1 // SPDX-License-Identifier: GPL-2.0-only
2 
3 /* PIPAPO: PIle PAcket POlicies: set for arbitrary concatenations of ranges
4  *
5  * Copyright (c) 2019-2020 Red Hat GmbH
6  *
7  * Author: Stefano Brivio <sbrivio@redhat.com>
8  */
9 
10 /**
11  * DOC: Theory of Operation
12  *
13  *
14  * Problem
15  * -------
16  *
17  * Match packet bytes against entries composed of ranged or non-ranged packet
18  * field specifiers, mapping them to arbitrary references. For example:
19  *
20  * ::
21  *
22  *               --- fields --->
23  *      |    [net],[port],[net]... => [reference]
24  *   entries [net],[port],[net]... => [reference]
25  *      |    [net],[port],[net]... => [reference]
26  *      V    ...
27  *
28  * where [net] fields can be IP ranges or netmasks, and [port] fields are port
29  * ranges. Arbitrary packet fields can be matched.
30  *
31  *
32  * Algorithm Overview
33  * ------------------
34  *
35  * This algorithm is loosely inspired by [Ligatti 2010], and fundamentally
36  * relies on the consideration that every contiguous range in a space of b bits
37  * can be converted into b * 2 netmasks, from Theorem 3 in [Rottenstreich 2010],
38  * as also illustrated in Section 9 of [Kogan 2014].
39  *
40  * Classification against a number of entries, that require matching given bits
41  * of a packet field, is performed by grouping those bits in sets of arbitrary
42  * size, and classifying packet bits one group at a time.
43  *
44  * Example:
45  *   to match the source port (16 bits) of a packet, we can divide those 16 bits
46  *   in 4 groups of 4 bits each. Given the entry:
47  *      0000 0001 0101 1001
48  *   and a packet with source port:
49  *      0000 0001 1010 1001
50  *   first and second groups match, but the third doesn't. We conclude that the
51  *   packet doesn't match the given entry.
52  *
53  * Translate the set to a sequence of lookup tables, one per field. Each table
54  * has two dimensions: bit groups to be matched for a single packet field, and
55  * all the possible values of said groups (buckets). Input entries are
56  * represented as one or more rules, depending on the number of composing
57  * netmasks for the given field specifier, and a group match is indicated as a
58  * set bit, with number corresponding to the rule index, in all the buckets
59  * whose value matches the entry for a given group.
60  *
61  * Rules are mapped between fields through an array of x, n pairs, with each
62  * item mapping a matched rule to one or more rules. The position of the pair in
63  * the array indicates the matched rule to be mapped to the next field, x
64  * indicates the first rule index in the next field, and n the amount of
65  * next-field rules the current rule maps to.
66  *
67  * The mapping array for the last field maps to the desired references.
68  *
69  * To match, we perform table lookups using the values of grouped packet bits,
70  * and use a sequence of bitwise operations to progressively evaluate rule
71  * matching.
72  *
73  * A stand-alone, reference implementation, also including notes about possible
74  * future optimisations, is available at:
75  *    https://pipapo.lameexcu.se/
76  *
77  * Insertion
78  * ---------
79  *
80  * - For each packet field:
81  *
82  *   - divide the b packet bits we want to classify into groups of size t,
83  *     obtaining ceil(b / t) groups
84  *
85  *      Example: match on destination IP address, with t = 4: 32 bits, 8 groups
86  *      of 4 bits each
87  *
88  *   - allocate a lookup table with one column ("bucket") for each possible
89  *     value of a group, and with one row for each group
90  *
91  *      Example: 8 groups, 2^4 buckets:
92  *
93  * ::
94  *
95  *                     bucket
96  *      group  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
97  *        0
98  *        1
99  *        2
100  *        3
101  *        4
102  *        5
103  *        6
104  *        7
105  *
106  *   - map the bits we want to classify for the current field, for a given
107  *     entry, to a single rule for non-ranged and netmask set items, and to one
108  *     or multiple rules for ranges. Ranges are expanded to composing netmasks
109  *     by pipapo_expand().
110  *
111  *      Example: 2 entries, 10.0.0.5:1024 and 192.168.1.0-192.168.2.1:2048
112  *      - rule #0: 10.0.0.5
113  *      - rule #1: 192.168.1.0/24
114  *      - rule #2: 192.168.2.0/31
115  *
116  *   - insert references to the rules in the lookup table, selecting buckets
117  *     according to bit values of a rule in the given group. This is done by
118  *     pipapo_insert().
119  *
120  *      Example: given:
121  *      - rule #0: 10.0.0.5 mapping to buckets
122  *        < 0 10  0 0   0 0  0 5 >
123  *      - rule #1: 192.168.1.0/24 mapping to buckets
124  *        < 12 0  10 8  0 1  < 0..15 > < 0..15 > >
125  *      - rule #2: 192.168.2.0/31 mapping to buckets
126  *        < 12 0  10 8  0 2  0 < 0..1 > >
127  *
128  *      these bits are set in the lookup table:
129  *
130  * ::
131  *
132  *                     bucket
133  *      group  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
134  *        0    0                                              1,2
135  *        1   1,2                                      0
136  *        2    0                                      1,2
137  *        3    0                              1,2
138  *        4  0,1,2
139  *        5    0   1   2
140  *        6  0,1,2 1   1   1   1   1   1   1   1   1   1   1   1   1   1   1
141  *        7   1,2 1,2  1   1   1  0,1  1   1   1   1   1   1   1   1   1   1
142  *
143  *   - if this is not the last field in the set, fill a mapping array that maps
144  *     rules from the lookup table to rules belonging to the same entry in
145  *     the next lookup table, done by pipapo_map().
146  *
147  *     Note that as rules map to contiguous ranges of rules, given how netmask
148  *     expansion and insertion is performed, &union nft_pipapo_map_bucket stores
149  *     this information as pairs of first rule index, rule count.
150  *
151  *      Example: 2 entries, 10.0.0.5:1024 and 192.168.1.0-192.168.2.1:2048,
152  *      given lookup table #0 for field 0 (see example above):
153  *
154  * ::
155  *
156  *                     bucket
157  *      group  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
158  *        0    0                                              1,2
159  *        1   1,2                                      0
160  *        2    0                                      1,2
161  *        3    0                              1,2
162  *        4  0,1,2
163  *        5    0   1   2
164  *        6  0,1,2 1   1   1   1   1   1   1   1   1   1   1   1   1   1   1
165  *        7   1,2 1,2  1   1   1  0,1  1   1   1   1   1   1   1   1   1   1
166  *
167  *      and lookup table #1 for field 1 with:
168  *      - rule #0: 1024 mapping to buckets
169  *        < 0  0  4  0 >
170  *      - rule #1: 2048 mapping to buckets
171  *        < 0  0  5  0 >
172  *
173  * ::
174  *
175  *                     bucket
176  *      group  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
177  *        0   0,1
178  *        1   0,1
179  *        2                    0   1
180  *        3   0,1
181  *
182  *      we need to map rules for 10.0.0.5 in lookup table #0 (rule #0) to 1024
183  *      in lookup table #1 (rule #0) and rules for 192.168.1.0-192.168.2.1
184  *      (rules #1, #2) to 2048 in lookup table #2 (rule #1):
185  *
186  * ::
187  *
188  *       rule indices in current field: 0    1    2
189  *       map to rules in next field:    0    1    1
190  *
191  *   - if this is the last field in the set, fill a mapping array that maps
192  *     rules from the last lookup table to element pointers, also done by
193  *     pipapo_map().
194  *
195  *     Note that, in this implementation, we have two elements (start, end) for
196  *     each entry. The pointer to the end element is stored in this array, and
197  *     the pointer to the start element is linked from it.
198  *
199  *      Example: entry 10.0.0.5:1024 has a corresponding &struct nft_pipapo_elem
200  *      pointer, 0x66, and element for 192.168.1.0-192.168.2.1:2048 is at 0x42.
201  *      From the rules of lookup table #1 as mapped above:
202  *
203  * ::
204  *
205  *       rule indices in last field:    0    1
206  *       map to elements:             0x66  0x42
207  *
208  *
209  * Matching
210  * --------
211  *
212  * We use a result bitmap, with the size of a single lookup table bucket, to
213  * represent the matching state that applies at every algorithm step. This is
214  * done by pipapo_lookup().
215  *
216  * - For each packet field:
217  *
218  *   - start with an all-ones result bitmap (res_map in pipapo_lookup())
219  *
220  *   - perform a lookup into the table corresponding to the current field,
221  *     for each group, and at every group, AND the current result bitmap with
222  *     the value from the lookup table bucket
223  *
224  * ::
225  *
226  *      Example: 192.168.1.5 < 12 0  10 8  0 1  0 5 >, with lookup table from
227  *      insertion examples.
228  *      Lookup table buckets are at least 3 bits wide, we'll assume 8 bits for
229  *      convenience in this example. Initial result bitmap is 0xff, the steps
230  *      below show the value of the result bitmap after each group is processed:
231  *
232  *                     bucket
233  *      group  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
234  *        0    0                                              1,2
235  *        result bitmap is now: 0xff & 0x6 [bucket 12] = 0x6
236  *
237  *        1   1,2                                      0
238  *        result bitmap is now: 0x6 & 0x6 [bucket 0] = 0x6
239  *
240  *        2    0                                      1,2
241  *        result bitmap is now: 0x6 & 0x6 [bucket 10] = 0x6
242  *
243  *        3    0                              1,2
244  *        result bitmap is now: 0x6 & 0x6 [bucket 8] = 0x6
245  *
246  *        4  0,1,2
247  *        result bitmap is now: 0x6 & 0x7 [bucket 0] = 0x6
248  *
249  *        5    0   1   2
250  *        result bitmap is now: 0x6 & 0x2 [bucket 1] = 0x2
251  *
252  *        6  0,1,2 1   1   1   1   1   1   1   1   1   1   1   1   1   1   1
253  *        result bitmap is now: 0x2 & 0x7 [bucket 0] = 0x2
254  *
255  *        7   1,2 1,2  1   1   1  0,1  1   1   1   1   1   1   1   1   1   1
256  *        final result bitmap for this field is: 0x2 & 0x3 [bucket 5] = 0x2
257  *
258  *   - at the next field, start with a new, all-zeroes result bitmap. For each
259  *     bit set in the previous result bitmap, fill the new result bitmap
260  *     (fill_map in pipapo_lookup()) with the rule indices from the
261  *     corresponding buckets of the mapping field for this field, done by
262  *     pipapo_refill()
263  *
264  *      Example: with mapping table from insertion examples, with the current
265  *      result bitmap from the previous example, 0x02:
266  *
267  * ::
268  *
269  *       rule indices in current field: 0    1    2
270  *       map to rules in next field:    0    1    1
271  *
272  *      the new result bitmap will be 0x02: rule 1 was set, and rule 1 will be
273  *      set.
274  *
275  *      We can now extend this example to cover the second iteration of the step
276  *      above (lookup and AND bitmap): assuming the port field is
277  *      2048 < 0  0  5  0 >, with starting result bitmap 0x2, and lookup table
278  *      for "port" field from pre-computation example:
279  *
280  * ::
281  *
282  *                     bucket
283  *      group  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
284  *        0   0,1
285  *        1   0,1
286  *        2                    0   1
287  *        3   0,1
288  *
289  *       operations are: 0x2 & 0x3 [bucket 0] & 0x3 [bucket 0] & 0x2 [bucket 5]
290  *       & 0x3 [bucket 0], resulting bitmap is 0x2.
291  *
292  *   - if this is the last field in the set, look up the value from the mapping
293  *     array corresponding to the final result bitmap
294  *
295  *      Example: 0x2 resulting bitmap from 192.168.1.5:2048, mapping array for
296  *      last field from insertion example:
297  *
298  * ::
299  *
300  *       rule indices in last field:    0    1
301  *       map to elements:             0x66  0x42
302  *
303  *      the matching element is at 0x42.
304  *
305  *
306  * References
307  * ----------
308  *
309  * [Ligatti 2010]
310  *      A Packet-classification Algorithm for Arbitrary Bitmask Rules, with
311  *      Automatic Time-space Tradeoffs
312  *      Jay Ligatti, Josh Kuhn, and Chris Gage.
313  *      Proceedings of the IEEE International Conference on Computer
314  *      Communication Networks (ICCCN), August 2010.
315  *      https://www.cse.usf.edu/~ligatti/papers/grouper-conf.pdf
316  *
317  * [Rottenstreich 2010]
318  *      Worst-Case TCAM Rule Expansion
319  *      Ori Rottenstreich and Isaac Keslassy.
320  *      2010 Proceedings IEEE INFOCOM, San Diego, CA, 2010.
321  *      http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.212.4592&rep=rep1&type=pdf
322  *
323  * [Kogan 2014]
324  *      SAX-PAC (Scalable And eXpressive PAcket Classification)
325  *      Kirill Kogan, Sergey Nikolenko, Ori Rottenstreich, William Culhane,
326  *      and Patrick Eugster.
327  *      Proceedings of the 2014 ACM conference on SIGCOMM, August 2014.
328  *      https://www.sigcomm.org/sites/default/files/ccr/papers/2014/August/2619239-2626294.pdf
329  */
330 
331 #include <linux/kernel.h>
332 #include <linux/init.h>
333 #include <linux/module.h>
334 #include <linux/netlink.h>
335 #include <linux/netfilter.h>
336 #include <linux/netfilter/nf_tables.h>
337 #include <net/netfilter/nf_tables_core.h>
338 #include <uapi/linux/netfilter/nf_tables.h>
339 #include <linux/bitmap.h>
340 #include <linux/bitops.h>
341 
342 #include "nft_set_pipapo_avx2.h"
343 #include "nft_set_pipapo.h"
344 
345 /**
346  * pipapo_refill() - For each set bit, set bits from selected mapping table item
347  * @map:	Bitmap to be scanned for set bits
348  * @len:	Length of bitmap in longs
349  * @rules:	Number of rules in field
350  * @dst:	Destination bitmap
351  * @mt:		Mapping table containing bit set specifiers
352  * @match_only:	Find a single bit and return, don't fill
353  *
354  * Iteration over set bits with __builtin_ctzl(): Daniel Lemire, public domain.
355  *
356  * For each bit set in map, select the bucket from mapping table with index
357  * corresponding to the position of the bit set. Use start bit and amount of
358  * bits specified in bucket to fill region in dst.
359  *
360  * Return: -1 on no match, bit position on 'match_only', 0 otherwise.
361  */
pipapo_refill(unsigned long * map,int len,int rules,unsigned long * dst,union nft_pipapo_map_bucket * mt,bool match_only)362 int pipapo_refill(unsigned long *map, int len, int rules, unsigned long *dst,
363 		  union nft_pipapo_map_bucket *mt, bool match_only)
364 {
365 	unsigned long bitset;
366 	int k, ret = -1;
367 
368 	for (k = 0; k < len; k++) {
369 		bitset = map[k];
370 		while (bitset) {
371 			unsigned long t = bitset & -bitset;
372 			int r = __builtin_ctzl(bitset);
373 			int i = k * BITS_PER_LONG + r;
374 
375 			if (unlikely(i >= rules)) {
376 				map[k] = 0;
377 				return -1;
378 			}
379 
380 			if (match_only) {
381 				bitmap_clear(map, i, 1);
382 				return i;
383 			}
384 
385 			ret = 0;
386 
387 			bitmap_set(dst, mt[i].to, mt[i].n);
388 
389 			bitset ^= t;
390 		}
391 		map[k] = 0;
392 	}
393 
394 	return ret;
395 }
396 
397 /**
398  * nft_pipapo_lookup() - Lookup function
399  * @net:	Network namespace
400  * @set:	nftables API set representation
401  * @key:	nftables API element representation containing key data
402  * @ext:	nftables API extension pointer, filled with matching reference
403  *
404  * For more details, see DOC: Theory of Operation.
405  *
406  * Return: true on match, false otherwise.
407  */
nft_pipapo_lookup(const struct net * net,const struct nft_set * set,const u32 * key,const struct nft_set_ext ** ext)408 bool nft_pipapo_lookup(const struct net *net, const struct nft_set *set,
409 		       const u32 *key, const struct nft_set_ext **ext)
410 {
411 	struct nft_pipapo *priv = nft_set_priv(set);
412 	struct nft_pipapo_scratch *scratch;
413 	unsigned long *res_map, *fill_map;
414 	u8 genmask = nft_genmask_cur(net);
415 	const u8 *rp = (const u8 *)key;
416 	struct nft_pipapo_match *m;
417 	struct nft_pipapo_field *f;
418 	bool map_index;
419 	int i;
420 
421 	local_bh_disable();
422 
423 	m = rcu_dereference(priv->match);
424 
425 	if (unlikely(!m || !*raw_cpu_ptr(m->scratch)))
426 		goto out;
427 
428 	scratch = *raw_cpu_ptr(m->scratch);
429 
430 	map_index = scratch->map_index;
431 
432 	res_map  = scratch->map + (map_index ? m->bsize_max : 0);
433 	fill_map = scratch->map + (map_index ? 0 : m->bsize_max);
434 
435 	memset(res_map, 0xff, m->bsize_max * sizeof(*res_map));
436 
437 	nft_pipapo_for_each_field(f, i, m) {
438 		bool last = i == m->field_count - 1;
439 		int b;
440 
441 		/* For each bit group: select lookup table bucket depending on
442 		 * packet bytes value, then AND bucket value
443 		 */
444 		if (likely(f->bb == 8))
445 			pipapo_and_field_buckets_8bit(f, res_map, rp);
446 		else
447 			pipapo_and_field_buckets_4bit(f, res_map, rp);
448 		NFT_PIPAPO_GROUP_BITS_ARE_8_OR_4;
449 
450 		rp += f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f);
451 
452 		/* Now populate the bitmap for the next field, unless this is
453 		 * the last field, in which case return the matched 'ext'
454 		 * pointer if any.
455 		 *
456 		 * Now res_map contains the matching bitmap, and fill_map is the
457 		 * bitmap for the next field.
458 		 */
459 next_match:
460 		b = pipapo_refill(res_map, f->bsize, f->rules, fill_map, f->mt,
461 				  last);
462 		if (b < 0) {
463 			scratch->map_index = map_index;
464 			local_bh_enable();
465 
466 			return false;
467 		}
468 
469 		if (last) {
470 			*ext = &f->mt[b].e->ext;
471 			if (unlikely(nft_set_elem_expired(*ext) ||
472 				     !nft_set_elem_active(*ext, genmask)))
473 				goto next_match;
474 
475 			/* Last field: we're just returning the key without
476 			 * filling the initial bitmap for the next field, so the
477 			 * current inactive bitmap is clean and can be reused as
478 			 * *next* bitmap (not initial) for the next packet.
479 			 */
480 			scratch->map_index = map_index;
481 			local_bh_enable();
482 
483 			return true;
484 		}
485 
486 		/* Swap bitmap indices: res_map is the initial bitmap for the
487 		 * next field, and fill_map is guaranteed to be all-zeroes at
488 		 * this point.
489 		 */
490 		map_index = !map_index;
491 		swap(res_map, fill_map);
492 
493 		rp += NFT_PIPAPO_GROUPS_PADDING(f);
494 	}
495 
496 out:
497 	local_bh_enable();
498 	return false;
499 }
500 
501 /**
502  * pipapo_get() - Get matching element reference given key data
503  * @net:	Network namespace
504  * @set:	nftables API set representation
505  * @data:	Key data to be matched against existing elements
506  * @genmask:	If set, check that element is active in given genmask
507  * @tstamp:	timestamp to check for expired elements
508  *
509  * This is essentially the same as the lookup function, except that it matches
510  * key data against the uncommitted copy and doesn't use preallocated maps for
511  * bitmap results.
512  *
513  * Return: pointer to &struct nft_pipapo_elem on match, error pointer otherwise.
514  */
pipapo_get(const struct net * net,const struct nft_set * set,const u8 * data,u8 genmask,u64 tstamp)515 static struct nft_pipapo_elem *pipapo_get(const struct net *net,
516 					  const struct nft_set *set,
517 					  const u8 *data, u8 genmask,
518 					  u64 tstamp)
519 {
520 	struct nft_pipapo_elem *ret = ERR_PTR(-ENOENT);
521 	struct nft_pipapo *priv = nft_set_priv(set);
522 	struct nft_pipapo_match *m = priv->clone;
523 	unsigned long *res_map, *fill_map = NULL;
524 	struct nft_pipapo_field *f;
525 	int i;
526 
527 	res_map = kmalloc_array(m->bsize_max, sizeof(*res_map), GFP_ATOMIC);
528 	if (!res_map) {
529 		ret = ERR_PTR(-ENOMEM);
530 		goto out;
531 	}
532 
533 	fill_map = kcalloc(m->bsize_max, sizeof(*res_map), GFP_ATOMIC);
534 	if (!fill_map) {
535 		ret = ERR_PTR(-ENOMEM);
536 		goto out;
537 	}
538 
539 	memset(res_map, 0xff, m->bsize_max * sizeof(*res_map));
540 
541 	nft_pipapo_for_each_field(f, i, m) {
542 		bool last = i == m->field_count - 1;
543 		int b;
544 
545 		/* For each bit group: select lookup table bucket depending on
546 		 * packet bytes value, then AND bucket value
547 		 */
548 		if (f->bb == 8)
549 			pipapo_and_field_buckets_8bit(f, res_map, data);
550 		else if (f->bb == 4)
551 			pipapo_and_field_buckets_4bit(f, res_map, data);
552 		else
553 			BUG();
554 
555 		data += f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f);
556 
557 		/* Now populate the bitmap for the next field, unless this is
558 		 * the last field, in which case return the matched 'ext'
559 		 * pointer if any.
560 		 *
561 		 * Now res_map contains the matching bitmap, and fill_map is the
562 		 * bitmap for the next field.
563 		 */
564 next_match:
565 		b = pipapo_refill(res_map, f->bsize, f->rules, fill_map, f->mt,
566 				  last);
567 		if (b < 0)
568 			goto out;
569 
570 		if (last) {
571 			if (__nft_set_elem_expired(&f->mt[b].e->ext, tstamp))
572 				goto next_match;
573 			if ((genmask &&
574 			     !nft_set_elem_active(&f->mt[b].e->ext, genmask)))
575 				goto next_match;
576 
577 			ret = f->mt[b].e;
578 			goto out;
579 		}
580 
581 		data += NFT_PIPAPO_GROUPS_PADDING(f);
582 
583 		/* Swap bitmap indices: fill_map will be the initial bitmap for
584 		 * the next field (i.e. the new res_map), and res_map is
585 		 * guaranteed to be all-zeroes at this point, ready to be filled
586 		 * according to the next mapping table.
587 		 */
588 		swap(res_map, fill_map);
589 	}
590 
591 out:
592 	kfree(fill_map);
593 	kfree(res_map);
594 	return ret;
595 }
596 
597 /**
598  * nft_pipapo_get() - Get matching element reference given key data
599  * @net:	Network namespace
600  * @set:	nftables API set representation
601  * @elem:	nftables API element representation containing key data
602  * @flags:	Unused
603  */
604 static struct nft_elem_priv *
nft_pipapo_get(const struct net * net,const struct nft_set * set,const struct nft_set_elem * elem,unsigned int flags)605 nft_pipapo_get(const struct net *net, const struct nft_set *set,
606 	       const struct nft_set_elem *elem, unsigned int flags)
607 {
608 	struct nft_pipapo_elem *e;
609 
610 	e = pipapo_get(net, set, (const u8 *)elem->key.val.data,
611 		       nft_genmask_cur(net), get_jiffies_64());
612 	if (IS_ERR(e))
613 		return ERR_CAST(e);
614 
615 	return &e->priv;
616 }
617 
618 /**
619  * pipapo_resize() - Resize lookup or mapping table, or both
620  * @f:		Field containing lookup and mapping tables
621  * @old_rules:	Previous amount of rules in field
622  * @rules:	New amount of rules
623  *
624  * Increase, decrease or maintain tables size depending on new amount of rules,
625  * and copy data over. In case the new size is smaller, throw away data for
626  * highest-numbered rules.
627  *
628  * Return: 0 on success, -ENOMEM on allocation failure.
629  */
pipapo_resize(struct nft_pipapo_field * f,int old_rules,int rules)630 static int pipapo_resize(struct nft_pipapo_field *f, int old_rules, int rules)
631 {
632 	long *new_lt = NULL, *new_p, *old_lt = f->lt, *old_p;
633 	union nft_pipapo_map_bucket *new_mt, *old_mt = f->mt;
634 	size_t new_bucket_size, copy;
635 	int group, bucket;
636 
637 	new_bucket_size = DIV_ROUND_UP(rules, BITS_PER_LONG);
638 #ifdef NFT_PIPAPO_ALIGN
639 	new_bucket_size = roundup(new_bucket_size,
640 				  NFT_PIPAPO_ALIGN / sizeof(*new_lt));
641 #endif
642 
643 	if (new_bucket_size == f->bsize)
644 		goto mt;
645 
646 	if (new_bucket_size > f->bsize)
647 		copy = f->bsize;
648 	else
649 		copy = new_bucket_size;
650 
651 	new_lt = kvzalloc(f->groups * NFT_PIPAPO_BUCKETS(f->bb) *
652 			  new_bucket_size * sizeof(*new_lt) +
653 			  NFT_PIPAPO_ALIGN_HEADROOM,
654 			  GFP_KERNEL);
655 	if (!new_lt)
656 		return -ENOMEM;
657 
658 	new_p = NFT_PIPAPO_LT_ALIGN(new_lt);
659 	old_p = NFT_PIPAPO_LT_ALIGN(old_lt);
660 
661 	for (group = 0; group < f->groups; group++) {
662 		for (bucket = 0; bucket < NFT_PIPAPO_BUCKETS(f->bb); bucket++) {
663 			memcpy(new_p, old_p, copy * sizeof(*new_p));
664 			new_p += copy;
665 			old_p += copy;
666 
667 			if (new_bucket_size > f->bsize)
668 				new_p += new_bucket_size - f->bsize;
669 			else
670 				old_p += f->bsize - new_bucket_size;
671 		}
672 	}
673 
674 mt:
675 	new_mt = kvmalloc(rules * sizeof(*new_mt), GFP_KERNEL);
676 	if (!new_mt) {
677 		kvfree(new_lt);
678 		return -ENOMEM;
679 	}
680 
681 	memcpy(new_mt, f->mt, min(old_rules, rules) * sizeof(*new_mt));
682 	if (rules > old_rules) {
683 		memset(new_mt + old_rules, 0,
684 		       (rules - old_rules) * sizeof(*new_mt));
685 	}
686 
687 	if (new_lt) {
688 		f->bsize = new_bucket_size;
689 		NFT_PIPAPO_LT_ASSIGN(f, new_lt);
690 		kvfree(old_lt);
691 	}
692 
693 	f->mt = new_mt;
694 	kvfree(old_mt);
695 
696 	return 0;
697 }
698 
699 /**
700  * pipapo_bucket_set() - Set rule bit in bucket given group and group value
701  * @f:		Field containing lookup table
702  * @rule:	Rule index
703  * @group:	Group index
704  * @v:		Value of bit group
705  */
pipapo_bucket_set(struct nft_pipapo_field * f,int rule,int group,int v)706 static void pipapo_bucket_set(struct nft_pipapo_field *f, int rule, int group,
707 			      int v)
708 {
709 	unsigned long *pos;
710 
711 	pos = NFT_PIPAPO_LT_ALIGN(f->lt);
712 	pos += f->bsize * NFT_PIPAPO_BUCKETS(f->bb) * group;
713 	pos += f->bsize * v;
714 
715 	__set_bit(rule, pos);
716 }
717 
718 /**
719  * pipapo_lt_4b_to_8b() - Switch lookup table group width from 4 bits to 8 bits
720  * @old_groups:	Number of current groups
721  * @bsize:	Size of one bucket, in longs
722  * @old_lt:	Pointer to the current lookup table
723  * @new_lt:	Pointer to the new, pre-allocated lookup table
724  *
725  * Each bucket with index b in the new lookup table, belonging to group g, is
726  * filled with the bit intersection between:
727  * - bucket with index given by the upper 4 bits of b, from group g, and
728  * - bucket with index given by the lower 4 bits of b, from group g + 1
729  *
730  * That is, given buckets from the new lookup table N(x, y) and the old lookup
731  * table O(x, y), with x bucket index, and y group index:
732  *
733  *	N(b, g) := O(b / 16, g) & O(b % 16, g + 1)
734  *
735  * This ensures equivalence of the matching results on lookup. Two examples in
736  * pictures:
737  *
738  *              bucket
739  *  group  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 ... 254 255
740  *    0                ^
741  *    1                |                                                 ^
742  *   ...             ( & )                                               |
743  *                  /     \                                              |
744  *                 /       \                                         .-( & )-.
745  *                /  bucket \                                        |       |
746  *      group  0 / 1   2   3 \ 4   5   6   7   8   9  10  11  12  13 |14  15 |
747  *        0     /             \                                      |       |
748  *        1                    \                                     |       |
749  *        2                                                          |     --'
750  *        3                                                          '-
751  *       ...
752  */
pipapo_lt_4b_to_8b(int old_groups,int bsize,unsigned long * old_lt,unsigned long * new_lt)753 static void pipapo_lt_4b_to_8b(int old_groups, int bsize,
754 			       unsigned long *old_lt, unsigned long *new_lt)
755 {
756 	int g, b, i;
757 
758 	for (g = 0; g < old_groups / 2; g++) {
759 		int src_g0 = g * 2, src_g1 = g * 2 + 1;
760 
761 		for (b = 0; b < NFT_PIPAPO_BUCKETS(8); b++) {
762 			int src_b0 = b / NFT_PIPAPO_BUCKETS(4);
763 			int src_b1 = b % NFT_PIPAPO_BUCKETS(4);
764 			int src_i0 = src_g0 * NFT_PIPAPO_BUCKETS(4) + src_b0;
765 			int src_i1 = src_g1 * NFT_PIPAPO_BUCKETS(4) + src_b1;
766 
767 			for (i = 0; i < bsize; i++) {
768 				*new_lt = old_lt[src_i0 * bsize + i] &
769 					  old_lt[src_i1 * bsize + i];
770 				new_lt++;
771 			}
772 		}
773 	}
774 }
775 
776 /**
777  * pipapo_lt_8b_to_4b() - Switch lookup table group width from 8 bits to 4 bits
778  * @old_groups:	Number of current groups
779  * @bsize:	Size of one bucket, in longs
780  * @old_lt:	Pointer to the current lookup table
781  * @new_lt:	Pointer to the new, pre-allocated lookup table
782  *
783  * Each bucket with index b in the new lookup table, belonging to group g, is
784  * filled with the bit union of:
785  * - all the buckets with index such that the upper four bits of the lower byte
786  *   equal b, from group g, with g odd
787  * - all the buckets with index such that the lower four bits equal b, from
788  *   group g, with g even
789  *
790  * That is, given buckets from the new lookup table N(x, y) and the old lookup
791  * table O(x, y), with x bucket index, and y group index:
792  *
793  *	- with g odd:  N(b, g) := U(O(x, g) for each x : x = (b & 0xf0) >> 4)
794  *	- with g even: N(b, g) := U(O(x, g) for each x : x = b & 0x0f)
795  *
796  * where U() denotes the arbitrary union operation (binary OR of n terms). This
797  * ensures equivalence of the matching results on lookup.
798  */
pipapo_lt_8b_to_4b(int old_groups,int bsize,unsigned long * old_lt,unsigned long * new_lt)799 static void pipapo_lt_8b_to_4b(int old_groups, int bsize,
800 			       unsigned long *old_lt, unsigned long *new_lt)
801 {
802 	int g, b, bsrc, i;
803 
804 	memset(new_lt, 0, old_groups * 2 * NFT_PIPAPO_BUCKETS(4) * bsize *
805 			  sizeof(unsigned long));
806 
807 	for (g = 0; g < old_groups * 2; g += 2) {
808 		int src_g = g / 2;
809 
810 		for (b = 0; b < NFT_PIPAPO_BUCKETS(4); b++) {
811 			for (bsrc = NFT_PIPAPO_BUCKETS(8) * src_g;
812 			     bsrc < NFT_PIPAPO_BUCKETS(8) * (src_g + 1);
813 			     bsrc++) {
814 				if (((bsrc & 0xf0) >> 4) != b)
815 					continue;
816 
817 				for (i = 0; i < bsize; i++)
818 					new_lt[i] |= old_lt[bsrc * bsize + i];
819 			}
820 
821 			new_lt += bsize;
822 		}
823 
824 		for (b = 0; b < NFT_PIPAPO_BUCKETS(4); b++) {
825 			for (bsrc = NFT_PIPAPO_BUCKETS(8) * src_g;
826 			     bsrc < NFT_PIPAPO_BUCKETS(8) * (src_g + 1);
827 			     bsrc++) {
828 				if ((bsrc & 0x0f) != b)
829 					continue;
830 
831 				for (i = 0; i < bsize; i++)
832 					new_lt[i] |= old_lt[bsrc * bsize + i];
833 			}
834 
835 			new_lt += bsize;
836 		}
837 	}
838 }
839 
840 /**
841  * pipapo_lt_bits_adjust() - Adjust group size for lookup table if needed
842  * @f:		Field containing lookup table
843  */
pipapo_lt_bits_adjust(struct nft_pipapo_field * f)844 static void pipapo_lt_bits_adjust(struct nft_pipapo_field *f)
845 {
846 	unsigned long *new_lt;
847 	int groups, bb;
848 	size_t lt_size;
849 
850 	lt_size = f->groups * NFT_PIPAPO_BUCKETS(f->bb) * f->bsize *
851 		  sizeof(*f->lt);
852 
853 	if (f->bb == NFT_PIPAPO_GROUP_BITS_SMALL_SET &&
854 	    lt_size > NFT_PIPAPO_LT_SIZE_HIGH) {
855 		groups = f->groups * 2;
856 		bb = NFT_PIPAPO_GROUP_BITS_LARGE_SET;
857 
858 		lt_size = groups * NFT_PIPAPO_BUCKETS(bb) * f->bsize *
859 			  sizeof(*f->lt);
860 	} else if (f->bb == NFT_PIPAPO_GROUP_BITS_LARGE_SET &&
861 		   lt_size < NFT_PIPAPO_LT_SIZE_LOW) {
862 		groups = f->groups / 2;
863 		bb = NFT_PIPAPO_GROUP_BITS_SMALL_SET;
864 
865 		lt_size = groups * NFT_PIPAPO_BUCKETS(bb) * f->bsize *
866 			  sizeof(*f->lt);
867 
868 		/* Don't increase group width if the resulting lookup table size
869 		 * would exceed the upper size threshold for a "small" set.
870 		 */
871 		if (lt_size > NFT_PIPAPO_LT_SIZE_HIGH)
872 			return;
873 	} else {
874 		return;
875 	}
876 
877 	new_lt = kvzalloc(lt_size + NFT_PIPAPO_ALIGN_HEADROOM, GFP_KERNEL);
878 	if (!new_lt)
879 		return;
880 
881 	NFT_PIPAPO_GROUP_BITS_ARE_8_OR_4;
882 	if (f->bb == 4 && bb == 8) {
883 		pipapo_lt_4b_to_8b(f->groups, f->bsize,
884 				   NFT_PIPAPO_LT_ALIGN(f->lt),
885 				   NFT_PIPAPO_LT_ALIGN(new_lt));
886 	} else if (f->bb == 8 && bb == 4) {
887 		pipapo_lt_8b_to_4b(f->groups, f->bsize,
888 				   NFT_PIPAPO_LT_ALIGN(f->lt),
889 				   NFT_PIPAPO_LT_ALIGN(new_lt));
890 	} else {
891 		BUG();
892 	}
893 
894 	f->groups = groups;
895 	f->bb = bb;
896 	kvfree(f->lt);
897 	NFT_PIPAPO_LT_ASSIGN(f, new_lt);
898 }
899 
900 /**
901  * pipapo_insert() - Insert new rule in field given input key and mask length
902  * @f:		Field containing lookup table
903  * @k:		Input key for classification, without nftables padding
904  * @mask_bits:	Length of mask; matches field length for non-ranged entry
905  *
906  * Insert a new rule reference in lookup buckets corresponding to k and
907  * mask_bits.
908  *
909  * Return: 1 on success (one rule inserted), negative error code on failure.
910  */
pipapo_insert(struct nft_pipapo_field * f,const uint8_t * k,int mask_bits)911 static int pipapo_insert(struct nft_pipapo_field *f, const uint8_t *k,
912 			 int mask_bits)
913 {
914 	int rule = f->rules, group, ret, bit_offset = 0;
915 
916 	ret = pipapo_resize(f, f->rules, f->rules + 1);
917 	if (ret)
918 		return ret;
919 
920 	f->rules++;
921 
922 	for (group = 0; group < f->groups; group++) {
923 		int i, v;
924 		u8 mask;
925 
926 		v = k[group / (BITS_PER_BYTE / f->bb)];
927 		v &= GENMASK(BITS_PER_BYTE - bit_offset - 1, 0);
928 		v >>= (BITS_PER_BYTE - bit_offset) - f->bb;
929 
930 		bit_offset += f->bb;
931 		bit_offset %= BITS_PER_BYTE;
932 
933 		if (mask_bits >= (group + 1) * f->bb) {
934 			/* Not masked */
935 			pipapo_bucket_set(f, rule, group, v);
936 		} else if (mask_bits <= group * f->bb) {
937 			/* Completely masked */
938 			for (i = 0; i < NFT_PIPAPO_BUCKETS(f->bb); i++)
939 				pipapo_bucket_set(f, rule, group, i);
940 		} else {
941 			/* The mask limit falls on this group */
942 			mask = GENMASK(f->bb - 1, 0);
943 			mask >>= mask_bits - group * f->bb;
944 			for (i = 0; i < NFT_PIPAPO_BUCKETS(f->bb); i++) {
945 				if ((i & ~mask) == (v & ~mask))
946 					pipapo_bucket_set(f, rule, group, i);
947 			}
948 		}
949 	}
950 
951 	pipapo_lt_bits_adjust(f);
952 
953 	return 1;
954 }
955 
956 /**
957  * pipapo_step_diff() - Check if setting @step bit in netmask would change it
958  * @base:	Mask we are expanding
959  * @step:	Step bit for given expansion step
960  * @len:	Total length of mask space (set and unset bits), bytes
961  *
962  * Convenience function for mask expansion.
963  *
964  * Return: true if step bit changes mask (i.e. isn't set), false otherwise.
965  */
pipapo_step_diff(u8 * base,int step,int len)966 static bool pipapo_step_diff(u8 *base, int step, int len)
967 {
968 	/* Network order, byte-addressed */
969 #ifdef __BIG_ENDIAN__
970 	return !(BIT(step % BITS_PER_BYTE) & base[step / BITS_PER_BYTE]);
971 #else
972 	return !(BIT(step % BITS_PER_BYTE) &
973 		 base[len - 1 - step / BITS_PER_BYTE]);
974 #endif
975 }
976 
977 /**
978  * pipapo_step_after_end() - Check if mask exceeds range end with given step
979  * @base:	Mask we are expanding
980  * @end:	End of range
981  * @step:	Step bit for given expansion step, highest bit to be set
982  * @len:	Total length of mask space (set and unset bits), bytes
983  *
984  * Convenience function for mask expansion.
985  *
986  * Return: true if mask exceeds range setting step bits, false otherwise.
987  */
pipapo_step_after_end(const u8 * base,const u8 * end,int step,int len)988 static bool pipapo_step_after_end(const u8 *base, const u8 *end, int step,
989 				  int len)
990 {
991 	u8 tmp[NFT_PIPAPO_MAX_BYTES];
992 	int i;
993 
994 	memcpy(tmp, base, len);
995 
996 	/* Network order, byte-addressed */
997 	for (i = 0; i <= step; i++)
998 #ifdef __BIG_ENDIAN__
999 		tmp[i / BITS_PER_BYTE] |= BIT(i % BITS_PER_BYTE);
1000 #else
1001 		tmp[len - 1 - i / BITS_PER_BYTE] |= BIT(i % BITS_PER_BYTE);
1002 #endif
1003 
1004 	return memcmp(tmp, end, len) > 0;
1005 }
1006 
1007 /**
1008  * pipapo_base_sum() - Sum step bit to given len-sized netmask base with carry
1009  * @base:	Netmask base
1010  * @step:	Step bit to sum
1011  * @len:	Netmask length, bytes
1012  */
pipapo_base_sum(u8 * base,int step,int len)1013 static void pipapo_base_sum(u8 *base, int step, int len)
1014 {
1015 	bool carry = false;
1016 	int i;
1017 
1018 	/* Network order, byte-addressed */
1019 #ifdef __BIG_ENDIAN__
1020 	for (i = step / BITS_PER_BYTE; i < len; i++) {
1021 #else
1022 	for (i = len - 1 - step / BITS_PER_BYTE; i >= 0; i--) {
1023 #endif
1024 		if (carry)
1025 			base[i]++;
1026 		else
1027 			base[i] += 1 << (step % BITS_PER_BYTE);
1028 
1029 		if (base[i])
1030 			break;
1031 
1032 		carry = true;
1033 	}
1034 }
1035 
1036 /**
1037  * pipapo_expand() - Expand to composing netmasks, insert into lookup table
1038  * @f:		Field containing lookup table
1039  * @start:	Start of range
1040  * @end:	End of range
1041  * @len:	Length of value in bits
1042  *
1043  * Expand range to composing netmasks and insert corresponding rule references
1044  * in lookup buckets.
1045  *
1046  * Return: number of inserted rules on success, negative error code on failure.
1047  */
1048 static int pipapo_expand(struct nft_pipapo_field *f,
1049 			 const u8 *start, const u8 *end, int len)
1050 {
1051 	int step, masks = 0, bytes = DIV_ROUND_UP(len, BITS_PER_BYTE);
1052 	u8 base[NFT_PIPAPO_MAX_BYTES];
1053 
1054 	memcpy(base, start, bytes);
1055 	while (memcmp(base, end, bytes) <= 0) {
1056 		int err;
1057 
1058 		step = 0;
1059 		while (pipapo_step_diff(base, step, bytes)) {
1060 			if (pipapo_step_after_end(base, end, step, bytes))
1061 				break;
1062 
1063 			step++;
1064 			if (step >= len) {
1065 				if (!masks) {
1066 					err = pipapo_insert(f, base, 0);
1067 					if (err < 0)
1068 						return err;
1069 					masks = 1;
1070 				}
1071 				goto out;
1072 			}
1073 		}
1074 
1075 		err = pipapo_insert(f, base, len - step);
1076 
1077 		if (err < 0)
1078 			return err;
1079 
1080 		masks++;
1081 		pipapo_base_sum(base, step, bytes);
1082 	}
1083 out:
1084 	return masks;
1085 }
1086 
1087 /**
1088  * pipapo_map() - Insert rules in mapping tables, mapping them between fields
1089  * @m:		Matching data, including mapping table
1090  * @map:	Table of rule maps: array of first rule and amount of rules
1091  *		in next field a given rule maps to, for each field
1092  * @e:		For last field, nft_set_ext pointer matching rules map to
1093  */
1094 static void pipapo_map(struct nft_pipapo_match *m,
1095 		       union nft_pipapo_map_bucket map[NFT_PIPAPO_MAX_FIELDS],
1096 		       struct nft_pipapo_elem *e)
1097 {
1098 	struct nft_pipapo_field *f;
1099 	int i, j;
1100 
1101 	for (i = 0, f = m->f; i < m->field_count - 1; i++, f++) {
1102 		for (j = 0; j < map[i].n; j++) {
1103 			f->mt[map[i].to + j].to = map[i + 1].to;
1104 			f->mt[map[i].to + j].n = map[i + 1].n;
1105 		}
1106 	}
1107 
1108 	/* Last field: map to ext instead of mapping to next field */
1109 	for (j = 0; j < map[i].n; j++)
1110 		f->mt[map[i].to + j].e = e;
1111 }
1112 
1113 /**
1114  * pipapo_free_scratch() - Free per-CPU map at original (not aligned) address
1115  * @m:		Matching data
1116  * @cpu:	CPU number
1117  */
1118 static void pipapo_free_scratch(const struct nft_pipapo_match *m, unsigned int cpu)
1119 {
1120 	struct nft_pipapo_scratch *s;
1121 	void *mem;
1122 
1123 	s = *per_cpu_ptr(m->scratch, cpu);
1124 	if (!s)
1125 		return;
1126 
1127 	mem = s;
1128 	mem -= s->align_off;
1129 	kfree(mem);
1130 }
1131 
1132 /**
1133  * pipapo_realloc_scratch() - Reallocate scratch maps for partial match results
1134  * @clone:	Copy of matching data with pending insertions and deletions
1135  * @bsize_max:	Maximum bucket size, scratch maps cover two buckets
1136  *
1137  * Return: 0 on success, -ENOMEM on failure.
1138  */
1139 static int pipapo_realloc_scratch(struct nft_pipapo_match *clone,
1140 				  unsigned long bsize_max)
1141 {
1142 	int i;
1143 
1144 	for_each_possible_cpu(i) {
1145 		struct nft_pipapo_scratch *scratch;
1146 #ifdef NFT_PIPAPO_ALIGN
1147 		void *scratch_aligned;
1148 		u32 align_off;
1149 #endif
1150 		scratch = kzalloc_node(struct_size(scratch, map,
1151 						   bsize_max * 2) +
1152 				       NFT_PIPAPO_ALIGN_HEADROOM,
1153 				       GFP_KERNEL, cpu_to_node(i));
1154 		if (!scratch) {
1155 			/* On failure, there's no need to undo previous
1156 			 * allocations: this means that some scratch maps have
1157 			 * a bigger allocated size now (this is only called on
1158 			 * insertion), but the extra space won't be used by any
1159 			 * CPU as new elements are not inserted and m->bsize_max
1160 			 * is not updated.
1161 			 */
1162 			return -ENOMEM;
1163 		}
1164 
1165 		pipapo_free_scratch(clone, i);
1166 
1167 #ifdef NFT_PIPAPO_ALIGN
1168 		/* Align &scratch->map (not the struct itself): the extra
1169 		 * %NFT_PIPAPO_ALIGN_HEADROOM bytes passed to kzalloc_node()
1170 		 * above guarantee we can waste up to those bytes in order
1171 		 * to align the map field regardless of its offset within
1172 		 * the struct.
1173 		 */
1174 		BUILD_BUG_ON(offsetof(struct nft_pipapo_scratch, map) > NFT_PIPAPO_ALIGN_HEADROOM);
1175 
1176 		scratch_aligned = NFT_PIPAPO_LT_ALIGN(&scratch->map);
1177 		scratch_aligned -= offsetof(struct nft_pipapo_scratch, map);
1178 		align_off = scratch_aligned - (void *)scratch;
1179 
1180 		scratch = scratch_aligned;
1181 		scratch->align_off = align_off;
1182 #endif
1183 		*per_cpu_ptr(clone->scratch, i) = scratch;
1184 	}
1185 
1186 	return 0;
1187 }
1188 
1189 /**
1190  * nft_pipapo_insert() - Validate and insert ranged elements
1191  * @net:	Network namespace
1192  * @set:	nftables API set representation
1193  * @elem:	nftables API element representation containing key data
1194  * @elem_priv:	Filled with pointer to &struct nft_set_ext in inserted element
1195  *
1196  * Return: 0 on success, error pointer on failure.
1197  */
1198 static int nft_pipapo_insert(const struct net *net, const struct nft_set *set,
1199 			     const struct nft_set_elem *elem,
1200 			     struct nft_elem_priv **elem_priv)
1201 {
1202 	const struct nft_set_ext *ext = nft_set_elem_ext(set, elem->priv);
1203 	union nft_pipapo_map_bucket rulemap[NFT_PIPAPO_MAX_FIELDS];
1204 	const u8 *start = (const u8 *)elem->key.val.data, *end;
1205 	struct nft_pipapo *priv = nft_set_priv(set);
1206 	struct nft_pipapo_match *m = priv->clone;
1207 	u8 genmask = nft_genmask_next(net);
1208 	struct nft_pipapo_elem *e, *dup;
1209 	u64 tstamp = nft_net_tstamp(net);
1210 	struct nft_pipapo_field *f;
1211 	const u8 *start_p, *end_p;
1212 	int i, bsize_max, err = 0;
1213 
1214 	if (nft_set_ext_exists(ext, NFT_SET_EXT_KEY_END))
1215 		end = (const u8 *)nft_set_ext_key_end(ext)->data;
1216 	else
1217 		end = start;
1218 
1219 	dup = pipapo_get(net, set, start, genmask, tstamp);
1220 	if (!IS_ERR(dup)) {
1221 		/* Check if we already have the same exact entry */
1222 		const struct nft_data *dup_key, *dup_end;
1223 
1224 		dup_key = nft_set_ext_key(&dup->ext);
1225 		if (nft_set_ext_exists(&dup->ext, NFT_SET_EXT_KEY_END))
1226 			dup_end = nft_set_ext_key_end(&dup->ext);
1227 		else
1228 			dup_end = dup_key;
1229 
1230 		if (!memcmp(start, dup_key->data, sizeof(*dup_key->data)) &&
1231 		    !memcmp(end, dup_end->data, sizeof(*dup_end->data))) {
1232 			*elem_priv = &dup->priv;
1233 			return -EEXIST;
1234 		}
1235 
1236 		return -ENOTEMPTY;
1237 	}
1238 
1239 	if (PTR_ERR(dup) == -ENOENT) {
1240 		/* Look for partially overlapping entries */
1241 		dup = pipapo_get(net, set, end, nft_genmask_next(net), tstamp);
1242 	}
1243 
1244 	if (PTR_ERR(dup) != -ENOENT) {
1245 		if (IS_ERR(dup))
1246 			return PTR_ERR(dup);
1247 		*elem_priv = &dup->priv;
1248 		return -ENOTEMPTY;
1249 	}
1250 
1251 	/* Validate */
1252 	start_p = start;
1253 	end_p = end;
1254 	nft_pipapo_for_each_field(f, i, m) {
1255 		if (f->rules >= (unsigned long)NFT_PIPAPO_RULE0_MAX)
1256 			return -ENOSPC;
1257 
1258 		if (memcmp(start_p, end_p,
1259 			   f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f)) > 0)
1260 			return -EINVAL;
1261 
1262 		start_p += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
1263 		end_p += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
1264 	}
1265 
1266 	/* Insert */
1267 	priv->dirty = true;
1268 
1269 	bsize_max = m->bsize_max;
1270 
1271 	nft_pipapo_for_each_field(f, i, m) {
1272 		int ret;
1273 
1274 		rulemap[i].to = f->rules;
1275 
1276 		ret = memcmp(start, end,
1277 			     f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f));
1278 		if (!ret)
1279 			ret = pipapo_insert(f, start, f->groups * f->bb);
1280 		else
1281 			ret = pipapo_expand(f, start, end, f->groups * f->bb);
1282 
1283 		if (ret < 0)
1284 			return ret;
1285 
1286 		if (f->bsize > bsize_max)
1287 			bsize_max = f->bsize;
1288 
1289 		rulemap[i].n = ret;
1290 
1291 		start += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
1292 		end += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
1293 	}
1294 
1295 	if (!*get_cpu_ptr(m->scratch) || bsize_max > m->bsize_max) {
1296 		put_cpu_ptr(m->scratch);
1297 
1298 		err = pipapo_realloc_scratch(m, bsize_max);
1299 		if (err)
1300 			return err;
1301 
1302 		m->bsize_max = bsize_max;
1303 	} else {
1304 		put_cpu_ptr(m->scratch);
1305 	}
1306 
1307 	e = nft_elem_priv_cast(elem->priv);
1308 	*elem_priv = &e->priv;
1309 
1310 	pipapo_map(m, rulemap, e);
1311 
1312 	return 0;
1313 }
1314 
1315 /**
1316  * pipapo_clone() - Clone matching data to create new working copy
1317  * @old:	Existing matching data
1318  *
1319  * Return: copy of matching data passed as 'old', error pointer on failure
1320  */
1321 static struct nft_pipapo_match *pipapo_clone(struct nft_pipapo_match *old)
1322 {
1323 	struct nft_pipapo_field *dst, *src;
1324 	struct nft_pipapo_match *new;
1325 	int i;
1326 
1327 	new = kmalloc(struct_size(new, f, old->field_count), GFP_KERNEL);
1328 	if (!new)
1329 		return ERR_PTR(-ENOMEM);
1330 
1331 	new->field_count = old->field_count;
1332 	new->bsize_max = old->bsize_max;
1333 
1334 	new->scratch = alloc_percpu(*new->scratch);
1335 	if (!new->scratch)
1336 		goto out_scratch;
1337 
1338 	for_each_possible_cpu(i)
1339 		*per_cpu_ptr(new->scratch, i) = NULL;
1340 
1341 	if (pipapo_realloc_scratch(new, old->bsize_max))
1342 		goto out_scratch_realloc;
1343 
1344 	rcu_head_init(&new->rcu);
1345 
1346 	src = old->f;
1347 	dst = new->f;
1348 
1349 	for (i = 0; i < old->field_count; i++) {
1350 		unsigned long *new_lt;
1351 
1352 		memcpy(dst, src, offsetof(struct nft_pipapo_field, lt));
1353 
1354 		new_lt = kvzalloc(src->groups * NFT_PIPAPO_BUCKETS(src->bb) *
1355 				  src->bsize * sizeof(*dst->lt) +
1356 				  NFT_PIPAPO_ALIGN_HEADROOM,
1357 				  GFP_KERNEL);
1358 		if (!new_lt)
1359 			goto out_lt;
1360 
1361 		NFT_PIPAPO_LT_ASSIGN(dst, new_lt);
1362 
1363 		memcpy(NFT_PIPAPO_LT_ALIGN(new_lt),
1364 		       NFT_PIPAPO_LT_ALIGN(src->lt),
1365 		       src->bsize * sizeof(*dst->lt) *
1366 		       src->groups * NFT_PIPAPO_BUCKETS(src->bb));
1367 
1368 		dst->mt = kvmalloc(src->rules * sizeof(*src->mt), GFP_KERNEL);
1369 		if (!dst->mt)
1370 			goto out_mt;
1371 
1372 		memcpy(dst->mt, src->mt, src->rules * sizeof(*src->mt));
1373 		src++;
1374 		dst++;
1375 	}
1376 
1377 	return new;
1378 
1379 out_mt:
1380 	kvfree(dst->lt);
1381 out_lt:
1382 	for (dst--; i > 0; i--) {
1383 		kvfree(dst->mt);
1384 		kvfree(dst->lt);
1385 		dst--;
1386 	}
1387 out_scratch_realloc:
1388 	for_each_possible_cpu(i)
1389 		pipapo_free_scratch(new, i);
1390 out_scratch:
1391 	free_percpu(new->scratch);
1392 	kfree(new);
1393 
1394 	return ERR_PTR(-ENOMEM);
1395 }
1396 
1397 /**
1398  * pipapo_rules_same_key() - Get number of rules originated from the same entry
1399  * @f:		Field containing mapping table
1400  * @first:	Index of first rule in set of rules mapping to same entry
1401  *
1402  * Using the fact that all rules in a field that originated from the same entry
1403  * will map to the same set of rules in the next field, or to the same element
1404  * reference, return the cardinality of the set of rules that originated from
1405  * the same entry as the rule with index @first, @first rule included.
1406  *
1407  * In pictures:
1408  *				rules
1409  *	field #0		0    1    2    3    4
1410  *		map to:		0    1   2-4  2-4  5-9
1411  *				.    .    .......   . ...
1412  *				|    |    |    | \   \
1413  *				|    |    |    |  \   \
1414  *				|    |    |    |   \   \
1415  *				'    '    '    '    '   \
1416  *	in field #1		0    1    2    3    4    5 ...
1417  *
1418  * if this is called for rule 2 on field #0, it will return 3, as also rules 2
1419  * and 3 in field 0 map to the same set of rules (2, 3, 4) in the next field.
1420  *
1421  * For the last field in a set, we can rely on associated entries to map to the
1422  * same element references.
1423  *
1424  * Return: Number of rules that originated from the same entry as @first.
1425  */
1426 static int pipapo_rules_same_key(struct nft_pipapo_field *f, int first)
1427 {
1428 	struct nft_pipapo_elem *e = NULL; /* Keep gcc happy */
1429 	int r;
1430 
1431 	for (r = first; r < f->rules; r++) {
1432 		if (r != first && e != f->mt[r].e)
1433 			return r - first;
1434 
1435 		e = f->mt[r].e;
1436 	}
1437 
1438 	if (r != first)
1439 		return r - first;
1440 
1441 	return 0;
1442 }
1443 
1444 /**
1445  * pipapo_unmap() - Remove rules from mapping tables, renumber remaining ones
1446  * @mt:		Mapping array
1447  * @rules:	Original amount of rules in mapping table
1448  * @start:	First rule index to be removed
1449  * @n:		Amount of rules to be removed
1450  * @to_offset:	First rule index, in next field, this group of rules maps to
1451  * @is_last:	If this is the last field, delete reference from mapping array
1452  *
1453  * This is used to unmap rules from the mapping table for a single field,
1454  * maintaining consistency and compactness for the existing ones.
1455  *
1456  * In pictures: let's assume that we want to delete rules 2 and 3 from the
1457  * following mapping array:
1458  *
1459  *                 rules
1460  *               0      1      2      3      4
1461  *      map to:  4-10   4-10   11-15  11-15  16-18
1462  *
1463  * the result will be:
1464  *
1465  *                 rules
1466  *               0      1      2
1467  *      map to:  4-10   4-10   11-13
1468  *
1469  * for fields before the last one. In case this is the mapping table for the
1470  * last field in a set, and rules map to pointers to &struct nft_pipapo_elem:
1471  *
1472  *                      rules
1473  *                        0      1      2      3      4
1474  *  element pointers:  0x42   0x42   0x33   0x33   0x44
1475  *
1476  * the result will be:
1477  *
1478  *                      rules
1479  *                        0      1      2
1480  *  element pointers:  0x42   0x42   0x44
1481  */
1482 static void pipapo_unmap(union nft_pipapo_map_bucket *mt, int rules,
1483 			 int start, int n, int to_offset, bool is_last)
1484 {
1485 	int i;
1486 
1487 	memmove(mt + start, mt + start + n, (rules - start - n) * sizeof(*mt));
1488 	memset(mt + rules - n, 0, n * sizeof(*mt));
1489 
1490 	if (is_last)
1491 		return;
1492 
1493 	for (i = start; i < rules - n; i++)
1494 		mt[i].to -= to_offset;
1495 }
1496 
1497 /**
1498  * pipapo_drop() - Delete entry from lookup and mapping tables, given rule map
1499  * @m:		Matching data
1500  * @rulemap:	Table of rule maps, arrays of first rule and amount of rules
1501  *		in next field a given entry maps to, for each field
1502  *
1503  * For each rule in lookup table buckets mapping to this set of rules, drop
1504  * all bits set in lookup table mapping. In pictures, assuming we want to drop
1505  * rules 0 and 1 from this lookup table:
1506  *
1507  *                     bucket
1508  *      group  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
1509  *        0    0                                              1,2
1510  *        1   1,2                                      0
1511  *        2    0                                      1,2
1512  *        3    0                              1,2
1513  *        4  0,1,2
1514  *        5    0   1   2
1515  *        6  0,1,2 1   1   1   1   1   1   1   1   1   1   1   1   1   1   1
1516  *        7   1,2 1,2  1   1   1  0,1  1   1   1   1   1   1   1   1   1   1
1517  *
1518  * rule 2 becomes rule 0, and the result will be:
1519  *
1520  *                     bucket
1521  *      group  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
1522  *        0                                                    0
1523  *        1    0
1524  *        2                                            0
1525  *        3                                    0
1526  *        4    0
1527  *        5            0
1528  *        6    0
1529  *        7    0   0
1530  *
1531  * once this is done, call unmap() to drop all the corresponding rule references
1532  * from mapping tables.
1533  */
1534 static void pipapo_drop(struct nft_pipapo_match *m,
1535 			union nft_pipapo_map_bucket rulemap[])
1536 {
1537 	struct nft_pipapo_field *f;
1538 	int i;
1539 
1540 	nft_pipapo_for_each_field(f, i, m) {
1541 		int g;
1542 
1543 		for (g = 0; g < f->groups; g++) {
1544 			unsigned long *pos;
1545 			int b;
1546 
1547 			pos = NFT_PIPAPO_LT_ALIGN(f->lt) + g *
1548 			      NFT_PIPAPO_BUCKETS(f->bb) * f->bsize;
1549 
1550 			for (b = 0; b < NFT_PIPAPO_BUCKETS(f->bb); b++) {
1551 				bitmap_cut(pos, pos, rulemap[i].to,
1552 					   rulemap[i].n,
1553 					   f->bsize * BITS_PER_LONG);
1554 
1555 				pos += f->bsize;
1556 			}
1557 		}
1558 
1559 		pipapo_unmap(f->mt, f->rules, rulemap[i].to, rulemap[i].n,
1560 			     rulemap[i + 1].n, i == m->field_count - 1);
1561 		if (pipapo_resize(f, f->rules, f->rules - rulemap[i].n)) {
1562 			/* We can ignore this, a failure to shrink tables down
1563 			 * doesn't make tables invalid.
1564 			 */
1565 			;
1566 		}
1567 		f->rules -= rulemap[i].n;
1568 
1569 		pipapo_lt_bits_adjust(f);
1570 	}
1571 }
1572 
1573 static void nft_pipapo_gc_deactivate(struct net *net, struct nft_set *set,
1574 				     struct nft_pipapo_elem *e)
1575 
1576 {
1577 	nft_setelem_data_deactivate(net, set, &e->priv);
1578 }
1579 
1580 /**
1581  * pipapo_gc() - Drop expired entries from set, destroy start and end elements
1582  * @set:	nftables API set representation
1583  * @m:		Matching data
1584  */
1585 static void pipapo_gc(struct nft_set *set, struct nft_pipapo_match *m)
1586 {
1587 	struct nft_pipapo *priv = nft_set_priv(set);
1588 	struct net *net = read_pnet(&set->net);
1589 	u64 tstamp = nft_net_tstamp(net);
1590 	int rules_f0, first_rule = 0;
1591 	struct nft_pipapo_elem *e;
1592 	struct nft_trans_gc *gc;
1593 
1594 	gc = nft_trans_gc_alloc(set, 0, GFP_KERNEL);
1595 	if (!gc)
1596 		return;
1597 
1598 	while ((rules_f0 = pipapo_rules_same_key(m->f, first_rule))) {
1599 		union nft_pipapo_map_bucket rulemap[NFT_PIPAPO_MAX_FIELDS];
1600 		struct nft_pipapo_field *f;
1601 		int i, start, rules_fx;
1602 
1603 		start = first_rule;
1604 		rules_fx = rules_f0;
1605 
1606 		nft_pipapo_for_each_field(f, i, m) {
1607 			rulemap[i].to = start;
1608 			rulemap[i].n = rules_fx;
1609 
1610 			if (i < m->field_count - 1) {
1611 				rules_fx = f->mt[start].n;
1612 				start = f->mt[start].to;
1613 			}
1614 		}
1615 
1616 		/* Pick the last field, and its last index */
1617 		f--;
1618 		i--;
1619 		e = f->mt[rulemap[i].to].e;
1620 
1621 		/* synchronous gc never fails, there is no need to set on
1622 		 * NFT_SET_ELEM_DEAD_BIT.
1623 		 */
1624 		if (__nft_set_elem_expired(&e->ext, tstamp)) {
1625 			priv->dirty = true;
1626 
1627 			gc = nft_trans_gc_queue_sync(gc, GFP_KERNEL);
1628 			if (!gc)
1629 				return;
1630 
1631 			nft_pipapo_gc_deactivate(net, set, e);
1632 			pipapo_drop(m, rulemap);
1633 			nft_trans_gc_elem_add(gc, e);
1634 
1635 			/* And check again current first rule, which is now the
1636 			 * first we haven't checked.
1637 			 */
1638 		} else {
1639 			first_rule += rules_f0;
1640 		}
1641 	}
1642 
1643 	gc = nft_trans_gc_catchall_sync(gc);
1644 	if (gc) {
1645 		nft_trans_gc_queue_sync_done(gc);
1646 		priv->last_gc = jiffies;
1647 	}
1648 }
1649 
1650 /**
1651  * pipapo_free_fields() - Free per-field tables contained in matching data
1652  * @m:		Matching data
1653  */
1654 static void pipapo_free_fields(struct nft_pipapo_match *m)
1655 {
1656 	struct nft_pipapo_field *f;
1657 	int i;
1658 
1659 	nft_pipapo_for_each_field(f, i, m) {
1660 		kvfree(f->lt);
1661 		kvfree(f->mt);
1662 	}
1663 }
1664 
1665 static void pipapo_free_match(struct nft_pipapo_match *m)
1666 {
1667 	int i;
1668 
1669 	for_each_possible_cpu(i)
1670 		pipapo_free_scratch(m, i);
1671 
1672 	free_percpu(m->scratch);
1673 	pipapo_free_fields(m);
1674 
1675 	kfree(m);
1676 }
1677 
1678 /**
1679  * pipapo_reclaim_match - RCU callback to free fields from old matching data
1680  * @rcu:	RCU head
1681  */
1682 static void pipapo_reclaim_match(struct rcu_head *rcu)
1683 {
1684 	struct nft_pipapo_match *m;
1685 
1686 	m = container_of(rcu, struct nft_pipapo_match, rcu);
1687 	pipapo_free_match(m);
1688 }
1689 
1690 /**
1691  * nft_pipapo_commit() - Replace lookup data with current working copy
1692  * @set:	nftables API set representation
1693  *
1694  * While at it, check if we should perform garbage collection on the working
1695  * copy before committing it for lookup, and don't replace the table if the
1696  * working copy doesn't have pending changes.
1697  *
1698  * We also need to create a new working copy for subsequent insertions and
1699  * deletions.
1700  */
1701 static void nft_pipapo_commit(struct nft_set *set)
1702 {
1703 	struct nft_pipapo *priv = nft_set_priv(set);
1704 	struct nft_pipapo_match *new_clone, *old;
1705 
1706 	if (time_after_eq(jiffies, priv->last_gc + nft_set_gc_interval(set)))
1707 		pipapo_gc(set, priv->clone);
1708 
1709 	if (!priv->dirty)
1710 		return;
1711 
1712 	new_clone = pipapo_clone(priv->clone);
1713 	if (IS_ERR(new_clone))
1714 		return;
1715 
1716 	priv->dirty = false;
1717 
1718 	old = rcu_access_pointer(priv->match);
1719 	rcu_assign_pointer(priv->match, priv->clone);
1720 	if (old)
1721 		call_rcu(&old->rcu, pipapo_reclaim_match);
1722 
1723 	priv->clone = new_clone;
1724 }
1725 
1726 static bool nft_pipapo_transaction_mutex_held(const struct nft_set *set)
1727 {
1728 #ifdef CONFIG_PROVE_LOCKING
1729 	const struct net *net = read_pnet(&set->net);
1730 
1731 	return lockdep_is_held(&nft_pernet(net)->commit_mutex);
1732 #else
1733 	return true;
1734 #endif
1735 }
1736 
1737 static void nft_pipapo_abort(const struct nft_set *set)
1738 {
1739 	struct nft_pipapo *priv = nft_set_priv(set);
1740 	struct nft_pipapo_match *new_clone, *m;
1741 
1742 	if (!priv->dirty)
1743 		return;
1744 
1745 	m = rcu_dereference_protected(priv->match, nft_pipapo_transaction_mutex_held(set));
1746 
1747 	new_clone = pipapo_clone(m);
1748 	if (IS_ERR(new_clone))
1749 		return;
1750 
1751 	priv->dirty = false;
1752 
1753 	pipapo_free_match(priv->clone);
1754 	priv->clone = new_clone;
1755 }
1756 
1757 /**
1758  * nft_pipapo_activate() - Mark element reference as active given key, commit
1759  * @net:	Network namespace
1760  * @set:	nftables API set representation
1761  * @elem_priv:	nftables API element representation containing key data
1762  *
1763  * On insertion, elements are added to a copy of the matching data currently
1764  * in use for lookups, and not directly inserted into current lookup data. Both
1765  * nft_pipapo_insert() and nft_pipapo_activate() are called once for each
1766  * element, hence we can't purpose either one as a real commit operation.
1767  */
1768 static void nft_pipapo_activate(const struct net *net,
1769 				const struct nft_set *set,
1770 				struct nft_elem_priv *elem_priv)
1771 {
1772 	struct nft_pipapo_elem *e = nft_elem_priv_cast(elem_priv);
1773 
1774 	nft_set_elem_change_active(net, set, &e->ext);
1775 }
1776 
1777 /**
1778  * pipapo_deactivate() - Check that element is in set, mark as inactive
1779  * @net:	Network namespace
1780  * @set:	nftables API set representation
1781  * @data:	Input key data
1782  * @ext:	nftables API extension pointer, used to check for end element
1783  *
1784  * This is a convenience function that can be called from both
1785  * nft_pipapo_deactivate() and nft_pipapo_flush(), as they are in fact the same
1786  * operation.
1787  *
1788  * Return: deactivated element if found, NULL otherwise.
1789  */
1790 static void *pipapo_deactivate(const struct net *net, const struct nft_set *set,
1791 			       const u8 *data, const struct nft_set_ext *ext)
1792 {
1793 	struct nft_pipapo_elem *e;
1794 
1795 	e = pipapo_get(net, set, data, nft_genmask_next(net), nft_net_tstamp(net));
1796 	if (IS_ERR(e))
1797 		return NULL;
1798 
1799 	nft_set_elem_change_active(net, set, &e->ext);
1800 
1801 	return e;
1802 }
1803 
1804 /**
1805  * nft_pipapo_deactivate() - Call pipapo_deactivate() to make element inactive
1806  * @net:	Network namespace
1807  * @set:	nftables API set representation
1808  * @elem:	nftables API element representation containing key data
1809  *
1810  * Return: deactivated element if found, NULL otherwise.
1811  */
1812 static struct nft_elem_priv *
1813 nft_pipapo_deactivate(const struct net *net, const struct nft_set *set,
1814 		      const struct nft_set_elem *elem)
1815 {
1816 	const struct nft_set_ext *ext = nft_set_elem_ext(set, elem->priv);
1817 
1818 	return pipapo_deactivate(net, set, (const u8 *)elem->key.val.data, ext);
1819 }
1820 
1821 /**
1822  * nft_pipapo_flush() - Call pipapo_deactivate() to make element inactive
1823  * @net:	Network namespace
1824  * @set:	nftables API set representation
1825  * @elem_priv:	nftables API element representation containing key data
1826  *
1827  * This is functionally the same as nft_pipapo_deactivate(), with a slightly
1828  * different interface, and it's also called once for each element in a set
1829  * being flushed, so we can't implement, strictly speaking, a flush operation,
1830  * which would otherwise be as simple as allocating an empty copy of the
1831  * matching data.
1832  *
1833  * Note that we could in theory do that, mark the set as flushed, and ignore
1834  * subsequent calls, but we would leak all the elements after the first one,
1835  * because they wouldn't then be freed as result of API calls.
1836  *
1837  * Return: true if element was found and deactivated.
1838  */
1839 static void nft_pipapo_flush(const struct net *net, const struct nft_set *set,
1840 			     struct nft_elem_priv *elem_priv)
1841 {
1842 	struct nft_pipapo_elem *e = nft_elem_priv_cast(elem_priv);
1843 
1844 	nft_set_elem_change_active(net, set, &e->ext);
1845 }
1846 
1847 /**
1848  * pipapo_get_boundaries() - Get byte interval for associated rules
1849  * @f:		Field including lookup table
1850  * @first_rule:	First rule (lowest index)
1851  * @rule_count:	Number of associated rules
1852  * @left:	Byte expression for left boundary (start of range)
1853  * @right:	Byte expression for right boundary (end of range)
1854  *
1855  * Given the first rule and amount of rules that originated from the same entry,
1856  * build the original range associated with the entry, and calculate the length
1857  * of the originating netmask.
1858  *
1859  * In pictures:
1860  *
1861  *                     bucket
1862  *      group  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
1863  *        0                                                   1,2
1864  *        1   1,2
1865  *        2                                           1,2
1866  *        3                                   1,2
1867  *        4   1,2
1868  *        5        1   2
1869  *        6   1,2  1   1   1   1   1   1   1   1   1   1   1   1   1   1   1
1870  *        7   1,2 1,2  1   1   1   1   1   1   1   1   1   1   1   1   1   1
1871  *
1872  * this is the lookup table corresponding to the IPv4 range
1873  * 192.168.1.0-192.168.2.1, which was expanded to the two composing netmasks,
1874  * rule #1: 192.168.1.0/24, and rule #2: 192.168.2.0/31.
1875  *
1876  * This function fills @left and @right with the byte values of the leftmost
1877  * and rightmost bucket indices for the lowest and highest rule indices,
1878  * respectively. If @first_rule is 1 and @rule_count is 2, we obtain, in
1879  * nibbles:
1880  *   left:  < 12, 0, 10, 8, 0, 1, 0, 0 >
1881  *   right: < 12, 0, 10, 8, 0, 2, 2, 1 >
1882  * corresponding to bytes:
1883  *   left:  < 192, 168, 1, 0 >
1884  *   right: < 192, 168, 2, 1 >
1885  * with mask length irrelevant here, unused on return, as the range is already
1886  * defined by its start and end points. The mask length is relevant for a single
1887  * ranged entry instead: if @first_rule is 1 and @rule_count is 1, we ignore
1888  * rule 2 above: @left becomes < 192, 168, 1, 0 >, @right becomes
1889  * < 192, 168, 1, 255 >, and the mask length, calculated from the distances
1890  * between leftmost and rightmost bucket indices for each group, would be 24.
1891  *
1892  * Return: mask length, in bits.
1893  */
1894 static int pipapo_get_boundaries(struct nft_pipapo_field *f, int first_rule,
1895 				 int rule_count, u8 *left, u8 *right)
1896 {
1897 	int g, mask_len = 0, bit_offset = 0;
1898 	u8 *l = left, *r = right;
1899 
1900 	for (g = 0; g < f->groups; g++) {
1901 		int b, x0, x1;
1902 
1903 		x0 = -1;
1904 		x1 = -1;
1905 		for (b = 0; b < NFT_PIPAPO_BUCKETS(f->bb); b++) {
1906 			unsigned long *pos;
1907 
1908 			pos = NFT_PIPAPO_LT_ALIGN(f->lt) +
1909 			      (g * NFT_PIPAPO_BUCKETS(f->bb) + b) * f->bsize;
1910 			if (test_bit(first_rule, pos) && x0 == -1)
1911 				x0 = b;
1912 			if (test_bit(first_rule + rule_count - 1, pos))
1913 				x1 = b;
1914 		}
1915 
1916 		*l |= x0 << (BITS_PER_BYTE - f->bb - bit_offset);
1917 		*r |= x1 << (BITS_PER_BYTE - f->bb - bit_offset);
1918 
1919 		bit_offset += f->bb;
1920 		if (bit_offset >= BITS_PER_BYTE) {
1921 			bit_offset %= BITS_PER_BYTE;
1922 			l++;
1923 			r++;
1924 		}
1925 
1926 		if (x1 - x0 == 0)
1927 			mask_len += 4;
1928 		else if (x1 - x0 == 1)
1929 			mask_len += 3;
1930 		else if (x1 - x0 == 3)
1931 			mask_len += 2;
1932 		else if (x1 - x0 == 7)
1933 			mask_len += 1;
1934 	}
1935 
1936 	return mask_len;
1937 }
1938 
1939 /**
1940  * pipapo_match_field() - Match rules against byte ranges
1941  * @f:		Field including the lookup table
1942  * @first_rule:	First of associated rules originating from same entry
1943  * @rule_count:	Amount of associated rules
1944  * @start:	Start of range to be matched
1945  * @end:	End of range to be matched
1946  *
1947  * Return: true on match, false otherwise.
1948  */
1949 static bool pipapo_match_field(struct nft_pipapo_field *f,
1950 			       int first_rule, int rule_count,
1951 			       const u8 *start, const u8 *end)
1952 {
1953 	u8 right[NFT_PIPAPO_MAX_BYTES] = { 0 };
1954 	u8 left[NFT_PIPAPO_MAX_BYTES] = { 0 };
1955 
1956 	pipapo_get_boundaries(f, first_rule, rule_count, left, right);
1957 
1958 	return !memcmp(start, left,
1959 		       f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f)) &&
1960 	       !memcmp(end, right, f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f));
1961 }
1962 
1963 /**
1964  * nft_pipapo_remove() - Remove element given key, commit
1965  * @net:	Network namespace
1966  * @set:	nftables API set representation
1967  * @elem_priv:	nftables API element representation containing key data
1968  *
1969  * Similarly to nft_pipapo_activate(), this is used as commit operation by the
1970  * API, but it's called once per element in the pending transaction, so we can't
1971  * implement this as a single commit operation. Closest we can get is to remove
1972  * the matched element here, if any, and commit the updated matching data.
1973  */
1974 static void nft_pipapo_remove(const struct net *net, const struct nft_set *set,
1975 			      struct nft_elem_priv *elem_priv)
1976 {
1977 	struct nft_pipapo *priv = nft_set_priv(set);
1978 	struct nft_pipapo_match *m = priv->clone;
1979 	int rules_f0, first_rule = 0;
1980 	struct nft_pipapo_elem *e;
1981 	const u8 *data;
1982 
1983 	e = nft_elem_priv_cast(elem_priv);
1984 	data = (const u8 *)nft_set_ext_key(&e->ext);
1985 
1986 	while ((rules_f0 = pipapo_rules_same_key(m->f, first_rule))) {
1987 		union nft_pipapo_map_bucket rulemap[NFT_PIPAPO_MAX_FIELDS];
1988 		const u8 *match_start, *match_end;
1989 		struct nft_pipapo_field *f;
1990 		int i, start, rules_fx;
1991 
1992 		match_start = data;
1993 
1994 		if (nft_set_ext_exists(&e->ext, NFT_SET_EXT_KEY_END))
1995 			match_end = (const u8 *)nft_set_ext_key_end(&e->ext)->data;
1996 		else
1997 			match_end = data;
1998 
1999 		start = first_rule;
2000 		rules_fx = rules_f0;
2001 
2002 		nft_pipapo_for_each_field(f, i, m) {
2003 			if (!pipapo_match_field(f, start, rules_fx,
2004 						match_start, match_end))
2005 				break;
2006 
2007 			rulemap[i].to = start;
2008 			rulemap[i].n = rules_fx;
2009 
2010 			rules_fx = f->mt[start].n;
2011 			start = f->mt[start].to;
2012 
2013 			match_start += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
2014 			match_end += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
2015 		}
2016 
2017 		if (i == m->field_count) {
2018 			priv->dirty = true;
2019 			pipapo_drop(m, rulemap);
2020 			return;
2021 		}
2022 
2023 		first_rule += rules_f0;
2024 	}
2025 }
2026 
2027 /**
2028  * nft_pipapo_walk() - Walk over elements
2029  * @ctx:	nftables API context
2030  * @set:	nftables API set representation
2031  * @iter:	Iterator
2032  *
2033  * As elements are referenced in the mapping array for the last field, directly
2034  * scan that array: there's no need to follow rule mappings from the first
2035  * field.
2036  */
2037 static void nft_pipapo_walk(const struct nft_ctx *ctx, struct nft_set *set,
2038 			    struct nft_set_iter *iter)
2039 {
2040 	struct nft_pipapo *priv = nft_set_priv(set);
2041 	struct net *net = read_pnet(&set->net);
2042 	struct nft_pipapo_match *m;
2043 	struct nft_pipapo_field *f;
2044 	int i, r;
2045 
2046 	rcu_read_lock();
2047 	if (iter->genmask == nft_genmask_cur(net))
2048 		m = rcu_dereference(priv->match);
2049 	else
2050 		m = priv->clone;
2051 
2052 	if (unlikely(!m))
2053 		goto out;
2054 
2055 	for (i = 0, f = m->f; i < m->field_count - 1; i++, f++)
2056 		;
2057 
2058 	for (r = 0; r < f->rules; r++) {
2059 		struct nft_pipapo_elem *e;
2060 
2061 		if (r < f->rules - 1 && f->mt[r + 1].e == f->mt[r].e)
2062 			continue;
2063 
2064 		if (iter->count < iter->skip)
2065 			goto cont;
2066 
2067 		e = f->mt[r].e;
2068 
2069 		if (!nft_set_elem_active(&e->ext, iter->genmask))
2070 			goto cont;
2071 
2072 		iter->err = iter->fn(ctx, set, iter, &e->priv);
2073 		if (iter->err < 0)
2074 			goto out;
2075 
2076 cont:
2077 		iter->count++;
2078 	}
2079 
2080 out:
2081 	rcu_read_unlock();
2082 }
2083 
2084 /**
2085  * nft_pipapo_privsize() - Return the size of private data for the set
2086  * @nla:	netlink attributes, ignored as size doesn't depend on them
2087  * @desc:	Set description, ignored as size doesn't depend on it
2088  *
2089  * Return: size of private data for this set implementation, in bytes
2090  */
2091 static u64 nft_pipapo_privsize(const struct nlattr * const nla[],
2092 			       const struct nft_set_desc *desc)
2093 {
2094 	return sizeof(struct nft_pipapo);
2095 }
2096 
2097 /**
2098  * nft_pipapo_estimate() - Set size, space and lookup complexity
2099  * @desc:	Set description, element count and field description used
2100  * @features:	Flags: NFT_SET_INTERVAL needs to be there
2101  * @est:	Storage for estimation data
2102  *
2103  * Return: true if set description is compatible, false otherwise
2104  */
2105 static bool nft_pipapo_estimate(const struct nft_set_desc *desc, u32 features,
2106 				struct nft_set_estimate *est)
2107 {
2108 	if (!(features & NFT_SET_INTERVAL) ||
2109 	    desc->field_count < NFT_PIPAPO_MIN_FIELDS)
2110 		return false;
2111 
2112 	est->size = pipapo_estimate_size(desc);
2113 	if (!est->size)
2114 		return false;
2115 
2116 	est->lookup = NFT_SET_CLASS_O_LOG_N;
2117 
2118 	est->space = NFT_SET_CLASS_O_N;
2119 
2120 	return true;
2121 }
2122 
2123 /**
2124  * nft_pipapo_init() - Initialise data for a set instance
2125  * @set:	nftables API set representation
2126  * @desc:	Set description
2127  * @nla:	netlink attributes
2128  *
2129  * Validate number and size of fields passed as NFTA_SET_DESC_CONCAT netlink
2130  * attributes, initialise internal set parameters, current instance of matching
2131  * data and a copy for subsequent insertions.
2132  *
2133  * Return: 0 on success, negative error code on failure.
2134  */
2135 static int nft_pipapo_init(const struct nft_set *set,
2136 			   const struct nft_set_desc *desc,
2137 			   const struct nlattr * const nla[])
2138 {
2139 	struct nft_pipapo *priv = nft_set_priv(set);
2140 	struct nft_pipapo_match *m;
2141 	struct nft_pipapo_field *f;
2142 	int err, i, field_count;
2143 
2144 	BUILD_BUG_ON(offsetof(struct nft_pipapo_elem, priv) != 0);
2145 
2146 	field_count = desc->field_count ? : 1;
2147 
2148 	if (field_count > NFT_PIPAPO_MAX_FIELDS)
2149 		return -EINVAL;
2150 
2151 	m = kmalloc(struct_size(m, f, field_count), GFP_KERNEL);
2152 	if (!m)
2153 		return -ENOMEM;
2154 
2155 	m->field_count = field_count;
2156 	m->bsize_max = 0;
2157 
2158 	m->scratch = alloc_percpu(struct nft_pipapo_scratch *);
2159 	if (!m->scratch) {
2160 		err = -ENOMEM;
2161 		goto out_scratch;
2162 	}
2163 	for_each_possible_cpu(i)
2164 		*per_cpu_ptr(m->scratch, i) = NULL;
2165 
2166 	rcu_head_init(&m->rcu);
2167 
2168 	nft_pipapo_for_each_field(f, i, m) {
2169 		int len = desc->field_len[i] ? : set->klen;
2170 
2171 		f->bb = NFT_PIPAPO_GROUP_BITS_INIT;
2172 		f->groups = len * NFT_PIPAPO_GROUPS_PER_BYTE(f);
2173 
2174 		priv->width += round_up(len, sizeof(u32));
2175 
2176 		f->bsize = 0;
2177 		f->rules = 0;
2178 		NFT_PIPAPO_LT_ASSIGN(f, NULL);
2179 		f->mt = NULL;
2180 	}
2181 
2182 	/* Create an initial clone of matching data for next insertion */
2183 	priv->clone = pipapo_clone(m);
2184 	if (IS_ERR(priv->clone)) {
2185 		err = PTR_ERR(priv->clone);
2186 		goto out_free;
2187 	}
2188 
2189 	priv->dirty = false;
2190 
2191 	rcu_assign_pointer(priv->match, m);
2192 
2193 	return 0;
2194 
2195 out_free:
2196 	free_percpu(m->scratch);
2197 out_scratch:
2198 	kfree(m);
2199 
2200 	return err;
2201 }
2202 
2203 /**
2204  * nft_set_pipapo_match_destroy() - Destroy elements from key mapping array
2205  * @ctx:	context
2206  * @set:	nftables API set representation
2207  * @m:		matching data pointing to key mapping array
2208  */
2209 static void nft_set_pipapo_match_destroy(const struct nft_ctx *ctx,
2210 					 const struct nft_set *set,
2211 					 struct nft_pipapo_match *m)
2212 {
2213 	struct nft_pipapo_field *f;
2214 	int i, r;
2215 
2216 	for (i = 0, f = m->f; i < m->field_count - 1; i++, f++)
2217 		;
2218 
2219 	for (r = 0; r < f->rules; r++) {
2220 		struct nft_pipapo_elem *e;
2221 
2222 		if (r < f->rules - 1 && f->mt[r + 1].e == f->mt[r].e)
2223 			continue;
2224 
2225 		e = f->mt[r].e;
2226 
2227 		nf_tables_set_elem_destroy(ctx, set, &e->priv);
2228 	}
2229 }
2230 
2231 /**
2232  * nft_pipapo_destroy() - Free private data for set and all committed elements
2233  * @ctx:	context
2234  * @set:	nftables API set representation
2235  */
2236 static void nft_pipapo_destroy(const struct nft_ctx *ctx,
2237 			       const struct nft_set *set)
2238 {
2239 	struct nft_pipapo *priv = nft_set_priv(set);
2240 	struct nft_pipapo_match *m;
2241 	int cpu;
2242 
2243 	m = rcu_dereference_protected(priv->match, true);
2244 	if (m) {
2245 		rcu_barrier();
2246 
2247 		nft_set_pipapo_match_destroy(ctx, set, m);
2248 
2249 		for_each_possible_cpu(cpu)
2250 			pipapo_free_scratch(m, cpu);
2251 		free_percpu(m->scratch);
2252 		pipapo_free_fields(m);
2253 		kfree(m);
2254 		priv->match = NULL;
2255 	}
2256 
2257 	if (priv->clone) {
2258 		m = priv->clone;
2259 
2260 		if (priv->dirty)
2261 			nft_set_pipapo_match_destroy(ctx, set, m);
2262 
2263 		for_each_possible_cpu(cpu)
2264 			pipapo_free_scratch(priv->clone, cpu);
2265 		free_percpu(priv->clone->scratch);
2266 
2267 		pipapo_free_fields(priv->clone);
2268 		kfree(priv->clone);
2269 		priv->clone = NULL;
2270 	}
2271 }
2272 
2273 /**
2274  * nft_pipapo_gc_init() - Initialise garbage collection
2275  * @set:	nftables API set representation
2276  *
2277  * Instead of actually setting up a periodic work for garbage collection, as
2278  * this operation requires a swap of matching data with the working copy, we'll
2279  * do that opportunistically with other commit operations if the interval is
2280  * elapsed, so we just need to set the current jiffies timestamp here.
2281  */
2282 static void nft_pipapo_gc_init(const struct nft_set *set)
2283 {
2284 	struct nft_pipapo *priv = nft_set_priv(set);
2285 
2286 	priv->last_gc = jiffies;
2287 }
2288 
2289 const struct nft_set_type nft_set_pipapo_type = {
2290 	.features	= NFT_SET_INTERVAL | NFT_SET_MAP | NFT_SET_OBJECT |
2291 			  NFT_SET_TIMEOUT,
2292 	.ops		= {
2293 		.lookup		= nft_pipapo_lookup,
2294 		.insert		= nft_pipapo_insert,
2295 		.activate	= nft_pipapo_activate,
2296 		.deactivate	= nft_pipapo_deactivate,
2297 		.flush		= nft_pipapo_flush,
2298 		.remove		= nft_pipapo_remove,
2299 		.walk		= nft_pipapo_walk,
2300 		.get		= nft_pipapo_get,
2301 		.privsize	= nft_pipapo_privsize,
2302 		.estimate	= nft_pipapo_estimate,
2303 		.init		= nft_pipapo_init,
2304 		.destroy	= nft_pipapo_destroy,
2305 		.gc_init	= nft_pipapo_gc_init,
2306 		.commit		= nft_pipapo_commit,
2307 		.abort		= nft_pipapo_abort,
2308 		.elemsize	= offsetof(struct nft_pipapo_elem, ext),
2309 	},
2310 };
2311 
2312 #if defined(CONFIG_X86_64) && !defined(CONFIG_UML)
2313 const struct nft_set_type nft_set_pipapo_avx2_type = {
2314 	.features	= NFT_SET_INTERVAL | NFT_SET_MAP | NFT_SET_OBJECT |
2315 			  NFT_SET_TIMEOUT,
2316 	.ops		= {
2317 		.lookup		= nft_pipapo_avx2_lookup,
2318 		.insert		= nft_pipapo_insert,
2319 		.activate	= nft_pipapo_activate,
2320 		.deactivate	= nft_pipapo_deactivate,
2321 		.flush		= nft_pipapo_flush,
2322 		.remove		= nft_pipapo_remove,
2323 		.walk		= nft_pipapo_walk,
2324 		.get		= nft_pipapo_get,
2325 		.privsize	= nft_pipapo_privsize,
2326 		.estimate	= nft_pipapo_avx2_estimate,
2327 		.init		= nft_pipapo_init,
2328 		.destroy	= nft_pipapo_destroy,
2329 		.gc_init	= nft_pipapo_gc_init,
2330 		.commit		= nft_pipapo_commit,
2331 		.abort		= nft_pipapo_abort,
2332 		.elemsize	= offsetof(struct nft_pipapo_elem, ext),
2333 	},
2334 };
2335 #endif
2336