1 /*
2  * Copyright 2010 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Ben Skeggs
23  */
24 
25 #include "drmP.h"
26 #include "nouveau_drv.h"
27 #include "nouveau_bios.h"
28 #include "nouveau_hw.h"
29 #include "nouveau_pm.h"
30 #include "nouveau_hwsq.h"
31 
32 enum clk_src {
33 	clk_src_crystal,
34 	clk_src_href,
35 	clk_src_hclk,
36 	clk_src_hclkm3,
37 	clk_src_hclkm3d2,
38 	clk_src_host,
39 	clk_src_nvclk,
40 	clk_src_sclk,
41 	clk_src_mclk,
42 	clk_src_vdec,
43 	clk_src_dom6
44 };
45 
46 static u32 read_clk(struct drm_device *, enum clk_src);
47 
48 static u32
read_div(struct drm_device * dev)49 read_div(struct drm_device *dev)
50 {
51 	struct drm_nouveau_private *dev_priv = dev->dev_private;
52 
53 	switch (dev_priv->chipset) {
54 	case 0x50: /* it exists, but only has bit 31, not the dividers.. */
55 	case 0x84:
56 	case 0x86:
57 	case 0x98:
58 	case 0xa0:
59 		return nv_rd32(dev, 0x004700);
60 	case 0x92:
61 	case 0x94:
62 	case 0x96:
63 		return nv_rd32(dev, 0x004800);
64 	default:
65 		return 0x00000000;
66 	}
67 }
68 
69 static u32
read_pll_src(struct drm_device * dev,u32 base)70 read_pll_src(struct drm_device *dev, u32 base)
71 {
72 	struct drm_nouveau_private *dev_priv = dev->dev_private;
73 	u32 coef, ref = read_clk(dev, clk_src_crystal);
74 	u32 rsel = nv_rd32(dev, 0x00e18c);
75 	int P, N, M, id;
76 
77 	switch (dev_priv->chipset) {
78 	case 0x50:
79 	case 0xa0:
80 		switch (base) {
81 		case 0x4020:
82 		case 0x4028: id = !!(rsel & 0x00000004); break;
83 		case 0x4008: id = !!(rsel & 0x00000008); break;
84 		case 0x4030: id = 0; break;
85 		default:
86 			NV_ERROR(dev, "ref: bad pll 0x%06x\n", base);
87 			return 0;
88 		}
89 
90 		coef = nv_rd32(dev, 0x00e81c + (id * 0x0c));
91 		ref *=  (coef & 0x01000000) ? 2 : 4;
92 		P    =  (coef & 0x00070000) >> 16;
93 		N    = ((coef & 0x0000ff00) >> 8) + 1;
94 		M    = ((coef & 0x000000ff) >> 0) + 1;
95 		break;
96 	case 0x84:
97 	case 0x86:
98 	case 0x92:
99 		coef = nv_rd32(dev, 0x00e81c);
100 		P    = (coef & 0x00070000) >> 16;
101 		N    = (coef & 0x0000ff00) >> 8;
102 		M    = (coef & 0x000000ff) >> 0;
103 		break;
104 	case 0x94:
105 	case 0x96:
106 	case 0x98:
107 		rsel = nv_rd32(dev, 0x00c050);
108 		switch (base) {
109 		case 0x4020: rsel = (rsel & 0x00000003) >> 0; break;
110 		case 0x4008: rsel = (rsel & 0x0000000c) >> 2; break;
111 		case 0x4028: rsel = (rsel & 0x00001800) >> 11; break;
112 		case 0x4030: rsel = 3; break;
113 		default:
114 			NV_ERROR(dev, "ref: bad pll 0x%06x\n", base);
115 			return 0;
116 		}
117 
118 		switch (rsel) {
119 		case 0: id = 1; break;
120 		case 1: return read_clk(dev, clk_src_crystal);
121 		case 2: return read_clk(dev, clk_src_href);
122 		case 3: id = 0; break;
123 		}
124 
125 		coef =  nv_rd32(dev, 0x00e81c + (id * 0x28));
126 		P    = (nv_rd32(dev, 0x00e824 + (id * 0x28)) >> 16) & 7;
127 		P   += (coef & 0x00070000) >> 16;
128 		N    = (coef & 0x0000ff00) >> 8;
129 		M    = (coef & 0x000000ff) >> 0;
130 		break;
131 	default:
132 		BUG_ON(1);
133 	}
134 
135 	if (M)
136 		return (ref * N / M) >> P;
137 	return 0;
138 }
139 
140 static u32
read_pll_ref(struct drm_device * dev,u32 base)141 read_pll_ref(struct drm_device *dev, u32 base)
142 {
143 	u32 src, mast = nv_rd32(dev, 0x00c040);
144 
145 	switch (base) {
146 	case 0x004028:
147 		src = !!(mast & 0x00200000);
148 		break;
149 	case 0x004020:
150 		src = !!(mast & 0x00400000);
151 		break;
152 	case 0x004008:
153 		src = !!(mast & 0x00010000);
154 		break;
155 	case 0x004030:
156 		src = !!(mast & 0x02000000);
157 		break;
158 	case 0x00e810:
159 		return read_clk(dev, clk_src_crystal);
160 	default:
161 		NV_ERROR(dev, "bad pll 0x%06x\n", base);
162 		return 0;
163 	}
164 
165 	if (src)
166 		return read_clk(dev, clk_src_href);
167 	return read_pll_src(dev, base);
168 }
169 
170 static u32
read_pll(struct drm_device * dev,u32 base)171 read_pll(struct drm_device *dev, u32 base)
172 {
173 	struct drm_nouveau_private *dev_priv = dev->dev_private;
174 	u32 mast = nv_rd32(dev, 0x00c040);
175 	u32 ctrl = nv_rd32(dev, base + 0);
176 	u32 coef = nv_rd32(dev, base + 4);
177 	u32 ref = read_pll_ref(dev, base);
178 	u32 clk = 0;
179 	int N1, N2, M1, M2;
180 
181 	if (base == 0x004028 && (mast & 0x00100000)) {
182 		/* wtf, appears to only disable post-divider on nva0 */
183 		if (dev_priv->chipset != 0xa0)
184 			return read_clk(dev, clk_src_dom6);
185 	}
186 
187 	N2 = (coef & 0xff000000) >> 24;
188 	M2 = (coef & 0x00ff0000) >> 16;
189 	N1 = (coef & 0x0000ff00) >> 8;
190 	M1 = (coef & 0x000000ff);
191 	if ((ctrl & 0x80000000) && M1) {
192 		clk = ref * N1 / M1;
193 		if ((ctrl & 0x40000100) == 0x40000000) {
194 			if (M2)
195 				clk = clk * N2 / M2;
196 			else
197 				clk = 0;
198 		}
199 	}
200 
201 	return clk;
202 }
203 
204 static u32
read_clk(struct drm_device * dev,enum clk_src src)205 read_clk(struct drm_device *dev, enum clk_src src)
206 {
207 	struct drm_nouveau_private *dev_priv = dev->dev_private;
208 	u32 mast = nv_rd32(dev, 0x00c040);
209 	u32 P = 0;
210 
211 	switch (src) {
212 	case clk_src_crystal:
213 		return dev_priv->crystal;
214 	case clk_src_href:
215 		return 100000; /* PCIE reference clock */
216 	case clk_src_hclk:
217 		return read_clk(dev, clk_src_href) * 27778 / 10000;
218 	case clk_src_hclkm3:
219 		return read_clk(dev, clk_src_hclk) * 3;
220 	case clk_src_hclkm3d2:
221 		return read_clk(dev, clk_src_hclk) * 3 / 2;
222 	case clk_src_host:
223 		switch (mast & 0x30000000) {
224 		case 0x00000000: return read_clk(dev, clk_src_href);
225 		case 0x10000000: break;
226 		case 0x20000000: /* !0x50 */
227 		case 0x30000000: return read_clk(dev, clk_src_hclk);
228 		}
229 		break;
230 	case clk_src_nvclk:
231 		if (!(mast & 0x00100000))
232 			P = (nv_rd32(dev, 0x004028) & 0x00070000) >> 16;
233 		switch (mast & 0x00000003) {
234 		case 0x00000000: return read_clk(dev, clk_src_crystal) >> P;
235 		case 0x00000001: return read_clk(dev, clk_src_dom6);
236 		case 0x00000002: return read_pll(dev, 0x004020) >> P;
237 		case 0x00000003: return read_pll(dev, 0x004028) >> P;
238 		}
239 		break;
240 	case clk_src_sclk:
241 		P = (nv_rd32(dev, 0x004020) & 0x00070000) >> 16;
242 		switch (mast & 0x00000030) {
243 		case 0x00000000:
244 			if (mast & 0x00000080)
245 				return read_clk(dev, clk_src_host) >> P;
246 			return read_clk(dev, clk_src_crystal) >> P;
247 		case 0x00000010: break;
248 		case 0x00000020: return read_pll(dev, 0x004028) >> P;
249 		case 0x00000030: return read_pll(dev, 0x004020) >> P;
250 		}
251 		break;
252 	case clk_src_mclk:
253 		P = (nv_rd32(dev, 0x004008) & 0x00070000) >> 16;
254 		if (nv_rd32(dev, 0x004008) & 0x00000200) {
255 			switch (mast & 0x0000c000) {
256 			case 0x00000000:
257 				return read_clk(dev, clk_src_crystal) >> P;
258 			case 0x00008000:
259 			case 0x0000c000:
260 				return read_clk(dev, clk_src_href) >> P;
261 			}
262 		} else {
263 			return read_pll(dev, 0x004008) >> P;
264 		}
265 		break;
266 	case clk_src_vdec:
267 		P = (read_div(dev) & 0x00000700) >> 8;
268 		switch (dev_priv->chipset) {
269 		case 0x84:
270 		case 0x86:
271 		case 0x92:
272 		case 0x94:
273 		case 0x96:
274 		case 0xa0:
275 			switch (mast & 0x00000c00) {
276 			case 0x00000000:
277 				if (dev_priv->chipset == 0xa0) /* wtf?? */
278 					return read_clk(dev, clk_src_nvclk) >> P;
279 				return read_clk(dev, clk_src_crystal) >> P;
280 			case 0x00000400:
281 				return 0;
282 			case 0x00000800:
283 				if (mast & 0x01000000)
284 					return read_pll(dev, 0x004028) >> P;
285 				return read_pll(dev, 0x004030) >> P;
286 			case 0x00000c00:
287 				return read_clk(dev, clk_src_nvclk) >> P;
288 			}
289 			break;
290 		case 0x98:
291 			switch (mast & 0x00000c00) {
292 			case 0x00000000:
293 				return read_clk(dev, clk_src_nvclk) >> P;
294 			case 0x00000400:
295 				return 0;
296 			case 0x00000800:
297 				return read_clk(dev, clk_src_hclkm3d2) >> P;
298 			case 0x00000c00:
299 				return read_clk(dev, clk_src_mclk) >> P;
300 			}
301 			break;
302 		}
303 		break;
304 	case clk_src_dom6:
305 		switch (dev_priv->chipset) {
306 		case 0x50:
307 		case 0xa0:
308 			return read_pll(dev, 0x00e810) >> 2;
309 		case 0x84:
310 		case 0x86:
311 		case 0x92:
312 		case 0x94:
313 		case 0x96:
314 		case 0x98:
315 			P = (read_div(dev) & 0x00000007) >> 0;
316 			switch (mast & 0x0c000000) {
317 			case 0x00000000: return read_clk(dev, clk_src_href);
318 			case 0x04000000: break;
319 			case 0x08000000: return read_clk(dev, clk_src_hclk);
320 			case 0x0c000000:
321 				return read_clk(dev, clk_src_hclkm3) >> P;
322 			}
323 			break;
324 		default:
325 			break;
326 		}
327 	default:
328 		break;
329 	}
330 
331 	NV_DEBUG(dev, "unknown clock source %d 0x%08x\n", src, mast);
332 	return 0;
333 }
334 
335 int
nv50_pm_clocks_get(struct drm_device * dev,struct nouveau_pm_level * perflvl)336 nv50_pm_clocks_get(struct drm_device *dev, struct nouveau_pm_level *perflvl)
337 {
338 	struct drm_nouveau_private *dev_priv = dev->dev_private;
339 	if (dev_priv->chipset == 0xaa ||
340 	    dev_priv->chipset == 0xac)
341 		return 0;
342 
343 	perflvl->core   = read_clk(dev, clk_src_nvclk);
344 	perflvl->shader = read_clk(dev, clk_src_sclk);
345 	perflvl->memory = read_clk(dev, clk_src_mclk);
346 	if (dev_priv->chipset != 0x50) {
347 		perflvl->vdec = read_clk(dev, clk_src_vdec);
348 		perflvl->dom6 = read_clk(dev, clk_src_dom6);
349 	}
350 
351 	return 0;
352 }
353 
354 struct nv50_pm_state {
355 	struct hwsq_ucode mclk_hwsq;
356 	u32 mscript;
357 
358 	u32 emast;
359 	u32 nctrl;
360 	u32 ncoef;
361 	u32 sctrl;
362 	u32 scoef;
363 
364 	u32 amast;
365 	u32 pdivs;
366 };
367 
368 static u32
calc_pll(struct drm_device * dev,u32 reg,struct pll_lims * pll,u32 clk,int * N1,int * M1,int * log2P)369 calc_pll(struct drm_device *dev, u32 reg, struct pll_lims *pll,
370 	 u32 clk, int *N1, int *M1, int *log2P)
371 {
372 	struct nouveau_pll_vals coef;
373 	int ret;
374 
375 	ret = get_pll_limits(dev, reg, pll);
376 	if (ret)
377 		return 0;
378 
379 	pll->vco2.maxfreq = 0;
380 	pll->refclk = read_pll_ref(dev, reg);
381 	if (!pll->refclk)
382 		return 0;
383 
384 	ret = nouveau_calc_pll_mnp(dev, pll, clk, &coef);
385 	if (ret == 0)
386 		return 0;
387 
388 	*N1 = coef.N1;
389 	*M1 = coef.M1;
390 	*log2P = coef.log2P;
391 	return ret;
392 }
393 
394 static inline u32
calc_div(u32 src,u32 target,int * div)395 calc_div(u32 src, u32 target, int *div)
396 {
397 	u32 clk0 = src, clk1 = src;
398 	for (*div = 0; *div <= 7; (*div)++) {
399 		if (clk0 <= target) {
400 			clk1 = clk0 << (*div ? 1 : 0);
401 			break;
402 		}
403 		clk0 >>= 1;
404 	}
405 
406 	if (target - clk0 <= clk1 - target)
407 		return clk0;
408 	(*div)--;
409 	return clk1;
410 }
411 
412 static inline u32
clk_same(u32 a,u32 b)413 clk_same(u32 a, u32 b)
414 {
415 	return ((a / 1000) == (b / 1000));
416 }
417 
418 static int
calc_mclk(struct drm_device * dev,u32 freq,struct hwsq_ucode * hwsq)419 calc_mclk(struct drm_device *dev, u32 freq, struct hwsq_ucode *hwsq)
420 {
421 	struct drm_nouveau_private *dev_priv = dev->dev_private;
422 	struct pll_lims pll;
423 	u32 mast = nv_rd32(dev, 0x00c040);
424 	u32 ctrl = nv_rd32(dev, 0x004008);
425 	u32 coef = nv_rd32(dev, 0x00400c);
426 	u32 orig = ctrl;
427 	u32 crtc_mask = 0;
428 	int N, M, P;
429 	int ret, i;
430 
431 	/* use pcie refclock if possible, otherwise use mpll */
432 	ctrl &= ~0x81ff0200;
433 	if (clk_same(freq, read_clk(dev, clk_src_href))) {
434 		ctrl |= 0x00000200 | (pll.log2p_bias << 19);
435 	} else {
436 		ret = calc_pll(dev, 0x4008, &pll, freq, &N, &M, &P);
437 		if (ret == 0)
438 			return -EINVAL;
439 
440 		ctrl |= 0x80000000 | (P << 22) | (P << 16);
441 		ctrl |= pll.log2p_bias << 19;
442 		coef  = (N << 8) | M;
443 	}
444 
445 	mast &= ~0xc0000000; /* get MCLK_2 from HREF */
446 	mast |=  0x0000c000; /* use MCLK_2 as MPLL_BYPASS clock */
447 
448 	/* determine active crtcs */
449 	for (i = 0; i < 2; i++) {
450 		if (nv_rd32(dev, NV50_PDISPLAY_CRTC_C(i, CLOCK)))
451 			crtc_mask |= (1 << i);
452 	}
453 
454 	/* build the ucode which will reclock the memory for us */
455 	hwsq_init(hwsq);
456 	if (crtc_mask) {
457 		hwsq_op5f(hwsq, crtc_mask, 0x00); /* wait for scanout */
458 		hwsq_op5f(hwsq, crtc_mask, 0x01); /* wait for vblank */
459 	}
460 	if (dev_priv->chipset >= 0x92)
461 		hwsq_wr32(hwsq, 0x611200, 0x00003300); /* disable scanout */
462 	hwsq_setf(hwsq, 0x10, 0); /* disable bus access */
463 	hwsq_op5f(hwsq, 0x00, 0x01); /* no idea :s */
464 
465 	/* prepare memory controller */
466 	hwsq_wr32(hwsq, 0x1002d4, 0x00000001); /* precharge banks and idle */
467 	hwsq_wr32(hwsq, 0x1002d0, 0x00000001); /* force refresh */
468 	hwsq_wr32(hwsq, 0x100210, 0x00000000); /* stop the automatic refresh */
469 	hwsq_wr32(hwsq, 0x1002dc, 0x00000001); /* start self refresh mode */
470 
471 	/* reclock memory */
472 	hwsq_wr32(hwsq, 0xc040, mast);
473 	hwsq_wr32(hwsq, 0x4008, orig | 0x00000200); /* bypass MPLL */
474 	hwsq_wr32(hwsq, 0x400c, coef);
475 	hwsq_wr32(hwsq, 0x4008, ctrl);
476 
477 	/* restart memory controller */
478 	hwsq_wr32(hwsq, 0x1002d4, 0x00000001); /* precharge banks and idle */
479 	hwsq_wr32(hwsq, 0x1002dc, 0x00000000); /* stop self refresh mode */
480 	hwsq_wr32(hwsq, 0x100210, 0x80000000); /* restart automatic refresh */
481 	hwsq_usec(hwsq, 12); /* wait for the PLL to stabilize */
482 
483 	hwsq_usec(hwsq, 48); /* may be unnecessary: causes flickering */
484 	hwsq_setf(hwsq, 0x10, 1); /* enable bus access */
485 	hwsq_op5f(hwsq, 0x00, 0x00); /* no idea, reverse of 0x00, 0x01? */
486 	if (dev_priv->chipset >= 0x92)
487 		hwsq_wr32(hwsq, 0x611200, 0x00003330); /* enable scanout */
488 	hwsq_fini(hwsq);
489 	return 0;
490 }
491 
492 void *
nv50_pm_clocks_pre(struct drm_device * dev,struct nouveau_pm_level * perflvl)493 nv50_pm_clocks_pre(struct drm_device *dev, struct nouveau_pm_level *perflvl)
494 {
495 	struct drm_nouveau_private *dev_priv = dev->dev_private;
496 	struct nv50_pm_state *info;
497 	struct pll_lims pll;
498 	int clk, ret = -EINVAL;
499 	int N, M, P1, P2;
500 	u32 out;
501 
502 	if (dev_priv->chipset == 0xaa ||
503 	    dev_priv->chipset == 0xac)
504 		return ERR_PTR(-ENODEV);
505 
506 	info = kmalloc(sizeof(*info), GFP_KERNEL);
507 	if (!info)
508 		return ERR_PTR(-ENOMEM);
509 
510 	/* core: for the moment at least, always use nvpll */
511 	clk = calc_pll(dev, 0x4028, &pll, perflvl->core, &N, &M, &P1);
512 	if (clk == 0)
513 		goto error;
514 
515 	info->emast = 0x00000003;
516 	info->nctrl = 0x80000000 | (P1 << 19) | (P1 << 16);
517 	info->ncoef = (N << 8) | M;
518 
519 	/* shader: tie to nvclk if possible, otherwise use spll.  have to be
520 	 * very careful that the shader clock is at least twice the core, or
521 	 * some chipsets will be very unhappy.  i expect most or all of these
522 	 * cases will be handled by tying to nvclk, but it's possible there's
523 	 * corners
524 	 */
525 	if (P1-- && perflvl->shader == (perflvl->core << 1)) {
526 		info->emast |= 0x00000020;
527 		info->sctrl  = 0x00000000 | (P1 << 19) | (P1 << 16);
528 		info->scoef  = nv_rd32(dev, 0x004024);
529 	} else {
530 		clk = calc_pll(dev, 0x4020, &pll, perflvl->shader, &N, &M, &P1);
531 		if (clk == 0)
532 			goto error;
533 
534 		info->emast |= 0x00000030;
535 		info->sctrl  = 0x80000000 | (P1 << 19) | (P1 << 16);
536 		info->scoef  = (N << 8) | M;
537 	}
538 
539 	/* memory: build hwsq ucode which we'll use to reclock memory */
540 	info->mclk_hwsq.len = 0;
541 	if (perflvl->memory) {
542 		clk = calc_mclk(dev, perflvl->memory, &info->mclk_hwsq);
543 		if (clk < 0) {
544 			ret = clk;
545 			goto error;
546 		}
547 
548 		info->mscript = perflvl->memscript;
549 	}
550 
551 	/* vdec: avoid modifying xpll until we know exactly how the other
552 	 * clock domains work, i suspect at least some of them can also be
553 	 * tied to xpll...
554 	 */
555 	info->amast = nv_rd32(dev, 0x00c040);
556 	info->pdivs = read_div(dev);
557 	if (perflvl->vdec) {
558 		/* see how close we can get using nvclk as a source */
559 		clk = calc_div(perflvl->core, perflvl->vdec, &P1);
560 
561 		/* see how close we can get using xpll/hclk as a source */
562 		if (dev_priv->chipset != 0x98)
563 			out = read_pll(dev, 0x004030);
564 		else
565 			out = read_clk(dev, clk_src_hclkm3d2);
566 		out = calc_div(out, perflvl->vdec, &P2);
567 
568 		/* select whichever gets us closest */
569 		info->amast &= ~0x00000c00;
570 		info->pdivs &= ~0x00000700;
571 		if (abs((int)perflvl->vdec - clk) <=
572 		    abs((int)perflvl->vdec - out)) {
573 			if (dev_priv->chipset != 0x98)
574 				info->amast |= 0x00000c00;
575 			info->pdivs |= P1 << 8;
576 		} else {
577 			info->amast |= 0x00000800;
578 			info->pdivs |= P2 << 8;
579 		}
580 	}
581 
582 	/* dom6: nfi what this is, but we're limited to various combinations
583 	 * of the host clock frequency
584 	 */
585 	if (perflvl->dom6) {
586 		info->amast &= ~0x0c000000;
587 		if (clk_same(perflvl->dom6, read_clk(dev, clk_src_href))) {
588 			info->amast |= 0x00000000;
589 		} else
590 		if (clk_same(perflvl->dom6, read_clk(dev, clk_src_hclk))) {
591 			info->amast |= 0x08000000;
592 		} else {
593 			clk = read_clk(dev, clk_src_hclk) * 3;
594 			clk = calc_div(clk, perflvl->dom6, &P1);
595 
596 			info->amast |= 0x0c000000;
597 			info->pdivs  = (info->pdivs & ~0x00000007) | P1;
598 		}
599 	}
600 
601 	return info;
602 error:
603 	kfree(info);
604 	return ERR_PTR(ret);
605 }
606 
607 static int
prog_mclk(struct drm_device * dev,struct hwsq_ucode * hwsq)608 prog_mclk(struct drm_device *dev, struct hwsq_ucode *hwsq)
609 {
610 	struct drm_nouveau_private *dev_priv = dev->dev_private;
611 	u32 hwsq_data, hwsq_kick;
612 	int i;
613 
614 	if (dev_priv->chipset < 0x90) {
615 		hwsq_data = 0x001400;
616 		hwsq_kick = 0x00000003;
617 	} else {
618 		hwsq_data = 0x080000;
619 		hwsq_kick = 0x00000001;
620 	}
621 
622 	/* upload hwsq ucode */
623 	nv_mask(dev, 0x001098, 0x00000008, 0x00000000);
624 	nv_wr32(dev, 0x001304, 0x00000000);
625 	for (i = 0; i < hwsq->len / 4; i++)
626 		nv_wr32(dev, hwsq_data + (i * 4), hwsq->ptr.u32[i]);
627 	nv_mask(dev, 0x001098, 0x00000018, 0x00000018);
628 
629 	/* launch, and wait for completion */
630 	nv_wr32(dev, 0x00130c, hwsq_kick);
631 	if (!nv_wait(dev, 0x001308, 0x00000100, 0x00000000)) {
632 		NV_ERROR(dev, "hwsq ucode exec timed out\n");
633 		NV_ERROR(dev, "0x001308: 0x%08x\n", nv_rd32(dev, 0x001308));
634 		for (i = 0; i < hwsq->len / 4; i++) {
635 			NV_ERROR(dev, "0x%06x: 0x%08x\n", 0x1400 + (i * 4),
636 				 nv_rd32(dev, 0x001400 + (i * 4)));
637 		}
638 
639 		return -EIO;
640 	}
641 
642 	return 0;
643 }
644 
645 int
nv50_pm_clocks_set(struct drm_device * dev,void * data)646 nv50_pm_clocks_set(struct drm_device *dev, void *data)
647 {
648 	struct drm_nouveau_private *dev_priv = dev->dev_private;
649 	struct nv50_pm_state *info = data;
650 	struct bit_entry M;
651 	int ret = 0;
652 
653 	/* halt and idle execution engines */
654 	nv_mask(dev, 0x002504, 0x00000001, 0x00000001);
655 	if (!nv_wait(dev, 0x002504, 0x00000010, 0x00000010))
656 		goto error;
657 
658 	/* memory: it is *very* important we change this first, the ucode
659 	 * we build in pre() now has hardcoded 0xc040 values, which can't
660 	 * change before we execute it or the engine clocks may end up
661 	 * messed up.
662 	 */
663 	if (info->mclk_hwsq.len) {
664 		/* execute some scripts that do ??? from the vbios.. */
665 		if (!bit_table(dev, 'M', &M) && M.version == 1) {
666 			if (M.length >= 6)
667 				nouveau_bios_init_exec(dev, ROM16(M.data[5]));
668 			if (M.length >= 8)
669 				nouveau_bios_init_exec(dev, ROM16(M.data[7]));
670 			if (M.length >= 10)
671 				nouveau_bios_init_exec(dev, ROM16(M.data[9]));
672 			nouveau_bios_init_exec(dev, info->mscript);
673 		}
674 
675 		ret = prog_mclk(dev, &info->mclk_hwsq);
676 		if (ret)
677 			goto resume;
678 	}
679 
680 	/* reclock vdec/dom6 */
681 	nv_mask(dev, 0x00c040, 0x00000c00, 0x00000000);
682 	switch (dev_priv->chipset) {
683 	case 0x92:
684 	case 0x94:
685 	case 0x96:
686 		nv_mask(dev, 0x004800, 0x00000707, info->pdivs);
687 		break;
688 	default:
689 		nv_mask(dev, 0x004700, 0x00000707, info->pdivs);
690 		break;
691 	}
692 	nv_mask(dev, 0x00c040, 0x0c000c00, info->amast);
693 
694 	/* core/shader: make sure sclk/nvclk are disconnected from their
695 	 * plls (nvclk to dom6, sclk to hclk), modify the plls, and
696 	 * reconnect sclk/nvclk to their new clock source
697 	 */
698 	if (dev_priv->chipset < 0x92)
699 		nv_mask(dev, 0x00c040, 0x001000b0, 0x00100080); /* grrr! */
700 	else
701 		nv_mask(dev, 0x00c040, 0x000000b3, 0x00000081);
702 	nv_mask(dev, 0x004020, 0xc03f0100, info->sctrl);
703 	nv_wr32(dev, 0x004024, info->scoef);
704 	nv_mask(dev, 0x004028, 0xc03f0100, info->nctrl);
705 	nv_wr32(dev, 0x00402c, info->ncoef);
706 	nv_mask(dev, 0x00c040, 0x00100033, info->emast);
707 
708 	goto resume;
709 error:
710 	ret = -EBUSY;
711 resume:
712 	nv_mask(dev, 0x002504, 0x00000001, 0x00000000);
713 	kfree(info);
714 	return ret;
715 }
716 
717 static int
pwm_info(struct drm_device * dev,int * line,int * ctrl,int * indx)718 pwm_info(struct drm_device *dev, int *line, int *ctrl, int *indx)
719 {
720 	if (*line == 0x04) {
721 		*ctrl = 0x00e100;
722 		*line = 4;
723 		*indx = 0;
724 	} else
725 	if (*line == 0x09) {
726 		*ctrl = 0x00e100;
727 		*line = 9;
728 		*indx = 1;
729 	} else
730 	if (*line == 0x10) {
731 		*ctrl = 0x00e28c;
732 		*line = 0;
733 		*indx = 0;
734 	} else {
735 		NV_ERROR(dev, "unknown pwm ctrl for gpio %d\n", *line);
736 		return -ENODEV;
737 	}
738 
739 	return 0;
740 }
741 
742 int
nv50_pm_pwm_get(struct drm_device * dev,int line,u32 * divs,u32 * duty)743 nv50_pm_pwm_get(struct drm_device *dev, int line, u32 *divs, u32 *duty)
744 {
745 	int ctrl, id, ret = pwm_info(dev, &line, &ctrl, &id);
746 	if (ret)
747 		return ret;
748 
749 	if (nv_rd32(dev, ctrl) & (1 << line)) {
750 		*divs = nv_rd32(dev, 0x00e114 + (id * 8));
751 		*duty = nv_rd32(dev, 0x00e118 + (id * 8));
752 		return 0;
753 	}
754 
755 	return -EINVAL;
756 }
757 
758 int
nv50_pm_pwm_set(struct drm_device * dev,int line,u32 divs,u32 duty)759 nv50_pm_pwm_set(struct drm_device *dev, int line, u32 divs, u32 duty)
760 {
761 	int ctrl, id, ret = pwm_info(dev, &line, &ctrl, &id);
762 	if (ret)
763 		return ret;
764 
765 	nv_mask(dev, ctrl, 0x00010001 << line, 0x00000001 << line);
766 	nv_wr32(dev, 0x00e114 + (id * 8), divs);
767 	nv_wr32(dev, 0x00e118 + (id * 8), duty | 0x80000000);
768 	return 0;
769 }
770