1 /*
2  * Copyright (C) 2009 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/rbtree.h>
24 #include <linux/slab.h>
25 #include "ctree.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "volumes.h"
29 #include "locking.h"
30 #include "btrfs_inode.h"
31 #include "async-thread.h"
32 #include "free-space-cache.h"
33 #include "inode-map.h"
34 
35 /*
36  * backref_node, mapping_node and tree_block start with this
37  */
38 struct tree_entry {
39 	struct rb_node rb_node;
40 	u64 bytenr;
41 };
42 
43 /*
44  * present a tree block in the backref cache
45  */
46 struct backref_node {
47 	struct rb_node rb_node;
48 	u64 bytenr;
49 
50 	u64 new_bytenr;
51 	/* objectid of tree block owner, can be not uptodate */
52 	u64 owner;
53 	/* link to pending, changed or detached list */
54 	struct list_head list;
55 	/* list of upper level blocks reference this block */
56 	struct list_head upper;
57 	/* list of child blocks in the cache */
58 	struct list_head lower;
59 	/* NULL if this node is not tree root */
60 	struct btrfs_root *root;
61 	/* extent buffer got by COW the block */
62 	struct extent_buffer *eb;
63 	/* level of tree block */
64 	unsigned int level:8;
65 	/* is the block in non-reference counted tree */
66 	unsigned int cowonly:1;
67 	/* 1 if no child node in the cache */
68 	unsigned int lowest:1;
69 	/* is the extent buffer locked */
70 	unsigned int locked:1;
71 	/* has the block been processed */
72 	unsigned int processed:1;
73 	/* have backrefs of this block been checked */
74 	unsigned int checked:1;
75 	/*
76 	 * 1 if corresponding block has been cowed but some upper
77 	 * level block pointers may not point to the new location
78 	 */
79 	unsigned int pending:1;
80 	/*
81 	 * 1 if the backref node isn't connected to any other
82 	 * backref node.
83 	 */
84 	unsigned int detached:1;
85 };
86 
87 /*
88  * present a block pointer in the backref cache
89  */
90 struct backref_edge {
91 	struct list_head list[2];
92 	struct backref_node *node[2];
93 };
94 
95 #define LOWER	0
96 #define UPPER	1
97 
98 struct backref_cache {
99 	/* red black tree of all backref nodes in the cache */
100 	struct rb_root rb_root;
101 	/* for passing backref nodes to btrfs_reloc_cow_block */
102 	struct backref_node *path[BTRFS_MAX_LEVEL];
103 	/*
104 	 * list of blocks that have been cowed but some block
105 	 * pointers in upper level blocks may not reflect the
106 	 * new location
107 	 */
108 	struct list_head pending[BTRFS_MAX_LEVEL];
109 	/* list of backref nodes with no child node */
110 	struct list_head leaves;
111 	/* list of blocks that have been cowed in current transaction */
112 	struct list_head changed;
113 	/* list of detached backref node. */
114 	struct list_head detached;
115 
116 	u64 last_trans;
117 
118 	int nr_nodes;
119 	int nr_edges;
120 };
121 
122 /*
123  * map address of tree root to tree
124  */
125 struct mapping_node {
126 	struct rb_node rb_node;
127 	u64 bytenr;
128 	void *data;
129 };
130 
131 struct mapping_tree {
132 	struct rb_root rb_root;
133 	spinlock_t lock;
134 };
135 
136 /*
137  * present a tree block to process
138  */
139 struct tree_block {
140 	struct rb_node rb_node;
141 	u64 bytenr;
142 	struct btrfs_key key;
143 	unsigned int level:8;
144 	unsigned int key_ready:1;
145 };
146 
147 #define MAX_EXTENTS 128
148 
149 struct file_extent_cluster {
150 	u64 start;
151 	u64 end;
152 	u64 boundary[MAX_EXTENTS];
153 	unsigned int nr;
154 };
155 
156 struct reloc_control {
157 	/* block group to relocate */
158 	struct btrfs_block_group_cache *block_group;
159 	/* extent tree */
160 	struct btrfs_root *extent_root;
161 	/* inode for moving data */
162 	struct inode *data_inode;
163 
164 	struct btrfs_block_rsv *block_rsv;
165 
166 	struct backref_cache backref_cache;
167 
168 	struct file_extent_cluster cluster;
169 	/* tree blocks have been processed */
170 	struct extent_io_tree processed_blocks;
171 	/* map start of tree root to corresponding reloc tree */
172 	struct mapping_tree reloc_root_tree;
173 	/* list of reloc trees */
174 	struct list_head reloc_roots;
175 	/* size of metadata reservation for merging reloc trees */
176 	u64 merging_rsv_size;
177 	/* size of relocated tree nodes */
178 	u64 nodes_relocated;
179 
180 	u64 search_start;
181 	u64 extents_found;
182 
183 	unsigned int stage:8;
184 	unsigned int create_reloc_tree:1;
185 	unsigned int merge_reloc_tree:1;
186 	unsigned int found_file_extent:1;
187 	unsigned int commit_transaction:1;
188 };
189 
190 /* stages of data relocation */
191 #define MOVE_DATA_EXTENTS	0
192 #define UPDATE_DATA_PTRS	1
193 
194 static void remove_backref_node(struct backref_cache *cache,
195 				struct backref_node *node);
196 static void __mark_block_processed(struct reloc_control *rc,
197 				   struct backref_node *node);
198 
mapping_tree_init(struct mapping_tree * tree)199 static void mapping_tree_init(struct mapping_tree *tree)
200 {
201 	tree->rb_root = RB_ROOT;
202 	spin_lock_init(&tree->lock);
203 }
204 
backref_cache_init(struct backref_cache * cache)205 static void backref_cache_init(struct backref_cache *cache)
206 {
207 	int i;
208 	cache->rb_root = RB_ROOT;
209 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
210 		INIT_LIST_HEAD(&cache->pending[i]);
211 	INIT_LIST_HEAD(&cache->changed);
212 	INIT_LIST_HEAD(&cache->detached);
213 	INIT_LIST_HEAD(&cache->leaves);
214 }
215 
backref_cache_cleanup(struct backref_cache * cache)216 static void backref_cache_cleanup(struct backref_cache *cache)
217 {
218 	struct backref_node *node;
219 	int i;
220 
221 	while (!list_empty(&cache->detached)) {
222 		node = list_entry(cache->detached.next,
223 				  struct backref_node, list);
224 		remove_backref_node(cache, node);
225 	}
226 
227 	while (!list_empty(&cache->leaves)) {
228 		node = list_entry(cache->leaves.next,
229 				  struct backref_node, lower);
230 		remove_backref_node(cache, node);
231 	}
232 
233 	cache->last_trans = 0;
234 
235 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
236 		BUG_ON(!list_empty(&cache->pending[i]));
237 	BUG_ON(!list_empty(&cache->changed));
238 	BUG_ON(!list_empty(&cache->detached));
239 	BUG_ON(!RB_EMPTY_ROOT(&cache->rb_root));
240 	BUG_ON(cache->nr_nodes);
241 	BUG_ON(cache->nr_edges);
242 }
243 
alloc_backref_node(struct backref_cache * cache)244 static struct backref_node *alloc_backref_node(struct backref_cache *cache)
245 {
246 	struct backref_node *node;
247 
248 	node = kzalloc(sizeof(*node), GFP_NOFS);
249 	if (node) {
250 		INIT_LIST_HEAD(&node->list);
251 		INIT_LIST_HEAD(&node->upper);
252 		INIT_LIST_HEAD(&node->lower);
253 		RB_CLEAR_NODE(&node->rb_node);
254 		cache->nr_nodes++;
255 	}
256 	return node;
257 }
258 
free_backref_node(struct backref_cache * cache,struct backref_node * node)259 static void free_backref_node(struct backref_cache *cache,
260 			      struct backref_node *node)
261 {
262 	if (node) {
263 		cache->nr_nodes--;
264 		kfree(node);
265 	}
266 }
267 
alloc_backref_edge(struct backref_cache * cache)268 static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
269 {
270 	struct backref_edge *edge;
271 
272 	edge = kzalloc(sizeof(*edge), GFP_NOFS);
273 	if (edge)
274 		cache->nr_edges++;
275 	return edge;
276 }
277 
free_backref_edge(struct backref_cache * cache,struct backref_edge * edge)278 static void free_backref_edge(struct backref_cache *cache,
279 			      struct backref_edge *edge)
280 {
281 	if (edge) {
282 		cache->nr_edges--;
283 		kfree(edge);
284 	}
285 }
286 
tree_insert(struct rb_root * root,u64 bytenr,struct rb_node * node)287 static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
288 				   struct rb_node *node)
289 {
290 	struct rb_node **p = &root->rb_node;
291 	struct rb_node *parent = NULL;
292 	struct tree_entry *entry;
293 
294 	while (*p) {
295 		parent = *p;
296 		entry = rb_entry(parent, struct tree_entry, rb_node);
297 
298 		if (bytenr < entry->bytenr)
299 			p = &(*p)->rb_left;
300 		else if (bytenr > entry->bytenr)
301 			p = &(*p)->rb_right;
302 		else
303 			return parent;
304 	}
305 
306 	rb_link_node(node, parent, p);
307 	rb_insert_color(node, root);
308 	return NULL;
309 }
310 
tree_search(struct rb_root * root,u64 bytenr)311 static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
312 {
313 	struct rb_node *n = root->rb_node;
314 	struct tree_entry *entry;
315 
316 	while (n) {
317 		entry = rb_entry(n, struct tree_entry, rb_node);
318 
319 		if (bytenr < entry->bytenr)
320 			n = n->rb_left;
321 		else if (bytenr > entry->bytenr)
322 			n = n->rb_right;
323 		else
324 			return n;
325 	}
326 	return NULL;
327 }
328 
329 /*
330  * walk up backref nodes until reach node presents tree root
331  */
walk_up_backref(struct backref_node * node,struct backref_edge * edges[],int * index)332 static struct backref_node *walk_up_backref(struct backref_node *node,
333 					    struct backref_edge *edges[],
334 					    int *index)
335 {
336 	struct backref_edge *edge;
337 	int idx = *index;
338 
339 	while (!list_empty(&node->upper)) {
340 		edge = list_entry(node->upper.next,
341 				  struct backref_edge, list[LOWER]);
342 		edges[idx++] = edge;
343 		node = edge->node[UPPER];
344 	}
345 	BUG_ON(node->detached);
346 	*index = idx;
347 	return node;
348 }
349 
350 /*
351  * walk down backref nodes to find start of next reference path
352  */
walk_down_backref(struct backref_edge * edges[],int * index)353 static struct backref_node *walk_down_backref(struct backref_edge *edges[],
354 					      int *index)
355 {
356 	struct backref_edge *edge;
357 	struct backref_node *lower;
358 	int idx = *index;
359 
360 	while (idx > 0) {
361 		edge = edges[idx - 1];
362 		lower = edge->node[LOWER];
363 		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
364 			idx--;
365 			continue;
366 		}
367 		edge = list_entry(edge->list[LOWER].next,
368 				  struct backref_edge, list[LOWER]);
369 		edges[idx - 1] = edge;
370 		*index = idx;
371 		return edge->node[UPPER];
372 	}
373 	*index = 0;
374 	return NULL;
375 }
376 
unlock_node_buffer(struct backref_node * node)377 static void unlock_node_buffer(struct backref_node *node)
378 {
379 	if (node->locked) {
380 		btrfs_tree_unlock(node->eb);
381 		node->locked = 0;
382 	}
383 }
384 
drop_node_buffer(struct backref_node * node)385 static void drop_node_buffer(struct backref_node *node)
386 {
387 	if (node->eb) {
388 		unlock_node_buffer(node);
389 		free_extent_buffer(node->eb);
390 		node->eb = NULL;
391 	}
392 }
393 
drop_backref_node(struct backref_cache * tree,struct backref_node * node)394 static void drop_backref_node(struct backref_cache *tree,
395 			      struct backref_node *node)
396 {
397 	BUG_ON(!list_empty(&node->upper));
398 
399 	drop_node_buffer(node);
400 	list_del(&node->list);
401 	list_del(&node->lower);
402 	if (!RB_EMPTY_NODE(&node->rb_node))
403 		rb_erase(&node->rb_node, &tree->rb_root);
404 	free_backref_node(tree, node);
405 }
406 
407 /*
408  * remove a backref node from the backref cache
409  */
remove_backref_node(struct backref_cache * cache,struct backref_node * node)410 static void remove_backref_node(struct backref_cache *cache,
411 				struct backref_node *node)
412 {
413 	struct backref_node *upper;
414 	struct backref_edge *edge;
415 
416 	if (!node)
417 		return;
418 
419 	BUG_ON(!node->lowest && !node->detached);
420 	while (!list_empty(&node->upper)) {
421 		edge = list_entry(node->upper.next, struct backref_edge,
422 				  list[LOWER]);
423 		upper = edge->node[UPPER];
424 		list_del(&edge->list[LOWER]);
425 		list_del(&edge->list[UPPER]);
426 		free_backref_edge(cache, edge);
427 
428 		if (RB_EMPTY_NODE(&upper->rb_node)) {
429 			BUG_ON(!list_empty(&node->upper));
430 			drop_backref_node(cache, node);
431 			node = upper;
432 			node->lowest = 1;
433 			continue;
434 		}
435 		/*
436 		 * add the node to leaf node list if no other
437 		 * child block cached.
438 		 */
439 		if (list_empty(&upper->lower)) {
440 			list_add_tail(&upper->lower, &cache->leaves);
441 			upper->lowest = 1;
442 		}
443 	}
444 
445 	drop_backref_node(cache, node);
446 }
447 
update_backref_node(struct backref_cache * cache,struct backref_node * node,u64 bytenr)448 static void update_backref_node(struct backref_cache *cache,
449 				struct backref_node *node, u64 bytenr)
450 {
451 	struct rb_node *rb_node;
452 	rb_erase(&node->rb_node, &cache->rb_root);
453 	node->bytenr = bytenr;
454 	rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
455 	BUG_ON(rb_node);
456 }
457 
458 /*
459  * update backref cache after a transaction commit
460  */
update_backref_cache(struct btrfs_trans_handle * trans,struct backref_cache * cache)461 static int update_backref_cache(struct btrfs_trans_handle *trans,
462 				struct backref_cache *cache)
463 {
464 	struct backref_node *node;
465 	int level = 0;
466 
467 	if (cache->last_trans == 0) {
468 		cache->last_trans = trans->transid;
469 		return 0;
470 	}
471 
472 	if (cache->last_trans == trans->transid)
473 		return 0;
474 
475 	/*
476 	 * detached nodes are used to avoid unnecessary backref
477 	 * lookup. transaction commit changes the extent tree.
478 	 * so the detached nodes are no longer useful.
479 	 */
480 	while (!list_empty(&cache->detached)) {
481 		node = list_entry(cache->detached.next,
482 				  struct backref_node, list);
483 		remove_backref_node(cache, node);
484 	}
485 
486 	while (!list_empty(&cache->changed)) {
487 		node = list_entry(cache->changed.next,
488 				  struct backref_node, list);
489 		list_del_init(&node->list);
490 		BUG_ON(node->pending);
491 		update_backref_node(cache, node, node->new_bytenr);
492 	}
493 
494 	/*
495 	 * some nodes can be left in the pending list if there were
496 	 * errors during processing the pending nodes.
497 	 */
498 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
499 		list_for_each_entry(node, &cache->pending[level], list) {
500 			BUG_ON(!node->pending);
501 			if (node->bytenr == node->new_bytenr)
502 				continue;
503 			update_backref_node(cache, node, node->new_bytenr);
504 		}
505 	}
506 
507 	cache->last_trans = 0;
508 	return 1;
509 }
510 
511 
should_ignore_root(struct btrfs_root * root)512 static int should_ignore_root(struct btrfs_root *root)
513 {
514 	struct btrfs_root *reloc_root;
515 
516 	if (!root->ref_cows)
517 		return 0;
518 
519 	reloc_root = root->reloc_root;
520 	if (!reloc_root)
521 		return 0;
522 
523 	if (btrfs_root_last_snapshot(&reloc_root->root_item) ==
524 	    root->fs_info->running_transaction->transid - 1)
525 		return 0;
526 	/*
527 	 * if there is reloc tree and it was created in previous
528 	 * transaction backref lookup can find the reloc tree,
529 	 * so backref node for the fs tree root is useless for
530 	 * relocation.
531 	 */
532 	return 1;
533 }
534 /*
535  * find reloc tree by address of tree root
536  */
find_reloc_root(struct reloc_control * rc,u64 bytenr)537 static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
538 					  u64 bytenr)
539 {
540 	struct rb_node *rb_node;
541 	struct mapping_node *node;
542 	struct btrfs_root *root = NULL;
543 
544 	spin_lock(&rc->reloc_root_tree.lock);
545 	rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
546 	if (rb_node) {
547 		node = rb_entry(rb_node, struct mapping_node, rb_node);
548 		root = (struct btrfs_root *)node->data;
549 	}
550 	spin_unlock(&rc->reloc_root_tree.lock);
551 	return root;
552 }
553 
is_cowonly_root(u64 root_objectid)554 static int is_cowonly_root(u64 root_objectid)
555 {
556 	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
557 	    root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
558 	    root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
559 	    root_objectid == BTRFS_DEV_TREE_OBJECTID ||
560 	    root_objectid == BTRFS_TREE_LOG_OBJECTID ||
561 	    root_objectid == BTRFS_CSUM_TREE_OBJECTID)
562 		return 1;
563 	return 0;
564 }
565 
read_fs_root(struct btrfs_fs_info * fs_info,u64 root_objectid)566 static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
567 					u64 root_objectid)
568 {
569 	struct btrfs_key key;
570 
571 	key.objectid = root_objectid;
572 	key.type = BTRFS_ROOT_ITEM_KEY;
573 	if (is_cowonly_root(root_objectid))
574 		key.offset = 0;
575 	else
576 		key.offset = (u64)-1;
577 
578 	return btrfs_read_fs_root_no_name(fs_info, &key);
579 }
580 
581 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
582 static noinline_for_stack
find_tree_root(struct reloc_control * rc,struct extent_buffer * leaf,struct btrfs_extent_ref_v0 * ref0)583 struct btrfs_root *find_tree_root(struct reloc_control *rc,
584 				  struct extent_buffer *leaf,
585 				  struct btrfs_extent_ref_v0 *ref0)
586 {
587 	struct btrfs_root *root;
588 	u64 root_objectid = btrfs_ref_root_v0(leaf, ref0);
589 	u64 generation = btrfs_ref_generation_v0(leaf, ref0);
590 
591 	BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID);
592 
593 	root = read_fs_root(rc->extent_root->fs_info, root_objectid);
594 	BUG_ON(IS_ERR(root));
595 
596 	if (root->ref_cows &&
597 	    generation != btrfs_root_generation(&root->root_item))
598 		return NULL;
599 
600 	return root;
601 }
602 #endif
603 
604 static noinline_for_stack
find_inline_backref(struct extent_buffer * leaf,int slot,unsigned long * ptr,unsigned long * end)605 int find_inline_backref(struct extent_buffer *leaf, int slot,
606 			unsigned long *ptr, unsigned long *end)
607 {
608 	struct btrfs_extent_item *ei;
609 	struct btrfs_tree_block_info *bi;
610 	u32 item_size;
611 
612 	item_size = btrfs_item_size_nr(leaf, slot);
613 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
614 	if (item_size < sizeof(*ei)) {
615 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
616 		return 1;
617 	}
618 #endif
619 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
620 	WARN_ON(!(btrfs_extent_flags(leaf, ei) &
621 		  BTRFS_EXTENT_FLAG_TREE_BLOCK));
622 
623 	if (item_size <= sizeof(*ei) + sizeof(*bi)) {
624 		WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
625 		return 1;
626 	}
627 
628 	bi = (struct btrfs_tree_block_info *)(ei + 1);
629 	*ptr = (unsigned long)(bi + 1);
630 	*end = (unsigned long)ei + item_size;
631 	return 0;
632 }
633 
634 /*
635  * build backref tree for a given tree block. root of the backref tree
636  * corresponds the tree block, leaves of the backref tree correspond
637  * roots of b-trees that reference the tree block.
638  *
639  * the basic idea of this function is check backrefs of a given block
640  * to find upper level blocks that refernece the block, and then check
641  * bakcrefs of these upper level blocks recursively. the recursion stop
642  * when tree root is reached or backrefs for the block is cached.
643  *
644  * NOTE: if we find backrefs for a block are cached, we know backrefs
645  * for all upper level blocks that directly/indirectly reference the
646  * block are also cached.
647  */
648 static noinline_for_stack
build_backref_tree(struct reloc_control * rc,struct btrfs_key * node_key,int level,u64 bytenr)649 struct backref_node *build_backref_tree(struct reloc_control *rc,
650 					struct btrfs_key *node_key,
651 					int level, u64 bytenr)
652 {
653 	struct backref_cache *cache = &rc->backref_cache;
654 	struct btrfs_path *path1;
655 	struct btrfs_path *path2;
656 	struct extent_buffer *eb;
657 	struct btrfs_root *root;
658 	struct backref_node *cur;
659 	struct backref_node *upper;
660 	struct backref_node *lower;
661 	struct backref_node *node = NULL;
662 	struct backref_node *exist = NULL;
663 	struct backref_edge *edge;
664 	struct rb_node *rb_node;
665 	struct btrfs_key key;
666 	unsigned long end;
667 	unsigned long ptr;
668 	LIST_HEAD(list);
669 	LIST_HEAD(useless);
670 	int cowonly;
671 	int ret;
672 	int err = 0;
673 
674 	path1 = btrfs_alloc_path();
675 	path2 = btrfs_alloc_path();
676 	if (!path1 || !path2) {
677 		err = -ENOMEM;
678 		goto out;
679 	}
680 	path1->reada = 1;
681 	path2->reada = 2;
682 
683 	node = alloc_backref_node(cache);
684 	if (!node) {
685 		err = -ENOMEM;
686 		goto out;
687 	}
688 
689 	node->bytenr = bytenr;
690 	node->level = level;
691 	node->lowest = 1;
692 	cur = node;
693 again:
694 	end = 0;
695 	ptr = 0;
696 	key.objectid = cur->bytenr;
697 	key.type = BTRFS_EXTENT_ITEM_KEY;
698 	key.offset = (u64)-1;
699 
700 	path1->search_commit_root = 1;
701 	path1->skip_locking = 1;
702 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
703 				0, 0);
704 	if (ret < 0) {
705 		err = ret;
706 		goto out;
707 	}
708 	BUG_ON(!ret || !path1->slots[0]);
709 
710 	path1->slots[0]--;
711 
712 	WARN_ON(cur->checked);
713 	if (!list_empty(&cur->upper)) {
714 		/*
715 		 * the backref was added previously when processing
716 		 * backref of type BTRFS_TREE_BLOCK_REF_KEY
717 		 */
718 		BUG_ON(!list_is_singular(&cur->upper));
719 		edge = list_entry(cur->upper.next, struct backref_edge,
720 				  list[LOWER]);
721 		BUG_ON(!list_empty(&edge->list[UPPER]));
722 		exist = edge->node[UPPER];
723 		/*
724 		 * add the upper level block to pending list if we need
725 		 * check its backrefs
726 		 */
727 		if (!exist->checked)
728 			list_add_tail(&edge->list[UPPER], &list);
729 	} else {
730 		exist = NULL;
731 	}
732 
733 	while (1) {
734 		cond_resched();
735 		eb = path1->nodes[0];
736 
737 		if (ptr >= end) {
738 			if (path1->slots[0] >= btrfs_header_nritems(eb)) {
739 				ret = btrfs_next_leaf(rc->extent_root, path1);
740 				if (ret < 0) {
741 					err = ret;
742 					goto out;
743 				}
744 				if (ret > 0)
745 					break;
746 				eb = path1->nodes[0];
747 			}
748 
749 			btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
750 			if (key.objectid != cur->bytenr) {
751 				WARN_ON(exist);
752 				break;
753 			}
754 
755 			if (key.type == BTRFS_EXTENT_ITEM_KEY) {
756 				ret = find_inline_backref(eb, path1->slots[0],
757 							  &ptr, &end);
758 				if (ret)
759 					goto next;
760 			}
761 		}
762 
763 		if (ptr < end) {
764 			/* update key for inline back ref */
765 			struct btrfs_extent_inline_ref *iref;
766 			iref = (struct btrfs_extent_inline_ref *)ptr;
767 			key.type = btrfs_extent_inline_ref_type(eb, iref);
768 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
769 			WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
770 				key.type != BTRFS_SHARED_BLOCK_REF_KEY);
771 		}
772 
773 		if (exist &&
774 		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
775 		      exist->owner == key.offset) ||
776 		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
777 		      exist->bytenr == key.offset))) {
778 			exist = NULL;
779 			goto next;
780 		}
781 
782 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
783 		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY ||
784 		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
785 			if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
786 				struct btrfs_extent_ref_v0 *ref0;
787 				ref0 = btrfs_item_ptr(eb, path1->slots[0],
788 						struct btrfs_extent_ref_v0);
789 				if (key.objectid == key.offset) {
790 					root = find_tree_root(rc, eb, ref0);
791 					if (root && !should_ignore_root(root))
792 						cur->root = root;
793 					else
794 						list_add(&cur->list, &useless);
795 					break;
796 				}
797 				if (is_cowonly_root(btrfs_ref_root_v0(eb,
798 								      ref0)))
799 					cur->cowonly = 1;
800 			}
801 #else
802 		BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
803 		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
804 #endif
805 			if (key.objectid == key.offset) {
806 				/*
807 				 * only root blocks of reloc trees use
808 				 * backref of this type.
809 				 */
810 				root = find_reloc_root(rc, cur->bytenr);
811 				BUG_ON(!root);
812 				cur->root = root;
813 				break;
814 			}
815 
816 			edge = alloc_backref_edge(cache);
817 			if (!edge) {
818 				err = -ENOMEM;
819 				goto out;
820 			}
821 			rb_node = tree_search(&cache->rb_root, key.offset);
822 			if (!rb_node) {
823 				upper = alloc_backref_node(cache);
824 				if (!upper) {
825 					free_backref_edge(cache, edge);
826 					err = -ENOMEM;
827 					goto out;
828 				}
829 				upper->bytenr = key.offset;
830 				upper->level = cur->level + 1;
831 				/*
832 				 *  backrefs for the upper level block isn't
833 				 *  cached, add the block to pending list
834 				 */
835 				list_add_tail(&edge->list[UPPER], &list);
836 			} else {
837 				upper = rb_entry(rb_node, struct backref_node,
838 						 rb_node);
839 				BUG_ON(!upper->checked);
840 				INIT_LIST_HEAD(&edge->list[UPPER]);
841 			}
842 			list_add_tail(&edge->list[LOWER], &cur->upper);
843 			edge->node[LOWER] = cur;
844 			edge->node[UPPER] = upper;
845 
846 			goto next;
847 		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
848 			goto next;
849 		}
850 
851 		/* key.type == BTRFS_TREE_BLOCK_REF_KEY */
852 		root = read_fs_root(rc->extent_root->fs_info, key.offset);
853 		if (IS_ERR(root)) {
854 			err = PTR_ERR(root);
855 			goto out;
856 		}
857 
858 		if (!root->ref_cows)
859 			cur->cowonly = 1;
860 
861 		if (btrfs_root_level(&root->root_item) == cur->level) {
862 			/* tree root */
863 			BUG_ON(btrfs_root_bytenr(&root->root_item) !=
864 			       cur->bytenr);
865 			if (should_ignore_root(root))
866 				list_add(&cur->list, &useless);
867 			else
868 				cur->root = root;
869 			break;
870 		}
871 
872 		level = cur->level + 1;
873 
874 		/*
875 		 * searching the tree to find upper level blocks
876 		 * reference the block.
877 		 */
878 		path2->search_commit_root = 1;
879 		path2->skip_locking = 1;
880 		path2->lowest_level = level;
881 		ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
882 		path2->lowest_level = 0;
883 		if (ret < 0) {
884 			err = ret;
885 			goto out;
886 		}
887 		if (ret > 0 && path2->slots[level] > 0)
888 			path2->slots[level]--;
889 
890 		eb = path2->nodes[level];
891 		WARN_ON(btrfs_node_blockptr(eb, path2->slots[level]) !=
892 			cur->bytenr);
893 
894 		lower = cur;
895 		for (; level < BTRFS_MAX_LEVEL; level++) {
896 			if (!path2->nodes[level]) {
897 				BUG_ON(btrfs_root_bytenr(&root->root_item) !=
898 				       lower->bytenr);
899 				if (should_ignore_root(root))
900 					list_add(&lower->list, &useless);
901 				else
902 					lower->root = root;
903 				break;
904 			}
905 
906 			edge = alloc_backref_edge(cache);
907 			if (!edge) {
908 				err = -ENOMEM;
909 				goto out;
910 			}
911 
912 			eb = path2->nodes[level];
913 			rb_node = tree_search(&cache->rb_root, eb->start);
914 			if (!rb_node) {
915 				upper = alloc_backref_node(cache);
916 				if (!upper) {
917 					free_backref_edge(cache, edge);
918 					err = -ENOMEM;
919 					goto out;
920 				}
921 				upper->bytenr = eb->start;
922 				upper->owner = btrfs_header_owner(eb);
923 				upper->level = lower->level + 1;
924 				if (!root->ref_cows)
925 					upper->cowonly = 1;
926 
927 				/*
928 				 * if we know the block isn't shared
929 				 * we can void checking its backrefs.
930 				 */
931 				if (btrfs_block_can_be_shared(root, eb))
932 					upper->checked = 0;
933 				else
934 					upper->checked = 1;
935 
936 				/*
937 				 * add the block to pending list if we
938 				 * need check its backrefs. only block
939 				 * at 'cur->level + 1' is added to the
940 				 * tail of pending list. this guarantees
941 				 * we check backrefs from lower level
942 				 * blocks to upper level blocks.
943 				 */
944 				if (!upper->checked &&
945 				    level == cur->level + 1) {
946 					list_add_tail(&edge->list[UPPER],
947 						      &list);
948 				} else
949 					INIT_LIST_HEAD(&edge->list[UPPER]);
950 			} else {
951 				upper = rb_entry(rb_node, struct backref_node,
952 						 rb_node);
953 				BUG_ON(!upper->checked);
954 				INIT_LIST_HEAD(&edge->list[UPPER]);
955 				if (!upper->owner)
956 					upper->owner = btrfs_header_owner(eb);
957 			}
958 			list_add_tail(&edge->list[LOWER], &lower->upper);
959 			edge->node[LOWER] = lower;
960 			edge->node[UPPER] = upper;
961 
962 			if (rb_node)
963 				break;
964 			lower = upper;
965 			upper = NULL;
966 		}
967 		btrfs_release_path(path2);
968 next:
969 		if (ptr < end) {
970 			ptr += btrfs_extent_inline_ref_size(key.type);
971 			if (ptr >= end) {
972 				WARN_ON(ptr > end);
973 				ptr = 0;
974 				end = 0;
975 			}
976 		}
977 		if (ptr >= end)
978 			path1->slots[0]++;
979 	}
980 	btrfs_release_path(path1);
981 
982 	cur->checked = 1;
983 	WARN_ON(exist);
984 
985 	/* the pending list isn't empty, take the first block to process */
986 	if (!list_empty(&list)) {
987 		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
988 		list_del_init(&edge->list[UPPER]);
989 		cur = edge->node[UPPER];
990 		goto again;
991 	}
992 
993 	/*
994 	 * everything goes well, connect backref nodes and insert backref nodes
995 	 * into the cache.
996 	 */
997 	BUG_ON(!node->checked);
998 	cowonly = node->cowonly;
999 	if (!cowonly) {
1000 		rb_node = tree_insert(&cache->rb_root, node->bytenr,
1001 				      &node->rb_node);
1002 		BUG_ON(rb_node);
1003 		list_add_tail(&node->lower, &cache->leaves);
1004 	}
1005 
1006 	list_for_each_entry(edge, &node->upper, list[LOWER])
1007 		list_add_tail(&edge->list[UPPER], &list);
1008 
1009 	while (!list_empty(&list)) {
1010 		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1011 		list_del_init(&edge->list[UPPER]);
1012 		upper = edge->node[UPPER];
1013 		if (upper->detached) {
1014 			list_del(&edge->list[LOWER]);
1015 			lower = edge->node[LOWER];
1016 			free_backref_edge(cache, edge);
1017 			if (list_empty(&lower->upper))
1018 				list_add(&lower->list, &useless);
1019 			continue;
1020 		}
1021 
1022 		if (!RB_EMPTY_NODE(&upper->rb_node)) {
1023 			if (upper->lowest) {
1024 				list_del_init(&upper->lower);
1025 				upper->lowest = 0;
1026 			}
1027 
1028 			list_add_tail(&edge->list[UPPER], &upper->lower);
1029 			continue;
1030 		}
1031 
1032 		BUG_ON(!upper->checked);
1033 		BUG_ON(cowonly != upper->cowonly);
1034 		if (!cowonly) {
1035 			rb_node = tree_insert(&cache->rb_root, upper->bytenr,
1036 					      &upper->rb_node);
1037 			BUG_ON(rb_node);
1038 		}
1039 
1040 		list_add_tail(&edge->list[UPPER], &upper->lower);
1041 
1042 		list_for_each_entry(edge, &upper->upper, list[LOWER])
1043 			list_add_tail(&edge->list[UPPER], &list);
1044 	}
1045 	/*
1046 	 * process useless backref nodes. backref nodes for tree leaves
1047 	 * are deleted from the cache. backref nodes for upper level
1048 	 * tree blocks are left in the cache to avoid unnecessary backref
1049 	 * lookup.
1050 	 */
1051 	while (!list_empty(&useless)) {
1052 		upper = list_entry(useless.next, struct backref_node, list);
1053 		list_del_init(&upper->list);
1054 		BUG_ON(!list_empty(&upper->upper));
1055 		if (upper == node)
1056 			node = NULL;
1057 		if (upper->lowest) {
1058 			list_del_init(&upper->lower);
1059 			upper->lowest = 0;
1060 		}
1061 		while (!list_empty(&upper->lower)) {
1062 			edge = list_entry(upper->lower.next,
1063 					  struct backref_edge, list[UPPER]);
1064 			list_del(&edge->list[UPPER]);
1065 			list_del(&edge->list[LOWER]);
1066 			lower = edge->node[LOWER];
1067 			free_backref_edge(cache, edge);
1068 
1069 			if (list_empty(&lower->upper))
1070 				list_add(&lower->list, &useless);
1071 		}
1072 		__mark_block_processed(rc, upper);
1073 		if (upper->level > 0) {
1074 			list_add(&upper->list, &cache->detached);
1075 			upper->detached = 1;
1076 		} else {
1077 			rb_erase(&upper->rb_node, &cache->rb_root);
1078 			free_backref_node(cache, upper);
1079 		}
1080 	}
1081 out:
1082 	btrfs_free_path(path1);
1083 	btrfs_free_path(path2);
1084 	if (err) {
1085 		while (!list_empty(&useless)) {
1086 			lower = list_entry(useless.next,
1087 					   struct backref_node, upper);
1088 			list_del_init(&lower->upper);
1089 		}
1090 		upper = node;
1091 		INIT_LIST_HEAD(&list);
1092 		while (upper) {
1093 			if (RB_EMPTY_NODE(&upper->rb_node)) {
1094 				list_splice_tail(&upper->upper, &list);
1095 				free_backref_node(cache, upper);
1096 			}
1097 
1098 			if (list_empty(&list))
1099 				break;
1100 
1101 			edge = list_entry(list.next, struct backref_edge,
1102 					  list[LOWER]);
1103 			list_del(&edge->list[LOWER]);
1104 			upper = edge->node[UPPER];
1105 			free_backref_edge(cache, edge);
1106 		}
1107 		return ERR_PTR(err);
1108 	}
1109 	BUG_ON(node && node->detached);
1110 	return node;
1111 }
1112 
1113 /*
1114  * helper to add backref node for the newly created snapshot.
1115  * the backref node is created by cloning backref node that
1116  * corresponds to root of source tree
1117  */
1118 static int clone_backref_node(struct btrfs_trans_handle *trans,
1119 			      struct reloc_control *rc,
1120 			      struct btrfs_root *src,
1121 			      struct btrfs_root *dest)
1122 {
1123 	struct btrfs_root *reloc_root = src->reloc_root;
1124 	struct backref_cache *cache = &rc->backref_cache;
1125 	struct backref_node *node = NULL;
1126 	struct backref_node *new_node;
1127 	struct backref_edge *edge;
1128 	struct backref_edge *new_edge;
1129 	struct rb_node *rb_node;
1130 
1131 	if (cache->last_trans > 0)
1132 		update_backref_cache(trans, cache);
1133 
1134 	rb_node = tree_search(&cache->rb_root, src->commit_root->start);
1135 	if (rb_node) {
1136 		node = rb_entry(rb_node, struct backref_node, rb_node);
1137 		if (node->detached)
1138 			node = NULL;
1139 		else
1140 			BUG_ON(node->new_bytenr != reloc_root->node->start);
1141 	}
1142 
1143 	if (!node) {
1144 		rb_node = tree_search(&cache->rb_root,
1145 				      reloc_root->commit_root->start);
1146 		if (rb_node) {
1147 			node = rb_entry(rb_node, struct backref_node,
1148 					rb_node);
1149 			BUG_ON(node->detached);
1150 		}
1151 	}
1152 
1153 	if (!node)
1154 		return 0;
1155 
1156 	new_node = alloc_backref_node(cache);
1157 	if (!new_node)
1158 		return -ENOMEM;
1159 
1160 	new_node->bytenr = dest->node->start;
1161 	new_node->level = node->level;
1162 	new_node->lowest = node->lowest;
1163 	new_node->checked = 1;
1164 	new_node->root = dest;
1165 
1166 	if (!node->lowest) {
1167 		list_for_each_entry(edge, &node->lower, list[UPPER]) {
1168 			new_edge = alloc_backref_edge(cache);
1169 			if (!new_edge)
1170 				goto fail;
1171 
1172 			new_edge->node[UPPER] = new_node;
1173 			new_edge->node[LOWER] = edge->node[LOWER];
1174 			list_add_tail(&new_edge->list[UPPER],
1175 				      &new_node->lower);
1176 		}
1177 	} else {
1178 		list_add_tail(&new_node->lower, &cache->leaves);
1179 	}
1180 
1181 	rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
1182 			      &new_node->rb_node);
1183 	BUG_ON(rb_node);
1184 
1185 	if (!new_node->lowest) {
1186 		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
1187 			list_add_tail(&new_edge->list[LOWER],
1188 				      &new_edge->node[LOWER]->upper);
1189 		}
1190 	}
1191 	return 0;
1192 fail:
1193 	while (!list_empty(&new_node->lower)) {
1194 		new_edge = list_entry(new_node->lower.next,
1195 				      struct backref_edge, list[UPPER]);
1196 		list_del(&new_edge->list[UPPER]);
1197 		free_backref_edge(cache, new_edge);
1198 	}
1199 	free_backref_node(cache, new_node);
1200 	return -ENOMEM;
1201 }
1202 
1203 /*
1204  * helper to add 'address of tree root -> reloc tree' mapping
1205  */
1206 static int __add_reloc_root(struct btrfs_root *root)
1207 {
1208 	struct rb_node *rb_node;
1209 	struct mapping_node *node;
1210 	struct reloc_control *rc = root->fs_info->reloc_ctl;
1211 
1212 	node = kmalloc(sizeof(*node), GFP_NOFS);
1213 	BUG_ON(!node);
1214 
1215 	node->bytenr = root->node->start;
1216 	node->data = root;
1217 
1218 	spin_lock(&rc->reloc_root_tree.lock);
1219 	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1220 			      node->bytenr, &node->rb_node);
1221 	spin_unlock(&rc->reloc_root_tree.lock);
1222 	BUG_ON(rb_node);
1223 
1224 	list_add_tail(&root->root_list, &rc->reloc_roots);
1225 	return 0;
1226 }
1227 
1228 /*
1229  * helper to update/delete the 'address of tree root -> reloc tree'
1230  * mapping
1231  */
1232 static int __update_reloc_root(struct btrfs_root *root, int del)
1233 {
1234 	struct rb_node *rb_node;
1235 	struct mapping_node *node = NULL;
1236 	struct reloc_control *rc = root->fs_info->reloc_ctl;
1237 
1238 	spin_lock(&rc->reloc_root_tree.lock);
1239 	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1240 			      root->commit_root->start);
1241 	if (rb_node) {
1242 		node = rb_entry(rb_node, struct mapping_node, rb_node);
1243 		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1244 	}
1245 	spin_unlock(&rc->reloc_root_tree.lock);
1246 
1247 	BUG_ON((struct btrfs_root *)node->data != root);
1248 
1249 	if (!del) {
1250 		spin_lock(&rc->reloc_root_tree.lock);
1251 		node->bytenr = root->node->start;
1252 		rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1253 				      node->bytenr, &node->rb_node);
1254 		spin_unlock(&rc->reloc_root_tree.lock);
1255 		BUG_ON(rb_node);
1256 	} else {
1257 		list_del_init(&root->root_list);
1258 		kfree(node);
1259 	}
1260 	return 0;
1261 }
1262 
1263 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
1264 					struct btrfs_root *root, u64 objectid)
1265 {
1266 	struct btrfs_root *reloc_root;
1267 	struct extent_buffer *eb;
1268 	struct btrfs_root_item *root_item;
1269 	struct btrfs_key root_key;
1270 	int ret;
1271 
1272 	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
1273 	BUG_ON(!root_item);
1274 
1275 	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
1276 	root_key.type = BTRFS_ROOT_ITEM_KEY;
1277 	root_key.offset = objectid;
1278 
1279 	if (root->root_key.objectid == objectid) {
1280 		/* called by btrfs_init_reloc_root */
1281 		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
1282 				      BTRFS_TREE_RELOC_OBJECTID);
1283 		BUG_ON(ret);
1284 
1285 		btrfs_set_root_last_snapshot(&root->root_item,
1286 					     trans->transid - 1);
1287 	} else {
1288 		/*
1289 		 * called by btrfs_reloc_post_snapshot_hook.
1290 		 * the source tree is a reloc tree, all tree blocks
1291 		 * modified after it was created have RELOC flag
1292 		 * set in their headers. so it's OK to not update
1293 		 * the 'last_snapshot'.
1294 		 */
1295 		ret = btrfs_copy_root(trans, root, root->node, &eb,
1296 				      BTRFS_TREE_RELOC_OBJECTID);
1297 		BUG_ON(ret);
1298 	}
1299 
1300 	memcpy(root_item, &root->root_item, sizeof(*root_item));
1301 	btrfs_set_root_bytenr(root_item, eb->start);
1302 	btrfs_set_root_level(root_item, btrfs_header_level(eb));
1303 	btrfs_set_root_generation(root_item, trans->transid);
1304 
1305 	if (root->root_key.objectid == objectid) {
1306 		btrfs_set_root_refs(root_item, 0);
1307 		memset(&root_item->drop_progress, 0,
1308 		       sizeof(struct btrfs_disk_key));
1309 		root_item->drop_level = 0;
1310 	}
1311 
1312 	btrfs_tree_unlock(eb);
1313 	free_extent_buffer(eb);
1314 
1315 	ret = btrfs_insert_root(trans, root->fs_info->tree_root,
1316 				&root_key, root_item);
1317 	BUG_ON(ret);
1318 	kfree(root_item);
1319 
1320 	reloc_root = btrfs_read_fs_root_no_radix(root->fs_info->tree_root,
1321 						 &root_key);
1322 	BUG_ON(IS_ERR(reloc_root));
1323 	reloc_root->last_trans = trans->transid;
1324 	return reloc_root;
1325 }
1326 
1327 /*
1328  * create reloc tree for a given fs tree. reloc tree is just a
1329  * snapshot of the fs tree with special root objectid.
1330  */
1331 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
1332 			  struct btrfs_root *root)
1333 {
1334 	struct btrfs_root *reloc_root;
1335 	struct reloc_control *rc = root->fs_info->reloc_ctl;
1336 	int clear_rsv = 0;
1337 
1338 	if (root->reloc_root) {
1339 		reloc_root = root->reloc_root;
1340 		reloc_root->last_trans = trans->transid;
1341 		return 0;
1342 	}
1343 
1344 	if (!rc || !rc->create_reloc_tree ||
1345 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1346 		return 0;
1347 
1348 	if (!trans->block_rsv) {
1349 		trans->block_rsv = rc->block_rsv;
1350 		clear_rsv = 1;
1351 	}
1352 	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
1353 	if (clear_rsv)
1354 		trans->block_rsv = NULL;
1355 
1356 	__add_reloc_root(reloc_root);
1357 	root->reloc_root = reloc_root;
1358 	return 0;
1359 }
1360 
1361 /*
1362  * update root item of reloc tree
1363  */
1364 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
1365 			    struct btrfs_root *root)
1366 {
1367 	struct btrfs_root *reloc_root;
1368 	struct btrfs_root_item *root_item;
1369 	int del = 0;
1370 	int ret;
1371 
1372 	if (!root->reloc_root)
1373 		goto out;
1374 
1375 	reloc_root = root->reloc_root;
1376 	root_item = &reloc_root->root_item;
1377 
1378 	if (root->fs_info->reloc_ctl->merge_reloc_tree &&
1379 	    btrfs_root_refs(root_item) == 0) {
1380 		root->reloc_root = NULL;
1381 		del = 1;
1382 	}
1383 
1384 	__update_reloc_root(reloc_root, del);
1385 
1386 	if (reloc_root->commit_root != reloc_root->node) {
1387 		btrfs_set_root_node(root_item, reloc_root->node);
1388 		free_extent_buffer(reloc_root->commit_root);
1389 		reloc_root->commit_root = btrfs_root_node(reloc_root);
1390 	}
1391 
1392 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
1393 				&reloc_root->root_key, root_item);
1394 	BUG_ON(ret);
1395 
1396 out:
1397 	return 0;
1398 }
1399 
1400 /*
1401  * helper to find first cached inode with inode number >= objectid
1402  * in a subvolume
1403  */
1404 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
1405 {
1406 	struct rb_node *node;
1407 	struct rb_node *prev;
1408 	struct btrfs_inode *entry;
1409 	struct inode *inode;
1410 
1411 	spin_lock(&root->inode_lock);
1412 again:
1413 	node = root->inode_tree.rb_node;
1414 	prev = NULL;
1415 	while (node) {
1416 		prev = node;
1417 		entry = rb_entry(node, struct btrfs_inode, rb_node);
1418 
1419 		if (objectid < btrfs_ino(&entry->vfs_inode))
1420 			node = node->rb_left;
1421 		else if (objectid > btrfs_ino(&entry->vfs_inode))
1422 			node = node->rb_right;
1423 		else
1424 			break;
1425 	}
1426 	if (!node) {
1427 		while (prev) {
1428 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
1429 			if (objectid <= btrfs_ino(&entry->vfs_inode)) {
1430 				node = prev;
1431 				break;
1432 			}
1433 			prev = rb_next(prev);
1434 		}
1435 	}
1436 	while (node) {
1437 		entry = rb_entry(node, struct btrfs_inode, rb_node);
1438 		inode = igrab(&entry->vfs_inode);
1439 		if (inode) {
1440 			spin_unlock(&root->inode_lock);
1441 			return inode;
1442 		}
1443 
1444 		objectid = btrfs_ino(&entry->vfs_inode) + 1;
1445 		if (cond_resched_lock(&root->inode_lock))
1446 			goto again;
1447 
1448 		node = rb_next(node);
1449 	}
1450 	spin_unlock(&root->inode_lock);
1451 	return NULL;
1452 }
1453 
1454 static int in_block_group(u64 bytenr,
1455 			  struct btrfs_block_group_cache *block_group)
1456 {
1457 	if (bytenr >= block_group->key.objectid &&
1458 	    bytenr < block_group->key.objectid + block_group->key.offset)
1459 		return 1;
1460 	return 0;
1461 }
1462 
1463 /*
1464  * get new location of data
1465  */
1466 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1467 			    u64 bytenr, u64 num_bytes)
1468 {
1469 	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1470 	struct btrfs_path *path;
1471 	struct btrfs_file_extent_item *fi;
1472 	struct extent_buffer *leaf;
1473 	int ret;
1474 
1475 	path = btrfs_alloc_path();
1476 	if (!path)
1477 		return -ENOMEM;
1478 
1479 	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1480 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(reloc_inode),
1481 				       bytenr, 0);
1482 	if (ret < 0)
1483 		goto out;
1484 	if (ret > 0) {
1485 		ret = -ENOENT;
1486 		goto out;
1487 	}
1488 
1489 	leaf = path->nodes[0];
1490 	fi = btrfs_item_ptr(leaf, path->slots[0],
1491 			    struct btrfs_file_extent_item);
1492 
1493 	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1494 	       btrfs_file_extent_compression(leaf, fi) ||
1495 	       btrfs_file_extent_encryption(leaf, fi) ||
1496 	       btrfs_file_extent_other_encoding(leaf, fi));
1497 
1498 	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1499 		ret = 1;
1500 		goto out;
1501 	}
1502 
1503 	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1504 	ret = 0;
1505 out:
1506 	btrfs_free_path(path);
1507 	return ret;
1508 }
1509 
1510 /*
1511  * update file extent items in the tree leaf to point to
1512  * the new locations.
1513  */
1514 static noinline_for_stack
1515 int replace_file_extents(struct btrfs_trans_handle *trans,
1516 			 struct reloc_control *rc,
1517 			 struct btrfs_root *root,
1518 			 struct extent_buffer *leaf)
1519 {
1520 	struct btrfs_key key;
1521 	struct btrfs_file_extent_item *fi;
1522 	struct inode *inode = NULL;
1523 	u64 parent;
1524 	u64 bytenr;
1525 	u64 new_bytenr = 0;
1526 	u64 num_bytes;
1527 	u64 end;
1528 	u32 nritems;
1529 	u32 i;
1530 	int ret;
1531 	int first = 1;
1532 	int dirty = 0;
1533 
1534 	if (rc->stage != UPDATE_DATA_PTRS)
1535 		return 0;
1536 
1537 	/* reloc trees always use full backref */
1538 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1539 		parent = leaf->start;
1540 	else
1541 		parent = 0;
1542 
1543 	nritems = btrfs_header_nritems(leaf);
1544 	for (i = 0; i < nritems; i++) {
1545 		cond_resched();
1546 		btrfs_item_key_to_cpu(leaf, &key, i);
1547 		if (key.type != BTRFS_EXTENT_DATA_KEY)
1548 			continue;
1549 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1550 		if (btrfs_file_extent_type(leaf, fi) ==
1551 		    BTRFS_FILE_EXTENT_INLINE)
1552 			continue;
1553 		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1554 		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1555 		if (bytenr == 0)
1556 			continue;
1557 		if (!in_block_group(bytenr, rc->block_group))
1558 			continue;
1559 
1560 		/*
1561 		 * if we are modifying block in fs tree, wait for readpage
1562 		 * to complete and drop the extent cache
1563 		 */
1564 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1565 			if (first) {
1566 				inode = find_next_inode(root, key.objectid);
1567 				first = 0;
1568 			} else if (inode && btrfs_ino(inode) < key.objectid) {
1569 				btrfs_add_delayed_iput(inode);
1570 				inode = find_next_inode(root, key.objectid);
1571 			}
1572 			if (inode && btrfs_ino(inode) == key.objectid) {
1573 				end = key.offset +
1574 				      btrfs_file_extent_num_bytes(leaf, fi);
1575 				WARN_ON(!IS_ALIGNED(key.offset,
1576 						    root->sectorsize));
1577 				WARN_ON(!IS_ALIGNED(end, root->sectorsize));
1578 				end--;
1579 				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1580 						      key.offset, end,
1581 						      GFP_NOFS);
1582 				if (!ret)
1583 					continue;
1584 
1585 				btrfs_drop_extent_cache(inode, key.offset, end,
1586 							1);
1587 				unlock_extent(&BTRFS_I(inode)->io_tree,
1588 					      key.offset, end, GFP_NOFS);
1589 			}
1590 		}
1591 
1592 		ret = get_new_location(rc->data_inode, &new_bytenr,
1593 				       bytenr, num_bytes);
1594 		if (ret > 0) {
1595 			WARN_ON(1);
1596 			continue;
1597 		}
1598 		BUG_ON(ret < 0);
1599 
1600 		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1601 		dirty = 1;
1602 
1603 		key.offset -= btrfs_file_extent_offset(leaf, fi);
1604 		ret = btrfs_inc_extent_ref(trans, root, new_bytenr,
1605 					   num_bytes, parent,
1606 					   btrfs_header_owner(leaf),
1607 					   key.objectid, key.offset, 1);
1608 		BUG_ON(ret);
1609 
1610 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1611 					parent, btrfs_header_owner(leaf),
1612 					key.objectid, key.offset, 1);
1613 		BUG_ON(ret);
1614 	}
1615 	if (dirty)
1616 		btrfs_mark_buffer_dirty(leaf);
1617 	if (inode)
1618 		btrfs_add_delayed_iput(inode);
1619 	return 0;
1620 }
1621 
1622 static noinline_for_stack
1623 int memcmp_node_keys(struct extent_buffer *eb, int slot,
1624 		     struct btrfs_path *path, int level)
1625 {
1626 	struct btrfs_disk_key key1;
1627 	struct btrfs_disk_key key2;
1628 	btrfs_node_key(eb, &key1, slot);
1629 	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1630 	return memcmp(&key1, &key2, sizeof(key1));
1631 }
1632 
1633 /*
1634  * try to replace tree blocks in fs tree with the new blocks
1635  * in reloc tree. tree blocks haven't been modified since the
1636  * reloc tree was create can be replaced.
1637  *
1638  * if a block was replaced, level of the block + 1 is returned.
1639  * if no block got replaced, 0 is returned. if there are other
1640  * errors, a negative error number is returned.
1641  */
1642 static noinline_for_stack
1643 int replace_path(struct btrfs_trans_handle *trans,
1644 		 struct btrfs_root *dest, struct btrfs_root *src,
1645 		 struct btrfs_path *path, struct btrfs_key *next_key,
1646 		 int lowest_level, int max_level)
1647 {
1648 	struct extent_buffer *eb;
1649 	struct extent_buffer *parent;
1650 	struct btrfs_key key;
1651 	u64 old_bytenr;
1652 	u64 new_bytenr;
1653 	u64 old_ptr_gen;
1654 	u64 new_ptr_gen;
1655 	u64 last_snapshot;
1656 	u32 blocksize;
1657 	int cow = 0;
1658 	int level;
1659 	int ret;
1660 	int slot;
1661 
1662 	BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1663 	BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1664 
1665 	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1666 again:
1667 	slot = path->slots[lowest_level];
1668 	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1669 
1670 	eb = btrfs_lock_root_node(dest);
1671 	btrfs_set_lock_blocking(eb);
1672 	level = btrfs_header_level(eb);
1673 
1674 	if (level < lowest_level) {
1675 		btrfs_tree_unlock(eb);
1676 		free_extent_buffer(eb);
1677 		return 0;
1678 	}
1679 
1680 	if (cow) {
1681 		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1682 		BUG_ON(ret);
1683 	}
1684 	btrfs_set_lock_blocking(eb);
1685 
1686 	if (next_key) {
1687 		next_key->objectid = (u64)-1;
1688 		next_key->type = (u8)-1;
1689 		next_key->offset = (u64)-1;
1690 	}
1691 
1692 	parent = eb;
1693 	while (1) {
1694 		level = btrfs_header_level(parent);
1695 		BUG_ON(level < lowest_level);
1696 
1697 		ret = btrfs_bin_search(parent, &key, level, &slot);
1698 		if (ret && slot > 0)
1699 			slot--;
1700 
1701 		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1702 			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1703 
1704 		old_bytenr = btrfs_node_blockptr(parent, slot);
1705 		blocksize = btrfs_level_size(dest, level - 1);
1706 		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1707 
1708 		if (level <= max_level) {
1709 			eb = path->nodes[level];
1710 			new_bytenr = btrfs_node_blockptr(eb,
1711 							path->slots[level]);
1712 			new_ptr_gen = btrfs_node_ptr_generation(eb,
1713 							path->slots[level]);
1714 		} else {
1715 			new_bytenr = 0;
1716 			new_ptr_gen = 0;
1717 		}
1718 
1719 		if (new_bytenr > 0 && new_bytenr == old_bytenr) {
1720 			WARN_ON(1);
1721 			ret = level;
1722 			break;
1723 		}
1724 
1725 		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1726 		    memcmp_node_keys(parent, slot, path, level)) {
1727 			if (level <= lowest_level) {
1728 				ret = 0;
1729 				break;
1730 			}
1731 
1732 			eb = read_tree_block(dest, old_bytenr, blocksize,
1733 					     old_ptr_gen);
1734 			BUG_ON(!eb);
1735 			btrfs_tree_lock(eb);
1736 			if (cow) {
1737 				ret = btrfs_cow_block(trans, dest, eb, parent,
1738 						      slot, &eb);
1739 				BUG_ON(ret);
1740 			}
1741 			btrfs_set_lock_blocking(eb);
1742 
1743 			btrfs_tree_unlock(parent);
1744 			free_extent_buffer(parent);
1745 
1746 			parent = eb;
1747 			continue;
1748 		}
1749 
1750 		if (!cow) {
1751 			btrfs_tree_unlock(parent);
1752 			free_extent_buffer(parent);
1753 			cow = 1;
1754 			goto again;
1755 		}
1756 
1757 		btrfs_node_key_to_cpu(path->nodes[level], &key,
1758 				      path->slots[level]);
1759 		btrfs_release_path(path);
1760 
1761 		path->lowest_level = level;
1762 		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1763 		path->lowest_level = 0;
1764 		BUG_ON(ret);
1765 
1766 		/*
1767 		 * swap blocks in fs tree and reloc tree.
1768 		 */
1769 		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1770 		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1771 		btrfs_mark_buffer_dirty(parent);
1772 
1773 		btrfs_set_node_blockptr(path->nodes[level],
1774 					path->slots[level], old_bytenr);
1775 		btrfs_set_node_ptr_generation(path->nodes[level],
1776 					      path->slots[level], old_ptr_gen);
1777 		btrfs_mark_buffer_dirty(path->nodes[level]);
1778 
1779 		ret = btrfs_inc_extent_ref(trans, src, old_bytenr, blocksize,
1780 					path->nodes[level]->start,
1781 					src->root_key.objectid, level - 1, 0,
1782 					1);
1783 		BUG_ON(ret);
1784 		ret = btrfs_inc_extent_ref(trans, dest, new_bytenr, blocksize,
1785 					0, dest->root_key.objectid, level - 1,
1786 					0, 1);
1787 		BUG_ON(ret);
1788 
1789 		ret = btrfs_free_extent(trans, src, new_bytenr, blocksize,
1790 					path->nodes[level]->start,
1791 					src->root_key.objectid, level - 1, 0,
1792 					1);
1793 		BUG_ON(ret);
1794 
1795 		ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize,
1796 					0, dest->root_key.objectid, level - 1,
1797 					0, 1);
1798 		BUG_ON(ret);
1799 
1800 		btrfs_unlock_up_safe(path, 0);
1801 
1802 		ret = level;
1803 		break;
1804 	}
1805 	btrfs_tree_unlock(parent);
1806 	free_extent_buffer(parent);
1807 	return ret;
1808 }
1809 
1810 /*
1811  * helper to find next relocated block in reloc tree
1812  */
1813 static noinline_for_stack
1814 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1815 		       int *level)
1816 {
1817 	struct extent_buffer *eb;
1818 	int i;
1819 	u64 last_snapshot;
1820 	u32 nritems;
1821 
1822 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1823 
1824 	for (i = 0; i < *level; i++) {
1825 		free_extent_buffer(path->nodes[i]);
1826 		path->nodes[i] = NULL;
1827 	}
1828 
1829 	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1830 		eb = path->nodes[i];
1831 		nritems = btrfs_header_nritems(eb);
1832 		while (path->slots[i] + 1 < nritems) {
1833 			path->slots[i]++;
1834 			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1835 			    last_snapshot)
1836 				continue;
1837 
1838 			*level = i;
1839 			return 0;
1840 		}
1841 		free_extent_buffer(path->nodes[i]);
1842 		path->nodes[i] = NULL;
1843 	}
1844 	return 1;
1845 }
1846 
1847 /*
1848  * walk down reloc tree to find relocated block of lowest level
1849  */
1850 static noinline_for_stack
1851 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1852 			 int *level)
1853 {
1854 	struct extent_buffer *eb = NULL;
1855 	int i;
1856 	u64 bytenr;
1857 	u64 ptr_gen = 0;
1858 	u64 last_snapshot;
1859 	u32 blocksize;
1860 	u32 nritems;
1861 
1862 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1863 
1864 	for (i = *level; i > 0; i--) {
1865 		eb = path->nodes[i];
1866 		nritems = btrfs_header_nritems(eb);
1867 		while (path->slots[i] < nritems) {
1868 			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1869 			if (ptr_gen > last_snapshot)
1870 				break;
1871 			path->slots[i]++;
1872 		}
1873 		if (path->slots[i] >= nritems) {
1874 			if (i == *level)
1875 				break;
1876 			*level = i + 1;
1877 			return 0;
1878 		}
1879 		if (i == 1) {
1880 			*level = i;
1881 			return 0;
1882 		}
1883 
1884 		bytenr = btrfs_node_blockptr(eb, path->slots[i]);
1885 		blocksize = btrfs_level_size(root, i - 1);
1886 		eb = read_tree_block(root, bytenr, blocksize, ptr_gen);
1887 		BUG_ON(btrfs_header_level(eb) != i - 1);
1888 		path->nodes[i - 1] = eb;
1889 		path->slots[i - 1] = 0;
1890 	}
1891 	return 1;
1892 }
1893 
1894 /*
1895  * invalidate extent cache for file extents whose key in range of
1896  * [min_key, max_key)
1897  */
1898 static int invalidate_extent_cache(struct btrfs_root *root,
1899 				   struct btrfs_key *min_key,
1900 				   struct btrfs_key *max_key)
1901 {
1902 	struct inode *inode = NULL;
1903 	u64 objectid;
1904 	u64 start, end;
1905 	u64 ino;
1906 
1907 	objectid = min_key->objectid;
1908 	while (1) {
1909 		cond_resched();
1910 		iput(inode);
1911 
1912 		if (objectid > max_key->objectid)
1913 			break;
1914 
1915 		inode = find_next_inode(root, objectid);
1916 		if (!inode)
1917 			break;
1918 		ino = btrfs_ino(inode);
1919 
1920 		if (ino > max_key->objectid) {
1921 			iput(inode);
1922 			break;
1923 		}
1924 
1925 		objectid = ino + 1;
1926 		if (!S_ISREG(inode->i_mode))
1927 			continue;
1928 
1929 		if (unlikely(min_key->objectid == ino)) {
1930 			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1931 				continue;
1932 			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1933 				start = 0;
1934 			else {
1935 				start = min_key->offset;
1936 				WARN_ON(!IS_ALIGNED(start, root->sectorsize));
1937 			}
1938 		} else {
1939 			start = 0;
1940 		}
1941 
1942 		if (unlikely(max_key->objectid == ino)) {
1943 			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1944 				continue;
1945 			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1946 				end = (u64)-1;
1947 			} else {
1948 				if (max_key->offset == 0)
1949 					continue;
1950 				end = max_key->offset;
1951 				WARN_ON(!IS_ALIGNED(end, root->sectorsize));
1952 				end--;
1953 			}
1954 		} else {
1955 			end = (u64)-1;
1956 		}
1957 
1958 		/* the lock_extent waits for readpage to complete */
1959 		lock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
1960 		btrfs_drop_extent_cache(inode, start, end, 1);
1961 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
1962 	}
1963 	return 0;
1964 }
1965 
1966 static int find_next_key(struct btrfs_path *path, int level,
1967 			 struct btrfs_key *key)
1968 
1969 {
1970 	while (level < BTRFS_MAX_LEVEL) {
1971 		if (!path->nodes[level])
1972 			break;
1973 		if (path->slots[level] + 1 <
1974 		    btrfs_header_nritems(path->nodes[level])) {
1975 			btrfs_node_key_to_cpu(path->nodes[level], key,
1976 					      path->slots[level] + 1);
1977 			return 0;
1978 		}
1979 		level++;
1980 	}
1981 	return 1;
1982 }
1983 
1984 /*
1985  * merge the relocated tree blocks in reloc tree with corresponding
1986  * fs tree.
1987  */
1988 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1989 					       struct btrfs_root *root)
1990 {
1991 	LIST_HEAD(inode_list);
1992 	struct btrfs_key key;
1993 	struct btrfs_key next_key;
1994 	struct btrfs_trans_handle *trans;
1995 	struct btrfs_root *reloc_root;
1996 	struct btrfs_root_item *root_item;
1997 	struct btrfs_path *path;
1998 	struct extent_buffer *leaf;
1999 	unsigned long nr;
2000 	int level;
2001 	int max_level;
2002 	int replaced = 0;
2003 	int ret;
2004 	int err = 0;
2005 	u32 min_reserved;
2006 
2007 	path = btrfs_alloc_path();
2008 	if (!path)
2009 		return -ENOMEM;
2010 	path->reada = 1;
2011 
2012 	reloc_root = root->reloc_root;
2013 	root_item = &reloc_root->root_item;
2014 
2015 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2016 		level = btrfs_root_level(root_item);
2017 		extent_buffer_get(reloc_root->node);
2018 		path->nodes[level] = reloc_root->node;
2019 		path->slots[level] = 0;
2020 	} else {
2021 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2022 
2023 		level = root_item->drop_level;
2024 		BUG_ON(level == 0);
2025 		path->lowest_level = level;
2026 		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
2027 		path->lowest_level = 0;
2028 		if (ret < 0) {
2029 			btrfs_free_path(path);
2030 			return ret;
2031 		}
2032 
2033 		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
2034 				      path->slots[level]);
2035 		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
2036 
2037 		btrfs_unlock_up_safe(path, 0);
2038 	}
2039 
2040 	min_reserved = root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2041 	memset(&next_key, 0, sizeof(next_key));
2042 
2043 	while (1) {
2044 		trans = btrfs_start_transaction(root, 0);
2045 		BUG_ON(IS_ERR(trans));
2046 		trans->block_rsv = rc->block_rsv;
2047 
2048 		ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved);
2049 		if (ret) {
2050 			BUG_ON(ret != -EAGAIN);
2051 			ret = btrfs_commit_transaction(trans, root);
2052 			BUG_ON(ret);
2053 			continue;
2054 		}
2055 
2056 		replaced = 0;
2057 		max_level = level;
2058 
2059 		ret = walk_down_reloc_tree(reloc_root, path, &level);
2060 		if (ret < 0) {
2061 			err = ret;
2062 			goto out;
2063 		}
2064 		if (ret > 0)
2065 			break;
2066 
2067 		if (!find_next_key(path, level, &key) &&
2068 		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
2069 			ret = 0;
2070 		} else {
2071 			ret = replace_path(trans, root, reloc_root, path,
2072 					   &next_key, level, max_level);
2073 		}
2074 		if (ret < 0) {
2075 			err = ret;
2076 			goto out;
2077 		}
2078 
2079 		if (ret > 0) {
2080 			level = ret;
2081 			btrfs_node_key_to_cpu(path->nodes[level], &key,
2082 					      path->slots[level]);
2083 			replaced = 1;
2084 		}
2085 
2086 		ret = walk_up_reloc_tree(reloc_root, path, &level);
2087 		if (ret > 0)
2088 			break;
2089 
2090 		BUG_ON(level == 0);
2091 		/*
2092 		 * save the merging progress in the drop_progress.
2093 		 * this is OK since root refs == 1 in this case.
2094 		 */
2095 		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
2096 			       path->slots[level]);
2097 		root_item->drop_level = level;
2098 
2099 		nr = trans->blocks_used;
2100 		btrfs_end_transaction_throttle(trans, root);
2101 
2102 		btrfs_btree_balance_dirty(root, nr);
2103 
2104 		if (replaced && rc->stage == UPDATE_DATA_PTRS)
2105 			invalidate_extent_cache(root, &key, &next_key);
2106 	}
2107 
2108 	/*
2109 	 * handle the case only one block in the fs tree need to be
2110 	 * relocated and the block is tree root.
2111 	 */
2112 	leaf = btrfs_lock_root_node(root);
2113 	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
2114 	btrfs_tree_unlock(leaf);
2115 	free_extent_buffer(leaf);
2116 	if (ret < 0)
2117 		err = ret;
2118 out:
2119 	btrfs_free_path(path);
2120 
2121 	if (err == 0) {
2122 		memset(&root_item->drop_progress, 0,
2123 		       sizeof(root_item->drop_progress));
2124 		root_item->drop_level = 0;
2125 		btrfs_set_root_refs(root_item, 0);
2126 		btrfs_update_reloc_root(trans, root);
2127 	}
2128 
2129 	nr = trans->blocks_used;
2130 	btrfs_end_transaction_throttle(trans, root);
2131 
2132 	btrfs_btree_balance_dirty(root, nr);
2133 
2134 	if (replaced && rc->stage == UPDATE_DATA_PTRS)
2135 		invalidate_extent_cache(root, &key, &next_key);
2136 
2137 	return err;
2138 }
2139 
2140 static noinline_for_stack
2141 int prepare_to_merge(struct reloc_control *rc, int err)
2142 {
2143 	struct btrfs_root *root = rc->extent_root;
2144 	struct btrfs_root *reloc_root;
2145 	struct btrfs_trans_handle *trans;
2146 	LIST_HEAD(reloc_roots);
2147 	u64 num_bytes = 0;
2148 	int ret;
2149 
2150 	mutex_lock(&root->fs_info->reloc_mutex);
2151 	rc->merging_rsv_size += root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2152 	rc->merging_rsv_size += rc->nodes_relocated * 2;
2153 	mutex_unlock(&root->fs_info->reloc_mutex);
2154 
2155 again:
2156 	if (!err) {
2157 		num_bytes = rc->merging_rsv_size;
2158 		ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes);
2159 		if (ret)
2160 			err = ret;
2161 	}
2162 
2163 	trans = btrfs_join_transaction(rc->extent_root);
2164 	if (IS_ERR(trans)) {
2165 		if (!err)
2166 			btrfs_block_rsv_release(rc->extent_root,
2167 						rc->block_rsv, num_bytes);
2168 		return PTR_ERR(trans);
2169 	}
2170 
2171 	if (!err) {
2172 		if (num_bytes != rc->merging_rsv_size) {
2173 			btrfs_end_transaction(trans, rc->extent_root);
2174 			btrfs_block_rsv_release(rc->extent_root,
2175 						rc->block_rsv, num_bytes);
2176 			goto again;
2177 		}
2178 	}
2179 
2180 	rc->merge_reloc_tree = 1;
2181 
2182 	while (!list_empty(&rc->reloc_roots)) {
2183 		reloc_root = list_entry(rc->reloc_roots.next,
2184 					struct btrfs_root, root_list);
2185 		list_del_init(&reloc_root->root_list);
2186 
2187 		root = read_fs_root(reloc_root->fs_info,
2188 				    reloc_root->root_key.offset);
2189 		BUG_ON(IS_ERR(root));
2190 		BUG_ON(root->reloc_root != reloc_root);
2191 
2192 		/*
2193 		 * set reference count to 1, so btrfs_recover_relocation
2194 		 * knows it should resumes merging
2195 		 */
2196 		if (!err)
2197 			btrfs_set_root_refs(&reloc_root->root_item, 1);
2198 		btrfs_update_reloc_root(trans, root);
2199 
2200 		list_add(&reloc_root->root_list, &reloc_roots);
2201 	}
2202 
2203 	list_splice(&reloc_roots, &rc->reloc_roots);
2204 
2205 	if (!err)
2206 		btrfs_commit_transaction(trans, rc->extent_root);
2207 	else
2208 		btrfs_end_transaction(trans, rc->extent_root);
2209 	return err;
2210 }
2211 
2212 static noinline_for_stack
2213 int merge_reloc_roots(struct reloc_control *rc)
2214 {
2215 	struct btrfs_root *root;
2216 	struct btrfs_root *reloc_root;
2217 	LIST_HEAD(reloc_roots);
2218 	int found = 0;
2219 	int ret;
2220 again:
2221 	root = rc->extent_root;
2222 
2223 	/*
2224 	 * this serializes us with btrfs_record_root_in_transaction,
2225 	 * we have to make sure nobody is in the middle of
2226 	 * adding their roots to the list while we are
2227 	 * doing this splice
2228 	 */
2229 	mutex_lock(&root->fs_info->reloc_mutex);
2230 	list_splice_init(&rc->reloc_roots, &reloc_roots);
2231 	mutex_unlock(&root->fs_info->reloc_mutex);
2232 
2233 	while (!list_empty(&reloc_roots)) {
2234 		found = 1;
2235 		reloc_root = list_entry(reloc_roots.next,
2236 					struct btrfs_root, root_list);
2237 
2238 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2239 			root = read_fs_root(reloc_root->fs_info,
2240 					    reloc_root->root_key.offset);
2241 			BUG_ON(IS_ERR(root));
2242 			BUG_ON(root->reloc_root != reloc_root);
2243 
2244 			ret = merge_reloc_root(rc, root);
2245 			BUG_ON(ret);
2246 		} else {
2247 			list_del_init(&reloc_root->root_list);
2248 		}
2249 		btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0, 1);
2250 	}
2251 
2252 	if (found) {
2253 		found = 0;
2254 		goto again;
2255 	}
2256 	BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2257 	return 0;
2258 }
2259 
2260 static void free_block_list(struct rb_root *blocks)
2261 {
2262 	struct tree_block *block;
2263 	struct rb_node *rb_node;
2264 	while ((rb_node = rb_first(blocks))) {
2265 		block = rb_entry(rb_node, struct tree_block, rb_node);
2266 		rb_erase(rb_node, blocks);
2267 		kfree(block);
2268 	}
2269 }
2270 
2271 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2272 				      struct btrfs_root *reloc_root)
2273 {
2274 	struct btrfs_root *root;
2275 
2276 	if (reloc_root->last_trans == trans->transid)
2277 		return 0;
2278 
2279 	root = read_fs_root(reloc_root->fs_info, reloc_root->root_key.offset);
2280 	BUG_ON(IS_ERR(root));
2281 	BUG_ON(root->reloc_root != reloc_root);
2282 
2283 	return btrfs_record_root_in_trans(trans, root);
2284 }
2285 
2286 static noinline_for_stack
2287 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2288 				     struct reloc_control *rc,
2289 				     struct backref_node *node,
2290 				     struct backref_edge *edges[], int *nr)
2291 {
2292 	struct backref_node *next;
2293 	struct btrfs_root *root;
2294 	int index = 0;
2295 
2296 	next = node;
2297 	while (1) {
2298 		cond_resched();
2299 		next = walk_up_backref(next, edges, &index);
2300 		root = next->root;
2301 		BUG_ON(!root);
2302 		BUG_ON(!root->ref_cows);
2303 
2304 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2305 			record_reloc_root_in_trans(trans, root);
2306 			break;
2307 		}
2308 
2309 		btrfs_record_root_in_trans(trans, root);
2310 		root = root->reloc_root;
2311 
2312 		if (next->new_bytenr != root->node->start) {
2313 			BUG_ON(next->new_bytenr);
2314 			BUG_ON(!list_empty(&next->list));
2315 			next->new_bytenr = root->node->start;
2316 			next->root = root;
2317 			list_add_tail(&next->list,
2318 				      &rc->backref_cache.changed);
2319 			__mark_block_processed(rc, next);
2320 			break;
2321 		}
2322 
2323 		WARN_ON(1);
2324 		root = NULL;
2325 		next = walk_down_backref(edges, &index);
2326 		if (!next || next->level <= node->level)
2327 			break;
2328 	}
2329 	if (!root)
2330 		return NULL;
2331 
2332 	*nr = index;
2333 	next = node;
2334 	/* setup backref node path for btrfs_reloc_cow_block */
2335 	while (1) {
2336 		rc->backref_cache.path[next->level] = next;
2337 		if (--index < 0)
2338 			break;
2339 		next = edges[index]->node[UPPER];
2340 	}
2341 	return root;
2342 }
2343 
2344 /*
2345  * select a tree root for relocation. return NULL if the block
2346  * is reference counted. we should use do_relocation() in this
2347  * case. return a tree root pointer if the block isn't reference
2348  * counted. return -ENOENT if the block is root of reloc tree.
2349  */
2350 static noinline_for_stack
2351 struct btrfs_root *select_one_root(struct btrfs_trans_handle *trans,
2352 				   struct backref_node *node)
2353 {
2354 	struct backref_node *next;
2355 	struct btrfs_root *root;
2356 	struct btrfs_root *fs_root = NULL;
2357 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2358 	int index = 0;
2359 
2360 	next = node;
2361 	while (1) {
2362 		cond_resched();
2363 		next = walk_up_backref(next, edges, &index);
2364 		root = next->root;
2365 		BUG_ON(!root);
2366 
2367 		/* no other choice for non-references counted tree */
2368 		if (!root->ref_cows)
2369 			return root;
2370 
2371 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2372 			fs_root = root;
2373 
2374 		if (next != node)
2375 			return NULL;
2376 
2377 		next = walk_down_backref(edges, &index);
2378 		if (!next || next->level <= node->level)
2379 			break;
2380 	}
2381 
2382 	if (!fs_root)
2383 		return ERR_PTR(-ENOENT);
2384 	return fs_root;
2385 }
2386 
2387 static noinline_for_stack
2388 u64 calcu_metadata_size(struct reloc_control *rc,
2389 			struct backref_node *node, int reserve)
2390 {
2391 	struct backref_node *next = node;
2392 	struct backref_edge *edge;
2393 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2394 	u64 num_bytes = 0;
2395 	int index = 0;
2396 
2397 	BUG_ON(reserve && node->processed);
2398 
2399 	while (next) {
2400 		cond_resched();
2401 		while (1) {
2402 			if (next->processed && (reserve || next != node))
2403 				break;
2404 
2405 			num_bytes += btrfs_level_size(rc->extent_root,
2406 						      next->level);
2407 
2408 			if (list_empty(&next->upper))
2409 				break;
2410 
2411 			edge = list_entry(next->upper.next,
2412 					  struct backref_edge, list[LOWER]);
2413 			edges[index++] = edge;
2414 			next = edge->node[UPPER];
2415 		}
2416 		next = walk_down_backref(edges, &index);
2417 	}
2418 	return num_bytes;
2419 }
2420 
2421 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2422 				  struct reloc_control *rc,
2423 				  struct backref_node *node)
2424 {
2425 	struct btrfs_root *root = rc->extent_root;
2426 	u64 num_bytes;
2427 	int ret;
2428 
2429 	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2430 
2431 	trans->block_rsv = rc->block_rsv;
2432 	ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes);
2433 	if (ret) {
2434 		if (ret == -EAGAIN)
2435 			rc->commit_transaction = 1;
2436 		return ret;
2437 	}
2438 
2439 	return 0;
2440 }
2441 
2442 static void release_metadata_space(struct reloc_control *rc,
2443 				   struct backref_node *node)
2444 {
2445 	u64 num_bytes = calcu_metadata_size(rc, node, 0) * 2;
2446 	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, num_bytes);
2447 }
2448 
2449 /*
2450  * relocate a block tree, and then update pointers in upper level
2451  * blocks that reference the block to point to the new location.
2452  *
2453  * if called by link_to_upper, the block has already been relocated.
2454  * in that case this function just updates pointers.
2455  */
2456 static int do_relocation(struct btrfs_trans_handle *trans,
2457 			 struct reloc_control *rc,
2458 			 struct backref_node *node,
2459 			 struct btrfs_key *key,
2460 			 struct btrfs_path *path, int lowest)
2461 {
2462 	struct backref_node *upper;
2463 	struct backref_edge *edge;
2464 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2465 	struct btrfs_root *root;
2466 	struct extent_buffer *eb;
2467 	u32 blocksize;
2468 	u64 bytenr;
2469 	u64 generation;
2470 	int nr;
2471 	int slot;
2472 	int ret;
2473 	int err = 0;
2474 
2475 	BUG_ON(lowest && node->eb);
2476 
2477 	path->lowest_level = node->level + 1;
2478 	rc->backref_cache.path[node->level] = node;
2479 	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2480 		cond_resched();
2481 
2482 		upper = edge->node[UPPER];
2483 		root = select_reloc_root(trans, rc, upper, edges, &nr);
2484 		BUG_ON(!root);
2485 
2486 		if (upper->eb && !upper->locked) {
2487 			if (!lowest) {
2488 				ret = btrfs_bin_search(upper->eb, key,
2489 						       upper->level, &slot);
2490 				BUG_ON(ret);
2491 				bytenr = btrfs_node_blockptr(upper->eb, slot);
2492 				if (node->eb->start == bytenr)
2493 					goto next;
2494 			}
2495 			drop_node_buffer(upper);
2496 		}
2497 
2498 		if (!upper->eb) {
2499 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2500 			if (ret < 0) {
2501 				err = ret;
2502 				break;
2503 			}
2504 			BUG_ON(ret > 0);
2505 
2506 			if (!upper->eb) {
2507 				upper->eb = path->nodes[upper->level];
2508 				path->nodes[upper->level] = NULL;
2509 			} else {
2510 				BUG_ON(upper->eb != path->nodes[upper->level]);
2511 			}
2512 
2513 			upper->locked = 1;
2514 			path->locks[upper->level] = 0;
2515 
2516 			slot = path->slots[upper->level];
2517 			btrfs_release_path(path);
2518 		} else {
2519 			ret = btrfs_bin_search(upper->eb, key, upper->level,
2520 					       &slot);
2521 			BUG_ON(ret);
2522 		}
2523 
2524 		bytenr = btrfs_node_blockptr(upper->eb, slot);
2525 		if (lowest) {
2526 			BUG_ON(bytenr != node->bytenr);
2527 		} else {
2528 			if (node->eb->start == bytenr)
2529 				goto next;
2530 		}
2531 
2532 		blocksize = btrfs_level_size(root, node->level);
2533 		generation = btrfs_node_ptr_generation(upper->eb, slot);
2534 		eb = read_tree_block(root, bytenr, blocksize, generation);
2535 		if (!eb) {
2536 			err = -EIO;
2537 			goto next;
2538 		}
2539 		btrfs_tree_lock(eb);
2540 		btrfs_set_lock_blocking(eb);
2541 
2542 		if (!node->eb) {
2543 			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2544 					      slot, &eb);
2545 			btrfs_tree_unlock(eb);
2546 			free_extent_buffer(eb);
2547 			if (ret < 0) {
2548 				err = ret;
2549 				goto next;
2550 			}
2551 			BUG_ON(node->eb != eb);
2552 		} else {
2553 			btrfs_set_node_blockptr(upper->eb, slot,
2554 						node->eb->start);
2555 			btrfs_set_node_ptr_generation(upper->eb, slot,
2556 						      trans->transid);
2557 			btrfs_mark_buffer_dirty(upper->eb);
2558 
2559 			ret = btrfs_inc_extent_ref(trans, root,
2560 						node->eb->start, blocksize,
2561 						upper->eb->start,
2562 						btrfs_header_owner(upper->eb),
2563 						node->level, 0, 1);
2564 			BUG_ON(ret);
2565 
2566 			ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2567 			BUG_ON(ret);
2568 		}
2569 next:
2570 		if (!upper->pending)
2571 			drop_node_buffer(upper);
2572 		else
2573 			unlock_node_buffer(upper);
2574 		if (err)
2575 			break;
2576 	}
2577 
2578 	if (!err && node->pending) {
2579 		drop_node_buffer(node);
2580 		list_move_tail(&node->list, &rc->backref_cache.changed);
2581 		node->pending = 0;
2582 	}
2583 
2584 	path->lowest_level = 0;
2585 	BUG_ON(err == -ENOSPC);
2586 	return err;
2587 }
2588 
2589 static int link_to_upper(struct btrfs_trans_handle *trans,
2590 			 struct reloc_control *rc,
2591 			 struct backref_node *node,
2592 			 struct btrfs_path *path)
2593 {
2594 	struct btrfs_key key;
2595 
2596 	btrfs_node_key_to_cpu(node->eb, &key, 0);
2597 	return do_relocation(trans, rc, node, &key, path, 0);
2598 }
2599 
2600 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2601 				struct reloc_control *rc,
2602 				struct btrfs_path *path, int err)
2603 {
2604 	LIST_HEAD(list);
2605 	struct backref_cache *cache = &rc->backref_cache;
2606 	struct backref_node *node;
2607 	int level;
2608 	int ret;
2609 
2610 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2611 		while (!list_empty(&cache->pending[level])) {
2612 			node = list_entry(cache->pending[level].next,
2613 					  struct backref_node, list);
2614 			list_move_tail(&node->list, &list);
2615 			BUG_ON(!node->pending);
2616 
2617 			if (!err) {
2618 				ret = link_to_upper(trans, rc, node, path);
2619 				if (ret < 0)
2620 					err = ret;
2621 			}
2622 		}
2623 		list_splice_init(&list, &cache->pending[level]);
2624 	}
2625 	return err;
2626 }
2627 
2628 static void mark_block_processed(struct reloc_control *rc,
2629 				 u64 bytenr, u32 blocksize)
2630 {
2631 	set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
2632 			EXTENT_DIRTY, GFP_NOFS);
2633 }
2634 
2635 static void __mark_block_processed(struct reloc_control *rc,
2636 				   struct backref_node *node)
2637 {
2638 	u32 blocksize;
2639 	if (node->level == 0 ||
2640 	    in_block_group(node->bytenr, rc->block_group)) {
2641 		blocksize = btrfs_level_size(rc->extent_root, node->level);
2642 		mark_block_processed(rc, node->bytenr, blocksize);
2643 	}
2644 	node->processed = 1;
2645 }
2646 
2647 /*
2648  * mark a block and all blocks directly/indirectly reference the block
2649  * as processed.
2650  */
2651 static void update_processed_blocks(struct reloc_control *rc,
2652 				    struct backref_node *node)
2653 {
2654 	struct backref_node *next = node;
2655 	struct backref_edge *edge;
2656 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2657 	int index = 0;
2658 
2659 	while (next) {
2660 		cond_resched();
2661 		while (1) {
2662 			if (next->processed)
2663 				break;
2664 
2665 			__mark_block_processed(rc, next);
2666 
2667 			if (list_empty(&next->upper))
2668 				break;
2669 
2670 			edge = list_entry(next->upper.next,
2671 					  struct backref_edge, list[LOWER]);
2672 			edges[index++] = edge;
2673 			next = edge->node[UPPER];
2674 		}
2675 		next = walk_down_backref(edges, &index);
2676 	}
2677 }
2678 
2679 static int tree_block_processed(u64 bytenr, u32 blocksize,
2680 				struct reloc_control *rc)
2681 {
2682 	if (test_range_bit(&rc->processed_blocks, bytenr,
2683 			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2684 		return 1;
2685 	return 0;
2686 }
2687 
2688 static int get_tree_block_key(struct reloc_control *rc,
2689 			      struct tree_block *block)
2690 {
2691 	struct extent_buffer *eb;
2692 
2693 	BUG_ON(block->key_ready);
2694 	eb = read_tree_block(rc->extent_root, block->bytenr,
2695 			     block->key.objectid, block->key.offset);
2696 	BUG_ON(!eb);
2697 	WARN_ON(btrfs_header_level(eb) != block->level);
2698 	if (block->level == 0)
2699 		btrfs_item_key_to_cpu(eb, &block->key, 0);
2700 	else
2701 		btrfs_node_key_to_cpu(eb, &block->key, 0);
2702 	free_extent_buffer(eb);
2703 	block->key_ready = 1;
2704 	return 0;
2705 }
2706 
2707 static int reada_tree_block(struct reloc_control *rc,
2708 			    struct tree_block *block)
2709 {
2710 	BUG_ON(block->key_ready);
2711 	readahead_tree_block(rc->extent_root, block->bytenr,
2712 			     block->key.objectid, block->key.offset);
2713 	return 0;
2714 }
2715 
2716 /*
2717  * helper function to relocate a tree block
2718  */
2719 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2720 				struct reloc_control *rc,
2721 				struct backref_node *node,
2722 				struct btrfs_key *key,
2723 				struct btrfs_path *path)
2724 {
2725 	struct btrfs_root *root;
2726 	int release = 0;
2727 	int ret = 0;
2728 
2729 	if (!node)
2730 		return 0;
2731 
2732 	BUG_ON(node->processed);
2733 	root = select_one_root(trans, node);
2734 	if (root == ERR_PTR(-ENOENT)) {
2735 		update_processed_blocks(rc, node);
2736 		goto out;
2737 	}
2738 
2739 	if (!root || root->ref_cows) {
2740 		ret = reserve_metadata_space(trans, rc, node);
2741 		if (ret)
2742 			goto out;
2743 		release = 1;
2744 	}
2745 
2746 	if (root) {
2747 		if (root->ref_cows) {
2748 			BUG_ON(node->new_bytenr);
2749 			BUG_ON(!list_empty(&node->list));
2750 			btrfs_record_root_in_trans(trans, root);
2751 			root = root->reloc_root;
2752 			node->new_bytenr = root->node->start;
2753 			node->root = root;
2754 			list_add_tail(&node->list, &rc->backref_cache.changed);
2755 		} else {
2756 			path->lowest_level = node->level;
2757 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2758 			btrfs_release_path(path);
2759 			if (ret > 0)
2760 				ret = 0;
2761 		}
2762 		if (!ret)
2763 			update_processed_blocks(rc, node);
2764 	} else {
2765 		ret = do_relocation(trans, rc, node, key, path, 1);
2766 	}
2767 out:
2768 	if (ret || node->level == 0 || node->cowonly) {
2769 		if (release)
2770 			release_metadata_space(rc, node);
2771 		remove_backref_node(&rc->backref_cache, node);
2772 	}
2773 	return ret;
2774 }
2775 
2776 /*
2777  * relocate a list of blocks
2778  */
2779 static noinline_for_stack
2780 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2781 			 struct reloc_control *rc, struct rb_root *blocks)
2782 {
2783 	struct backref_node *node;
2784 	struct btrfs_path *path;
2785 	struct tree_block *block;
2786 	struct rb_node *rb_node;
2787 	int ret;
2788 	int err = 0;
2789 
2790 	path = btrfs_alloc_path();
2791 	if (!path)
2792 		return -ENOMEM;
2793 
2794 	rb_node = rb_first(blocks);
2795 	while (rb_node) {
2796 		block = rb_entry(rb_node, struct tree_block, rb_node);
2797 		if (!block->key_ready)
2798 			reada_tree_block(rc, block);
2799 		rb_node = rb_next(rb_node);
2800 	}
2801 
2802 	rb_node = rb_first(blocks);
2803 	while (rb_node) {
2804 		block = rb_entry(rb_node, struct tree_block, rb_node);
2805 		if (!block->key_ready)
2806 			get_tree_block_key(rc, block);
2807 		rb_node = rb_next(rb_node);
2808 	}
2809 
2810 	rb_node = rb_first(blocks);
2811 	while (rb_node) {
2812 		block = rb_entry(rb_node, struct tree_block, rb_node);
2813 
2814 		node = build_backref_tree(rc, &block->key,
2815 					  block->level, block->bytenr);
2816 		if (IS_ERR(node)) {
2817 			err = PTR_ERR(node);
2818 			goto out;
2819 		}
2820 
2821 		ret = relocate_tree_block(trans, rc, node, &block->key,
2822 					  path);
2823 		if (ret < 0) {
2824 			if (ret != -EAGAIN || rb_node == rb_first(blocks))
2825 				err = ret;
2826 			goto out;
2827 		}
2828 		rb_node = rb_next(rb_node);
2829 	}
2830 out:
2831 	free_block_list(blocks);
2832 	err = finish_pending_nodes(trans, rc, path, err);
2833 
2834 	btrfs_free_path(path);
2835 	return err;
2836 }
2837 
2838 static noinline_for_stack
2839 int prealloc_file_extent_cluster(struct inode *inode,
2840 				 struct file_extent_cluster *cluster)
2841 {
2842 	u64 alloc_hint = 0;
2843 	u64 start;
2844 	u64 end;
2845 	u64 offset = BTRFS_I(inode)->index_cnt;
2846 	u64 num_bytes;
2847 	int nr = 0;
2848 	int ret = 0;
2849 
2850 	BUG_ON(cluster->start != cluster->boundary[0]);
2851 	mutex_lock(&inode->i_mutex);
2852 
2853 	ret = btrfs_check_data_free_space(inode, cluster->end +
2854 					  1 - cluster->start);
2855 	if (ret)
2856 		goto out;
2857 
2858 	while (nr < cluster->nr) {
2859 		start = cluster->boundary[nr] - offset;
2860 		if (nr + 1 < cluster->nr)
2861 			end = cluster->boundary[nr + 1] - 1 - offset;
2862 		else
2863 			end = cluster->end - offset;
2864 
2865 		lock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
2866 		num_bytes = end + 1 - start;
2867 		ret = btrfs_prealloc_file_range(inode, 0, start,
2868 						num_bytes, num_bytes,
2869 						end + 1, &alloc_hint);
2870 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
2871 		if (ret)
2872 			break;
2873 		nr++;
2874 	}
2875 	btrfs_free_reserved_data_space(inode, cluster->end +
2876 				       1 - cluster->start);
2877 out:
2878 	mutex_unlock(&inode->i_mutex);
2879 	return ret;
2880 }
2881 
2882 static noinline_for_stack
2883 int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
2884 			 u64 block_start)
2885 {
2886 	struct btrfs_root *root = BTRFS_I(inode)->root;
2887 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2888 	struct extent_map *em;
2889 	int ret = 0;
2890 
2891 	em = alloc_extent_map();
2892 	if (!em)
2893 		return -ENOMEM;
2894 
2895 	em->start = start;
2896 	em->len = end + 1 - start;
2897 	em->block_len = em->len;
2898 	em->block_start = block_start;
2899 	em->bdev = root->fs_info->fs_devices->latest_bdev;
2900 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
2901 
2902 	lock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
2903 	while (1) {
2904 		write_lock(&em_tree->lock);
2905 		ret = add_extent_mapping(em_tree, em);
2906 		write_unlock(&em_tree->lock);
2907 		if (ret != -EEXIST) {
2908 			free_extent_map(em);
2909 			break;
2910 		}
2911 		btrfs_drop_extent_cache(inode, start, end, 0);
2912 	}
2913 	unlock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
2914 	return ret;
2915 }
2916 
2917 static int relocate_file_extent_cluster(struct inode *inode,
2918 					struct file_extent_cluster *cluster)
2919 {
2920 	u64 page_start;
2921 	u64 page_end;
2922 	u64 offset = BTRFS_I(inode)->index_cnt;
2923 	unsigned long index;
2924 	unsigned long last_index;
2925 	struct page *page;
2926 	struct file_ra_state *ra;
2927 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
2928 	int nr = 0;
2929 	int ret = 0;
2930 
2931 	if (!cluster->nr)
2932 		return 0;
2933 
2934 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
2935 	if (!ra)
2936 		return -ENOMEM;
2937 
2938 	ret = prealloc_file_extent_cluster(inode, cluster);
2939 	if (ret)
2940 		goto out;
2941 
2942 	file_ra_state_init(ra, inode->i_mapping);
2943 
2944 	ret = setup_extent_mapping(inode, cluster->start - offset,
2945 				   cluster->end - offset, cluster->start);
2946 	if (ret)
2947 		goto out;
2948 
2949 	index = (cluster->start - offset) >> PAGE_CACHE_SHIFT;
2950 	last_index = (cluster->end - offset) >> PAGE_CACHE_SHIFT;
2951 	while (index <= last_index) {
2952 		ret = btrfs_delalloc_reserve_metadata(inode, PAGE_CACHE_SIZE);
2953 		if (ret)
2954 			goto out;
2955 
2956 		page = find_lock_page(inode->i_mapping, index);
2957 		if (!page) {
2958 			page_cache_sync_readahead(inode->i_mapping,
2959 						  ra, NULL, index,
2960 						  last_index + 1 - index);
2961 			page = find_or_create_page(inode->i_mapping, index,
2962 						   mask);
2963 			if (!page) {
2964 				btrfs_delalloc_release_metadata(inode,
2965 							PAGE_CACHE_SIZE);
2966 				ret = -ENOMEM;
2967 				goto out;
2968 			}
2969 		}
2970 
2971 		if (PageReadahead(page)) {
2972 			page_cache_async_readahead(inode->i_mapping,
2973 						   ra, NULL, page, index,
2974 						   last_index + 1 - index);
2975 		}
2976 
2977 		if (!PageUptodate(page)) {
2978 			btrfs_readpage(NULL, page);
2979 			lock_page(page);
2980 			if (!PageUptodate(page)) {
2981 				unlock_page(page);
2982 				page_cache_release(page);
2983 				btrfs_delalloc_release_metadata(inode,
2984 							PAGE_CACHE_SIZE);
2985 				ret = -EIO;
2986 				goto out;
2987 			}
2988 		}
2989 
2990 		page_start = (u64)page->index << PAGE_CACHE_SHIFT;
2991 		page_end = page_start + PAGE_CACHE_SIZE - 1;
2992 
2993 		lock_extent(&BTRFS_I(inode)->io_tree,
2994 			    page_start, page_end, GFP_NOFS);
2995 
2996 		set_page_extent_mapped(page);
2997 
2998 		if (nr < cluster->nr &&
2999 		    page_start + offset == cluster->boundary[nr]) {
3000 			set_extent_bits(&BTRFS_I(inode)->io_tree,
3001 					page_start, page_end,
3002 					EXTENT_BOUNDARY, GFP_NOFS);
3003 			nr++;
3004 		}
3005 
3006 		btrfs_set_extent_delalloc(inode, page_start, page_end, NULL);
3007 		set_page_dirty(page);
3008 
3009 		unlock_extent(&BTRFS_I(inode)->io_tree,
3010 			      page_start, page_end, GFP_NOFS);
3011 		unlock_page(page);
3012 		page_cache_release(page);
3013 
3014 		index++;
3015 		balance_dirty_pages_ratelimited(inode->i_mapping);
3016 		btrfs_throttle(BTRFS_I(inode)->root);
3017 	}
3018 	WARN_ON(nr != cluster->nr);
3019 out:
3020 	kfree(ra);
3021 	return ret;
3022 }
3023 
3024 static noinline_for_stack
3025 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3026 			 struct file_extent_cluster *cluster)
3027 {
3028 	int ret;
3029 
3030 	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3031 		ret = relocate_file_extent_cluster(inode, cluster);
3032 		if (ret)
3033 			return ret;
3034 		cluster->nr = 0;
3035 	}
3036 
3037 	if (!cluster->nr)
3038 		cluster->start = extent_key->objectid;
3039 	else
3040 		BUG_ON(cluster->nr >= MAX_EXTENTS);
3041 	cluster->end = extent_key->objectid + extent_key->offset - 1;
3042 	cluster->boundary[cluster->nr] = extent_key->objectid;
3043 	cluster->nr++;
3044 
3045 	if (cluster->nr >= MAX_EXTENTS) {
3046 		ret = relocate_file_extent_cluster(inode, cluster);
3047 		if (ret)
3048 			return ret;
3049 		cluster->nr = 0;
3050 	}
3051 	return 0;
3052 }
3053 
3054 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3055 static int get_ref_objectid_v0(struct reloc_control *rc,
3056 			       struct btrfs_path *path,
3057 			       struct btrfs_key *extent_key,
3058 			       u64 *ref_objectid, int *path_change)
3059 {
3060 	struct btrfs_key key;
3061 	struct extent_buffer *leaf;
3062 	struct btrfs_extent_ref_v0 *ref0;
3063 	int ret;
3064 	int slot;
3065 
3066 	leaf = path->nodes[0];
3067 	slot = path->slots[0];
3068 	while (1) {
3069 		if (slot >= btrfs_header_nritems(leaf)) {
3070 			ret = btrfs_next_leaf(rc->extent_root, path);
3071 			if (ret < 0)
3072 				return ret;
3073 			BUG_ON(ret > 0);
3074 			leaf = path->nodes[0];
3075 			slot = path->slots[0];
3076 			if (path_change)
3077 				*path_change = 1;
3078 		}
3079 		btrfs_item_key_to_cpu(leaf, &key, slot);
3080 		if (key.objectid != extent_key->objectid)
3081 			return -ENOENT;
3082 
3083 		if (key.type != BTRFS_EXTENT_REF_V0_KEY) {
3084 			slot++;
3085 			continue;
3086 		}
3087 		ref0 = btrfs_item_ptr(leaf, slot,
3088 				struct btrfs_extent_ref_v0);
3089 		*ref_objectid = btrfs_ref_objectid_v0(leaf, ref0);
3090 		break;
3091 	}
3092 	return 0;
3093 }
3094 #endif
3095 
3096 /*
3097  * helper to add a tree block to the list.
3098  * the major work is getting the generation and level of the block
3099  */
3100 static int add_tree_block(struct reloc_control *rc,
3101 			  struct btrfs_key *extent_key,
3102 			  struct btrfs_path *path,
3103 			  struct rb_root *blocks)
3104 {
3105 	struct extent_buffer *eb;
3106 	struct btrfs_extent_item *ei;
3107 	struct btrfs_tree_block_info *bi;
3108 	struct tree_block *block;
3109 	struct rb_node *rb_node;
3110 	u32 item_size;
3111 	int level = -1;
3112 	int generation;
3113 
3114 	eb =  path->nodes[0];
3115 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
3116 
3117 	if (item_size >= sizeof(*ei) + sizeof(*bi)) {
3118 		ei = btrfs_item_ptr(eb, path->slots[0],
3119 				struct btrfs_extent_item);
3120 		bi = (struct btrfs_tree_block_info *)(ei + 1);
3121 		generation = btrfs_extent_generation(eb, ei);
3122 		level = btrfs_tree_block_level(eb, bi);
3123 	} else {
3124 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3125 		u64 ref_owner;
3126 		int ret;
3127 
3128 		BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3129 		ret = get_ref_objectid_v0(rc, path, extent_key,
3130 					  &ref_owner, NULL);
3131 		if (ret < 0)
3132 			return ret;
3133 		BUG_ON(ref_owner >= BTRFS_MAX_LEVEL);
3134 		level = (int)ref_owner;
3135 		/* FIXME: get real generation */
3136 		generation = 0;
3137 #else
3138 		BUG();
3139 #endif
3140 	}
3141 
3142 	btrfs_release_path(path);
3143 
3144 	BUG_ON(level == -1);
3145 
3146 	block = kmalloc(sizeof(*block), GFP_NOFS);
3147 	if (!block)
3148 		return -ENOMEM;
3149 
3150 	block->bytenr = extent_key->objectid;
3151 	block->key.objectid = extent_key->offset;
3152 	block->key.offset = generation;
3153 	block->level = level;
3154 	block->key_ready = 0;
3155 
3156 	rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
3157 	BUG_ON(rb_node);
3158 
3159 	return 0;
3160 }
3161 
3162 /*
3163  * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3164  */
3165 static int __add_tree_block(struct reloc_control *rc,
3166 			    u64 bytenr, u32 blocksize,
3167 			    struct rb_root *blocks)
3168 {
3169 	struct btrfs_path *path;
3170 	struct btrfs_key key;
3171 	int ret;
3172 
3173 	if (tree_block_processed(bytenr, blocksize, rc))
3174 		return 0;
3175 
3176 	if (tree_search(blocks, bytenr))
3177 		return 0;
3178 
3179 	path = btrfs_alloc_path();
3180 	if (!path)
3181 		return -ENOMEM;
3182 
3183 	key.objectid = bytenr;
3184 	key.type = BTRFS_EXTENT_ITEM_KEY;
3185 	key.offset = blocksize;
3186 
3187 	path->search_commit_root = 1;
3188 	path->skip_locking = 1;
3189 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3190 	if (ret < 0)
3191 		goto out;
3192 	BUG_ON(ret);
3193 
3194 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3195 	ret = add_tree_block(rc, &key, path, blocks);
3196 out:
3197 	btrfs_free_path(path);
3198 	return ret;
3199 }
3200 
3201 /*
3202  * helper to check if the block use full backrefs for pointers in it
3203  */
3204 static int block_use_full_backref(struct reloc_control *rc,
3205 				  struct extent_buffer *eb)
3206 {
3207 	u64 flags;
3208 	int ret;
3209 
3210 	if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
3211 	    btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
3212 		return 1;
3213 
3214 	ret = btrfs_lookup_extent_info(NULL, rc->extent_root,
3215 				       eb->start, eb->len, NULL, &flags);
3216 	BUG_ON(ret);
3217 
3218 	if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
3219 		ret = 1;
3220 	else
3221 		ret = 0;
3222 	return ret;
3223 }
3224 
3225 static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3226 				    struct inode *inode, u64 ino)
3227 {
3228 	struct btrfs_key key;
3229 	struct btrfs_path *path;
3230 	struct btrfs_root *root = fs_info->tree_root;
3231 	struct btrfs_trans_handle *trans;
3232 	unsigned long nr;
3233 	int ret = 0;
3234 
3235 	if (inode)
3236 		goto truncate;
3237 
3238 	key.objectid = ino;
3239 	key.type = BTRFS_INODE_ITEM_KEY;
3240 	key.offset = 0;
3241 
3242 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
3243 	if (IS_ERR_OR_NULL(inode) || is_bad_inode(inode)) {
3244 		if (inode && !IS_ERR(inode))
3245 			iput(inode);
3246 		return -ENOENT;
3247 	}
3248 
3249 truncate:
3250 	path = btrfs_alloc_path();
3251 	if (!path) {
3252 		ret = -ENOMEM;
3253 		goto out;
3254 	}
3255 
3256 	trans = btrfs_join_transaction(root);
3257 	if (IS_ERR(trans)) {
3258 		btrfs_free_path(path);
3259 		ret = PTR_ERR(trans);
3260 		goto out;
3261 	}
3262 
3263 	ret = btrfs_truncate_free_space_cache(root, trans, path, inode);
3264 
3265 	btrfs_free_path(path);
3266 	nr = trans->blocks_used;
3267 	btrfs_end_transaction(trans, root);
3268 	btrfs_btree_balance_dirty(root, nr);
3269 out:
3270 	iput(inode);
3271 	return ret;
3272 }
3273 
3274 /*
3275  * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
3276  * this function scans fs tree to find blocks reference the data extent
3277  */
3278 static int find_data_references(struct reloc_control *rc,
3279 				struct btrfs_key *extent_key,
3280 				struct extent_buffer *leaf,
3281 				struct btrfs_extent_data_ref *ref,
3282 				struct rb_root *blocks)
3283 {
3284 	struct btrfs_path *path;
3285 	struct tree_block *block;
3286 	struct btrfs_root *root;
3287 	struct btrfs_file_extent_item *fi;
3288 	struct rb_node *rb_node;
3289 	struct btrfs_key key;
3290 	u64 ref_root;
3291 	u64 ref_objectid;
3292 	u64 ref_offset;
3293 	u32 ref_count;
3294 	u32 nritems;
3295 	int err = 0;
3296 	int added = 0;
3297 	int counted;
3298 	int ret;
3299 
3300 	ref_root = btrfs_extent_data_ref_root(leaf, ref);
3301 	ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
3302 	ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
3303 	ref_count = btrfs_extent_data_ref_count(leaf, ref);
3304 
3305 	/*
3306 	 * This is an extent belonging to the free space cache, lets just delete
3307 	 * it and redo the search.
3308 	 */
3309 	if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
3310 		ret = delete_block_group_cache(rc->extent_root->fs_info,
3311 					       NULL, ref_objectid);
3312 		if (ret != -ENOENT)
3313 			return ret;
3314 		ret = 0;
3315 	}
3316 
3317 	path = btrfs_alloc_path();
3318 	if (!path)
3319 		return -ENOMEM;
3320 	path->reada = 1;
3321 
3322 	root = read_fs_root(rc->extent_root->fs_info, ref_root);
3323 	if (IS_ERR(root)) {
3324 		err = PTR_ERR(root);
3325 		goto out;
3326 	}
3327 
3328 	key.objectid = ref_objectid;
3329 	key.type = BTRFS_EXTENT_DATA_KEY;
3330 	if (ref_offset > ((u64)-1 << 32))
3331 		key.offset = 0;
3332 	else
3333 		key.offset = ref_offset;
3334 
3335 	path->search_commit_root = 1;
3336 	path->skip_locking = 1;
3337 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3338 	if (ret < 0) {
3339 		err = ret;
3340 		goto out;
3341 	}
3342 
3343 	leaf = path->nodes[0];
3344 	nritems = btrfs_header_nritems(leaf);
3345 	/*
3346 	 * the references in tree blocks that use full backrefs
3347 	 * are not counted in
3348 	 */
3349 	if (block_use_full_backref(rc, leaf))
3350 		counted = 0;
3351 	else
3352 		counted = 1;
3353 	rb_node = tree_search(blocks, leaf->start);
3354 	if (rb_node) {
3355 		if (counted)
3356 			added = 1;
3357 		else
3358 			path->slots[0] = nritems;
3359 	}
3360 
3361 	while (ref_count > 0) {
3362 		while (path->slots[0] >= nritems) {
3363 			ret = btrfs_next_leaf(root, path);
3364 			if (ret < 0) {
3365 				err = ret;
3366 				goto out;
3367 			}
3368 			if (ret > 0) {
3369 				WARN_ON(1);
3370 				goto out;
3371 			}
3372 
3373 			leaf = path->nodes[0];
3374 			nritems = btrfs_header_nritems(leaf);
3375 			added = 0;
3376 
3377 			if (block_use_full_backref(rc, leaf))
3378 				counted = 0;
3379 			else
3380 				counted = 1;
3381 			rb_node = tree_search(blocks, leaf->start);
3382 			if (rb_node) {
3383 				if (counted)
3384 					added = 1;
3385 				else
3386 					path->slots[0] = nritems;
3387 			}
3388 		}
3389 
3390 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3391 		if (key.objectid != ref_objectid ||
3392 		    key.type != BTRFS_EXTENT_DATA_KEY) {
3393 			WARN_ON(1);
3394 			break;
3395 		}
3396 
3397 		fi = btrfs_item_ptr(leaf, path->slots[0],
3398 				    struct btrfs_file_extent_item);
3399 
3400 		if (btrfs_file_extent_type(leaf, fi) ==
3401 		    BTRFS_FILE_EXTENT_INLINE)
3402 			goto next;
3403 
3404 		if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
3405 		    extent_key->objectid)
3406 			goto next;
3407 
3408 		key.offset -= btrfs_file_extent_offset(leaf, fi);
3409 		if (key.offset != ref_offset)
3410 			goto next;
3411 
3412 		if (counted)
3413 			ref_count--;
3414 		if (added)
3415 			goto next;
3416 
3417 		if (!tree_block_processed(leaf->start, leaf->len, rc)) {
3418 			block = kmalloc(sizeof(*block), GFP_NOFS);
3419 			if (!block) {
3420 				err = -ENOMEM;
3421 				break;
3422 			}
3423 			block->bytenr = leaf->start;
3424 			btrfs_item_key_to_cpu(leaf, &block->key, 0);
3425 			block->level = 0;
3426 			block->key_ready = 1;
3427 			rb_node = tree_insert(blocks, block->bytenr,
3428 					      &block->rb_node);
3429 			BUG_ON(rb_node);
3430 		}
3431 		if (counted)
3432 			added = 1;
3433 		else
3434 			path->slots[0] = nritems;
3435 next:
3436 		path->slots[0]++;
3437 
3438 	}
3439 out:
3440 	btrfs_free_path(path);
3441 	return err;
3442 }
3443 
3444 /*
3445  * hepler to find all tree blocks that reference a given data extent
3446  */
3447 static noinline_for_stack
3448 int add_data_references(struct reloc_control *rc,
3449 			struct btrfs_key *extent_key,
3450 			struct btrfs_path *path,
3451 			struct rb_root *blocks)
3452 {
3453 	struct btrfs_key key;
3454 	struct extent_buffer *eb;
3455 	struct btrfs_extent_data_ref *dref;
3456 	struct btrfs_extent_inline_ref *iref;
3457 	unsigned long ptr;
3458 	unsigned long end;
3459 	u32 blocksize = btrfs_level_size(rc->extent_root, 0);
3460 	int ret;
3461 	int err = 0;
3462 
3463 	eb = path->nodes[0];
3464 	ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3465 	end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
3466 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3467 	if (ptr + sizeof(struct btrfs_extent_item_v0) == end)
3468 		ptr = end;
3469 	else
3470 #endif
3471 		ptr += sizeof(struct btrfs_extent_item);
3472 
3473 	while (ptr < end) {
3474 		iref = (struct btrfs_extent_inline_ref *)ptr;
3475 		key.type = btrfs_extent_inline_ref_type(eb, iref);
3476 		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3477 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3478 			ret = __add_tree_block(rc, key.offset, blocksize,
3479 					       blocks);
3480 		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3481 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
3482 			ret = find_data_references(rc, extent_key,
3483 						   eb, dref, blocks);
3484 		} else {
3485 			BUG();
3486 		}
3487 		ptr += btrfs_extent_inline_ref_size(key.type);
3488 	}
3489 	WARN_ON(ptr > end);
3490 
3491 	while (1) {
3492 		cond_resched();
3493 		eb = path->nodes[0];
3494 		if (path->slots[0] >= btrfs_header_nritems(eb)) {
3495 			ret = btrfs_next_leaf(rc->extent_root, path);
3496 			if (ret < 0) {
3497 				err = ret;
3498 				break;
3499 			}
3500 			if (ret > 0)
3501 				break;
3502 			eb = path->nodes[0];
3503 		}
3504 
3505 		btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
3506 		if (key.objectid != extent_key->objectid)
3507 			break;
3508 
3509 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3510 		if (key.type == BTRFS_SHARED_DATA_REF_KEY ||
3511 		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
3512 #else
3513 		BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
3514 		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3515 #endif
3516 			ret = __add_tree_block(rc, key.offset, blocksize,
3517 					       blocks);
3518 		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3519 			dref = btrfs_item_ptr(eb, path->slots[0],
3520 					      struct btrfs_extent_data_ref);
3521 			ret = find_data_references(rc, extent_key,
3522 						   eb, dref, blocks);
3523 		} else {
3524 			ret = 0;
3525 		}
3526 		if (ret) {
3527 			err = ret;
3528 			break;
3529 		}
3530 		path->slots[0]++;
3531 	}
3532 	btrfs_release_path(path);
3533 	if (err)
3534 		free_block_list(blocks);
3535 	return err;
3536 }
3537 
3538 /*
3539  * hepler to find next unprocessed extent
3540  */
3541 static noinline_for_stack
3542 int find_next_extent(struct btrfs_trans_handle *trans,
3543 		     struct reloc_control *rc, struct btrfs_path *path,
3544 		     struct btrfs_key *extent_key)
3545 {
3546 	struct btrfs_key key;
3547 	struct extent_buffer *leaf;
3548 	u64 start, end, last;
3549 	int ret;
3550 
3551 	last = rc->block_group->key.objectid + rc->block_group->key.offset;
3552 	while (1) {
3553 		cond_resched();
3554 		if (rc->search_start >= last) {
3555 			ret = 1;
3556 			break;
3557 		}
3558 
3559 		key.objectid = rc->search_start;
3560 		key.type = BTRFS_EXTENT_ITEM_KEY;
3561 		key.offset = 0;
3562 
3563 		path->search_commit_root = 1;
3564 		path->skip_locking = 1;
3565 		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3566 					0, 0);
3567 		if (ret < 0)
3568 			break;
3569 next:
3570 		leaf = path->nodes[0];
3571 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3572 			ret = btrfs_next_leaf(rc->extent_root, path);
3573 			if (ret != 0)
3574 				break;
3575 			leaf = path->nodes[0];
3576 		}
3577 
3578 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3579 		if (key.objectid >= last) {
3580 			ret = 1;
3581 			break;
3582 		}
3583 
3584 		if (key.type != BTRFS_EXTENT_ITEM_KEY ||
3585 		    key.objectid + key.offset <= rc->search_start) {
3586 			path->slots[0]++;
3587 			goto next;
3588 		}
3589 
3590 		ret = find_first_extent_bit(&rc->processed_blocks,
3591 					    key.objectid, &start, &end,
3592 					    EXTENT_DIRTY);
3593 
3594 		if (ret == 0 && start <= key.objectid) {
3595 			btrfs_release_path(path);
3596 			rc->search_start = end + 1;
3597 		} else {
3598 			rc->search_start = key.objectid + key.offset;
3599 			memcpy(extent_key, &key, sizeof(key));
3600 			return 0;
3601 		}
3602 	}
3603 	btrfs_release_path(path);
3604 	return ret;
3605 }
3606 
3607 static void set_reloc_control(struct reloc_control *rc)
3608 {
3609 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3610 
3611 	mutex_lock(&fs_info->reloc_mutex);
3612 	fs_info->reloc_ctl = rc;
3613 	mutex_unlock(&fs_info->reloc_mutex);
3614 }
3615 
3616 static void unset_reloc_control(struct reloc_control *rc)
3617 {
3618 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3619 
3620 	mutex_lock(&fs_info->reloc_mutex);
3621 	fs_info->reloc_ctl = NULL;
3622 	mutex_unlock(&fs_info->reloc_mutex);
3623 }
3624 
3625 static int check_extent_flags(u64 flags)
3626 {
3627 	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3628 	    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3629 		return 1;
3630 	if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3631 	    !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3632 		return 1;
3633 	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3634 	    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3635 		return 1;
3636 	return 0;
3637 }
3638 
3639 static noinline_for_stack
3640 int prepare_to_relocate(struct reloc_control *rc)
3641 {
3642 	struct btrfs_trans_handle *trans;
3643 	int ret;
3644 
3645 	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root);
3646 	if (!rc->block_rsv)
3647 		return -ENOMEM;
3648 
3649 	/*
3650 	 * reserve some space for creating reloc trees.
3651 	 * btrfs_init_reloc_root will use them when there
3652 	 * is no reservation in transaction handle.
3653 	 */
3654 	ret = btrfs_block_rsv_add(rc->extent_root, rc->block_rsv,
3655 				  rc->extent_root->nodesize * 256);
3656 	if (ret)
3657 		return ret;
3658 
3659 	memset(&rc->cluster, 0, sizeof(rc->cluster));
3660 	rc->search_start = rc->block_group->key.objectid;
3661 	rc->extents_found = 0;
3662 	rc->nodes_relocated = 0;
3663 	rc->merging_rsv_size = 0;
3664 
3665 	rc->create_reloc_tree = 1;
3666 	set_reloc_control(rc);
3667 
3668 	trans = btrfs_join_transaction(rc->extent_root);
3669 	BUG_ON(IS_ERR(trans));
3670 	btrfs_commit_transaction(trans, rc->extent_root);
3671 	return 0;
3672 }
3673 
3674 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3675 {
3676 	struct rb_root blocks = RB_ROOT;
3677 	struct btrfs_key key;
3678 	struct btrfs_trans_handle *trans = NULL;
3679 	struct btrfs_path *path;
3680 	struct btrfs_extent_item *ei;
3681 	unsigned long nr;
3682 	u64 flags;
3683 	u32 item_size;
3684 	int ret;
3685 	int err = 0;
3686 	int progress = 0;
3687 
3688 	path = btrfs_alloc_path();
3689 	if (!path)
3690 		return -ENOMEM;
3691 	path->reada = 1;
3692 
3693 	ret = prepare_to_relocate(rc);
3694 	if (ret) {
3695 		err = ret;
3696 		goto out_free;
3697 	}
3698 
3699 	while (1) {
3700 		progress++;
3701 		trans = btrfs_start_transaction(rc->extent_root, 0);
3702 		BUG_ON(IS_ERR(trans));
3703 restart:
3704 		if (update_backref_cache(trans, &rc->backref_cache)) {
3705 			btrfs_end_transaction(trans, rc->extent_root);
3706 			continue;
3707 		}
3708 
3709 		ret = find_next_extent(trans, rc, path, &key);
3710 		if (ret < 0)
3711 			err = ret;
3712 		if (ret != 0)
3713 			break;
3714 
3715 		rc->extents_found++;
3716 
3717 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3718 				    struct btrfs_extent_item);
3719 		item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
3720 		if (item_size >= sizeof(*ei)) {
3721 			flags = btrfs_extent_flags(path->nodes[0], ei);
3722 			ret = check_extent_flags(flags);
3723 			BUG_ON(ret);
3724 
3725 		} else {
3726 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3727 			u64 ref_owner;
3728 			int path_change = 0;
3729 
3730 			BUG_ON(item_size !=
3731 			       sizeof(struct btrfs_extent_item_v0));
3732 			ret = get_ref_objectid_v0(rc, path, &key, &ref_owner,
3733 						  &path_change);
3734 			if (ref_owner < BTRFS_FIRST_FREE_OBJECTID)
3735 				flags = BTRFS_EXTENT_FLAG_TREE_BLOCK;
3736 			else
3737 				flags = BTRFS_EXTENT_FLAG_DATA;
3738 
3739 			if (path_change) {
3740 				btrfs_release_path(path);
3741 
3742 				path->search_commit_root = 1;
3743 				path->skip_locking = 1;
3744 				ret = btrfs_search_slot(NULL, rc->extent_root,
3745 							&key, path, 0, 0);
3746 				if (ret < 0) {
3747 					err = ret;
3748 					break;
3749 				}
3750 				BUG_ON(ret > 0);
3751 			}
3752 #else
3753 			BUG();
3754 #endif
3755 		}
3756 
3757 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3758 			ret = add_tree_block(rc, &key, path, &blocks);
3759 		} else if (rc->stage == UPDATE_DATA_PTRS &&
3760 			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
3761 			ret = add_data_references(rc, &key, path, &blocks);
3762 		} else {
3763 			btrfs_release_path(path);
3764 			ret = 0;
3765 		}
3766 		if (ret < 0) {
3767 			err = ret;
3768 			break;
3769 		}
3770 
3771 		if (!RB_EMPTY_ROOT(&blocks)) {
3772 			ret = relocate_tree_blocks(trans, rc, &blocks);
3773 			if (ret < 0) {
3774 				if (ret != -EAGAIN) {
3775 					err = ret;
3776 					break;
3777 				}
3778 				rc->extents_found--;
3779 				rc->search_start = key.objectid;
3780 			}
3781 		}
3782 
3783 		ret = btrfs_block_rsv_check(rc->extent_root, rc->block_rsv, 5);
3784 		if (ret < 0) {
3785 			if (ret != -EAGAIN) {
3786 				err = ret;
3787 				WARN_ON(1);
3788 				break;
3789 			}
3790 			rc->commit_transaction = 1;
3791 		}
3792 
3793 		if (rc->commit_transaction) {
3794 			rc->commit_transaction = 0;
3795 			ret = btrfs_commit_transaction(trans, rc->extent_root);
3796 			BUG_ON(ret);
3797 		} else {
3798 			nr = trans->blocks_used;
3799 			btrfs_end_transaction_throttle(trans, rc->extent_root);
3800 			btrfs_btree_balance_dirty(rc->extent_root, nr);
3801 		}
3802 		trans = NULL;
3803 
3804 		if (rc->stage == MOVE_DATA_EXTENTS &&
3805 		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
3806 			rc->found_file_extent = 1;
3807 			ret = relocate_data_extent(rc->data_inode,
3808 						   &key, &rc->cluster);
3809 			if (ret < 0) {
3810 				err = ret;
3811 				break;
3812 			}
3813 		}
3814 	}
3815 	if (trans && progress && err == -ENOSPC) {
3816 		ret = btrfs_force_chunk_alloc(trans, rc->extent_root,
3817 					      rc->block_group->flags);
3818 		if (ret == 0) {
3819 			err = 0;
3820 			progress = 0;
3821 			goto restart;
3822 		}
3823 	}
3824 
3825 	btrfs_release_path(path);
3826 	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY,
3827 			  GFP_NOFS);
3828 
3829 	if (trans) {
3830 		nr = trans->blocks_used;
3831 		btrfs_end_transaction_throttle(trans, rc->extent_root);
3832 		btrfs_btree_balance_dirty(rc->extent_root, nr);
3833 	}
3834 
3835 	if (!err) {
3836 		ret = relocate_file_extent_cluster(rc->data_inode,
3837 						   &rc->cluster);
3838 		if (ret < 0)
3839 			err = ret;
3840 	}
3841 
3842 	rc->create_reloc_tree = 0;
3843 	set_reloc_control(rc);
3844 
3845 	backref_cache_cleanup(&rc->backref_cache);
3846 	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1);
3847 
3848 	err = prepare_to_merge(rc, err);
3849 
3850 	merge_reloc_roots(rc);
3851 
3852 	rc->merge_reloc_tree = 0;
3853 	unset_reloc_control(rc);
3854 	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1);
3855 
3856 	/* get rid of pinned extents */
3857 	trans = btrfs_join_transaction(rc->extent_root);
3858 	if (IS_ERR(trans))
3859 		err = PTR_ERR(trans);
3860 	else
3861 		btrfs_commit_transaction(trans, rc->extent_root);
3862 out_free:
3863 	btrfs_free_block_rsv(rc->extent_root, rc->block_rsv);
3864 	btrfs_free_path(path);
3865 	return err;
3866 }
3867 
3868 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3869 				 struct btrfs_root *root, u64 objectid)
3870 {
3871 	struct btrfs_path *path;
3872 	struct btrfs_inode_item *item;
3873 	struct extent_buffer *leaf;
3874 	int ret;
3875 
3876 	path = btrfs_alloc_path();
3877 	if (!path)
3878 		return -ENOMEM;
3879 
3880 	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3881 	if (ret)
3882 		goto out;
3883 
3884 	leaf = path->nodes[0];
3885 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3886 	memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
3887 	btrfs_set_inode_generation(leaf, item, 1);
3888 	btrfs_set_inode_size(leaf, item, 0);
3889 	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3890 	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
3891 					  BTRFS_INODE_PREALLOC);
3892 	btrfs_mark_buffer_dirty(leaf);
3893 	btrfs_release_path(path);
3894 out:
3895 	btrfs_free_path(path);
3896 	return ret;
3897 }
3898 
3899 /*
3900  * helper to create inode for data relocation.
3901  * the inode is in data relocation tree and its link count is 0
3902  */
3903 static noinline_for_stack
3904 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
3905 				 struct btrfs_block_group_cache *group)
3906 {
3907 	struct inode *inode = NULL;
3908 	struct btrfs_trans_handle *trans;
3909 	struct btrfs_root *root;
3910 	struct btrfs_key key;
3911 	unsigned long nr;
3912 	u64 objectid = BTRFS_FIRST_FREE_OBJECTID;
3913 	int err = 0;
3914 
3915 	root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
3916 	if (IS_ERR(root))
3917 		return ERR_CAST(root);
3918 
3919 	trans = btrfs_start_transaction(root, 6);
3920 	if (IS_ERR(trans))
3921 		return ERR_CAST(trans);
3922 
3923 	err = btrfs_find_free_objectid(root, &objectid);
3924 	if (err)
3925 		goto out;
3926 
3927 	err = __insert_orphan_inode(trans, root, objectid);
3928 	BUG_ON(err);
3929 
3930 	key.objectid = objectid;
3931 	key.type = BTRFS_INODE_ITEM_KEY;
3932 	key.offset = 0;
3933 	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
3934 	BUG_ON(IS_ERR(inode) || is_bad_inode(inode));
3935 	BTRFS_I(inode)->index_cnt = group->key.objectid;
3936 
3937 	err = btrfs_orphan_add(trans, inode);
3938 out:
3939 	nr = trans->blocks_used;
3940 	btrfs_end_transaction(trans, root);
3941 	btrfs_btree_balance_dirty(root, nr);
3942 	if (err) {
3943 		if (inode)
3944 			iput(inode);
3945 		inode = ERR_PTR(err);
3946 	}
3947 	return inode;
3948 }
3949 
3950 static struct reloc_control *alloc_reloc_control(void)
3951 {
3952 	struct reloc_control *rc;
3953 
3954 	rc = kzalloc(sizeof(*rc), GFP_NOFS);
3955 	if (!rc)
3956 		return NULL;
3957 
3958 	INIT_LIST_HEAD(&rc->reloc_roots);
3959 	backref_cache_init(&rc->backref_cache);
3960 	mapping_tree_init(&rc->reloc_root_tree);
3961 	extent_io_tree_init(&rc->processed_blocks, NULL);
3962 	return rc;
3963 }
3964 
3965 /*
3966  * function to relocate all extents in a block group.
3967  */
3968 int btrfs_relocate_block_group(struct btrfs_root *extent_root, u64 group_start)
3969 {
3970 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
3971 	struct reloc_control *rc;
3972 	struct inode *inode;
3973 	struct btrfs_path *path;
3974 	int ret;
3975 	int rw = 0;
3976 	int err = 0;
3977 
3978 	rc = alloc_reloc_control();
3979 	if (!rc)
3980 		return -ENOMEM;
3981 
3982 	rc->extent_root = extent_root;
3983 
3984 	rc->block_group = btrfs_lookup_block_group(fs_info, group_start);
3985 	BUG_ON(!rc->block_group);
3986 
3987 	if (!rc->block_group->ro) {
3988 		ret = btrfs_set_block_group_ro(extent_root, rc->block_group);
3989 		if (ret) {
3990 			err = ret;
3991 			goto out;
3992 		}
3993 		rw = 1;
3994 	}
3995 
3996 	path = btrfs_alloc_path();
3997 	if (!path) {
3998 		err = -ENOMEM;
3999 		goto out;
4000 	}
4001 
4002 	inode = lookup_free_space_inode(fs_info->tree_root, rc->block_group,
4003 					path);
4004 	btrfs_free_path(path);
4005 
4006 	if (!IS_ERR(inode))
4007 		ret = delete_block_group_cache(fs_info, inode, 0);
4008 	else
4009 		ret = PTR_ERR(inode);
4010 
4011 	if (ret && ret != -ENOENT) {
4012 		err = ret;
4013 		goto out;
4014 	}
4015 
4016 	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4017 	if (IS_ERR(rc->data_inode)) {
4018 		err = PTR_ERR(rc->data_inode);
4019 		rc->data_inode = NULL;
4020 		goto out;
4021 	}
4022 
4023 	printk(KERN_INFO "btrfs: relocating block group %llu flags %llu\n",
4024 	       (unsigned long long)rc->block_group->key.objectid,
4025 	       (unsigned long long)rc->block_group->flags);
4026 
4027 	btrfs_start_delalloc_inodes(fs_info->tree_root, 0);
4028 	btrfs_wait_ordered_extents(fs_info->tree_root, 0, 0);
4029 
4030 	while (1) {
4031 		mutex_lock(&fs_info->cleaner_mutex);
4032 
4033 		btrfs_clean_old_snapshots(fs_info->tree_root);
4034 		ret = relocate_block_group(rc);
4035 
4036 		mutex_unlock(&fs_info->cleaner_mutex);
4037 		if (ret < 0) {
4038 			err = ret;
4039 			goto out;
4040 		}
4041 
4042 		if (rc->extents_found == 0)
4043 			break;
4044 
4045 		printk(KERN_INFO "btrfs: found %llu extents\n",
4046 			(unsigned long long)rc->extents_found);
4047 
4048 		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4049 			btrfs_wait_ordered_range(rc->data_inode, 0, (u64)-1);
4050 			invalidate_mapping_pages(rc->data_inode->i_mapping,
4051 						 0, -1);
4052 			rc->stage = UPDATE_DATA_PTRS;
4053 		}
4054 	}
4055 
4056 	filemap_write_and_wait_range(fs_info->btree_inode->i_mapping,
4057 				     rc->block_group->key.objectid,
4058 				     rc->block_group->key.objectid +
4059 				     rc->block_group->key.offset - 1);
4060 
4061 	WARN_ON(rc->block_group->pinned > 0);
4062 	WARN_ON(rc->block_group->reserved > 0);
4063 	WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
4064 out:
4065 	if (err && rw)
4066 		btrfs_set_block_group_rw(extent_root, rc->block_group);
4067 	iput(rc->data_inode);
4068 	btrfs_put_block_group(rc->block_group);
4069 	kfree(rc);
4070 	return err;
4071 }
4072 
4073 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4074 {
4075 	struct btrfs_trans_handle *trans;
4076 	int ret;
4077 
4078 	trans = btrfs_start_transaction(root->fs_info->tree_root, 0);
4079 	BUG_ON(IS_ERR(trans));
4080 
4081 	memset(&root->root_item.drop_progress, 0,
4082 		sizeof(root->root_item.drop_progress));
4083 	root->root_item.drop_level = 0;
4084 	btrfs_set_root_refs(&root->root_item, 0);
4085 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
4086 				&root->root_key, &root->root_item);
4087 	BUG_ON(ret);
4088 
4089 	ret = btrfs_end_transaction(trans, root->fs_info->tree_root);
4090 	BUG_ON(ret);
4091 	return 0;
4092 }
4093 
4094 /*
4095  * recover relocation interrupted by system crash.
4096  *
4097  * this function resumes merging reloc trees with corresponding fs trees.
4098  * this is important for keeping the sharing of tree blocks
4099  */
4100 int btrfs_recover_relocation(struct btrfs_root *root)
4101 {
4102 	LIST_HEAD(reloc_roots);
4103 	struct btrfs_key key;
4104 	struct btrfs_root *fs_root;
4105 	struct btrfs_root *reloc_root;
4106 	struct btrfs_path *path;
4107 	struct extent_buffer *leaf;
4108 	struct reloc_control *rc = NULL;
4109 	struct btrfs_trans_handle *trans;
4110 	int ret;
4111 	int err = 0;
4112 
4113 	path = btrfs_alloc_path();
4114 	if (!path)
4115 		return -ENOMEM;
4116 	path->reada = -1;
4117 
4118 	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4119 	key.type = BTRFS_ROOT_ITEM_KEY;
4120 	key.offset = (u64)-1;
4121 
4122 	while (1) {
4123 		ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key,
4124 					path, 0, 0);
4125 		if (ret < 0) {
4126 			err = ret;
4127 			goto out;
4128 		}
4129 		if (ret > 0) {
4130 			if (path->slots[0] == 0)
4131 				break;
4132 			path->slots[0]--;
4133 		}
4134 		leaf = path->nodes[0];
4135 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4136 		btrfs_release_path(path);
4137 
4138 		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4139 		    key.type != BTRFS_ROOT_ITEM_KEY)
4140 			break;
4141 
4142 		reloc_root = btrfs_read_fs_root_no_radix(root, &key);
4143 		if (IS_ERR(reloc_root)) {
4144 			err = PTR_ERR(reloc_root);
4145 			goto out;
4146 		}
4147 
4148 		list_add(&reloc_root->root_list, &reloc_roots);
4149 
4150 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4151 			fs_root = read_fs_root(root->fs_info,
4152 					       reloc_root->root_key.offset);
4153 			if (IS_ERR(fs_root)) {
4154 				ret = PTR_ERR(fs_root);
4155 				if (ret != -ENOENT) {
4156 					err = ret;
4157 					goto out;
4158 				}
4159 				mark_garbage_root(reloc_root);
4160 			}
4161 		}
4162 
4163 		if (key.offset == 0)
4164 			break;
4165 
4166 		key.offset--;
4167 	}
4168 	btrfs_release_path(path);
4169 
4170 	if (list_empty(&reloc_roots))
4171 		goto out;
4172 
4173 	rc = alloc_reloc_control();
4174 	if (!rc) {
4175 		err = -ENOMEM;
4176 		goto out;
4177 	}
4178 
4179 	rc->extent_root = root->fs_info->extent_root;
4180 
4181 	set_reloc_control(rc);
4182 
4183 	trans = btrfs_join_transaction(rc->extent_root);
4184 	if (IS_ERR(trans)) {
4185 		unset_reloc_control(rc);
4186 		err = PTR_ERR(trans);
4187 		goto out_free;
4188 	}
4189 
4190 	rc->merge_reloc_tree = 1;
4191 
4192 	while (!list_empty(&reloc_roots)) {
4193 		reloc_root = list_entry(reloc_roots.next,
4194 					struct btrfs_root, root_list);
4195 		list_del(&reloc_root->root_list);
4196 
4197 		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4198 			list_add_tail(&reloc_root->root_list,
4199 				      &rc->reloc_roots);
4200 			continue;
4201 		}
4202 
4203 		fs_root = read_fs_root(root->fs_info,
4204 				       reloc_root->root_key.offset);
4205 		BUG_ON(IS_ERR(fs_root));
4206 
4207 		__add_reloc_root(reloc_root);
4208 		fs_root->reloc_root = reloc_root;
4209 	}
4210 
4211 	btrfs_commit_transaction(trans, rc->extent_root);
4212 
4213 	merge_reloc_roots(rc);
4214 
4215 	unset_reloc_control(rc);
4216 
4217 	trans = btrfs_join_transaction(rc->extent_root);
4218 	if (IS_ERR(trans))
4219 		err = PTR_ERR(trans);
4220 	else
4221 		btrfs_commit_transaction(trans, rc->extent_root);
4222 out_free:
4223 	kfree(rc);
4224 out:
4225 	while (!list_empty(&reloc_roots)) {
4226 		reloc_root = list_entry(reloc_roots.next,
4227 					struct btrfs_root, root_list);
4228 		list_del(&reloc_root->root_list);
4229 		free_extent_buffer(reloc_root->node);
4230 		free_extent_buffer(reloc_root->commit_root);
4231 		kfree(reloc_root);
4232 	}
4233 	btrfs_free_path(path);
4234 
4235 	if (err == 0) {
4236 		/* cleanup orphan inode in data relocation tree */
4237 		fs_root = read_fs_root(root->fs_info,
4238 				       BTRFS_DATA_RELOC_TREE_OBJECTID);
4239 		if (IS_ERR(fs_root))
4240 			err = PTR_ERR(fs_root);
4241 		else
4242 			err = btrfs_orphan_cleanup(fs_root);
4243 	}
4244 	return err;
4245 }
4246 
4247 /*
4248  * helper to add ordered checksum for data relocation.
4249  *
4250  * cloning checksum properly handles the nodatasum extents.
4251  * it also saves CPU time to re-calculate the checksum.
4252  */
4253 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
4254 {
4255 	struct btrfs_ordered_sum *sums;
4256 	struct btrfs_sector_sum *sector_sum;
4257 	struct btrfs_ordered_extent *ordered;
4258 	struct btrfs_root *root = BTRFS_I(inode)->root;
4259 	size_t offset;
4260 	int ret;
4261 	u64 disk_bytenr;
4262 	LIST_HEAD(list);
4263 
4264 	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4265 	BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
4266 
4267 	disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
4268 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, disk_bytenr,
4269 				       disk_bytenr + len - 1, &list, 0);
4270 
4271 	while (!list_empty(&list)) {
4272 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4273 		list_del_init(&sums->list);
4274 
4275 		sector_sum = sums->sums;
4276 		sums->bytenr = ordered->start;
4277 
4278 		offset = 0;
4279 		while (offset < sums->len) {
4280 			sector_sum->bytenr += ordered->start - disk_bytenr;
4281 			sector_sum++;
4282 			offset += root->sectorsize;
4283 		}
4284 
4285 		btrfs_add_ordered_sum(inode, ordered, sums);
4286 	}
4287 	btrfs_put_ordered_extent(ordered);
4288 	return ret;
4289 }
4290 
4291 void btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4292 			   struct btrfs_root *root, struct extent_buffer *buf,
4293 			   struct extent_buffer *cow)
4294 {
4295 	struct reloc_control *rc;
4296 	struct backref_node *node;
4297 	int first_cow = 0;
4298 	int level;
4299 	int ret;
4300 
4301 	rc = root->fs_info->reloc_ctl;
4302 	if (!rc)
4303 		return;
4304 
4305 	BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
4306 	       root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
4307 
4308 	level = btrfs_header_level(buf);
4309 	if (btrfs_header_generation(buf) <=
4310 	    btrfs_root_last_snapshot(&root->root_item))
4311 		first_cow = 1;
4312 
4313 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4314 	    rc->create_reloc_tree) {
4315 		WARN_ON(!first_cow && level == 0);
4316 
4317 		node = rc->backref_cache.path[level];
4318 		BUG_ON(node->bytenr != buf->start &&
4319 		       node->new_bytenr != buf->start);
4320 
4321 		drop_node_buffer(node);
4322 		extent_buffer_get(cow);
4323 		node->eb = cow;
4324 		node->new_bytenr = cow->start;
4325 
4326 		if (!node->pending) {
4327 			list_move_tail(&node->list,
4328 				       &rc->backref_cache.pending[level]);
4329 			node->pending = 1;
4330 		}
4331 
4332 		if (first_cow)
4333 			__mark_block_processed(rc, node);
4334 
4335 		if (first_cow && level > 0)
4336 			rc->nodes_relocated += buf->len;
4337 	}
4338 
4339 	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS) {
4340 		ret = replace_file_extents(trans, rc, root, cow);
4341 		BUG_ON(ret);
4342 	}
4343 }
4344 
4345 /*
4346  * called before creating snapshot. it calculates metadata reservation
4347  * requried for relocating tree blocks in the snapshot
4348  */
4349 void btrfs_reloc_pre_snapshot(struct btrfs_trans_handle *trans,
4350 			      struct btrfs_pending_snapshot *pending,
4351 			      u64 *bytes_to_reserve)
4352 {
4353 	struct btrfs_root *root;
4354 	struct reloc_control *rc;
4355 
4356 	root = pending->root;
4357 	if (!root->reloc_root)
4358 		return;
4359 
4360 	rc = root->fs_info->reloc_ctl;
4361 	if (!rc->merge_reloc_tree)
4362 		return;
4363 
4364 	root = root->reloc_root;
4365 	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4366 	/*
4367 	 * relocation is in the stage of merging trees. the space
4368 	 * used by merging a reloc tree is twice the size of
4369 	 * relocated tree nodes in the worst case. half for cowing
4370 	 * the reloc tree, half for cowing the fs tree. the space
4371 	 * used by cowing the reloc tree will be freed after the
4372 	 * tree is dropped. if we create snapshot, cowing the fs
4373 	 * tree may use more space than it frees. so we need
4374 	 * reserve extra space.
4375 	 */
4376 	*bytes_to_reserve += rc->nodes_relocated;
4377 }
4378 
4379 /*
4380  * called after snapshot is created. migrate block reservation
4381  * and create reloc root for the newly created snapshot
4382  */
4383 void btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4384 			       struct btrfs_pending_snapshot *pending)
4385 {
4386 	struct btrfs_root *root = pending->root;
4387 	struct btrfs_root *reloc_root;
4388 	struct btrfs_root *new_root;
4389 	struct reloc_control *rc;
4390 	int ret;
4391 
4392 	if (!root->reloc_root)
4393 		return;
4394 
4395 	rc = root->fs_info->reloc_ctl;
4396 	rc->merging_rsv_size += rc->nodes_relocated;
4397 
4398 	if (rc->merge_reloc_tree) {
4399 		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4400 					      rc->block_rsv,
4401 					      rc->nodes_relocated);
4402 		BUG_ON(ret);
4403 	}
4404 
4405 	new_root = pending->snap;
4406 	reloc_root = create_reloc_root(trans, root->reloc_root,
4407 				       new_root->root_key.objectid);
4408 
4409 	__add_reloc_root(reloc_root);
4410 	new_root->reloc_root = reloc_root;
4411 
4412 	if (rc->create_reloc_tree) {
4413 		ret = clone_backref_node(trans, rc, root, reloc_root);
4414 		BUG_ON(ret);
4415 	}
4416 }
4417