	.aes_offset	= 0x400,
400 	.hash_offset	= 0x800,
401 	.clk_names	= { "aclk", "pclk", },
402 };
403 
404 static const struct of_device_id s5p_sss_dt_match[] = {
405 	{
406 		.compatible = "samsung,s5pv210-secss",
407 		.data = &s5p_aes_data,
408 	},
409 	{
410 		.compatible = "samsung,exynos4210-secss",
411 		.data = &exynos_aes_data,
412 	},
413 	{
414 		.compatible = "samsung,exynos5433-slim-sss",
415 		.data = &exynos5433_slim_aes_data,
416 	},
417 	{ },
418 };
419 MODULE_DEVICE_TABLE(of, s5p_sss_dt_match);
420 
find_s5p_sss_version(const struct platform_device * pdev)421 static inline const struct samsung_aes_variant *find_s5p_sss_version
422 				   (const struct platform_device *pdev)
423 {
424 	if (IS_ENABLED(CONFIG_OF) && (pdev->dev.of_node))
425 		return of_device_get_match_data(&pdev->dev);
426 
427 	return (const struct samsung_aes_variant *)
428 			platform_get_device_id(pdev)->driver_data;
429 }
430 
431 static struct s5p_aes_dev *s5p_dev;
432 
s5p_set_dma_indata(struct s5p_aes_dev * dev,const struct scatterlist * sg)433 static void s5p_set_dma_indata(struct s5p_aes_dev *dev,
434 			       const struct scatterlist *sg)
435 {
436 	SSS_WRITE(dev, FCBRDMAS, sg_dma_address(sg));
437 	SSS_WRITE(dev, FCBRDMAL, sg_dma_len(sg));
438 }
439 
s5p_set_dma_outdata(struct s5p_aes_dev * dev,const struct scatterlist * sg)440 static void s5p_set_dma_outdata(struct s5p_aes_dev *dev,
441 				const struct scatterlist *sg)
442 {
443 	SSS_WRITE(dev, FCBTDMAS, sg_dma_address(sg));
444 	SSS_WRITE(dev, FCBTDMAL, sg_dma_len(sg));
445 }
446 
s5p_free_sg_cpy(struct s5p_aes_dev * dev,struct scatterlist ** sg)447 static void s5p_free_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist **sg)
448 {
449 	int len;
450 
451 	if (!*sg)
452 		return;
453 
454 	len = ALIGN(dev->req->cryptlen, AES_BLOCK_SIZE);
455 	free_pages((unsigned long)sg_virt(*sg), get_order(len));
456 
457 	kfree(*sg);
458 	*sg = NULL;
459 }
460 
s5p_sg_done(struct s5p_aes_dev * dev)461 static void s5p_sg_done(struct s5p_aes_dev *dev)
462 {
463 	struct skcipher_request *req = dev->req;
464 	struct s5p_aes_reqctx *reqctx = skcipher_request_ctx(req);
465 
466 	if (dev->sg_dst_cpy) {
467 		dev_dbg(dev->dev,
468 			"Copying %d bytes of output data back to original place\n",
469 			dev->req->cryptlen);
470 		memcpy_to_sglist(dev->req->dst, 0, sg_virt(dev->sg_dst_cpy),
471 				 dev->req->cryptlen);
472 	}
473 	s5p_free_sg_cpy(dev, &dev->sg_src_cpy);
474 	s5p_free_sg_cpy(dev, &dev->sg_dst_cpy);
475 	if (reqctx->mode & FLAGS_AES_CBC)
476 		memcpy_fromio(req->iv, dev->aes_ioaddr + SSS_REG_AES_IV_DATA(0), AES_BLOCK_SIZE);
477 
478 	else if (reqctx->mode & FLAGS_AES_CTR)
479 		memcpy_fromio(req->iv, dev->aes_ioaddr + SSS_REG_AES_CNT_DATA(0), AES_BLOCK_SIZE);
480 }
481 
482 /* Calls the completion. Cannot be called with dev->lock hold. */
s5p_aes_complete(struct skcipher_request * req,int err)483 static void s5p_aes_complete(struct skcipher_request *req, int err)
484 {
485 	skcipher_request_complete(req, err);
486 }
487 
s5p_unset_outdata(struct s5p_aes_dev * dev)488 static void s5p_unset_outdata(struct s5p_aes_dev *dev)
489 {
490 	dma_unmap_sg(dev->dev, dev->sg_dst, 1, DMA_FROM_DEVICE);
491 }
492 
s5p_unset_indata(struct s5p_aes_dev * dev)493 static void s5p_unset_indata(struct s5p_aes_dev *dev)
494 {
495 	dma_unmap_sg(dev->dev, dev->sg_src, 1, DMA_TO_DEVICE);
496 }
497 
s5p_make_sg_cpy(struct s5p_aes_dev * dev,struct scatterlist * src,struct scatterlist ** dst)498 static int s5p_make_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist *src,
499 			   struct scatterlist **dst)
500 {
501 	void *pages;
502 	int len;
503 
504 	*dst = kmalloc(sizeof(**dst), GFP_ATOMIC);
505 	if (!*dst)
506 		return -ENOMEM;
507 
508 	len = ALIGN(dev->req->cryptlen, AES_BLOCK_SIZE);
509 	pages = (void *)__get_free_pages(GFP_ATOMIC, get_order(len));
510 	if (!pages) {
511 		kfree(*dst);
512 		*dst = NULL;
513 		return -ENOMEM;
514 	}
515 
516 	memcpy_from_sglist(pages, src, 0, dev->req->cryptlen);
517 
518 	sg_init_table(*dst, 1);
519 	sg_set_buf(*dst, pages, len);
520 
521 	return 0;
522 }
523 
s5p_set_outdata(struct s5p_aes_dev * dev,struct scatterlist * sg)524 static int s5p_set_outdata(struct s5p_aes_dev *dev, struct scatterlist *sg)
525 {
526 	if (!sg->length)
527 		return -EINVAL;
528 
529 	if (!dma_map_sg(dev->dev, sg, 1, DMA_FROM_DEVICE))
530 		return -ENOMEM;
531 
532 	dev->sg_dst = sg;
533 
534 	return 0;
535 }
536 
s5p_set_indata(struct s5p_aes_dev * dev,struct scatterlist * sg)537 static int s5p_set_indata(struct s5p_aes_dev *dev, struct scatterlist *sg)
538 {
539 	if (!sg->length)
540 		return -EINVAL;
541 
542 	if (!dma_map_sg(dev->dev, sg, 1, DMA_TO_DEVICE))
543 		return -ENOMEM;
544 
545 	dev->sg_src = sg;
546 
547 	return 0;
548 }
549 
550 /*
551  * Returns -ERRNO on error (mapping of new data failed).
552  * On success returns:
553  *  - 0 if there is no more data,
554  *  - 1 if new transmitting (output) data is ready and its address+length
555  *     have to be written to device (by calling s5p_set_dma_outdata()).
556  */
s5p_aes_tx(struct s5p_aes_dev * dev)557 static int s5p_aes_tx(struct s5p_aes_dev *dev)
558 {
559 	int ret = 0;
560 
561 	s5p_unset_outdata(dev);
562 
563 	if (!sg_is_last(dev->sg_dst)) {
564 		ret = s5p_set_outdata(dev, sg_next(dev->sg_dst));
565 		if (!ret)
566 			ret = 1;
567 	}
568 
569 	return ret;
570 }
571 
572 /*
573  * Returns -ERRNO on error (mapping of new data failed).
574  * On success returns:
575  *  - 0 if there is no more data,
576  *  - 1 if new receiving (input) data is ready and its address+length
577  *     have to be written to device (by calling s5p_set_dma_indata()).
578  */
s5p_aes_rx(struct s5p_aes_dev * dev)579 static int s5p_aes_rx(struct s5p_aes_dev *dev/*, bool *set_dma*/)
580 {
581 	int ret = 0;
582 
583 	s5p_unset_indata(dev);
584 
585 	if (!sg_is_last(dev->sg_src)) {
586 		ret = s5p_set_indata(dev, sg_next(dev->sg_src));
587 		if (!ret)
588 			ret = 1;
589 	}
590 
591 	return ret;
592 }
593 
s5p_hash_read(struct s5p_aes_dev * dd,u32 offset)594 static inline u32 s5p_hash_read(struct s5p_aes_dev *dd, u32 offset)
595 {
596 	return __raw_readl(dd->io_hash_base + offset);
597 }
598 
s5p_hash_write(struct s5p_aes_dev * dd,u32 offset,u32 value)599 static inline void s5p_hash_write(struct s5p_aes_dev *dd,
600 				  u32 offset, u32 value)
601 {
602 	__raw_writel(value, dd->io_hash_base + offset);
603 }
604 
605 /**
606  * s5p_set_dma_hashdata() - start DMA with sg
607  * @dev:	device
608  * @sg:		scatterlist ready to DMA transmit
609  */
s5p_set_dma_hashdata(struct s5p_aes_dev * dev,const struct scatterlist * sg)610 static void s5p_set_dma_hashdata(struct s5p_aes_dev *dev,
611 				 const struct scatterlist *sg)
612 {
613 	dev->hash_sg_cnt--;
614 	SSS_WRITE(dev, FCHRDMAS, sg_dma_address(sg));
615 	SSS_WRITE(dev, FCHRDMAL, sg_dma_len(sg)); /* DMA starts */
616 }
617 
618 /**
619  * s5p_hash_rx() - get next hash_sg_iter
620  * @dev:	device
621  *
622  * Return:
623  * 2	if there is no more data and it is UPDATE op
624  * 1	if new receiving (input) data is ready and can be written to device
625  * 0	if there is no more data and it is FINAL op
626  */
s5p_hash_rx(struct s5p_aes_dev * dev)627 static int s5p_hash_rx(struct s5p_aes_dev *dev)
628 {
629 	if (dev->hash_sg_cnt > 0) {
630 		dev->hash_sg_iter = sg_next(dev->hash_sg_iter);
631 		return 1;
632 	}
633 
634 	set_bit(HASH_FLAGS_DMA_READY, &dev->hash_flags);
635 	if (test_bit(HASH_FLAGS_FINAL, &dev->hash_flags))
636 		return 0;
637 
638 	return 2;
639 }
640 
s5p_aes_interrupt(int irq,void * dev_id)641 static irqreturn_t s5p_aes_interrupt(int irq, void *dev_id)
642 {
643 	struct platform_device *pdev = dev_id;
644 	struct s5p_aes_dev *dev = platform_get_drvdata(pdev);
645 	struct skcipher_request *req;
646 	int err_dma_tx = 0;
647 	int err_dma_rx = 0;
648 	int err_dma_hx = 0;
649 	bool tx_end = false;
650 	bool hx_end = false;
651 	unsigned long flags;
652 	u32 status, st_bits;
653 	int err;
654 
655 	spin_lock_irqsave(&dev->lock, flags);
656 
657 	/*
658 	 * Handle rx or tx interrupt. If there is still data (scatterlist did not
659 	 * reach end), then map next scatterlist entry.
660 	 * In case of such mapping error, s5p_aes_complete() should be called.
661 	 *
662 	 * If there is no more data in tx scatter list, call s5p_aes_complete()
663 	 * and schedule new tasklet.
664 	 *
665 	 * Handle hx interrupt. If there is still data map next entry.
666 	 */
667 	status = SSS_READ(dev, FCINTSTAT);
668 	if (status & SSS_FCINTSTAT_BRDMAINT)
669 		err_dma_rx = s5p_aes_rx(dev);
670 
671 	if (status & SSS_FCINTSTAT_BTDMAINT) {
672 		if (sg_is_last(dev->sg_dst))
673 			tx_end = true;
674 		err_dma_tx = s5p_aes_tx(dev);
675 	}
676 
677 	if (status & SSS_FCINTSTAT_HRDMAINT)
678 		err_dma_hx = s5p_hash_rx(dev);
679 
680 	st_bits = status & (SSS_FCINTSTAT_BRDMAINT | SSS_FCINTSTAT_BTDMAINT |
681 				SSS_FCINTSTAT_HRDMAINT);
682 	/* clear DMA bits */
683 	SSS_WRITE(dev, FCINTPEND, st_bits);
684 
685 	/* clear HASH irq bits */
686 	if (status & (SSS_FCINTSTAT_HDONEINT | SSS_FCINTSTAT_HPARTINT)) {
687 		/* cannot have both HPART and HDONE */
688 		if (status & SSS_FCINTSTAT_HPARTINT)
689 			st_bits = SSS_HASH_STATUS_PARTIAL_DONE;
690 
691 		if (status & SSS_FCINTSTAT_HDONEINT)
692 			st_bits = SSS_HASH_STATUS_MSG_DONE;
693 
694 		set_bit(HASH_FLAGS_OUTPUT_READY, &dev->hash_flags);
695 		s5p_hash_write(dev, SSS_REG_HASH_STATUS, st_bits);
696 		hx_end = true;
697 		/* when DONE or PART, do not handle HASH DMA */
698 		err_dma_hx = 0;
699 	}
700 
701 	if (err_dma_rx < 0) {
702 		err = err_dma_rx;
703 		goto error;
704 	}
705 	if (err_dma_tx < 0) {
706 		err = err_dma_tx;
707 		goto error;
708 	}
709 
710 	if (tx_end) {
711 		s5p_sg_done(dev);
712 		if (err_dma_hx == 1)
713 			s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
714 
715 		spin_unlock_irqrestore(&dev->lock, flags);
716 
717 		s5p_aes_complete(dev->req, 0);
718 		/* Device is still busy */
719 		tasklet_schedule(&dev->tasklet);
720 	} else {
721 		/*
722 		 * Writing length of DMA block (either receiving or
723 		 * transmitting) will start the operation immediately, so this
724 		 * should be done at the end (even after clearing pending
725 		 * interrupts to not miss the interrupt).
726 		 */
727 		if (err_dma_tx == 1)
728 			s5p_set_dma_outdata(dev, dev->sg_dst);
729 		if (err_dma_rx == 1)
730 			s5p_set_dma_indata(dev, dev->sg_src);
731 		if (err_dma_hx == 1)
732 			s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
733 
734 		spin_unlock_irqrestore(&dev->lock, flags);
735 	}
736 
737 	goto hash_irq_end;
738 
739 error:
740 	s5p_sg_done(dev);
741 	dev->busy = false;
742 	req = dev->req;
743 	if (err_dma_hx == 1)
744 		s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
745 
746 	spin_unlock_irqrestore(&dev->lock, flags);
747 	s5p_aes_complete(req, err);
748 
749 hash_irq_end:
750 	/*
751 	 * Note about else if:
752 	 *   when hash_sg_iter reaches end and its UPDATE op,
753 	 *   issue SSS_HASH_PAUSE and wait for HPART irq
754 	 */
755 	if (hx_end)
756 		tasklet_schedule(&dev->hash_tasklet);
757 	else if (err_dma_hx == 2)
758 		s5p_hash_write(dev, SSS_REG_HASH_CTRL_PAUSE,
759 			       SSS_HASH_PAUSE);
760 
761 	return IRQ_HANDLED;
762 }
763 
764 /**
765  * s5p_hash_read_msg() - read message or IV from HW
766  * @req:	AHASH request
767  */
s5p_hash_read_msg(struct ahash_request * req)768 static void s5p_hash_read_msg(struct ahash_request *req)
769 {
770 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
771 	struct s5p_aes_dev *dd = ctx->dd;
772 	u32 *hash = (u32 *)ctx->digest;
773 	unsigned int i;
774 
775 	for (i = 0; i < ctx->nregs; i++)
776 		hash[i] = s5p_hash_read(dd, SSS_REG_HASH_OUT(i));
777 }
778 
779 /**
780  * s5p_hash_write_ctx_iv() - write IV for next partial/finup op.
781  * @dd:		device
782  * @ctx:	request context
783  */
s5p_hash_write_ctx_iv(struct s5p_aes_dev * dd,const struct s5p_hash_reqctx * ctx)784 static void s5p_hash_write_ctx_iv(struct s5p_aes_dev *dd,
785 				  const struct s5p_hash_reqctx *ctx)
786 {
787 	const u32 *hash = (const u32 *)ctx->digest;
788 	unsigned int i;
789 
790 	for (i = 0; i < ctx->nregs; i++)
791 		s5p_hash_write(dd, SSS_REG_HASH_IV(i), hash[i]);
792 }
793 
794 /**
795  * s5p_hash_write_iv() - write IV for next partial/finup op.
796  * @req:	AHASH request
797  */
s5p_hash_write_iv(struct ahash_request * req)798 static void s5p_hash_write_iv(struct ahash_request *req)
799 {
800 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
801 
802 	s5p_hash_write_ctx_iv(ctx->dd, ctx);
803 }
804 
805 /**
806  * s5p_hash_copy_result() - copy digest into req->result
807  * @req:	AHASH request
808  */
s5p_hash_copy_result(struct ahash_request * req)809 static void s5p_hash_copy_result(struct ahash_request *req)
810 {
811 	const struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
812 
813 	if (!req->result)
814 		return;
815 
816 	memcpy(req->result, ctx->digest, ctx->nregs * HASH_REG_SIZEOF);
817 }
818 
819 /**
820  * s5p_hash_dma_flush() - flush HASH DMA
821  * @dev:	secss device
822  */
s5p_hash_dma_flush(struct s5p_aes_dev * dev)823 static void s5p_hash_dma_flush(struct s5p_aes_dev *dev)
824 {
825 	SSS_WRITE(dev, FCHRDMAC, SSS_FCHRDMAC_FLUSH);
826 }
827 
828 /**
829  * s5p_hash_dma_enable() - enable DMA mode for HASH
830  * @dev:	secss device
831  *
832  * enable DMA mode for HASH
833  */
s5p_hash_dma_enable(struct s5p_aes_dev * dev)834 static void s5p_hash_dma_enable(struct s5p_aes_dev *dev)
835 {
836 	s5p_hash_write(dev, SSS_REG_HASH_CTRL_FIFO, SSS_HASH_FIFO_MODE_DMA);
837 }
838 
839 /**
840  * s5p_hash_irq_disable() - disable irq HASH signals
841  * @dev:	secss device
842  * @flags:	bitfield with irq's to be disabled
843  */
s5p_hash_irq_disable(struct s5p_aes_dev * dev,u32 flags)844 static void s5p_hash_irq_disable(struct s5p_aes_dev *dev, u32 flags)
845 {
846 	SSS_WRITE(dev, FCINTENCLR, flags);
847 }
848 
849 /**
850  * s5p_hash_irq_enable() - enable irq signals
851  * @dev:	secss device
852  * @flags:	bitfield with irq's to be enabled
853  */
s5p_hash_irq_enable(struct s5p_aes_dev * dev,int flags)854 static void s5p_hash_irq_enable(struct s5p_aes_dev *dev, int flags)
855 {
856 	SSS_WRITE(dev, FCINTENSET, flags);
857 }
858 
859 /**
860  * s5p_hash_set_flow() - set flow inside SecSS AES/DES with/without HASH
861  * @dev:	secss device
862  * @hashflow:	HASH stream flow with/without crypto AES/DES
863  */
s5p_hash_set_flow(struct s5p_aes_dev * dev,u32 hashflow)864 static void s5p_hash_set_flow(struct s5p_aes_dev *dev, u32 hashflow)
865 {
866 	unsigned long flags;
867 	u32 flow;
868 
869 	spin_lock_irqsave(&dev->lock, flags);
870 
871 	flow = SSS_READ(dev, FCFIFOCTRL);
872 	flow &= ~SSS_HASHIN_MASK;
873 	flow |= hashflow;
874 	SSS_WRITE(dev, FCFIFOCTRL, flow);
875 
876 	spin_unlock_irqrestore(&dev->lock, flags);
877 }
878 
879 /**
880  * s5p_ahash_dma_init() - enable DMA and set HASH flow inside SecSS
881  * @dev:	secss device
882  * @hashflow:	HASH stream flow with/without AES/DES
883  *
884  * flush HASH DMA and enable DMA, set HASH stream flow inside SecSS HW,
885  * enable HASH irq's HRDMA, HDONE, HPART
886  */
s5p_ahash_dma_init(struct s5p_aes_dev * dev,u32 hashflow)887 static void s5p_ahash_dma_init(struct s5p_aes_dev *dev, u32 hashflow)
888 {
889 	s5p_hash_irq_disable(dev, SSS_FCINTENCLR_HRDMAINTENCLR |
890 			     SSS_FCINTENCLR_HDONEINTENCLR |
891 			     SSS_FCINTENCLR_HPARTINTENCLR);
892 	s5p_hash_dma_flush(dev);
893 
894 	s5p_hash_dma_enable(dev);
895 	s5p_hash_set_flow(dev, hashflow & SSS_HASHIN_MASK);
896 	s5p_hash_irq_enable(dev, SSS_FCINTENSET_HRDMAINTENSET |
897 			    SSS_FCINTENSET_HDONEINTENSET |
898 			    SSS_FCINTENSET_HPARTINTENSET);
899 }
900 
901 /**
902  * s5p_hash_write_ctrl() - prepare HASH block in SecSS for processing
903  * @dd:		secss device
904  * @length:	length for request
905  * @final:	true if final op
906  *
907  * Prepare SSS HASH block for processing bytes in DMA mode. If it is called
908  * after previous updates, fill up IV words. For final, calculate and set
909  * lengths for HASH so SecSS can finalize hash. For partial, set SSS HASH
910  * length as 2^63 so it will be never reached and set to zero prelow and
911  * prehigh.
912  *
913  * This function does not start DMA transfer.
914  */
s5p_hash_write_ctrl(struct s5p_aes_dev * dd,size_t length,bool final)915 static void s5p_hash_write_ctrl(struct s5p_aes_dev *dd, size_t length,
916 				bool final)
917 {
918 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
919 	u32 prelow, prehigh, low, high;
920 	u32 configflags, swapflags;
921 	u64 tmplen;
922 
923 	configflags = ctx->engine | SSS_HASH_INIT_BIT;
924 
925 	if (likely(ctx->digcnt)) {
926 		s5p_hash_write_ctx_iv(dd, ctx);
927 		configflags |= SSS_HASH_USER_IV_EN;
928 	}
929 
930 	if (final) {
931 		/* number of bytes for last part */
932 		low = length;
933 		high = 0;
934 		/* total number of bits prev hashed */
935 		tmplen = ctx->digcnt * 8;
936 		prelow = (u32)tmplen;
937 		prehigh = (u32)(tmplen >> 32);
938 	} else {
939 		prelow = 0;
940 		prehigh = 0;
941 		low = 0;
942 		high = BIT(31);
943 	}
944 
945 	swapflags = SSS_HASH_BYTESWAP_DI | SSS_HASH_BYTESWAP_DO |
946 		    SSS_HASH_BYTESWAP_IV | SSS_HASH_BYTESWAP_KEY;
947 
948 	s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_LOW, low);
949 	s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_HIGH, high);
950 	s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_LOW, prelow);
951 	s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_HIGH, prehigh);
952 
953 	s5p_hash_write(dd, SSS_REG_HASH_CTRL_SWAP, swapflags);
954 	s5p_hash_write(dd, SSS_REG_HASH_CTRL, configflags);
955 }
956 
957 /**
958  * s5p_hash_xmit_dma() - start DMA hash processing
959  * @dd:		secss device
960  * @length:	length for request
961  * @final:	true if final op
962  *
963  * Update digcnt here, as it is needed for finup/final op.
964  */
s5p_hash_xmit_dma(struct s5p_aes_dev * dd,size_t length,bool final)965 static int s5p_hash_xmit_dma(struct s5p_aes_dev *dd, size_t length,
966 			     bool final)
967 {
968 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
969 	unsigned int cnt;
970 
971 	cnt = dma_map_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE);
972 	if (!cnt) {
973 		dev_err(dd->dev, "dma_map_sg error\n");
974 		ctx->error = true;
975 		return -EINVAL;
976 	}
977 
978 	set_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags);
979 	dd->hash_sg_iter = ctx->sg;
980 	dd->hash_sg_cnt = cnt;
981 	s5p_hash_write_ctrl(dd, length, final);
982 	ctx->digcnt += length;
983 	ctx->total -= length;
984 
985 	/* catch last interrupt */
986 	if (final)
987 		set_bit(HASH_FLAGS_FINAL, &dd->hash_flags);
988 
989 	s5p_set_dma_hashdata(dd, dd->hash_sg_iter); /* DMA starts */
990 
991 	return -EINPROGRESS;
992 }
993 
994 /**
995  * s5p_hash_copy_sgs() - copy request's bytes into new buffer
996  * @ctx:	request context
997  * @sg:		source scatterlist request
998  * @new_len:	number of bytes to process from sg
999  *
1000  * Allocate new buffer, copy data for HASH into it. If there was xmit_buf
1001  * filled, copy it first, then copy data from sg into it. Prepare one sgl[0]
1002  * with allocated buffer.
1003  *
1004  * Set bit in dd->hash_flag so we can free it after irq ends processing.
1005  */
s5p_hash_copy_sgs(struct s5p_hash_reqctx * ctx,struct scatterlist * sg,unsigned int new_len)1006 static int s5p_hash_copy_sgs(struct s5p_hash_reqctx *ctx,
1007 			     struct scatterlist *sg, unsigned int new_len)
1008 {
1009 	unsigned int pages, len;
1010 	void *buf;
1011 
1012 	len = new_len + ctx->bufcnt;
1013 	pages = get_order(len);
1014 
1015 	buf = (void *)__get_free_pages(GFP_ATOMIC, pages);
1016 	if (!buf) {
1017 		dev_err(ctx->dd->dev, "alloc pages for unaligned case.\n");
1018 		ctx->error = true;
1019 		return -ENOMEM;
1020 	}
1021 
1022 	if (ctx->bufcnt)
1023 		memcpy(buf, ctx->dd->xmit_buf, ctx->bufcnt);
1024 
1025 	memcpy_from_sglist(buf + ctx->bufcnt, sg, ctx->skip, new_len);
1026 	sg_init_table(ctx->sgl, 1);
1027 	sg_set_buf(ctx->sgl, buf, len);
1028 	ctx->sg = ctx->sgl;
1029 	ctx->sg_len = 1;
1030 	ctx->bufcnt = 0;
1031 	ctx->skip = 0;
1032 	set_bit(HASH_FLAGS_SGS_COPIED, &ctx->dd->hash_flags);
1033 
1034 	return 0;
1035 }
1036 
1037 /**
1038  * s5p_hash_copy_sg_lists() - copy sg list and make fixes in copy
1039  * @ctx:	request context
1040  * @sg:		source scatterlist request
1041  * @new_len:	number of bytes to process from sg
1042  *
1043  * Allocate new scatterlist table, copy data for HASH into it. If there was
1044  * xmit_buf filled, prepare it first, then copy page, length and offset from
1045  * source sg into it, adjusting begin and/or end for skip offset and
1046  * hash_later value.
1047  *
1048  * Resulting sg table will be assigned to ctx->sg. Set flag so we can free
1049  * it after irq ends processing.
1050  */
s5p_hash_copy_sg_lists(struct s5p_hash_reqctx * ctx,struct scatterlist * sg,unsigned int new_len)1051 static int s5p_hash_copy_sg_lists(struct s5p_hash_reqctx *ctx,
1052 				  struct scatterlist *sg, unsigned int new_len)
1053 {
1054 	unsigned int skip = ctx->skip, n = sg_nents(sg);
1055 	struct scatterlist *tmp;
1056 	unsigned int len;
1057 
1058 	if (ctx->bufcnt)
1059 		n++;
1060 
1061 	ctx->sg = kmalloc_array(n, sizeof(*sg), GFP_KERNEL);
1062 	if (!ctx->sg) {
1063 		ctx->error = true;
1064 		return -ENOMEM;
1065 	}
1066 
1067 	sg_init_table(ctx->sg, n);
1068 
1069 	tmp = ctx->sg;
1070 
1071 	ctx->sg_len = 0;
1072 
1073 	if (ctx->bufcnt) {
1074 		sg_set_buf(tmp, ctx->dd->xmit_buf, ctx->bufcnt);
1075 		tmp = sg_next(tmp);
1076 		ctx->sg_len++;
1077 	}
1078 
1079 	while (sg && skip >= sg->length) {
1080 		skip -= sg->length;
1081 		sg = sg_next(sg);
1082 	}
1083 
1084 	while (sg && new_len) {
1085 		len = sg->length - skip;
1086 		if (new_len < len)
1087 			len = new_len;
1088 
1089 		new_len -= len;
1090 		sg_set_page(tmp, sg_page(sg), len, sg->offset + skip);
1091 		skip = 0;
1092 		if (new_len <= 0)
1093 			sg_mark_end(tmp);
1094 
1095 		tmp = sg_next(tmp);
1096 		ctx->sg_len++;
1097 		sg = sg_next(sg);
1098 	}
1099 
1100 	set_bit(HASH_FLAGS_SGS_ALLOCED, &ctx->dd->hash_flags);
1101 
1102 	return 0;
1103 }
1104 
1105 /**
1106  * s5p_hash_prepare_sgs() - prepare sg for processing
1107  * @ctx:	request context
1108  * @sg:		source scatterlist request
1109  * @new_len:	number of bytes to process from sg
1110  * @final:	final flag
1111  *
1112  * Check two conditions: (1) if buffers in sg have len aligned data, and (2)
1113  * sg table have good aligned elements (list_ok). If one of this checks fails,
1114  * then either (1) allocates new buffer for data with s5p_hash_copy_sgs, copy
1115  * data into this buffer and prepare request in sgl, or (2) allocates new sg
1116  * table and prepare sg elements.
1117  *
1118  * For digest or finup all conditions can be good, and we may not need any
1119  * fixes.
1120  */
s5p_hash_prepare_sgs(struct s5p_hash_reqctx * ctx,struct scatterlist * sg,unsigned int new_len,bool final)1121 static int s5p_hash_prepare_sgs(struct s5p_hash_reqctx *ctx,
1122 				struct scatterlist *sg,
1123 				unsigned int new_len, bool final)
1124 {
1125 	unsigned int skip = ctx->skip, nbytes = new_len, n = 0;
1126 	bool aligned = true, list_ok = true;
1127 	struct scatterlist *sg_tmp = sg;
1128 
1129 	if (!sg || !sg->length || !new_len)
1130 		return 0;
1131 
1132 	if (skip || !final)
1133 		list_ok = false;
1134 
1135 	while (nbytes > 0 && sg_tmp) {
1136 		n++;
1137 		if (skip >= sg_tmp->length) {
1138 			skip -= sg_tmp->length;
1139 			if (!sg_tmp->length) {
1140 				aligned = false;
1141 				break;
1142 			}
1143 		} else {
1144 			if (!IS_ALIGNED(sg_tmp->length - skip, BUFLEN)) {
1145 				aligned = false;
1146 				break;
1147 			}
1148 
1149 			if (nbytes < sg_tmp->length - skip) {
1150 				list_ok = false;
1151 				break;
1152 			}
1153 
1154 			nbytes -= sg_tmp->length - skip;
1155 			skip = 0;
1156 		}
1157 
1158 		sg_tmp = sg_next(sg_tmp);
1159 	}
1160 
1161 	if (!aligned)
1162 		return s5p_hash_copy_sgs(ctx, sg, new_len);
1163 	else if (!list_ok)
1164 		return s5p_hash_copy_sg_lists(ctx, sg, new_len);
1165 
1166 	/*
1167 	 * Have aligned data from previous operation and/or current
1168 	 * Note: will enter here only if (digest or finup) and aligned
1169 	 */
1170 	if (ctx->bufcnt) {
1171 		ctx->sg_len = n;
1172 		sg_init_table(ctx->sgl, 2);
1173 		sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, ctx->bufcnt);
1174 		sg_chain(ctx->sgl, 2, sg);
1175 		ctx->sg = ctx->sgl;
1176 		ctx->sg_len++;
1177 	} else {
1178 		ctx->sg = sg;
1179 		ctx->sg_len = n;
1180 	}
1181 
1182 	return 0;
1183 }
1184 
1185 /**
1186  * s5p_hash_prepare_request() - prepare request for processing
1187  * @req:	AHASH request
1188  * @update:	true if UPDATE op
1189  *
1190  * Note 1: we can have update flag _and_ final flag at the same time.
1191  * Note 2: we enter here when digcnt > BUFLEN (=HASH_BLOCK_SIZE) or
1192  *	   either req->nbytes or ctx->bufcnt + req->nbytes is > BUFLEN or
1193  *	   we have final op
1194  */
s5p_hash_prepare_request(struct ahash_request * req,bool update)1195 static int s5p_hash_prepare_request(struct ahash_request *req, bool update)
1196 {
1197 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1198 	bool final = ctx->finup;
1199 	int xmit_len, hash_later, nbytes;
1200 	int ret;
1201 
1202 	if (update)
1203 		nbytes = req->nbytes;
1204 	else
1205 		nbytes = 0;
1206 
1207 	ctx->total = nbytes + ctx->bufcnt;
1208 	if (!ctx->total)
1209 		return 0;
1210 
1211 	if (nbytes && (!IS_ALIGNED(ctx->bufcnt, BUFLEN))) {
1212 		/* bytes left from previous request, so fill up to BUFLEN */
1213 		int len = BUFLEN - ctx->bufcnt % BUFLEN;
1214 
1215 		if (len > nbytes)
1216 			len = nbytes;
1217 
1218 		memcpy_from_sglist(ctx->buffer + ctx->bufcnt, req->src, 0, len);
1219 		ctx->bufcnt += len;
1220 		nbytes -= len;
1221 		ctx->skip = len;
1222 	} else {
1223 		ctx->skip = 0;
1224 	}
1225 
1226 	if (ctx->bufcnt)
1227 		memcpy(ctx->dd->xmit_buf, ctx->buffer, ctx->bufcnt);
1228 
1229 	xmit_len = ctx->total;
1230 	if (final) {
1231 		hash_later = 0;
1232 	} else {
1233 		if (IS_ALIGNED(xmit_len, BUFLEN))
1234 			xmit_len -= BUFLEN;
1235 		else
1236 			xmit_len -= xmit_len & (BUFLEN - 1);
1237 
1238 		hash_later = ctx->total - xmit_len;
1239 		/* copy hash_later bytes from end of req->src */
1240 		/* previous bytes are in xmit_buf, so no overwrite */
1241 		memcpy_from_sglist(ctx->buffer, req->src,
1242 				   req->nbytes - hash_later, hash_later);
1243 	}
1244 
1245 	if (xmit_len > BUFLEN) {
1246 		ret = s5p_hash_prepare_sgs(ctx, req->src, nbytes - hash_later,
1247 					   final);
1248 		if (ret)
1249 			return ret;
1250 	} else {
1251 		/* have buffered data only */
1252 		if (unlikely(!ctx->bufcnt)) {
1253 			/* first update didn't fill up buffer */
1254 			memcpy_from_sglist(ctx->dd->xmit_buf, req->src,
1255 					   0, xmit_len);
1256 		}
1257 
1258 		sg_init_table(ctx->sgl, 1);
1259 		sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, xmit_len);
1260 
1261 		ctx->sg = ctx->sgl;
1262 		ctx->sg_len = 1;
1263 	}
1264 
1265 	ctx->bufcnt = hash_later;
1266 	if (!final)
1267 		ctx->total = xmit_len;
1268 
1269 	return 0;
1270 }
1271 
1272 /**
1273  * s5p_hash_update_dma_stop() - unmap DMA
1274  * @dd:		secss device
1275  *
1276  * Unmap scatterlist ctx->sg.
1277  */
s5p_hash_update_dma_stop(struct s5p_aes_dev * dd)1278 static void s5p_hash_update_dma_stop(struct s5p_aes_dev *dd)
1279 {
1280 	const struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
1281 
1282 	dma_unmap_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE);
1283 	clear_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags);
1284 }
1285 
1286 /**
1287  * s5p_hash_finish() - copy calculated digest to crypto layer
1288  * @req:	AHASH request
1289  */
s5p_hash_finish(struct ahash_request * req)1290 static void s5p_hash_finish(struct ahash_request *req)
1291 {
1292 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1293 	struct s5p_aes_dev *dd = ctx->dd;
1294 
1295 	if (ctx->digcnt)
1296 		s5p_hash_copy_result(req);
1297 
1298 	dev_dbg(dd->dev, "hash_finish digcnt: %lld\n", ctx->digcnt);
1299 }
1300 
1301 /**
1302  * s5p_hash_finish_req() - finish request
1303  * @req:	AHASH request
1304  * @err:	error
1305  */
s5p_hash_finish_req(struct ahash_request * req,int err)1306 static void s5p_hash_finish_req(struct ahash_request *req, int err)
1307 {
1308 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1309 	struct s5p_aes_dev *dd = ctx->dd;
1310 	unsigned long flags;
1311 
1312 	if (test_bit(HASH_FLAGS_SGS_COPIED, &dd->hash_flags))
1313 		free_pages((unsigned long)sg_virt(ctx->sg),
1314 			   get_order(ctx->sg->length));
1315 
1316 	if (test_bit(HASH_FLAGS_SGS_ALLOCED, &dd->hash_flags))
1317 		kfree(ctx->sg);
1318 
1319 	ctx->sg = NULL;
1320 	dd->hash_flags &= ~(BIT(HASH_FLAGS_SGS_ALLOCED) |
1321 			    BIT(HASH_FLAGS_SGS_COPIED));
1322 
1323 	if (!err && !ctx->error) {
1324 		s5p_hash_read_msg(req);
1325 		if (test_bit(HASH_FLAGS_FINAL, &dd->hash_flags))
1326 			s5p_hash_finish(req);
1327 	} else {
1328 		ctx->error = true;
1329 	}
1330 
1331 	spin_lock_irqsave(&dd->hash_lock, flags);
1332 	dd->hash_flags &= ~(BIT(HASH_FLAGS_BUSY) | BIT(HASH_FLAGS_FINAL) |
1333 			    BIT(HASH_FLAGS_DMA_READY) |
1334 			    BIT(HASH_FLAGS_OUTPUT_READY));
1335 	spin_unlock_irqrestore(&dd->hash_lock, flags);
1336 
1337 	if (req->base.complete)
1338 		ahash_request_complete(req, err);
1339 }
1340 
1341 /**
1342  * s5p_hash_handle_queue() - handle hash queue
1343  * @dd:		device s5p_aes_dev
1344  * @req:	AHASH request
1345  *
1346  * If req!=NULL enqueue it on dd->queue, if FLAGS_BUSY is not set on the
1347  * device then processes the first request from the dd->queue
1348  *
1349  * Returns: see s5p_hash_final below.
1350  */
s5p_hash_handle_queue(struct s5p_aes_dev * dd,struct ahash_request * req)1351 static int s5p_hash_handle_queue(struct s5p_aes_dev *dd,
1352 				 struct ahash_request *req)
1353 {
1354 	struct crypto_async_request *async_req, *backlog;
1355 	struct s5p_hash_reqctx *ctx;
1356 	unsigned long flags;
1357 	int err = 0, ret = 0;
1358 
1359 retry:
1360 	spin_lock_irqsave(&dd->hash_lock, flags);
1361 	if (req)
1362 		ret = ahash_enqueue_request(&dd->hash_queue, req);
1363 
1364 	if (test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) {
1365 		spin_unlock_irqrestore(&dd->hash_lock, flags);
1366 		return ret;
1367 	}
1368 
1369 	backlog = crypto_get_backlog(&dd->hash_queue);
1370 	async_req = crypto_dequeue_request(&dd->hash_queue);
1371 	if (async_req)
1372 		set_bit(HASH_FLAGS_BUSY, &dd->hash_flags);
1373 
1374 	spin_unlock_irqrestore(&dd->hash_lock, flags);
1375 
1376 	if (!async_req)
1377 		return ret;
1378 
1379 	if (backlog)
1380 		crypto_request_complete(backlog, -EINPROGRESS);
1381 
1382 	req = ahash_request_cast(async_req);
1383 	dd->hash_req = req;
1384 	ctx = ahash_request_ctx(req);
1385 
1386 	err = s5p_hash_prepare_request(req, ctx->op_update);
1387 	if (err || !ctx->total)
1388 		goto out;
1389 
1390 	dev_dbg(dd->dev, "handling new req, op_update: %u, nbytes: %d\n",
1391 		ctx->op_update, req->nbytes);
1392 
1393 	s5p_ahash_dma_init(dd, SSS_HASHIN_INDEPENDENT);
1394 	if (ctx->digcnt)
1395 		s5p_hash_write_iv(req); /* restore hash IV */
1396 
1397 	if (ctx->op_update) { /* HASH_OP_UPDATE */
1398 		err = s5p_hash_xmit_dma(dd, ctx->total, ctx->finup);
1399 		if (err != -EINPROGRESS && ctx->finup && !ctx->error)
1400 			/* no final() after finup() */
1401 			err = s5p_hash_xmit_dma(dd, ctx->total, true);
1402 	} else { /* HASH_OP_FINAL */
1403 		err = s5p_hash_xmit_dma(dd, ctx->total, true);
1404 	}
1405 out:
1406 	if (err != -EINPROGRESS) {
1407 		/* hash_tasklet_cb will not finish it, so do it here */
1408 		s5p_hash_finish_req(req, err);
1409 		req = NULL;
1410 
1411 		/*
1412 		 * Execute next request immediately if there is anything
1413 		 * in queue.
1414 		 */
1415 		goto retry;
1416 	}
1417 
1418 	return ret;
1419 }
1420 
1421 /**
1422  * s5p_hash_tasklet_cb() - hash tasklet
1423  * @data:	ptr to s5p_aes_dev
1424  */
s5p_hash_tasklet_cb(unsigned long data)1425 static void s5p_hash_tasklet_cb(unsigned long data)
1426 {
1427 	struct s5p_aes_dev *dd = (struct s5p_aes_dev *)data;
1428 
1429 	if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) {
1430 		s5p_hash_handle_queue(dd, NULL);
1431 		return;
1432 	}
1433 
1434 	if (test_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags)) {
1435 		if (test_and_clear_bit(HASH_FLAGS_DMA_ACTIVE,
1436 				       &dd->hash_flags)) {
1437 			s5p_hash_update_dma_stop(dd);
1438 		}
1439 
1440 		if (test_and_clear_bit(HASH_FLAGS_OUTPUT_READY,
1441 				       &dd->hash_flags)) {
1442 			/* hash or semi-hash ready */
1443 			clear_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags);
1444 			goto finish;
1445 		}
1446 	}
1447 
1448 	return;
1449 
1450 finish:
1451 	/* finish curent request */
1452 	s5p_hash_finish_req(dd->hash_req, 0);
1453 
1454 	/* If we are not busy, process next req */
1455 	if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags))
1456 		s5p_hash_handle_queue(dd, NULL);
1457 }
1458 
1459 /**
1460  * s5p_hash_enqueue() - enqueue request
1461  * @req:	AHASH request
1462  * @op:		operation UPDATE (true) or FINAL (false)
1463  *
1464  * Returns: see s5p_hash_final below.
1465  */
s5p_hash_enqueue(struct ahash_request * req,bool op)1466 static int s5p_hash_enqueue(struct ahash_request *req, bool op)
1467 {
1468 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1469 	struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1470 
1471 	ctx->op_update = op;
1472 
1473 	return s5p_hash_handle_queue(tctx->dd, req);
1474 }
1475 
1476 /**
1477  * s5p_hash_update() - process the hash input data
1478  * @req:	AHASH request
1479  *
1480  * If request will fit in buffer, copy it and return immediately
1481  * else enqueue it with OP_UPDATE.
1482  *
1483  * Returns: see s5p_hash_final below.
1484  */
s5p_hash_update(struct ahash_request * req)1485 static int s5p_hash_update(struct ahash_request *req)
1486 {
1487 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1488 
1489 	if (!req->nbytes)
1490 		return 0;
1491 
1492 	if (ctx->bufcnt + req->nbytes <= BUFLEN) {
1493 		memcpy_from_sglist(ctx->buffer + ctx->bufcnt, req->src,
1494 				   0, req->nbytes);
1495 		ctx->bufcnt += req->nbytes;
1496 		return 0;
1497 	}
1498 
1499 	return s5p_hash_enqueue(req, true); /* HASH_OP_UPDATE */
1500 }
1501 
1502 /**
1503  * s5p_hash_final() - close up hash and calculate digest
1504  * @req:	AHASH request
1505  *
1506  * Note: in final req->src do not have any data, and req->nbytes can be
1507  * non-zero.
1508  *
1509  * If there were no input data processed yet and the buffered hash data is
1510  * less than BUFLEN (64) then calculate the final hash immediately by using
1511  * SW algorithm fallback.
1512  *
1513  * Otherwise enqueues the current AHASH request with OP_FINAL operation op
1514  * and finalize hash message in HW. Note that if digcnt!=0 then there were
1515  * previous update op, so there are always some buffered bytes in ctx->buffer,
1516  * which means that ctx->bufcnt!=0
1517  *
1518  * Returns:
1519  * 0 if the request has been processed immediately,
1520  * -EINPROGRESS if the operation has been queued for later execution or is set
1521  *		to processing by HW,
1522  * -EBUSY if queue is full and request should be resubmitted later,
1523  * other negative values denotes an error.
1524  */
s5p_hash_final(struct ahash_request * req)1525 static int s5p_hash_final(struct ahash_request *req)
1526 {
1527 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1528 
1529 	ctx->finup = true;
1530 	if (ctx->error)
1531 		return -EINVAL; /* uncompleted hash is not needed */
1532 
1533 	if (!ctx->digcnt && ctx->bufcnt < BUFLEN) {
1534 		struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1535 
1536 		return crypto_shash_tfm_digest(tctx->fallback, ctx->buffer,
1537 					       ctx->bufcnt, req->result);
1538 	}
1539 
1540 	return s5p_hash_enqueue(req, false); /* HASH_OP_FINAL */
1541 }
1542 
1543 /**
1544  * s5p_hash_finup() - process last req->src and calculate digest
1545  * @req:	AHASH request containing the last update data
1546  *
1547  * Return values: see s5p_hash_final above.
1548  */
s5p_hash_finup(struct ahash_request * req)1549 static int s5p_hash_finup(struct ahash_request *req)
1550 {
1551 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1552 	int err1, err2;
1553 
1554 	ctx->finup = true;
1555 
1556 	err1 = s5p_hash_update(req);
1557 	if (err1 == -EINPROGRESS || err1 == -EBUSY)
1558 		return err1;
1559 
1560 	/*
1561 	 * final() has to be always called to cleanup resources even if
1562 	 * update() failed, except EINPROGRESS or calculate digest for small
1563 	 * size
1564 	 */
1565 	err2 = s5p_hash_final(req);
1566 
1567 	return err1 ?: err2;
1568 }
1569 
1570 /**
1571  * s5p_hash_init() - initialize AHASH request contex
1572  * @req:	AHASH request
1573  *
1574  * Init async hash request context.
1575  */
s5p_hash_init(struct ahash_request * req)1576 static int s5p_hash_init(struct ahash_request *req)
1577 {
1578 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1579 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1580 	struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm);
1581 
1582 	ctx->dd = tctx->dd;
1583 	ctx->error = false;
1584 	ctx->finup = false;
1585 	ctx->bufcnt = 0;
1586 	ctx->digcnt = 0;
1587 	ctx->total = 0;
1588 	ctx->skip = 0;
1589 
1590 	dev_dbg(tctx->dd->dev, "init: digest size: %d\n",
1591 		crypto_ahash_digestsize(tfm));
1592 
1593 	switch (crypto_ahash_digestsize(tfm)) {
1594 	case MD5_DIGEST_SIZE:
1595 		ctx->engine = SSS_HASH_ENGINE_MD5;
1596 		ctx->nregs = HASH_MD5_MAX_REG;
1597 		break;
1598 	case SHA1_DIGEST_SIZE:
1599 		ctx->engine = SSS_HASH_ENGINE_SHA1;
1600 		ctx->nregs = HASH_SHA1_MAX_REG;
1601 		break;
1602 	case SHA256_DIGEST_SIZE:
1603 		ctx->engine = SSS_HASH_ENGINE_SHA256;
1604 		ctx->nregs = HASH_SHA256_MAX_REG;
1605 		break;
1606 	default:
1607 		ctx->error = true;
1608 		return -EINVAL;
1609 	}
1610 
1611 	return 0;
1612 }
1613 
1614 /**
1615  * s5p_hash_digest - calculate digest from req->src
1616  * @req:	AHASH request
1617  *
1618  * Return values: see s5p_hash_final above.
1619  */
s5p_hash_digest(struct ahash_request * req)1620 static int s5p_hash_digest(struct ahash_request *req)
1621 {
1622 	return s5p_hash_init(req) ?: s5p_hash_finup(req);
1623 }
1624 
1625 /**
1626  * s5p_hash_cra_init_alg - init crypto alg transformation
1627  * @tfm:	crypto transformation
1628  */
s5p_hash_cra_init_alg(struct crypto_tfm * tfm)1629 static int s5p_hash_cra_init_alg(struct crypto_tfm *tfm)
1630 {
1631 	struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm);
1632 	const char *alg_name = crypto_tfm_alg_name(tfm);
1633 
1634 	tctx->dd = s5p_dev;
1635 	/* Allocate a fallback and abort if it failed. */
1636 	tctx->fallback = crypto_alloc_shash(alg_name, 0,
1637 					    CRYPTO_ALG_NEED_FALLBACK);
1638 	if (IS_ERR(tctx->fallback)) {
1639 		pr_err("fallback alloc fails for '%s'\n", alg_name);
1640 		return PTR_ERR(tctx->fallback);
1641 	}
1642 
1643 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1644 				 sizeof(struct s5p_hash_reqctx) + BUFLEN);
1645 
1646 	return 0;
1647 }
1648 
1649 /**
1650  * s5p_hash_cra_init - init crypto tfm
1651  * @tfm:	crypto transformation
1652  */
s5p_hash_cra_init(struct crypto_tfm * tfm)1653 static int s5p_hash_cra_init(struct crypto_tfm *tfm)
1654 {
1655 	return s5p_hash_cra_init_alg(tfm);
1656 }
1657 
1658 /**
1659  * s5p_hash_cra_exit - exit crypto tfm
1660  * @tfm:	crypto transformation
1661  *
1662  * free allocated fallback
1663  */
s5p_hash_cra_exit(struct crypto_tfm * tfm)1664 static void s5p_hash_cra_exit(struct crypto_tfm *tfm)
1665 {
1666 	struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm);
1667 
1668 	crypto_free_shash(tctx->fallback);
1669 	tctx->fallback = NULL;
1670 }
1671 
1672 /**
1673  * s5p_hash_export - export hash state
1674  * @req:	AHASH request
1675  * @out:	buffer for exported state
1676  */
s5p_hash_export(struct ahash_request * req,void * out)1677 static int s5p_hash_export(struct ahash_request *req, void *out)
1678 {
1679 	const struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1680 
1681 	memcpy(out, ctx, sizeof(*ctx) + ctx->bufcnt);
1682 
1683 	return 0;
1684 }
1685 
1686 /**
1687  * s5p_hash_import - import hash state
1688  * @req:	AHASH request
1689  * @in:		buffer with state to be imported from
1690  */
s5p_hash_import(struct ahash_request * req,const void * in)1691 static int s5p_hash_import(struct ahash_request *req, const void *in)
1692 {
1693 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1694 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1695 	struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm);
1696 	const struct s5p_hash_reqctx *ctx_in = in;
1697 
1698 	memcpy(ctx, in, sizeof(*ctx) + BUFLEN);
1699 	if (ctx_in->bufcnt > BUFLEN) {
1700 		ctx->error = true;
1701 		return -EINVAL;
1702 	}
1703 
1704 	ctx->dd = tctx->dd;
1705 	ctx->error = false;
1706 
1707 	return 0;
1708 }
1709 
1710 static struct ahash_alg algs_sha1_md5_sha256[] = {
1711 {
1712 	.init		= s5p_hash_init,
1713 	.update		= s5p_hash_update,
1714 	.final		= s5p_hash_final,
1715 	.finup		= s5p_hash_finup,
1716 	.digest		= s5p_hash_digest,
1717 	.export		= s5p_hash_export,
1718 	.import		= s5p_hash_import,
1719 	.halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1720 	.halg.digestsize	= SHA1_DIGEST_SIZE,
1721 	.halg.base	= {
1722 		.cra_name		= "sha1",
1723 		.cra_driver_name	= "exynos-sha1",
1724 		.cra_priority		= 100,
1725 		.cra_flags		= CRYPTO_ALG_KERN_DRIVER_ONLY |
1726 					  CRYPTO_ALG_ASYNC |
1727 					  CRYPTO_ALG_NEED_FALLBACK,
1728 		.cra_blocksize		= HASH_BLOCK_SIZE,
1729 		.cra_ctxsize		= sizeof(struct s5p_hash_ctx),
1730 		.cra_module		= THIS_MODULE,
1731 		.cra_init		= s5p_hash_cra_init,
1732 		.cra_exit		= s5p_hash_cra_exit,
1733 	}
1734 },
1735 {
1736 	.init		= s5p_hash_init,
1737 	.update		= s5p_hash_update,
1738 	.final		= s5p_hash_final,
1739 	.finup		= s5p_hash_finup,
1740 	.digest		= s5p_hash_digest,
1741 	.export		= s5p_hash_export,
1742 	.import		= s5p_hash_import,
1743 	.halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1744 	.halg.digestsize	= MD5_DIGEST_SIZE,
1745 	.halg.base	= {
1746 		.cra_name		= "md5",
1747 		.cra_driver_name	= "exynos-md5",
1748 		.cra_priority		= 100,
1749 		.cra_flags		= CRYPTO_ALG_KERN_DRIVER_ONLY |
1750 					  CRYPTO_ALG_ASYNC |
1751 					  CRYPTO_ALG_NEED_FALLBACK,
1752 		.cra_blocksize		= HASH_BLOCK_SIZE,
1753 		.cra_ctxsize		= sizeof(struct s5p_hash_ctx),
1754 		.cra_module		= THIS_MODULE,
1755 		.cra_init		= s5p_hash_cra_init,
1756 		.cra_exit		= s5p_hash_cra_exit,
1757 	}
1758 },
1759 {
1760 	.init		= s5p_hash_init,
1761 	.update		= s5p_hash_update,
1762 	.final		= s5p_hash_final,
1763 	.finup		= s5p_hash_finup,
1764 	.digest		= s5p_hash_digest,
1765 	.export		= s5p_hash_export,
1766 	.import		= s5p_hash_import,
1767 	.halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1768 	.halg.digestsize	= SHA256_DIGEST_SIZE,
1769 	.halg.base	= {
1770 		.cra_name		= "sha256",
1771 		.cra_driver_name	= "exynos-sha256",
1772 		.cra_priority		= 100,
1773 		.cra_flags		= CRYPTO_ALG_KERN_DRIVER_ONLY |
1774 					  CRYPTO_ALG_ASYNC |
1775 					  CRYPTO_ALG_NEED_FALLBACK,
1776 		.cra_blocksize		= HASH_BLOCK_SIZE,
1777 		.cra_ctxsize		= sizeof(struct s5p_hash_ctx),
1778 		.cra_module		= THIS_MODULE,
1779 		.cra_init		= s5p_hash_cra_init,
1780 		.cra_exit		= s5p_hash_cra_exit,
1781 	}
1782 }
1783 
1784 };
1785 
s5p_set_aes(struct s5p_aes_dev * dev,const u8 * key,const u8 * iv,const u8 * ctr,unsigned int keylen)1786 static void s5p_set_aes(struct s5p_aes_dev *dev,
1787 			const u8 *key, const u8 *iv, const u8 *ctr,
1788 			unsigned int keylen)
1789 {
1790 	void __iomem *keystart;
1791 
1792 	if (iv)
1793 		memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_IV_DATA(0), iv,
1794 			    AES_BLOCK_SIZE);
1795 
1796 	if (ctr)
1797 		memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_CNT_DATA(0), ctr,
1798 			    AES_BLOCK_SIZE);
1799 
1800 	if (keylen == AES_KEYSIZE_256)
1801 		keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(0);
1802 	else if (keylen == AES_KEYSIZE_192)
1803 		keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(2);
1804 	else
1805 		keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(4);
1806 
1807 	memcpy_toio(keystart, key, keylen);
1808 }
1809 
s5p_is_sg_aligned(struct scatterlist * sg)1810 static bool s5p_is_sg_aligned(struct scatterlist *sg)
1811 {
1812 	while (sg) {
1813 		if (!IS_ALIGNED(sg->length, AES_BLOCK_SIZE))
1814 			return false;
1815 		sg = sg_next(sg);
1816 	}
1817 
1818 	return true;
1819 }
1820 
s5p_set_indata_start(struct s5p_aes_dev * dev,struct skcipher_request * req)1821 static int s5p_set_indata_start(struct s5p_aes_dev *dev,
1822 				struct skcipher_request *req)
1823 {
1824 	struct scatterlist *sg;
1825 	int err;
1826 
1827 	dev->sg_src_cpy = NULL;
1828 	sg = req->src;
1829 	if (!s5p_is_sg_aligned(sg)) {
1830 		dev_dbg(dev->dev,
1831 			"At least one unaligned source scatter list, making a copy\n");
1832 		err = s5p_make_sg_cpy(dev, sg, &dev->sg_src_cpy);
1833 		if (err)
1834 			return err;
1835 
1836 		sg = dev->sg_src_cpy;
1837 	}
1838 
1839 	err = s5p_set_indata(dev, sg);
1840 	if (err) {
1841 		s5p_free_sg_cpy(dev, &dev->sg_src_cpy);
1842 		return err;
1843 	}
1844 
1845 	return 0;
1846 }
1847 
s5p_set_outdata_start(struct s5p_aes_dev * dev,struct skcipher_request * req)1848 static int s5p_set_outdata_start(struct s5p_aes_dev *dev,
1849 				 struct skcipher_request *req)
1850 {
1851 	struct scatterlist *sg;
1852 	int err;
1853 
1854 	dev->sg_dst_cpy = NULL;
1855 	sg = req->dst;
1856 	if (!s5p_is_sg_aligned(sg)) {
1857 		dev_dbg(dev->dev,
1858 			"At least one unaligned dest scatter list, making a copy\n");
1859 		err = s5p_make_sg_cpy(dev, sg, &dev->sg_dst_cpy);
1860 		if (err)
1861 			return err;
1862 
1863 		sg = dev->sg_dst_cpy;
1864 	}
1865 
1866 	err = s5p_set_outdata(dev, sg);
1867 	if (err) {
1868 		s5p_free_sg_cpy(dev, &dev->sg_dst_cpy);
1869 		return err;
1870 	}
1871 
1872 	return 0;
1873 }
1874 
s5p_aes_crypt_start(struct s5p_aes_dev * dev,unsigned long mode)1875 static void s5p_aes_crypt_start(struct s5p_aes_dev *dev, unsigned long mode)
1876 {
1877 	struct skcipher_request *req = dev->req;
1878 	u32 aes_control;
1879 	unsigned long flags;
1880 	int err;
1881 	u8 *iv, *ctr;
1882 
1883 	/* This sets bit [13:12] to 00, which selects 128-bit counter */
1884 	aes_control = SSS_AES_KEY_CHANGE_MODE;
1885 	if (mode & FLAGS_AES_DECRYPT)
1886 		aes_control |= SSS_AES_MODE_DECRYPT;
1887 
1888 	if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CBC) {
1889 		aes_control |= SSS_AES_CHAIN_MODE_CBC;
1890 		iv = req->iv;
1891 		ctr = NULL;
1892 	} else if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CTR) {
1893 		aes_control |= SSS_AES_CHAIN_MODE_CTR;
1894 		iv = NULL;
1895 		ctr = req->iv;
1896 	} else {
1897 		iv = NULL; /* AES_ECB */
1898 		ctr = NULL;
1899 	}
1900 
1901 	if (dev->ctx->keylen == AES_KEYSIZE_192)
1902 		aes_control |= SSS_AES_KEY_SIZE_192;
1903 	else if (dev->ctx->keylen == AES_KEYSIZE_256)
1904 		aes_control |= SSS_AES_KEY_SIZE_256;
1905 
1906 	aes_control |= SSS_AES_FIFO_MODE;
1907 
1908 	/* as a variant it is possible to use byte swapping on DMA side */
1909 	aes_control |= SSS_AES_BYTESWAP_DI
1910 		    |  SSS_AES_BYTESWAP_DO
1911 		    |  SSS_AES_BYTESWAP_IV
1912 		    |  SSS_AES_BYTESWAP_KEY
1913 		    |  SSS_AES_BYTESWAP_CNT;
1914 
1915 	spin_lock_irqsave(&dev->lock, flags);
1916 
1917 	SSS_WRITE(dev, FCINTENCLR,
1918 		  SSS_FCINTENCLR_BTDMAINTENCLR | SSS_FCINTENCLR_BRDMAINTENCLR);
1919 	SSS_WRITE(dev, FCFIFOCTRL, 0x00);
1920 
1921 	err = s5p_set_indata_start(dev, req);
1922 	if (err)
1923 		goto indata_error;
1924 
1925 	err = s5p_set_outdata_start(dev, req);
1926 	if (err)
1927 		goto outdata_error;
1928 
1929 	SSS_AES_WRITE(dev, AES_CONTROL, aes_control);
1930 	s5p_set_aes(dev, dev->ctx->aes_key, iv, ctr, dev->ctx->keylen);
1931 
1932 	s5p_set_dma_indata(dev,  dev->sg_src);
1933 	s5p_set_dma_outdata(dev, dev->sg_dst);
1934 
1935 	SSS_WRITE(dev, FCINTENSET,
1936 		  SSS_FCINTENSET_BTDMAINTENSET | SSS_FCINTENSET_BRDMAINTENSET);
1937 
1938 	spin_unlock_irqrestore(&dev->lock, flags);
1939 
1940 	return;
1941 
1942 outdata_error:
1943 	s5p_unset_indata(dev);
1944 
1945 indata_error:
1946 	s5p_sg_done(dev);
1947 	dev->busy = false;
1948 	spin_unlock_irqrestore(&dev->lock, flags);
1949 	s5p_aes_complete(req, err);
1950 }
1951 
s5p_tasklet_cb(unsigned long data)1952 static void s5p_tasklet_cb(unsigned long data)
1953 {
1954 	struct s5p_aes_dev *dev = (struct s5p_aes_dev *)data;
1955 	struct crypto_async_request *async_req, *backlog;
1956 	struct s5p_aes_reqctx *reqctx;
1957 	unsigned long flags;
1958 
1959 	spin_lock_irqsave(&dev->lock, flags);
1960 	backlog   = crypto_get_backlog(&dev->queue);
1961 	async_req = crypto_dequeue_request(&dev->queue);
1962 
1963 	if (!async_req) {
1964 		dev->busy = false;
1965 		spin_unlock_irqrestore(&dev->lock, flags);
1966 		return;
1967 	}
1968 	spin_unlock_irqrestore(&dev->lock, flags);
1969 
1970 	if (backlog)
1971 		crypto_request_complete(backlog, -EINPROGRESS);
1972 
1973 	dev->req = skcipher_request_cast(async_req);
1974 	dev->ctx = crypto_tfm_ctx(dev->req->base.tfm);
1975 	reqctx   = skcipher_request_ctx(dev->req);
1976 
1977 	s5p_aes_crypt_start(dev, reqctx->mode);
1978 }
1979 
s5p_aes_handle_req(struct s5p_aes_dev * dev,struct skcipher_request * req)1980 static int s5p_aes_handle_req(struct s5p_aes_dev *dev,
1981 			      struct skcipher_request *req)
1982 {
1983 	unsigned long flags;
1984 	int err;
1985 
1986 	spin_lock_irqsave(&dev->lock, flags);
1987 	err = crypto_enqueue_request(&dev->queue, &req->base);
1988 	if (dev->busy) {
1989 		spin_unlock_irqrestore(&dev->lock, flags);
1990 		return err;
1991 	}
1992 	dev->busy = true;
1993 
1994 	spin_unlock_irqrestore(&dev->lock, flags);
1995 
1996 	tasklet_schedule(&dev->tasklet);
1997 
1998 	return err;
1999 }
2000 
s5p_aes_crypt(struct skcipher_request * req,unsigned long mode)2001 static int s5p_aes_crypt(struct skcipher_request *req, unsigned long mode)
2002 {
2003 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
2004 	struct s5p_aes_reqctx *reqctx = skcipher_request_ctx(req);
2005 	struct s5p_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
2006 	struct s5p_aes_dev *dev = ctx->dev;
2007 
2008 	if (!req->cryptlen)
2009 		return 0;
2010 
2011 	if (!IS_ALIGNED(req->cryptlen, AES_BLOCK_SIZE) &&
2012 			((mode & FLAGS_AES_MODE_MASK) != FLAGS_AES_CTR)) {
2013 		dev_dbg(dev->dev, "request size is not exact amount of AES blocks\n");
2014 		return -EINVAL;
2015 	}
2016 
2017 	reqctx->mode = mode;
2018 
2019 	return s5p_aes_handle_req(dev, req);
2020 }
2021 
s5p_aes_setkey(struct crypto_skcipher * cipher,const u8 * key,unsigned int keylen)2022 static int s5p_aes_setkey(struct crypto_skcipher *cipher,
2023 			  const u8 *key, unsigned int keylen)
2024 {
2025 	struct crypto_tfm *tfm = crypto_skcipher_tfm(cipher);
2026 	struct s5p_aes_ctx *ctx = crypto_tfm_ctx(tfm);
2027 
2028 	if (keylen != AES_KEYSIZE_128 &&
2029 	    keylen != AES_KEYSIZE_192 &&
2030 	    keylen != AES_KEYSIZE_256)
2031 		return -EINVAL;
2032 
2033 	memcpy(ctx->aes_key, key, keylen);
2034 	ctx->keylen = keylen;
2035 
2036 	return 0;
2037 }
2038 
s5p_aes_ecb_encrypt(struct skcipher_request * req)2039 static int s5p_aes_ecb_encrypt(struct skcipher_request *req)
2040 {
2041 	return s5p_aes_crypt(req, 0);
2042 }
2043 
s5p_aes_ecb_decrypt(struct skcipher_request * req)2044 static int s5p_aes_ecb_decrypt(struct skcipher_request *req)
2045 {
2046 	return s5p_aes_crypt(req, FLAGS_AES_DECRYPT);
2047 }
2048 
s5p_aes_cbc_encrypt(struct skcipher_request * req)2049 static int s5p_aes_cbc_encrypt(struct skcipher_request *req)
2050 {
2051 	return s5p_aes_crypt(req, FLAGS_AES_CBC);
2052 }
2053 
s5p_aes_cbc_decrypt(struct skcipher_request * req)2054 static int s5p_aes_cbc_decrypt(struct skcipher_request *req)
2055 {
2056 	return s5p_aes_crypt(req, FLAGS_AES_DECRYPT | FLAGS_AES_CBC);
2057 }
2058 
s5p_aes_ctr_crypt(struct skcipher_request * req)2059 static int s5p_aes_ctr_crypt(struct skcipher_request *req)
2060 {
2061 	return s5p_aes_crypt(req, FLAGS_AES_CTR);
2062 }
2063 
s5p_aes_init_tfm(struct crypto_skcipher * tfm)2064 static int s5p_aes_init_tfm(struct crypto_skcipher *tfm)
2065 {
2066 	struct s5p_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
2067 
2068 	ctx->dev = s5p_dev;
2069 	crypto_skcipher_set_reqsize(tfm, sizeof(struct s5p_aes_reqctx));
2070 
2071 	return 0;
2072 }
2073 
2074 static struct skcipher_alg algs[] = {
2075 	{
2076 		.base.cra_name		= "ecb(aes)",
2077 		.base.cra_driver_name	= "ecb-aes-s5p",
2078 		.base.cra_priority	= 100,
2079 		.base.cra_flags		= CRYPTO_ALG_ASYNC |
2080 					  CRYPTO_ALG_KERN_DRIVER_ONLY,
2081 		.base.cra_blocksize	= AES_BLOCK_SIZE,
2082 		.base.cra_ctxsize	= sizeof(struct s5p_aes_ctx),
2083 		.base.cra_alignmask	= 0x0f,
2084 		.base.cra_module	= THIS_MODULE,
2085 
2086 		.min_keysize		= AES_MIN_KEY_SIZE,
2087 		.max_keysize		= AES_MAX_KEY_SIZE,
2088 		.setkey			= s5p_aes_setkey,
2089 		.encrypt		= s5p_aes_ecb_encrypt,
2090 		.decrypt		= s5p_aes_ecb_decrypt,
2091 		.init			= s5p_aes_init_tfm,
2092 	},
2093 	{
2094 		.base.cra_name		= "cbc(aes)",
2095 		.base.cra_driver_name	= "cbc-aes-s5p",
2096 		.base.cra_priority	= 100,
2097 		.base.cra_flags		= CRYPTO_ALG_ASYNC |
2098 					  CRYPTO_ALG_KERN_DRIVER_ONLY,
2099 		.base.cra_blocksize	= AES_BLOCK_SIZE,
2100 		.base.cra_ctxsize	= sizeof(struct s5p_aes_ctx),
2101 		.base.cra_alignmask	= 0x0f,
2102 		.base.cra_module	= THIS_MODULE,
2103 
2104 		.min_keysize		= AES_MIN_KEY_SIZE,
2105 		.max_keysize		= AES_MAX_KEY_SIZE,
2106 		.ivsize			= AES_BLOCK_SIZE,
2107 		.setkey			= s5p_aes_setkey,
2108 		.encrypt		= s5p_aes_cbc_encrypt,
2109 		.decrypt		= s5p_aes_cbc_decrypt,
2110 		.init			= s5p_aes_init_tfm,
2111 	},
2112 	{
2113 		.base.cra_name		= "ctr(aes)",
2114 		.base.cra_driver_name	= "ctr-aes-s5p",
2115 		.base.cra_priority	= 100,
2116 		.base.cra_flags		= CRYPTO_ALG_ASYNC |
2117 					  CRYPTO_ALG_KERN_DRIVER_ONLY,
2118 		.base.cra_blocksize	= 1,
2119 		.base.cra_ctxsize	= sizeof(struct s5p_aes_ctx),
2120 		.base.cra_alignmask	= 0x0f,
2121 		.base.cra_module	= THIS_MODULE,
2122 
2123 		.min_keysize		= AES_MIN_KEY_SIZE,
2124 		.max_keysize		= AES_MAX_KEY_SIZE,
2125 		.ivsize			= AES_BLOCK_SIZE,
2126 		.setkey			= s5p_aes_setkey,
2127 		.encrypt		= s5p_aes_ctr_crypt,
2128 		.decrypt		= s5p_aes_ctr_crypt,
2129 		.init			= s5p_aes_init_tfm,
2130 	},
2131 };
2132 
s5p_aes_probe(struct platform_device * pdev)2133 static int s5p_aes_probe(struct platform_device *pdev)
2134 {
2135 	struct device *dev = &pdev->dev;
2136 	int i, j, err;
2137 	const struct samsung_aes_variant *variant;
2138 	struct s5p_aes_dev *pdata;
2139 	struct resource *res;
2140 	unsigned int hash_i;
2141 
2142 	if (s5p_dev)
2143 		return -EEXIST;
2144 
2145 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2146 	if (!pdata)
2147 		return -ENOMEM;
2148 
2149 	variant = find_s5p_sss_version(pdev);
2150 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2151 	if (!res)
2152 		return -EINVAL;
2153 
2154 	/*
2155 	 * Note: HASH and PRNG uses the same registers in secss, avoid
2156 	 * overwrite each other. This will drop HASH when CONFIG_EXYNOS_RNG
2157 	 * is enabled in config. We need larger size for HASH registers in
2158 	 * secss, current describe only AES/DES
2159 	 */
2160 	if (IS_ENABLED(CONFIG_CRYPTO_DEV_EXYNOS_HASH)) {
2161 		if (variant == &exynos_aes_data) {
2162 			res->end += 0x300;
2163 			pdata->use_hash = true;
2164 		}
2165 	}
2166 
2167 	pdata->res = res;
2168 	pdata->ioaddr = devm_ioremap_resource(dev, res);
2169 	if (IS_ERR(pdata->ioaddr)) {
2170 		if (!pdata->use_hash)
2171 			return PTR_ERR(pdata->ioaddr);
2172 		/* try AES without HASH */
2173 		res->end -= 0x300;
2174 		pdata->use_hash = false;
2175 		pdata->ioaddr = devm_ioremap_resource(dev, res);
2176 		if (IS_ERR(pdata->ioaddr))
2177 			return PTR_ERR(pdata->ioaddr);
2178 	}
2179 
2180 	pdata->clk = devm_clk_get(dev, variant->clk_names[0]);
2181 	if (IS_ERR(pdata->clk))
2182 		return dev_err_probe(dev, PTR_ERR(pdata->clk),
2183 				     "failed to find secss clock %s\n",
2184 				     variant->clk_names[0]);
2185 
2186 	err = clk_prepare_enable(pdata->clk);
2187 	if (err < 0) {
2188 		dev_err(dev, "Enabling clock %s failed, err %d\n",
2189 			variant->clk_names[0], err);
2190 		return err;
2191 	}
2192 
2193 	if (variant->clk_names[1]) {
2194 		pdata->pclk = devm_clk_get(dev, variant->clk_names[1]);
2195 		if (IS_ERR(pdata->pclk)) {
2196 			err = dev_err_probe(dev, PTR_ERR(pdata->pclk),
2197 					    "failed to find clock %s\n",
2198 					    variant->clk_names[1]);
2199 			goto err_clk;
2200 		}
2201 
2202 		err = clk_prepare_enable(pdata->pclk);
2203 		if (err < 0) {
2204 			dev_err(dev, "Enabling clock %s failed, err %d\n",
2205 				variant->clk_names[0], err);
2206 			goto err_clk;
2207 		}
2208 	} else {
2209 		pdata->pclk = NULL;
2210 	}
2211 
2212 	spin_lock_init(&pdata->lock);
2213 	spin_lock_init(&pdata->hash_lock);
2214 
2215 	pdata->aes_ioaddr = pdata->ioaddr + variant->aes_offset;
2216 	pdata->io_hash_base = pdata->ioaddr + variant->hash_offset;
2217 
2218 	pdata->irq_fc = platform_get_irq(pdev, 0);
2219 	if (pdata->irq_fc < 0) {
2220 		err = pdata->irq_fc;
2221 		dev_warn(dev, "feed control interrupt is not available.\n");
2222 		goto err_irq;
2223 	}
2224 	err = devm_request_threaded_irq(dev, pdata->irq_fc, NULL,
2225 					s5p_aes_interrupt, IRQF_ONESHOT,
2226 					pdev->name, pdev);
2227 	if (err < 0) {
2228 		dev_warn(dev, "feed control interrupt is not available.\n");
2229 		goto err_irq;
2230 	}
2231 
2232 	pdata->busy = false;
2233 	pdata->dev = dev;
2234 	platform_set_drvdata(pdev, pdata);
2235 	s5p_dev = pdata;
2236 
2237 	tasklet_init(&pdata->tasklet, s5p_tasklet_cb, (unsigned long)pdata);
2238 	crypto_init_queue(&pdata->queue, CRYPTO_QUEUE_LEN);
2239 
2240 	for (i = 0; i < ARRAY_SIZE(algs); i++) {
2241 		err = crypto_register_skcipher(&algs[i]);
2242 		if (err)
2243 			goto err_algs;
2244 	}
2245 
2246 	if (pdata->use_hash) {
2247 		tasklet_init(&pdata->hash_tasklet, s5p_hash_tasklet_cb,
2248 			     (unsigned long)pdata);
2249 		crypto_init_queue(&pdata->hash_queue, SSS_HASH_QUEUE_LENGTH);
2250 
2251 		for (hash_i = 0; hash_i < ARRAY_SIZE(algs_sha1_md5_sha256);
2252 		     hash_i++) {
2253 			struct ahash_alg *alg;
2254 
2255 			alg = &algs_sha1_md5_sha256[hash_i];
2256 			err = crypto_register_ahash(alg);
2257 			if (err) {
2258 				dev_err(dev, "can't register '%s': %d\n",
2259 					alg->halg.base.cra_driver_name, err);
2260 				goto err_hash;
2261 			}
2262 		}
2263 	}
2264 
2265 	dev_info(dev, "s5p-sss driver registered\n");
2266 
2267 	return 0;
2268 
2269 err_hash:
2270 	for (j = hash_i - 1; j >= 0; j--)
2271 		crypto_unregister_ahash(&algs_sha1_md5_sha256[j]);
2272 
2273 	tasklet_kill(&pdata->hash_tasklet);
2274 	res->end -= 0x300;
2275 
2276 err_algs:
2277 	if (i < ARRAY_SIZE(algs))
2278 		dev_err(dev, "can't register '%s': %d\n", algs[i].base.cra_name,
2279 			err);
2280 
2281 	for (j = 0; j < i; j++)
2282 		crypto_unregister_skcipher(&algs[j]);
2283 
2284 	tasklet_kill(&pdata->tasklet);
2285 
2286 err_irq:
2287 	clk_disable_unprepare(pdata->pclk);
2288 
2289 err_clk:
2290 	clk_disable_unprepare(pdata->clk);
2291 	s5p_dev = NULL;
2292 
2293 	return err;
2294 }
2295 
s5p_aes_remove(struct platform_device * pdev)2296 static void s5p_aes_remove(struct platform_device *pdev)
2297 {
2298 	struct s5p_aes_dev *pdata = platform_get_drvdata(pdev);
2299 	int i;
2300 
2301 	for (i = 0; i < ARRAY_SIZE(algs); i++)
2302 		crypto_unregister_skcipher(&algs[i]);
2303 
2304 	tasklet_kill(&pdata->tasklet);
2305 	if (pdata->use_hash) {
2306 		for (i = ARRAY_SIZE(algs_sha1_md5_sha256) - 1; i >= 0; i--)
2307 			crypto_unregister_ahash(&algs_sha1_md5_sha256[i]);
2308 
2309 		pdata->res->end -= 0x300;
2310 		tasklet_kill(&pdata->hash_tasklet);
2311 		pdata->use_hash = false;
2312 	}
2313 
2314 	clk_disable_unprepare(pdata->pclk);
2315 
2316 	clk_disable_unprepare(pdata->clk);
2317 	s5p_dev = NULL;
2318 }
2319 
2320 static struct platform_driver s5p_aes_crypto = {
2321 	.probe	= s5p_aes_probe,
2322 	.remove = s5p_aes_remove,
2323 	.driver	= {
2324 		.name	= "s5p-secss",
2325 		.of_match_table = s5p_sss_dt_match,
2326 	},
2327 };
2328 
2329 module_platform_driver(s5p_aes_crypto);
2330 
2331 MODULE_DESCRIPTION("S5PV210 AES hw acceleration support.");
2332 MODULE_LICENSE("GPL v2");
2333 MODULE_AUTHOR("Vladimir Zapolskiy <vzapolskiy@gmail.com>");
2334 MODULE_AUTHOR("Kamil Konieczny <k.konieczny@partner.samsung.com>");
2335