xref: /linux/rust/kernel/firmware.rs (revision 0074281bb6316108e0cff094bd4db78ab3eee236)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! Firmware abstraction
4 //!
5 //! C header: [`include/linux/firmware.h`](srctree/include/linux/firmware.h)
6 
7 use crate::{bindings, device::Device, error::Error, error::Result, ffi, str::CStr};
8 use core::ptr::NonNull;
9 
10 /// # Invariants
11 ///
12 /// One of the following: `bindings::request_firmware`, `bindings::firmware_request_nowarn`,
13 /// `bindings::firmware_request_platform`, `bindings::request_firmware_direct`.
14 struct FwFunc(
15     unsafe extern "C" fn(
16         *mut *const bindings::firmware,
17         *const ffi::c_char,
18         *mut bindings::device,
19     ) -> i32,
20 );
21 
22 impl FwFunc {
request() -> Self23     fn request() -> Self {
24         Self(bindings::request_firmware)
25     }
26 
request_nowarn() -> Self27     fn request_nowarn() -> Self {
28         Self(bindings::firmware_request_nowarn)
29     }
30 }
31 
32 /// Abstraction around a C `struct firmware`.
33 ///
34 /// This is a simple abstraction around the C firmware API. Just like with the C API, firmware can
35 /// be requested. Once requested the abstraction provides direct access to the firmware buffer as
36 /// `&[u8]`. The firmware is released once [`Firmware`] is dropped.
37 ///
38 /// # Invariants
39 ///
40 /// The pointer is valid, and has ownership over the instance of `struct firmware`.
41 ///
42 /// The `Firmware`'s backing buffer is not modified.
43 ///
44 /// # Examples
45 ///
46 /// ```no_run
47 /// # use kernel::{c_str, device::Device, firmware::Firmware};
48 ///
49 /// # fn no_run() -> Result<(), Error> {
50 /// # // SAFETY: *NOT* safe, just for the example to get an `ARef<Device>` instance
51 /// # let dev = unsafe { Device::get_device(core::ptr::null_mut()) };
52 ///
53 /// let fw = Firmware::request(c_str!("path/to/firmware.bin"), &dev)?;
54 /// let blob = fw.data();
55 ///
56 /// # Ok(())
57 /// # }
58 /// ```
59 pub struct Firmware(NonNull<bindings::firmware>);
60 
61 impl Firmware {
request_internal(name: &CStr, dev: &Device, func: FwFunc) -> Result<Self>62     fn request_internal(name: &CStr, dev: &Device, func: FwFunc) -> Result<Self> {
63         let mut fw: *mut bindings::firmware = core::ptr::null_mut();
64         let pfw: *mut *mut bindings::firmware = &mut fw;
65         let pfw: *mut *const bindings::firmware = pfw.cast();
66 
67         // SAFETY: `pfw` is a valid pointer to a NULL initialized `bindings::firmware` pointer.
68         // `name` and `dev` are valid as by their type invariants.
69         let ret = unsafe { func.0(pfw, name.as_char_ptr(), dev.as_raw()) };
70         if ret != 0 {
71             return Err(Error::from_errno(ret));
72         }
73 
74         // SAFETY: `func` not bailing out with a non-zero error code, guarantees that `fw` is a
75         // valid pointer to `bindings::firmware`.
76         Ok(Firmware(unsafe { NonNull::new_unchecked(fw) }))
77     }
78 
79     /// Send a firmware request and wait for it. See also `bindings::request_firmware`.
request(name: &CStr, dev: &Device) -> Result<Self>80     pub fn request(name: &CStr, dev: &Device) -> Result<Self> {
81         Self::request_internal(name, dev, FwFunc::request())
82     }
83 
84     /// Send a request for an optional firmware module. See also
85     /// `bindings::firmware_request_nowarn`.
request_nowarn(name: &CStr, dev: &Device) -> Result<Self>86     pub fn request_nowarn(name: &CStr, dev: &Device) -> Result<Self> {
87         Self::request_internal(name, dev, FwFunc::request_nowarn())
88     }
89 
as_raw(&self) -> *mut bindings::firmware90     fn as_raw(&self) -> *mut bindings::firmware {
91         self.0.as_ptr()
92     }
93 
94     /// Returns the size of the requested firmware in bytes.
size(&self) -> usize95     pub fn size(&self) -> usize {
96         // SAFETY: `self.as_raw()` is valid by the type invariant.
97         unsafe { (*self.as_raw()).size }
98     }
99 
100     /// Returns the requested firmware as `&[u8]`.
data(&self) -> &[u8]101     pub fn data(&self) -> &[u8] {
102         // SAFETY: `self.as_raw()` is valid by the type invariant. Additionally,
103         // `bindings::firmware` guarantees, if successfully requested, that
104         // `bindings::firmware::data` has a size of `bindings::firmware::size` bytes.
105         unsafe { core::slice::from_raw_parts((*self.as_raw()).data, self.size()) }
106     }
107 }
108 
109 impl Drop for Firmware {
drop(&mut self)110     fn drop(&mut self) {
111         // SAFETY: `self.as_raw()` is valid by the type invariant.
112         unsafe { bindings::release_firmware(self.as_raw()) };
113     }
114 }
115 
116 // SAFETY: `Firmware` only holds a pointer to a C `struct firmware`, which is safe to be used from
117 // any thread.
118 unsafe impl Send for Firmware {}
119 
120 // SAFETY: `Firmware` only holds a pointer to a C `struct firmware`, references to which are safe to
121 // be used from any thread.
122 unsafe impl Sync for Firmware {}
123 
124 /// Create firmware .modinfo entries.
125 ///
126 /// This macro is the counterpart of the C macro `MODULE_FIRMWARE()`, but instead of taking a
127 /// simple string literals, which is already covered by the `firmware` field of
128 /// [`crate::prelude::module!`], it allows the caller to pass a builder type, based on the
129 /// [`ModInfoBuilder`], which can create the firmware modinfo strings in a more flexible way.
130 ///
131 /// Drivers should extend the [`ModInfoBuilder`] with their own driver specific builder type.
132 ///
133 /// The `builder` argument must be a type which implements the following function.
134 ///
135 /// `const fn create(module_name: &'static CStr) -> ModInfoBuilder`
136 ///
137 /// `create` should pass the `module_name` to the [`ModInfoBuilder`] and, with the help of
138 /// it construct the corresponding firmware modinfo.
139 ///
140 /// Typically, such contracts would be enforced by a trait, however traits do not (yet) support
141 /// const functions.
142 ///
143 /// # Examples
144 ///
145 /// ```
146 /// # mod module_firmware_test {
147 /// # use kernel::firmware;
148 /// # use kernel::prelude::*;
149 /// #
150 /// # struct MyModule;
151 /// #
152 /// # impl kernel::Module for MyModule {
153 /// #     fn init(_module: &'static ThisModule) -> Result<Self> {
154 /// #         Ok(Self)
155 /// #     }
156 /// # }
157 /// #
158 /// #
159 /// struct Builder<const N: usize>;
160 ///
161 /// impl<const N: usize> Builder<N> {
162 ///     const DIR: &'static str = "vendor/chip/";
163 ///     const FILES: [&'static str; 3] = [ "foo", "bar", "baz" ];
164 ///
165 ///     const fn create(module_name: &'static kernel::str::CStr) -> firmware::ModInfoBuilder<N> {
166 ///         let mut builder = firmware::ModInfoBuilder::new(module_name);
167 ///
168 ///         let mut i = 0;
169 ///         while i < Self::FILES.len() {
170 ///             builder = builder.new_entry()
171 ///                 .push(Self::DIR)
172 ///                 .push(Self::FILES[i])
173 ///                 .push(".bin");
174 ///
175 ///                 i += 1;
176 ///         }
177 ///
178 ///         builder
179 ///      }
180 /// }
181 ///
182 /// module! {
183 ///    type: MyModule,
184 ///    name: "module_firmware_test",
185 ///    authors: ["Rust for Linux"],
186 ///    description: "module_firmware! test module",
187 ///    license: "GPL",
188 /// }
189 ///
190 /// kernel::module_firmware!(Builder);
191 /// # }
192 /// ```
193 #[macro_export]
194 macro_rules! module_firmware {
195     // The argument is the builder type without the const generic, since it's deferred from within
196     // this macro. Hence, we can neither use `expr` nor `ty`.
197     ($($builder:tt)*) => {
198         const _: () = {
199             const __MODULE_FIRMWARE_PREFIX: &'static $crate::str::CStr = if cfg!(MODULE) {
200                 $crate::c_str!("")
201             } else {
202                 <LocalModule as $crate::ModuleMetadata>::NAME
203             };
204 
205             #[link_section = ".modinfo"]
206             #[used(compiler)]
207             static __MODULE_FIRMWARE: [u8; $($builder)*::create(__MODULE_FIRMWARE_PREFIX)
208                 .build_length()] = $($builder)*::create(__MODULE_FIRMWARE_PREFIX).build();
209         };
210     };
211 }
212 
213 /// Builder for firmware module info.
214 ///
215 /// [`ModInfoBuilder`] is a helper component to flexibly compose firmware paths strings for the
216 /// .modinfo section in const context.
217 ///
218 /// Therefore the [`ModInfoBuilder`] provides the methods [`ModInfoBuilder::new_entry`] and
219 /// [`ModInfoBuilder::push`], where the latter is used to push path components and the former to
220 /// mark the beginning of a new path string.
221 ///
222 /// [`ModInfoBuilder`] is meant to be used in combination with [`kernel::module_firmware!`].
223 ///
224 /// The const generic `N` as well as the `module_name` parameter of [`ModInfoBuilder::new`] is an
225 /// internal implementation detail and supplied through the above macro.
226 pub struct ModInfoBuilder<const N: usize> {
227     buf: [u8; N],
228     n: usize,
229     module_name: &'static CStr,
230 }
231 
232 impl<const N: usize> ModInfoBuilder<N> {
233     /// Create an empty builder instance.
new(module_name: &'static CStr) -> Self234     pub const fn new(module_name: &'static CStr) -> Self {
235         Self {
236             buf: [0; N],
237             n: 0,
238             module_name,
239         }
240     }
241 
push_internal(mut self, bytes: &[u8]) -> Self242     const fn push_internal(mut self, bytes: &[u8]) -> Self {
243         let mut j = 0;
244 
245         if N == 0 {
246             self.n += bytes.len();
247             return self;
248         }
249 
250         while j < bytes.len() {
251             if self.n < N {
252                 self.buf[self.n] = bytes[j];
253             }
254             self.n += 1;
255             j += 1;
256         }
257         self
258     }
259 
260     /// Push an additional path component.
261     ///
262     /// Append path components to the [`ModInfoBuilder`] instance. Paths need to be separated
263     /// with [`ModInfoBuilder::new_entry`].
264     ///
265     /// # Examples
266     ///
267     /// ```
268     /// use kernel::firmware::ModInfoBuilder;
269     ///
270     /// # const DIR: &str = "vendor/chip/";
271     /// # const fn no_run<const N: usize>(builder: ModInfoBuilder<N>) {
272     /// let builder = builder.new_entry()
273     ///     .push(DIR)
274     ///     .push("foo.bin")
275     ///     .new_entry()
276     ///     .push(DIR)
277     ///     .push("bar.bin");
278     /// # }
279     /// ```
push(self, s: &str) -> Self280     pub const fn push(self, s: &str) -> Self {
281         // Check whether there has been an initial call to `next_entry()`.
282         if N != 0 && self.n == 0 {
283             crate::build_error!("Must call next_entry() before push().");
284         }
285 
286         self.push_internal(s.as_bytes())
287     }
288 
push_module_name(self) -> Self289     const fn push_module_name(self) -> Self {
290         let mut this = self;
291         let module_name = this.module_name;
292 
293         if !this.module_name.is_empty() {
294             this = this.push_internal(module_name.as_bytes_with_nul());
295 
296             if N != 0 {
297                 // Re-use the space taken by the NULL terminator and swap it with the '.' separator.
298                 this.buf[this.n - 1] = b'.';
299             }
300         }
301 
302         this
303     }
304 
305     /// Prepare the [`ModInfoBuilder`] for the next entry.
306     ///
307     /// This method acts as a separator between module firmware path entries.
308     ///
309     /// Must be called before constructing a new entry with subsequent calls to
310     /// [`ModInfoBuilder::push`].
311     ///
312     /// See [`ModInfoBuilder::push`] for an example.
new_entry(self) -> Self313     pub const fn new_entry(self) -> Self {
314         self.push_internal(b"\0")
315             .push_module_name()
316             .push_internal(b"firmware=")
317     }
318 
319     /// Build the byte array.
build(self) -> [u8; N]320     pub const fn build(self) -> [u8; N] {
321         // Add the final NULL terminator.
322         let this = self.push_internal(b"\0");
323 
324         if this.n == N {
325             this.buf
326         } else {
327             crate::build_error!("Length mismatch.");
328         }
329     }
330 }
331 
332 impl ModInfoBuilder<0> {
333     /// Return the length of the byte array to build.
build_length(self) -> usize334     pub const fn build_length(self) -> usize {
335         // Compensate for the NULL terminator added by `build`.
336         self.n + 1
337     }
338 }
339