xref: /linux/net/netfilter/nft_set_pipapo.c (revision 63467137ecc0ff6f804d53903ad87a2f0397a18b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 
3 /* PIPAPO: PIle PAcket POlicies: set for arbitrary concatenations of ranges
4  *
5  * Copyright (c) 2019-2020 Red Hat GmbH
6  *
7  * Author: Stefano Brivio <sbrivio@redhat.com>
8  */
9 
10 /**
11  * DOC: Theory of Operation
12  *
13  *
14  * Problem
15  * -------
16  *
17  * Match packet bytes against entries composed of ranged or non-ranged packet
18  * field specifiers, mapping them to arbitrary references. For example:
19  *
20  * ::
21  *
22  *               --- fields --->
23  *      |    [net],[port],[net]... => [reference]
24  *   entries [net],[port],[net]... => [reference]
25  *      |    [net],[port],[net]... => [reference]
26  *      V    ...
27  *
28  * where [net] fields can be IP ranges or netmasks, and [port] fields are port
29  * ranges. Arbitrary packet fields can be matched.
30  *
31  *
32  * Algorithm Overview
33  * ------------------
34  *
35  * This algorithm is loosely inspired by [Ligatti 2010], and fundamentally
36  * relies on the consideration that every contiguous range in a space of b bits
37  * can be converted into b * 2 netmasks, from Theorem 3 in [Rottenstreich 2010],
38  * as also illustrated in Section 9 of [Kogan 2014].
39  *
40  * Classification against a number of entries, that require matching given bits
41  * of a packet field, is performed by grouping those bits in sets of arbitrary
42  * size, and classifying packet bits one group at a time.
43  *
44  * Example:
45  *   to match the source port (16 bits) of a packet, we can divide those 16 bits
46  *   in 4 groups of 4 bits each. Given the entry:
47  *      0000 0001 0101 1001
48  *   and a packet with source port:
49  *      0000 0001 1010 1001
50  *   first and second groups match, but the third doesn't. We conclude that the
51  *   packet doesn't match the given entry.
52  *
53  * Translate the set to a sequence of lookup tables, one per field. Each table
54  * has two dimensions: bit groups to be matched for a single packet field, and
55  * all the possible values of said groups (buckets). Input entries are
56  * represented as one or more rules, depending on the number of composing
57  * netmasks for the given field specifier, and a group match is indicated as a
58  * set bit, with number corresponding to the rule index, in all the buckets
59  * whose value matches the entry for a given group.
60  *
61  * Rules are mapped between fields through an array of x, n pairs, with each
62  * item mapping a matched rule to one or more rules. The position of the pair in
63  * the array indicates the matched rule to be mapped to the next field, x
64  * indicates the first rule index in the next field, and n the amount of
65  * next-field rules the current rule maps to.
66  *
67  * The mapping array for the last field maps to the desired references.
68  *
69  * To match, we perform table lookups using the values of grouped packet bits,
70  * and use a sequence of bitwise operations to progressively evaluate rule
71  * matching.
72  *
73  * A stand-alone, reference implementation, also including notes about possible
74  * future optimisations, is available at:
75  *    https://pipapo.lameexcu.se/
76  *
77  * Insertion
78  * ---------
79  *
80  * - For each packet field:
81  *
82  *   - divide the b packet bits we want to classify into groups of size t,
83  *     obtaining ceil(b / t) groups
84  *
85  *      Example: match on destination IP address, with t = 4: 32 bits, 8 groups
86  *      of 4 bits each
87  *
88  *   - allocate a lookup table with one column ("bucket") for each possible
89  *     value of a group, and with one row for each group
90  *
91  *      Example: 8 groups, 2^4 buckets:
92  *
93  * ::
94  *
95  *                     bucket
96  *      group  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
97  *        0
98  *        1
99  *        2
100  *        3
101  *        4
102  *        5
103  *        6
104  *        7
105  *
106  *   - map the bits we want to classify for the current field, for a given
107  *     entry, to a single rule for non-ranged and netmask set items, and to one
108  *     or multiple rules for ranges. Ranges are expanded to composing netmasks
109  *     by pipapo_expand().
110  *
111  *      Example: 2 entries, 10.0.0.5:1024 and 192.168.1.0-192.168.2.1:2048
112  *      - rule #0: 10.0.0.5
113  *      - rule #1: 192.168.1.0/24
114  *      - rule #2: 192.168.2.0/31
115  *
116  *   - insert references to the rules in the lookup table, selecting buckets
117  *     according to bit values of a rule in the given group. This is done by
118  *     pipapo_insert().
119  *
120  *      Example: given:
121  *      - rule #0: 10.0.0.5 mapping to buckets
122  *        < 0 10  0 0   0 0  0 5 >
123  *      - rule #1: 192.168.1.0/24 mapping to buckets
124  *        < 12 0  10 8  0 1  < 0..15 > < 0..15 > >
125  *      - rule #2: 192.168.2.0/31 mapping to buckets
126  *        < 12 0  10 8  0 2  0 < 0..1 > >
127  *
128  *      these bits are set in the lookup table:
129  *
130  * ::
131  *
132  *                     bucket
133  *      group  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
134  *        0    0                                              1,2
135  *        1   1,2                                      0
136  *        2    0                                      1,2
137  *        3    0                              1,2
138  *        4  0,1,2
139  *        5    0   1   2
140  *        6  0,1,2 1   1   1   1   1   1   1   1   1   1   1   1   1   1   1
141  *        7   1,2 1,2  1   1   1  0,1  1   1   1   1   1   1   1   1   1   1
142  *
143  *   - if this is not the last field in the set, fill a mapping array that maps
144  *     rules from the lookup table to rules belonging to the same entry in
145  *     the next lookup table, done by pipapo_map().
146  *
147  *     Note that as rules map to contiguous ranges of rules, given how netmask
148  *     expansion and insertion is performed, &union nft_pipapo_map_bucket stores
149  *     this information as pairs of first rule index, rule count.
150  *
151  *      Example: 2 entries, 10.0.0.5:1024 and 192.168.1.0-192.168.2.1:2048,
152  *      given lookup table #0 for field 0 (see example above):
153  *
154  * ::
155  *
156  *                     bucket
157  *      group  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
158  *        0    0                                              1,2
159  *        1   1,2                                      0
160  *        2    0                                      1,2
161  *        3    0                              1,2
162  *        4  0,1,2
163  *        5    0   1   2
164  *        6  0,1,2 1   1   1   1   1   1   1   1   1   1   1   1   1   1   1
165  *        7   1,2 1,2  1   1   1  0,1  1   1   1   1   1   1   1   1   1   1
166  *
167  *      and lookup table #1 for field 1 with:
168  *      - rule #0: 1024 mapping to buckets
169  *        < 0  0  4  0 >
170  *      - rule #1: 2048 mapping to buckets
171  *        < 0  0  5  0 >
172  *
173  * ::
174  *
175  *                     bucket
176  *      group  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
177  *        0   0,1
178  *        1   0,1
179  *        2                    0   1
180  *        3   0,1
181  *
182  *      we need to map rules for 10.0.0.5 in lookup table #0 (rule #0) to 1024
183  *      in lookup table #1 (rule #0) and rules for 192.168.1.0-192.168.2.1
184  *      (rules #1, #2) to 2048 in lookup table #2 (rule #1):
185  *
186  * ::
187  *
188  *       rule indices in current field: 0    1    2
189  *       map to rules in next field:    0    1    1
190  *
191  *   - if this is the last field in the set, fill a mapping array that maps
192  *     rules from the last lookup table to element pointers, also done by
193  *     pipapo_map().
194  *
195  *     Note that, in this implementation, we have two elements (start, end) for
196  *     each entry. The pointer to the end element is stored in this array, and
197  *     the pointer to the start element is linked from it.
198  *
199  *      Example: entry 10.0.0.5:1024 has a corresponding &struct nft_pipapo_elem
200  *      pointer, 0x66, and element for 192.168.1.0-192.168.2.1:2048 is at 0x42.
201  *      From the rules of lookup table #1 as mapped above:
202  *
203  * ::
204  *
205  *       rule indices in last field:    0    1
206  *       map to elements:             0x66  0x42
207  *
208  *
209  * Matching
210  * --------
211  *
212  * We use a result bitmap, with the size of a single lookup table bucket, to
213  * represent the matching state that applies at every algorithm step. This is
214  * done by pipapo_lookup().
215  *
216  * - For each packet field:
217  *
218  *   - start with an all-ones result bitmap (res_map in pipapo_lookup())
219  *
220  *   - perform a lookup into the table corresponding to the current field,
221  *     for each group, and at every group, AND the current result bitmap with
222  *     the value from the lookup table bucket
223  *
224  * ::
225  *
226  *      Example: 192.168.1.5 < 12 0  10 8  0 1  0 5 >, with lookup table from
227  *      insertion examples.
228  *      Lookup table buckets are at least 3 bits wide, we'll assume 8 bits for
229  *      convenience in this example. Initial result bitmap is 0xff, the steps
230  *      below show the value of the result bitmap after each group is processed:
231  *
232  *                     bucket
233  *      group  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
234  *        0    0                                              1,2
235  *        result bitmap is now: 0xff & 0x6 [bucket 12] = 0x6
236  *
237  *        1   1,2                                      0
238  *        result bitmap is now: 0x6 & 0x6 [bucket 0] = 0x6
239  *
240  *        2    0                                      1,2
241  *        result bitmap is now: 0x6 & 0x6 [bucket 10] = 0x6
242  *
243  *        3    0                              1,2
244  *        result bitmap is now: 0x6 & 0x6 [bucket 8] = 0x6
245  *
246  *        4  0,1,2
247  *        result bitmap is now: 0x6 & 0x7 [bucket 0] = 0x6
248  *
249  *        5    0   1   2
250  *        result bitmap is now: 0x6 & 0x2 [bucket 1] = 0x2
251  *
252  *        6  0,1,2 1   1   1   1   1   1   1   1   1   1   1   1   1   1   1
253  *        result bitmap is now: 0x2 & 0x7 [bucket 0] = 0x2
254  *
255  *        7   1,2 1,2  1   1   1  0,1  1   1   1   1   1   1   1   1   1   1
256  *        final result bitmap for this field is: 0x2 & 0x3 [bucket 5] = 0x2
257  *
258  *   - at the next field, start with a new, all-zeroes result bitmap. For each
259  *     bit set in the previous result bitmap, fill the new result bitmap
260  *     (fill_map in pipapo_lookup()) with the rule indices from the
261  *     corresponding buckets of the mapping field for this field, done by
262  *     pipapo_refill()
263  *
264  *      Example: with mapping table from insertion examples, with the current
265  *      result bitmap from the previous example, 0x02:
266  *
267  * ::
268  *
269  *       rule indices in current field: 0    1    2
270  *       map to rules in next field:    0    1    1
271  *
272  *      the new result bitmap will be 0x02: rule 1 was set, and rule 1 will be
273  *      set.
274  *
275  *      We can now extend this example to cover the second iteration of the step
276  *      above (lookup and AND bitmap): assuming the port field is
277  *      2048 < 0  0  5  0 >, with starting result bitmap 0x2, and lookup table
278  *      for "port" field from pre-computation example:
279  *
280  * ::
281  *
282  *                     bucket
283  *      group  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
284  *        0   0,1
285  *        1   0,1
286  *        2                    0   1
287  *        3   0,1
288  *
289  *       operations are: 0x2 & 0x3 [bucket 0] & 0x3 [bucket 0] & 0x2 [bucket 5]
290  *       & 0x3 [bucket 0], resulting bitmap is 0x2.
291  *
292  *   - if this is the last field in the set, look up the value from the mapping
293  *     array corresponding to the final result bitmap
294  *
295  *      Example: 0x2 resulting bitmap from 192.168.1.5:2048, mapping array for
296  *      last field from insertion example:
297  *
298  * ::
299  *
300  *       rule indices in last field:    0    1
301  *       map to elements:             0x66  0x42
302  *
303  *      the matching element is at 0x42.
304  *
305  *
306  * References
307  * ----------
308  *
309  * [Ligatti 2010]
310  *      A Packet-classification Algorithm for Arbitrary Bitmask Rules, with
311  *      Automatic Time-space Tradeoffs
312  *      Jay Ligatti, Josh Kuhn, and Chris Gage.
313  *      Proceedings of the IEEE International Conference on Computer
314  *      Communication Networks (ICCCN), August 2010.
315  *      https://www.cse.usf.edu/~ligatti/papers/grouper-conf.pdf
316  *
317  * [Rottenstreich 2010]
318  *      Worst-Case TCAM Rule Expansion
319  *      Ori Rottenstreich and Isaac Keslassy.
320  *      2010 Proceedings IEEE INFOCOM, San Diego, CA, 2010.
321  *      http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.212.4592&rep=rep1&type=pdf
322  *
323  * [Kogan 2014]
324  *      SAX-PAC (Scalable And eXpressive PAcket Classification)
325  *      Kirill Kogan, Sergey Nikolenko, Ori Rottenstreich, William Culhane,
326  *      and Patrick Eugster.
327  *      Proceedings of the 2014 ACM conference on SIGCOMM, August 2014.
328  *      https://www.sigcomm.org/sites/default/files/ccr/papers/2014/August/2619239-2626294.pdf
329  */
330 
331 #include <linux/kernel.h>
332 #include <linux/init.h>
333 #include <linux/module.h>
334 #include <linux/netlink.h>
335 #include <linux/netfilter.h>
336 #include <linux/netfilter/nf_tables.h>
337 #include <net/netfilter/nf_tables_core.h>
338 #include <uapi/linux/netfilter/nf_tables.h>
339 #include <linux/bitmap.h>
340 #include <linux/bitops.h>
341 
342 #include "nft_set_pipapo_avx2.h"
343 #include "nft_set_pipapo.h"
344 
345 /**
346  * pipapo_refill() - For each set bit, set bits from selected mapping table item
347  * @map:	Bitmap to be scanned for set bits
348  * @len:	Length of bitmap in longs
349  * @rules:	Number of rules in field
350  * @dst:	Destination bitmap
351  * @mt:		Mapping table containing bit set specifiers
352  * @match_only:	Find a single bit and return, don't fill
353  *
354  * Iteration over set bits with __builtin_ctzl(): Daniel Lemire, public domain.
355  *
356  * For each bit set in map, select the bucket from mapping table with index
357  * corresponding to the position of the bit set. Use start bit and amount of
358  * bits specified in bucket to fill region in dst.
359  *
360  * Return: -1 on no match, bit position on 'match_only', 0 otherwise.
361  */
pipapo_refill(unsigned long * map,unsigned int len,unsigned int rules,unsigned long * dst,const union nft_pipapo_map_bucket * mt,bool match_only)362 int pipapo_refill(unsigned long *map, unsigned int len, unsigned int rules,
363 		  unsigned long *dst,
364 		  const union nft_pipapo_map_bucket *mt, bool match_only)
365 {
366 	unsigned long bitset;
367 	unsigned int k;
368 	int ret = -1;
369 
370 	for (k = 0; k < len; k++) {
371 		bitset = map[k];
372 		while (bitset) {
373 			unsigned long t = bitset & -bitset;
374 			int r = __builtin_ctzl(bitset);
375 			int i = k * BITS_PER_LONG + r;
376 
377 			if (unlikely(i >= rules)) {
378 				map[k] = 0;
379 				return -1;
380 			}
381 
382 			if (match_only) {
383 				bitmap_clear(map, i, 1);
384 				return i;
385 			}
386 
387 			ret = 0;
388 
389 			bitmap_set(dst, mt[i].to, mt[i].n);
390 
391 			bitset ^= t;
392 		}
393 		map[k] = 0;
394 	}
395 
396 	return ret;
397 }
398 
399 /**
400  * pipapo_get() - Get matching element reference given key data
401  * @m:		storage containing the set elements
402  * @data:	Key data to be matched against existing elements
403  * @genmask:	If set, check that element is active in given genmask
404  * @tstamp:	timestamp to check for expired elements
405  *
406  * For more details, see DOC: Theory of Operation.
407  *
408  * This is the main lookup function.  It matches key data against either
409  * the working match set or the uncommitted copy, depending on what the
410  * caller passed to us.
411  * nft_pipapo_get (lookup from userspace/control plane) and nft_pipapo_lookup
412  * (datapath lookup) pass the active copy.
413  * The insertion path will pass the uncommitted working copy.
414  *
415  * Return: pointer to &struct nft_pipapo_elem on match, NULL otherwise.
416  */
pipapo_get(const struct nft_pipapo_match * m,const u8 * data,u8 genmask,u64 tstamp)417 static struct nft_pipapo_elem *pipapo_get(const struct nft_pipapo_match *m,
418 					  const u8 *data, u8 genmask,
419 					  u64 tstamp)
420 {
421 	struct nft_pipapo_scratch *scratch;
422 	unsigned long *res_map, *fill_map;
423 	const struct nft_pipapo_field *f;
424 	bool map_index;
425 	int i;
426 
427 	local_bh_disable();
428 
429 	scratch = *raw_cpu_ptr(m->scratch);
430 	if (unlikely(!scratch))
431 		goto out;
432 
433 	map_index = scratch->map_index;
434 
435 	res_map  = scratch->map + (map_index ? m->bsize_max : 0);
436 	fill_map = scratch->map + (map_index ? 0 : m->bsize_max);
437 
438 	pipapo_resmap_init(m, res_map);
439 
440 	nft_pipapo_for_each_field(f, i, m) {
441 		bool last = i == m->field_count - 1;
442 		int b;
443 
444 		/* For each bit group: select lookup table bucket depending on
445 		 * packet bytes value, then AND bucket value
446 		 */
447 		if (likely(f->bb == 8))
448 			pipapo_and_field_buckets_8bit(f, res_map, data);
449 		else
450 			pipapo_and_field_buckets_4bit(f, res_map, data);
451 		NFT_PIPAPO_GROUP_BITS_ARE_8_OR_4;
452 
453 		data += f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f);
454 
455 		/* Now populate the bitmap for the next field, unless this is
456 		 * the last field, in which case return the matched 'ext'
457 		 * pointer if any.
458 		 *
459 		 * Now res_map contains the matching bitmap, and fill_map is the
460 		 * bitmap for the next field.
461 		 */
462 next_match:
463 		b = pipapo_refill(res_map, f->bsize, f->rules, fill_map, f->mt,
464 				  last);
465 		if (b < 0) {
466 			scratch->map_index = map_index;
467 			local_bh_enable();
468 
469 			return NULL;
470 		}
471 
472 		if (last) {
473 			struct nft_pipapo_elem *e;
474 
475 			e = f->mt[b].e;
476 			if (unlikely(__nft_set_elem_expired(&e->ext, tstamp) ||
477 				     !nft_set_elem_active(&e->ext, genmask)))
478 				goto next_match;
479 
480 			/* Last field: we're just returning the key without
481 			 * filling the initial bitmap for the next field, so the
482 			 * current inactive bitmap is clean and can be reused as
483 			 * *next* bitmap (not initial) for the next packet.
484 			 */
485 			scratch->map_index = map_index;
486 			local_bh_enable();
487 			return e;
488 		}
489 
490 		/* Swap bitmap indices: res_map is the initial bitmap for the
491 		 * next field, and fill_map is guaranteed to be all-zeroes at
492 		 * this point.
493 		 */
494 		map_index = !map_index;
495 		swap(res_map, fill_map);
496 
497 		data += NFT_PIPAPO_GROUPS_PADDING(f);
498 	}
499 
500 out:
501 	local_bh_enable();
502 	return NULL;
503 }
504 
505 /**
506  * nft_pipapo_lookup() - Dataplane fronted for main lookup function
507  * @net:	Network namespace
508  * @set:	nftables API set representation
509  * @key:	pointer to nft registers containing key data
510  *
511  * This function is called from the data path.  It will search for
512  * an element matching the given key in the current active copy.
513  *
514  * Return: ntables API extension pointer or NULL if no match.
515  */
516 const struct nft_set_ext *
nft_pipapo_lookup(const struct net * net,const struct nft_set * set,const u32 * key)517 nft_pipapo_lookup(const struct net *net, const struct nft_set *set,
518 		  const u32 *key)
519 {
520 	struct nft_pipapo *priv = nft_set_priv(set);
521 	u8 genmask = nft_genmask_cur(net);
522 	const struct nft_pipapo_match *m;
523 	const struct nft_pipapo_elem *e;
524 
525 	m = rcu_dereference(priv->match);
526 	e = pipapo_get(m, (const u8 *)key, genmask, get_jiffies_64());
527 
528 	return e ? &e->ext : NULL;
529 }
530 
531 /**
532  * nft_pipapo_get() - Get matching element reference given key data
533  * @net:	Network namespace
534  * @set:	nftables API set representation
535  * @elem:	nftables API element representation containing key data
536  * @flags:	Unused
537  *
538  * This function is called from the control plane path under
539  * RCU read lock.
540  *
541  * Return: set element private pointer or ERR_PTR(-ENOENT).
542  */
543 static struct nft_elem_priv *
nft_pipapo_get(const struct net * net,const struct nft_set * set,const struct nft_set_elem * elem,unsigned int flags)544 nft_pipapo_get(const struct net *net, const struct nft_set *set,
545 	       const struct nft_set_elem *elem, unsigned int flags)
546 {
547 	struct nft_pipapo *priv = nft_set_priv(set);
548 	struct nft_pipapo_match *m = rcu_dereference(priv->match);
549 	struct nft_pipapo_elem *e;
550 
551 	e = pipapo_get(m, (const u8 *)elem->key.val.data,
552 		       nft_genmask_cur(net), get_jiffies_64());
553 	if (!e)
554 		return ERR_PTR(-ENOENT);
555 
556 	return &e->priv;
557 }
558 
559 /**
560  * pipapo_realloc_mt() - Reallocate mapping table if needed upon resize
561  * @f:		Field containing mapping table
562  * @old_rules:	Amount of existing mapped rules
563  * @rules:	Amount of new rules to map
564  *
565  * Return: 0 on success, negative error code on failure.
566  */
pipapo_realloc_mt(struct nft_pipapo_field * f,unsigned int old_rules,unsigned int rules)567 static int pipapo_realloc_mt(struct nft_pipapo_field *f,
568 			     unsigned int old_rules, unsigned int rules)
569 {
570 	union nft_pipapo_map_bucket *new_mt = NULL, *old_mt = f->mt;
571 	const unsigned int extra = PAGE_SIZE / sizeof(*new_mt);
572 	unsigned int rules_alloc = rules;
573 
574 	might_sleep();
575 
576 	if (unlikely(rules == 0))
577 		goto out_free;
578 
579 	/* growing and enough space left, no action needed */
580 	if (rules > old_rules && f->rules_alloc > rules)
581 		return 0;
582 
583 	/* downsize and extra slack has not grown too large */
584 	if (rules < old_rules) {
585 		unsigned int remove = f->rules_alloc - rules;
586 
587 		if (remove < (2u * extra))
588 			return 0;
589 	}
590 
591 	/* If set needs more than one page of memory for rules then
592 	 * allocate another extra page to avoid frequent reallocation.
593 	 */
594 	if (rules > extra &&
595 	    check_add_overflow(rules, extra, &rules_alloc))
596 		return -EOVERFLOW;
597 
598 	if (rules_alloc > (INT_MAX / sizeof(*new_mt)))
599 		return -ENOMEM;
600 
601 	new_mt = kvmalloc_array(rules_alloc, sizeof(*new_mt), GFP_KERNEL_ACCOUNT);
602 	if (!new_mt)
603 		return -ENOMEM;
604 
605 	if (old_mt)
606 		memcpy(new_mt, old_mt, min(old_rules, rules) * sizeof(*new_mt));
607 
608 	if (rules > old_rules) {
609 		memset(new_mt + old_rules, 0,
610 		       (rules - old_rules) * sizeof(*new_mt));
611 	}
612 out_free:
613 	f->rules_alloc = rules_alloc;
614 	f->mt = new_mt;
615 
616 	kvfree(old_mt);
617 
618 	return 0;
619 }
620 
621 
622 /**
623  * lt_calculate_size() - Get storage size for lookup table with overflow check
624  * @groups:	Amount of bit groups
625  * @bb:		Number of bits grouped together in lookup table buckets
626  * @bsize:	Size of each bucket in lookup table, in longs
627  *
628  * Return: allocation size including alignment overhead, negative on overflow
629  */
lt_calculate_size(unsigned int groups,unsigned int bb,unsigned int bsize)630 static ssize_t lt_calculate_size(unsigned int groups, unsigned int bb,
631 				 unsigned int bsize)
632 {
633 	ssize_t ret = groups * NFT_PIPAPO_BUCKETS(bb) * sizeof(long);
634 
635 	if (check_mul_overflow(ret, bsize, &ret))
636 		return -1;
637 	if (check_add_overflow(ret, NFT_PIPAPO_ALIGN_HEADROOM, &ret))
638 		return -1;
639 	if (ret > INT_MAX)
640 		return -1;
641 
642 	return ret;
643 }
644 
645 /**
646  * pipapo_resize() - Resize lookup or mapping table, or both
647  * @f:		Field containing lookup and mapping tables
648  * @old_rules:	Previous amount of rules in field
649  * @rules:	New amount of rules
650  *
651  * Increase, decrease or maintain tables size depending on new amount of rules,
652  * and copy data over. In case the new size is smaller, throw away data for
653  * highest-numbered rules.
654  *
655  * Return: 0 on success, -ENOMEM on allocation failure.
656  */
pipapo_resize(struct nft_pipapo_field * f,unsigned int old_rules,unsigned int rules)657 static int pipapo_resize(struct nft_pipapo_field *f,
658 			 unsigned int old_rules, unsigned int rules)
659 {
660 	long *new_lt = NULL, *new_p, *old_lt = f->lt, *old_p;
661 	unsigned int new_bucket_size, copy;
662 	int group, bucket, err;
663 	ssize_t lt_size;
664 
665 	if (rules >= NFT_PIPAPO_RULE0_MAX)
666 		return -ENOSPC;
667 
668 	new_bucket_size = DIV_ROUND_UP(rules, BITS_PER_LONG);
669 #ifdef NFT_PIPAPO_ALIGN
670 	new_bucket_size = roundup(new_bucket_size,
671 				  NFT_PIPAPO_ALIGN / sizeof(*new_lt));
672 #endif
673 
674 	if (new_bucket_size == f->bsize)
675 		goto mt;
676 
677 	if (new_bucket_size > f->bsize)
678 		copy = f->bsize;
679 	else
680 		copy = new_bucket_size;
681 
682 	lt_size = lt_calculate_size(f->groups, f->bb, new_bucket_size);
683 	if (lt_size < 0)
684 		return -ENOMEM;
685 
686 	new_lt = kvzalloc(lt_size, GFP_KERNEL_ACCOUNT);
687 	if (!new_lt)
688 		return -ENOMEM;
689 
690 	new_p = NFT_PIPAPO_LT_ALIGN(new_lt);
691 	old_p = NFT_PIPAPO_LT_ALIGN(old_lt);
692 
693 	for (group = 0; group < f->groups; group++) {
694 		for (bucket = 0; bucket < NFT_PIPAPO_BUCKETS(f->bb); bucket++) {
695 			memcpy(new_p, old_p, copy * sizeof(*new_p));
696 			new_p += copy;
697 			old_p += copy;
698 
699 			if (new_bucket_size > f->bsize)
700 				new_p += new_bucket_size - f->bsize;
701 			else
702 				old_p += f->bsize - new_bucket_size;
703 		}
704 	}
705 
706 mt:
707 	err = pipapo_realloc_mt(f, old_rules, rules);
708 	if (err) {
709 		kvfree(new_lt);
710 		return err;
711 	}
712 
713 	if (new_lt) {
714 		f->bsize = new_bucket_size;
715 		f->lt = new_lt;
716 		kvfree(old_lt);
717 	}
718 
719 	return 0;
720 }
721 
722 /**
723  * pipapo_bucket_set() - Set rule bit in bucket given group and group value
724  * @f:		Field containing lookup table
725  * @rule:	Rule index
726  * @group:	Group index
727  * @v:		Value of bit group
728  */
pipapo_bucket_set(struct nft_pipapo_field * f,int rule,int group,int v)729 static void pipapo_bucket_set(struct nft_pipapo_field *f, int rule, int group,
730 			      int v)
731 {
732 	unsigned long *pos;
733 
734 	pos = NFT_PIPAPO_LT_ALIGN(f->lt);
735 	pos += f->bsize * NFT_PIPAPO_BUCKETS(f->bb) * group;
736 	pos += f->bsize * v;
737 
738 	__set_bit(rule, pos);
739 }
740 
741 /**
742  * pipapo_lt_4b_to_8b() - Switch lookup table group width from 4 bits to 8 bits
743  * @old_groups:	Number of current groups
744  * @bsize:	Size of one bucket, in longs
745  * @old_lt:	Pointer to the current lookup table
746  * @new_lt:	Pointer to the new, pre-allocated lookup table
747  *
748  * Each bucket with index b in the new lookup table, belonging to group g, is
749  * filled with the bit intersection between:
750  * - bucket with index given by the upper 4 bits of b, from group g, and
751  * - bucket with index given by the lower 4 bits of b, from group g + 1
752  *
753  * That is, given buckets from the new lookup table N(x, y) and the old lookup
754  * table O(x, y), with x bucket index, and y group index:
755  *
756  *	N(b, g) := O(b / 16, g) & O(b % 16, g + 1)
757  *
758  * This ensures equivalence of the matching results on lookup. Two examples in
759  * pictures:
760  *
761  *              bucket
762  *  group  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 ... 254 255
763  *    0                ^
764  *    1                |                                                 ^
765  *   ...             ( & )                                               |
766  *                  /     \                                              |
767  *                 /       \                                         .-( & )-.
768  *                /  bucket \                                        |       |
769  *      group  0 / 1   2   3 \ 4   5   6   7   8   9  10  11  12  13 |14  15 |
770  *        0     /             \                                      |       |
771  *        1                    \                                     |       |
772  *        2                                                          |     --'
773  *        3                                                          '-
774  *       ...
775  */
pipapo_lt_4b_to_8b(int old_groups,int bsize,unsigned long * old_lt,unsigned long * new_lt)776 static void pipapo_lt_4b_to_8b(int old_groups, int bsize,
777 			       unsigned long *old_lt, unsigned long *new_lt)
778 {
779 	int g, b, i;
780 
781 	for (g = 0; g < old_groups / 2; g++) {
782 		int src_g0 = g * 2, src_g1 = g * 2 + 1;
783 
784 		for (b = 0; b < NFT_PIPAPO_BUCKETS(8); b++) {
785 			int src_b0 = b / NFT_PIPAPO_BUCKETS(4);
786 			int src_b1 = b % NFT_PIPAPO_BUCKETS(4);
787 			int src_i0 = src_g0 * NFT_PIPAPO_BUCKETS(4) + src_b0;
788 			int src_i1 = src_g1 * NFT_PIPAPO_BUCKETS(4) + src_b1;
789 
790 			for (i = 0; i < bsize; i++) {
791 				*new_lt = old_lt[src_i0 * bsize + i] &
792 					  old_lt[src_i1 * bsize + i];
793 				new_lt++;
794 			}
795 		}
796 	}
797 }
798 
799 /**
800  * pipapo_lt_8b_to_4b() - Switch lookup table group width from 8 bits to 4 bits
801  * @old_groups:	Number of current groups
802  * @bsize:	Size of one bucket, in longs
803  * @old_lt:	Pointer to the current lookup table
804  * @new_lt:	Pointer to the new, pre-allocated lookup table
805  *
806  * Each bucket with index b in the new lookup table, belonging to group g, is
807  * filled with the bit union of:
808  * - all the buckets with index such that the upper four bits of the lower byte
809  *   equal b, from group g, with g odd
810  * - all the buckets with index such that the lower four bits equal b, from
811  *   group g, with g even
812  *
813  * That is, given buckets from the new lookup table N(x, y) and the old lookup
814  * table O(x, y), with x bucket index, and y group index:
815  *
816  *	- with g odd:  N(b, g) := U(O(x, g) for each x : x = (b & 0xf0) >> 4)
817  *	- with g even: N(b, g) := U(O(x, g) for each x : x = b & 0x0f)
818  *
819  * where U() denotes the arbitrary union operation (binary OR of n terms). This
820  * ensures equivalence of the matching results on lookup.
821  */
pipapo_lt_8b_to_4b(int old_groups,int bsize,unsigned long * old_lt,unsigned long * new_lt)822 static void pipapo_lt_8b_to_4b(int old_groups, int bsize,
823 			       unsigned long *old_lt, unsigned long *new_lt)
824 {
825 	int g, b, bsrc, i;
826 
827 	memset(new_lt, 0, old_groups * 2 * NFT_PIPAPO_BUCKETS(4) * bsize *
828 			  sizeof(unsigned long));
829 
830 	for (g = 0; g < old_groups * 2; g += 2) {
831 		int src_g = g / 2;
832 
833 		for (b = 0; b < NFT_PIPAPO_BUCKETS(4); b++) {
834 			for (bsrc = NFT_PIPAPO_BUCKETS(8) * src_g;
835 			     bsrc < NFT_PIPAPO_BUCKETS(8) * (src_g + 1);
836 			     bsrc++) {
837 				if (((bsrc & 0xf0) >> 4) != b)
838 					continue;
839 
840 				for (i = 0; i < bsize; i++)
841 					new_lt[i] |= old_lt[bsrc * bsize + i];
842 			}
843 
844 			new_lt += bsize;
845 		}
846 
847 		for (b = 0; b < NFT_PIPAPO_BUCKETS(4); b++) {
848 			for (bsrc = NFT_PIPAPO_BUCKETS(8) * src_g;
849 			     bsrc < NFT_PIPAPO_BUCKETS(8) * (src_g + 1);
850 			     bsrc++) {
851 				if ((bsrc & 0x0f) != b)
852 					continue;
853 
854 				for (i = 0; i < bsize; i++)
855 					new_lt[i] |= old_lt[bsrc * bsize + i];
856 			}
857 
858 			new_lt += bsize;
859 		}
860 	}
861 }
862 
863 /**
864  * pipapo_lt_bits_adjust() - Adjust group size for lookup table if needed
865  * @f:		Field containing lookup table
866  */
pipapo_lt_bits_adjust(struct nft_pipapo_field * f)867 static void pipapo_lt_bits_adjust(struct nft_pipapo_field *f)
868 {
869 	unsigned int groups, bb;
870 	unsigned long *new_lt;
871 	ssize_t lt_size;
872 
873 	lt_size = f->groups * NFT_PIPAPO_BUCKETS(f->bb) * f->bsize *
874 		  sizeof(*f->lt);
875 
876 	if (f->bb == NFT_PIPAPO_GROUP_BITS_SMALL_SET &&
877 	    lt_size > NFT_PIPAPO_LT_SIZE_HIGH) {
878 		groups = f->groups * 2;
879 		bb = NFT_PIPAPO_GROUP_BITS_LARGE_SET;
880 
881 		lt_size = lt_calculate_size(groups, bb, f->bsize);
882 		if (lt_size < 0)
883 			return;
884 	} else if (f->bb == NFT_PIPAPO_GROUP_BITS_LARGE_SET &&
885 		   lt_size < NFT_PIPAPO_LT_SIZE_LOW) {
886 		groups = f->groups / 2;
887 		bb = NFT_PIPAPO_GROUP_BITS_SMALL_SET;
888 
889 		lt_size = lt_calculate_size(groups, bb, f->bsize);
890 		if (lt_size < 0)
891 			return;
892 
893 		/* Don't increase group width if the resulting lookup table size
894 		 * would exceed the upper size threshold for a "small" set.
895 		 */
896 		if (lt_size > NFT_PIPAPO_LT_SIZE_HIGH)
897 			return;
898 	} else {
899 		return;
900 	}
901 
902 	new_lt = kvzalloc(lt_size, GFP_KERNEL_ACCOUNT);
903 	if (!new_lt)
904 		return;
905 
906 	NFT_PIPAPO_GROUP_BITS_ARE_8_OR_4;
907 	if (f->bb == 4 && bb == 8) {
908 		pipapo_lt_4b_to_8b(f->groups, f->bsize,
909 				   NFT_PIPAPO_LT_ALIGN(f->lt),
910 				   NFT_PIPAPO_LT_ALIGN(new_lt));
911 	} else if (f->bb == 8 && bb == 4) {
912 		pipapo_lt_8b_to_4b(f->groups, f->bsize,
913 				   NFT_PIPAPO_LT_ALIGN(f->lt),
914 				   NFT_PIPAPO_LT_ALIGN(new_lt));
915 	} else {
916 		BUG();
917 	}
918 
919 	f->groups = groups;
920 	f->bb = bb;
921 	kvfree(f->lt);
922 	f->lt = new_lt;
923 }
924 
925 /**
926  * pipapo_insert() - Insert new rule in field given input key and mask length
927  * @f:		Field containing lookup table
928  * @k:		Input key for classification, without nftables padding
929  * @mask_bits:	Length of mask; matches field length for non-ranged entry
930  *
931  * Insert a new rule reference in lookup buckets corresponding to k and
932  * mask_bits.
933  *
934  * Return: 1 on success (one rule inserted), negative error code on failure.
935  */
pipapo_insert(struct nft_pipapo_field * f,const uint8_t * k,int mask_bits)936 static int pipapo_insert(struct nft_pipapo_field *f, const uint8_t *k,
937 			 int mask_bits)
938 {
939 	unsigned int rule = f->rules, group, ret, bit_offset = 0;
940 
941 	ret = pipapo_resize(f, f->rules, f->rules + 1);
942 	if (ret)
943 		return ret;
944 
945 	f->rules++;
946 
947 	for (group = 0; group < f->groups; group++) {
948 		int i, v;
949 		u8 mask;
950 
951 		v = k[group / (BITS_PER_BYTE / f->bb)];
952 		v &= GENMASK(BITS_PER_BYTE - bit_offset - 1, 0);
953 		v >>= (BITS_PER_BYTE - bit_offset) - f->bb;
954 
955 		bit_offset += f->bb;
956 		bit_offset %= BITS_PER_BYTE;
957 
958 		if (mask_bits >= (group + 1) * f->bb) {
959 			/* Not masked */
960 			pipapo_bucket_set(f, rule, group, v);
961 		} else if (mask_bits <= group * f->bb) {
962 			/* Completely masked */
963 			for (i = 0; i < NFT_PIPAPO_BUCKETS(f->bb); i++)
964 				pipapo_bucket_set(f, rule, group, i);
965 		} else {
966 			/* The mask limit falls on this group */
967 			mask = GENMASK(f->bb - 1, 0);
968 			mask >>= mask_bits - group * f->bb;
969 			for (i = 0; i < NFT_PIPAPO_BUCKETS(f->bb); i++) {
970 				if ((i & ~mask) == (v & ~mask))
971 					pipapo_bucket_set(f, rule, group, i);
972 			}
973 		}
974 	}
975 
976 	pipapo_lt_bits_adjust(f);
977 
978 	return 1;
979 }
980 
981 /**
982  * pipapo_step_diff() - Check if setting @step bit in netmask would change it
983  * @base:	Mask we are expanding
984  * @step:	Step bit for given expansion step
985  * @len:	Total length of mask space (set and unset bits), bytes
986  *
987  * Convenience function for mask expansion.
988  *
989  * Return: true if step bit changes mask (i.e. isn't set), false otherwise.
990  */
pipapo_step_diff(u8 * base,int step,int len)991 static bool pipapo_step_diff(u8 *base, int step, int len)
992 {
993 	/* Network order, byte-addressed */
994 #ifdef __BIG_ENDIAN__
995 	return !(BIT(step % BITS_PER_BYTE) & base[step / BITS_PER_BYTE]);
996 #else
997 	return !(BIT(step % BITS_PER_BYTE) &
998 		 base[len - 1 - step / BITS_PER_BYTE]);
999 #endif
1000 }
1001 
1002 /**
1003  * pipapo_step_after_end() - Check if mask exceeds range end with given step
1004  * @base:	Mask we are expanding
1005  * @end:	End of range
1006  * @step:	Step bit for given expansion step, highest bit to be set
1007  * @len:	Total length of mask space (set and unset bits), bytes
1008  *
1009  * Convenience function for mask expansion.
1010  *
1011  * Return: true if mask exceeds range setting step bits, false otherwise.
1012  */
pipapo_step_after_end(const u8 * base,const u8 * end,int step,int len)1013 static bool pipapo_step_after_end(const u8 *base, const u8 *end, int step,
1014 				  int len)
1015 {
1016 	u8 tmp[NFT_PIPAPO_MAX_BYTES];
1017 	int i;
1018 
1019 	memcpy(tmp, base, len);
1020 
1021 	/* Network order, byte-addressed */
1022 	for (i = 0; i <= step; i++)
1023 #ifdef __BIG_ENDIAN__
1024 		tmp[i / BITS_PER_BYTE] |= BIT(i % BITS_PER_BYTE);
1025 #else
1026 		tmp[len - 1 - i / BITS_PER_BYTE] |= BIT(i % BITS_PER_BYTE);
1027 #endif
1028 
1029 	return memcmp(tmp, end, len) > 0;
1030 }
1031 
1032 /**
1033  * pipapo_base_sum() - Sum step bit to given len-sized netmask base with carry
1034  * @base:	Netmask base
1035  * @step:	Step bit to sum
1036  * @len:	Netmask length, bytes
1037  */
pipapo_base_sum(u8 * base,int step,int len)1038 static void pipapo_base_sum(u8 *base, int step, int len)
1039 {
1040 	bool carry = false;
1041 	int i;
1042 
1043 	/* Network order, byte-addressed */
1044 #ifdef __BIG_ENDIAN__
1045 	for (i = step / BITS_PER_BYTE; i < len; i++) {
1046 #else
1047 	for (i = len - 1 - step / BITS_PER_BYTE; i >= 0; i--) {
1048 #endif
1049 		if (carry)
1050 			base[i]++;
1051 		else
1052 			base[i] += 1 << (step % BITS_PER_BYTE);
1053 
1054 		if (base[i])
1055 			break;
1056 
1057 		carry = true;
1058 	}
1059 }
1060 
1061 /**
1062  * pipapo_expand() - Expand to composing netmasks, insert into lookup table
1063  * @f:		Field containing lookup table
1064  * @start:	Start of range
1065  * @end:	End of range
1066  * @len:	Length of value in bits
1067  *
1068  * Expand range to composing netmasks and insert corresponding rule references
1069  * in lookup buckets.
1070  *
1071  * Return: number of inserted rules on success, negative error code on failure.
1072  */
1073 static int pipapo_expand(struct nft_pipapo_field *f,
1074 			 const u8 *start, const u8 *end, int len)
1075 {
1076 	int step, masks = 0, bytes = DIV_ROUND_UP(len, BITS_PER_BYTE);
1077 	u8 base[NFT_PIPAPO_MAX_BYTES];
1078 
1079 	memcpy(base, start, bytes);
1080 	while (memcmp(base, end, bytes) <= 0) {
1081 		int err;
1082 
1083 		step = 0;
1084 		while (pipapo_step_diff(base, step, bytes)) {
1085 			if (pipapo_step_after_end(base, end, step, bytes))
1086 				break;
1087 
1088 			step++;
1089 			if (step >= len) {
1090 				if (!masks) {
1091 					err = pipapo_insert(f, base, 0);
1092 					if (err < 0)
1093 						return err;
1094 					masks = 1;
1095 				}
1096 				goto out;
1097 			}
1098 		}
1099 
1100 		err = pipapo_insert(f, base, len - step);
1101 
1102 		if (err < 0)
1103 			return err;
1104 
1105 		masks++;
1106 		pipapo_base_sum(base, step, bytes);
1107 	}
1108 out:
1109 	return masks;
1110 }
1111 
1112 /**
1113  * pipapo_map() - Insert rules in mapping tables, mapping them between fields
1114  * @m:		Matching data, including mapping table
1115  * @map:	Table of rule maps: array of first rule and amount of rules
1116  *		in next field a given rule maps to, for each field
1117  * @e:		For last field, nft_set_ext pointer matching rules map to
1118  */
1119 static void pipapo_map(struct nft_pipapo_match *m,
1120 		       union nft_pipapo_map_bucket map[NFT_PIPAPO_MAX_FIELDS],
1121 		       struct nft_pipapo_elem *e)
1122 {
1123 	struct nft_pipapo_field *f;
1124 	int i, j;
1125 
1126 	for (i = 0, f = m->f; i < m->field_count - 1; i++, f++) {
1127 		for (j = 0; j < map[i].n; j++) {
1128 			f->mt[map[i].to + j].to = map[i + 1].to;
1129 			f->mt[map[i].to + j].n = map[i + 1].n;
1130 		}
1131 	}
1132 
1133 	/* Last field: map to ext instead of mapping to next field */
1134 	for (j = 0; j < map[i].n; j++)
1135 		f->mt[map[i].to + j].e = e;
1136 }
1137 
1138 /**
1139  * pipapo_free_scratch() - Free per-CPU map at original (not aligned) address
1140  * @m:		Matching data
1141  * @cpu:	CPU number
1142  */
1143 static void pipapo_free_scratch(const struct nft_pipapo_match *m, unsigned int cpu)
1144 {
1145 	struct nft_pipapo_scratch *s;
1146 	void *mem;
1147 
1148 	s = *per_cpu_ptr(m->scratch, cpu);
1149 	if (!s)
1150 		return;
1151 
1152 	mem = s;
1153 	mem -= s->align_off;
1154 	kvfree(mem);
1155 }
1156 
1157 /**
1158  * pipapo_realloc_scratch() - Reallocate scratch maps for partial match results
1159  * @clone:	Copy of matching data with pending insertions and deletions
1160  * @bsize_max:	Maximum bucket size, scratch maps cover two buckets
1161  *
1162  * Return: 0 on success, -ENOMEM on failure.
1163  */
1164 static int pipapo_realloc_scratch(struct nft_pipapo_match *clone,
1165 				  unsigned long bsize_max)
1166 {
1167 	int i;
1168 
1169 	for_each_possible_cpu(i) {
1170 		struct nft_pipapo_scratch *scratch;
1171 #ifdef NFT_PIPAPO_ALIGN
1172 		void *scratch_aligned;
1173 		u32 align_off;
1174 #endif
1175 		scratch = kvzalloc_node(struct_size(scratch, map, bsize_max * 2) +
1176 					NFT_PIPAPO_ALIGN_HEADROOM,
1177 					GFP_KERNEL_ACCOUNT, cpu_to_node(i));
1178 		if (!scratch) {
1179 			/* On failure, there's no need to undo previous
1180 			 * allocations: this means that some scratch maps have
1181 			 * a bigger allocated size now (this is only called on
1182 			 * insertion), but the extra space won't be used by any
1183 			 * CPU as new elements are not inserted and m->bsize_max
1184 			 * is not updated.
1185 			 */
1186 			return -ENOMEM;
1187 		}
1188 
1189 		pipapo_free_scratch(clone, i);
1190 
1191 #ifdef NFT_PIPAPO_ALIGN
1192 		/* Align &scratch->map (not the struct itself): the extra
1193 		 * %NFT_PIPAPO_ALIGN_HEADROOM bytes passed to kzalloc_node()
1194 		 * above guarantee we can waste up to those bytes in order
1195 		 * to align the map field regardless of its offset within
1196 		 * the struct.
1197 		 */
1198 		BUILD_BUG_ON(offsetof(struct nft_pipapo_scratch, map) > NFT_PIPAPO_ALIGN_HEADROOM);
1199 
1200 		scratch_aligned = NFT_PIPAPO_LT_ALIGN(&scratch->map);
1201 		scratch_aligned -= offsetof(struct nft_pipapo_scratch, map);
1202 		align_off = scratch_aligned - (void *)scratch;
1203 
1204 		scratch = scratch_aligned;
1205 		scratch->align_off = align_off;
1206 #endif
1207 		*per_cpu_ptr(clone->scratch, i) = scratch;
1208 	}
1209 
1210 	return 0;
1211 }
1212 
1213 static bool nft_pipapo_transaction_mutex_held(const struct nft_set *set)
1214 {
1215 #ifdef CONFIG_PROVE_LOCKING
1216 	const struct net *net = read_pnet(&set->net);
1217 
1218 	return lockdep_is_held(&nft_pernet(net)->commit_mutex);
1219 #else
1220 	return true;
1221 #endif
1222 }
1223 
1224 static struct nft_pipapo_match *pipapo_clone(struct nft_pipapo_match *old);
1225 
1226 /**
1227  * pipapo_maybe_clone() - Build clone for pending data changes, if not existing
1228  * @set:	nftables API set representation
1229  *
1230  * Return: newly created or existing clone, if any. NULL on allocation failure
1231  */
1232 static struct nft_pipapo_match *pipapo_maybe_clone(const struct nft_set *set)
1233 {
1234 	struct nft_pipapo *priv = nft_set_priv(set);
1235 	struct nft_pipapo_match *m;
1236 
1237 	if (priv->clone)
1238 		return priv->clone;
1239 
1240 	m = rcu_dereference_protected(priv->match,
1241 				      nft_pipapo_transaction_mutex_held(set));
1242 	priv->clone = pipapo_clone(m);
1243 
1244 	return priv->clone;
1245 }
1246 
1247 /**
1248  * nft_pipapo_insert() - Validate and insert ranged elements
1249  * @net:	Network namespace
1250  * @set:	nftables API set representation
1251  * @elem:	nftables API element representation containing key data
1252  * @elem_priv:	Filled with pointer to &struct nft_set_ext in inserted element
1253  *
1254  * Return: 0 on success, error pointer on failure.
1255  */
1256 static int nft_pipapo_insert(const struct net *net, const struct nft_set *set,
1257 			     const struct nft_set_elem *elem,
1258 			     struct nft_elem_priv **elem_priv)
1259 {
1260 	const struct nft_set_ext *ext = nft_set_elem_ext(set, elem->priv);
1261 	union nft_pipapo_map_bucket rulemap[NFT_PIPAPO_MAX_FIELDS];
1262 	const u8 *start = (const u8 *)elem->key.val.data, *end;
1263 	struct nft_pipapo_match *m = pipapo_maybe_clone(set);
1264 	u8 genmask = nft_genmask_next(net);
1265 	struct nft_pipapo_elem *e, *dup;
1266 	u64 tstamp = nft_net_tstamp(net);
1267 	struct nft_pipapo_field *f;
1268 	const u8 *start_p, *end_p;
1269 	int i, bsize_max, err = 0;
1270 
1271 	if (!m)
1272 		return -ENOMEM;
1273 
1274 	if (nft_set_ext_exists(ext, NFT_SET_EXT_KEY_END))
1275 		end = (const u8 *)nft_set_ext_key_end(ext)->data;
1276 	else
1277 		end = start;
1278 
1279 	dup = pipapo_get(m, start, genmask, tstamp);
1280 	if (dup) {
1281 		/* Check if we already have the same exact entry */
1282 		const struct nft_data *dup_key, *dup_end;
1283 
1284 		dup_key = nft_set_ext_key(&dup->ext);
1285 		if (nft_set_ext_exists(&dup->ext, NFT_SET_EXT_KEY_END))
1286 			dup_end = nft_set_ext_key_end(&dup->ext);
1287 		else
1288 			dup_end = dup_key;
1289 
1290 		if (!memcmp(start, dup_key->data, sizeof(*dup_key->data)) &&
1291 		    !memcmp(end, dup_end->data, sizeof(*dup_end->data))) {
1292 			*elem_priv = &dup->priv;
1293 			return -EEXIST;
1294 		}
1295 
1296 		return -ENOTEMPTY;
1297 	}
1298 
1299 	/* Look for partially overlapping entries */
1300 	dup = pipapo_get(m, end, nft_genmask_next(net), tstamp);
1301 	if (dup) {
1302 		*elem_priv = &dup->priv;
1303 		return -ENOTEMPTY;
1304 	}
1305 
1306 	/* Validate */
1307 	start_p = start;
1308 	end_p = end;
1309 
1310 	/* some helpers return -1, or 0 >= for valid rule pos,
1311 	 * so we cannot support more than INT_MAX rules at this time.
1312 	 */
1313 	BUILD_BUG_ON(NFT_PIPAPO_RULE0_MAX > INT_MAX);
1314 
1315 	nft_pipapo_for_each_field(f, i, m) {
1316 		if (f->rules >= NFT_PIPAPO_RULE0_MAX)
1317 			return -ENOSPC;
1318 
1319 		if (memcmp(start_p, end_p,
1320 			   f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f)) > 0)
1321 			return -EINVAL;
1322 
1323 		start_p += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
1324 		end_p += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
1325 	}
1326 
1327 	/* Insert */
1328 	bsize_max = m->bsize_max;
1329 
1330 	nft_pipapo_for_each_field(f, i, m) {
1331 		int ret;
1332 
1333 		rulemap[i].to = f->rules;
1334 
1335 		ret = memcmp(start, end,
1336 			     f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f));
1337 		if (!ret)
1338 			ret = pipapo_insert(f, start, f->groups * f->bb);
1339 		else
1340 			ret = pipapo_expand(f, start, end, f->groups * f->bb);
1341 
1342 		if (ret < 0)
1343 			return ret;
1344 
1345 		if (f->bsize > bsize_max)
1346 			bsize_max = f->bsize;
1347 
1348 		rulemap[i].n = ret;
1349 
1350 		start += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
1351 		end += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
1352 	}
1353 
1354 	if (!*get_cpu_ptr(m->scratch) || bsize_max > m->bsize_max) {
1355 		put_cpu_ptr(m->scratch);
1356 
1357 		err = pipapo_realloc_scratch(m, bsize_max);
1358 		if (err)
1359 			return err;
1360 
1361 		m->bsize_max = bsize_max;
1362 	} else {
1363 		put_cpu_ptr(m->scratch);
1364 	}
1365 
1366 	e = nft_elem_priv_cast(elem->priv);
1367 	*elem_priv = &e->priv;
1368 
1369 	pipapo_map(m, rulemap, e);
1370 
1371 	return 0;
1372 }
1373 
1374 /**
1375  * pipapo_clone() - Clone matching data to create new working copy
1376  * @old:	Existing matching data
1377  *
1378  * Return: copy of matching data passed as 'old' or NULL.
1379  */
1380 static struct nft_pipapo_match *pipapo_clone(struct nft_pipapo_match *old)
1381 {
1382 	struct nft_pipapo_field *dst, *src;
1383 	struct nft_pipapo_match *new;
1384 	int i;
1385 
1386 	new = kmalloc(struct_size(new, f, old->field_count), GFP_KERNEL_ACCOUNT);
1387 	if (!new)
1388 		return NULL;
1389 
1390 	new->field_count = old->field_count;
1391 	new->bsize_max = old->bsize_max;
1392 
1393 	new->scratch = alloc_percpu(*new->scratch);
1394 	if (!new->scratch)
1395 		goto out_scratch;
1396 
1397 	for_each_possible_cpu(i)
1398 		*per_cpu_ptr(new->scratch, i) = NULL;
1399 
1400 	if (pipapo_realloc_scratch(new, old->bsize_max))
1401 		goto out_scratch_realloc;
1402 
1403 	rcu_head_init(&new->rcu);
1404 
1405 	src = old->f;
1406 	dst = new->f;
1407 
1408 	for (i = 0; i < old->field_count; i++) {
1409 		unsigned long *new_lt;
1410 		ssize_t lt_size;
1411 
1412 		memcpy(dst, src, offsetof(struct nft_pipapo_field, lt));
1413 
1414 		lt_size = lt_calculate_size(src->groups, src->bb, src->bsize);
1415 		if (lt_size < 0)
1416 			goto out_lt;
1417 
1418 		new_lt = kvzalloc(lt_size, GFP_KERNEL_ACCOUNT);
1419 		if (!new_lt)
1420 			goto out_lt;
1421 
1422 		dst->lt = new_lt;
1423 
1424 		memcpy(NFT_PIPAPO_LT_ALIGN(new_lt),
1425 		       NFT_PIPAPO_LT_ALIGN(src->lt),
1426 		       src->bsize * sizeof(*dst->lt) *
1427 		       src->groups * NFT_PIPAPO_BUCKETS(src->bb));
1428 
1429 		if (src->rules > 0) {
1430 			if (src->rules_alloc > (INT_MAX / sizeof(*src->mt)))
1431 				goto out_mt;
1432 
1433 			dst->mt = kvmalloc_array(src->rules_alloc,
1434 						 sizeof(*src->mt),
1435 						 GFP_KERNEL_ACCOUNT);
1436 			if (!dst->mt)
1437 				goto out_mt;
1438 
1439 			memcpy(dst->mt, src->mt, src->rules * sizeof(*src->mt));
1440 		} else {
1441 			dst->mt = NULL;
1442 			dst->rules_alloc = 0;
1443 		}
1444 
1445 		src++;
1446 		dst++;
1447 	}
1448 
1449 	return new;
1450 
1451 out_mt:
1452 	kvfree(dst->lt);
1453 out_lt:
1454 	for (dst--; i > 0; i--) {
1455 		kvfree(dst->mt);
1456 		kvfree(dst->lt);
1457 		dst--;
1458 	}
1459 out_scratch_realloc:
1460 	for_each_possible_cpu(i)
1461 		pipapo_free_scratch(new, i);
1462 out_scratch:
1463 	free_percpu(new->scratch);
1464 	kfree(new);
1465 
1466 	return NULL;
1467 }
1468 
1469 /**
1470  * pipapo_rules_same_key() - Get number of rules originated from the same entry
1471  * @f:		Field containing mapping table
1472  * @first:	Index of first rule in set of rules mapping to same entry
1473  *
1474  * Using the fact that all rules in a field that originated from the same entry
1475  * will map to the same set of rules in the next field, or to the same element
1476  * reference, return the cardinality of the set of rules that originated from
1477  * the same entry as the rule with index @first, @first rule included.
1478  *
1479  * In pictures:
1480  *				rules
1481  *	field #0		0    1    2    3    4
1482  *		map to:		0    1   2-4  2-4  5-9
1483  *				.    .    .......   . ...
1484  *				|    |    |    | \   \
1485  *				|    |    |    |  \   \
1486  *				|    |    |    |   \   \
1487  *				'    '    '    '    '   \
1488  *	in field #1		0    1    2    3    4    5 ...
1489  *
1490  * if this is called for rule 2 on field #0, it will return 3, as also rules 2
1491  * and 3 in field 0 map to the same set of rules (2, 3, 4) in the next field.
1492  *
1493  * For the last field in a set, we can rely on associated entries to map to the
1494  * same element references.
1495  *
1496  * Return: Number of rules that originated from the same entry as @first.
1497  */
1498 static unsigned int pipapo_rules_same_key(struct nft_pipapo_field *f, unsigned int first)
1499 {
1500 	struct nft_pipapo_elem *e = NULL; /* Keep gcc happy */
1501 	unsigned int r;
1502 
1503 	for (r = first; r < f->rules; r++) {
1504 		if (r != first && e != f->mt[r].e)
1505 			return r - first;
1506 
1507 		e = f->mt[r].e;
1508 	}
1509 
1510 	if (r != first)
1511 		return r - first;
1512 
1513 	return 0;
1514 }
1515 
1516 /**
1517  * pipapo_unmap() - Remove rules from mapping tables, renumber remaining ones
1518  * @mt:		Mapping array
1519  * @rules:	Original amount of rules in mapping table
1520  * @start:	First rule index to be removed
1521  * @n:		Amount of rules to be removed
1522  * @to_offset:	First rule index, in next field, this group of rules maps to
1523  * @is_last:	If this is the last field, delete reference from mapping array
1524  *
1525  * This is used to unmap rules from the mapping table for a single field,
1526  * maintaining consistency and compactness for the existing ones.
1527  *
1528  * In pictures: let's assume that we want to delete rules 2 and 3 from the
1529  * following mapping array:
1530  *
1531  *                 rules
1532  *               0      1      2      3      4
1533  *      map to:  4-10   4-10   11-15  11-15  16-18
1534  *
1535  * the result will be:
1536  *
1537  *                 rules
1538  *               0      1      2
1539  *      map to:  4-10   4-10   11-13
1540  *
1541  * for fields before the last one. In case this is the mapping table for the
1542  * last field in a set, and rules map to pointers to &struct nft_pipapo_elem:
1543  *
1544  *                      rules
1545  *                        0      1      2      3      4
1546  *  element pointers:  0x42   0x42   0x33   0x33   0x44
1547  *
1548  * the result will be:
1549  *
1550  *                      rules
1551  *                        0      1      2
1552  *  element pointers:  0x42   0x42   0x44
1553  */
1554 static void pipapo_unmap(union nft_pipapo_map_bucket *mt, unsigned int rules,
1555 			 unsigned int start, unsigned int n,
1556 			 unsigned int to_offset, bool is_last)
1557 {
1558 	int i;
1559 
1560 	memmove(mt + start, mt + start + n, (rules - start - n) * sizeof(*mt));
1561 	memset(mt + rules - n, 0, n * sizeof(*mt));
1562 
1563 	if (is_last)
1564 		return;
1565 
1566 	for (i = start; i < rules - n; i++)
1567 		mt[i].to -= to_offset;
1568 }
1569 
1570 /**
1571  * pipapo_drop() - Delete entry from lookup and mapping tables, given rule map
1572  * @m:		Matching data
1573  * @rulemap:	Table of rule maps, arrays of first rule and amount of rules
1574  *		in next field a given entry maps to, for each field
1575  *
1576  * For each rule in lookup table buckets mapping to this set of rules, drop
1577  * all bits set in lookup table mapping. In pictures, assuming we want to drop
1578  * rules 0 and 1 from this lookup table:
1579  *
1580  *                     bucket
1581  *      group  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
1582  *        0    0                                              1,2
1583  *        1   1,2                                      0
1584  *        2    0                                      1,2
1585  *        3    0                              1,2
1586  *        4  0,1,2
1587  *        5    0   1   2
1588  *        6  0,1,2 1   1   1   1   1   1   1   1   1   1   1   1   1   1   1
1589  *        7   1,2 1,2  1   1   1  0,1  1   1   1   1   1   1   1   1   1   1
1590  *
1591  * rule 2 becomes rule 0, and the result will be:
1592  *
1593  *                     bucket
1594  *      group  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
1595  *        0                                                    0
1596  *        1    0
1597  *        2                                            0
1598  *        3                                    0
1599  *        4    0
1600  *        5            0
1601  *        6    0
1602  *        7    0   0
1603  *
1604  * once this is done, call unmap() to drop all the corresponding rule references
1605  * from mapping tables.
1606  */
1607 static void pipapo_drop(struct nft_pipapo_match *m,
1608 			union nft_pipapo_map_bucket rulemap[])
1609 {
1610 	struct nft_pipapo_field *f;
1611 	int i;
1612 
1613 	nft_pipapo_for_each_field(f, i, m) {
1614 		int g;
1615 
1616 		for (g = 0; g < f->groups; g++) {
1617 			unsigned long *pos;
1618 			int b;
1619 
1620 			pos = NFT_PIPAPO_LT_ALIGN(f->lt) + g *
1621 			      NFT_PIPAPO_BUCKETS(f->bb) * f->bsize;
1622 
1623 			for (b = 0; b < NFT_PIPAPO_BUCKETS(f->bb); b++) {
1624 				bitmap_cut(pos, pos, rulemap[i].to,
1625 					   rulemap[i].n,
1626 					   f->bsize * BITS_PER_LONG);
1627 
1628 				pos += f->bsize;
1629 			}
1630 		}
1631 
1632 		pipapo_unmap(f->mt, f->rules, rulemap[i].to, rulemap[i].n,
1633 			     rulemap[i + 1].n, i == m->field_count - 1);
1634 		if (pipapo_resize(f, f->rules, f->rules - rulemap[i].n)) {
1635 			/* We can ignore this, a failure to shrink tables down
1636 			 * doesn't make tables invalid.
1637 			 */
1638 			;
1639 		}
1640 		f->rules -= rulemap[i].n;
1641 
1642 		pipapo_lt_bits_adjust(f);
1643 	}
1644 }
1645 
1646 static void nft_pipapo_gc_deactivate(struct net *net, struct nft_set *set,
1647 				     struct nft_pipapo_elem *e)
1648 
1649 {
1650 	nft_setelem_data_deactivate(net, set, &e->priv);
1651 }
1652 
1653 /**
1654  * pipapo_gc() - Drop expired entries from set, destroy start and end elements
1655  * @set:	nftables API set representation
1656  * @m:		Matching data
1657  */
1658 static void pipapo_gc(struct nft_set *set, struct nft_pipapo_match *m)
1659 {
1660 	struct nft_pipapo *priv = nft_set_priv(set);
1661 	struct net *net = read_pnet(&set->net);
1662 	unsigned int rules_f0, first_rule = 0;
1663 	u64 tstamp = nft_net_tstamp(net);
1664 	struct nft_pipapo_elem *e;
1665 	struct nft_trans_gc *gc;
1666 
1667 	gc = nft_trans_gc_alloc(set, 0, GFP_KERNEL);
1668 	if (!gc)
1669 		return;
1670 
1671 	while ((rules_f0 = pipapo_rules_same_key(m->f, first_rule))) {
1672 		union nft_pipapo_map_bucket rulemap[NFT_PIPAPO_MAX_FIELDS];
1673 		const struct nft_pipapo_field *f;
1674 		unsigned int i, start, rules_fx;
1675 
1676 		start = first_rule;
1677 		rules_fx = rules_f0;
1678 
1679 		nft_pipapo_for_each_field(f, i, m) {
1680 			rulemap[i].to = start;
1681 			rulemap[i].n = rules_fx;
1682 
1683 			if (i < m->field_count - 1) {
1684 				rules_fx = f->mt[start].n;
1685 				start = f->mt[start].to;
1686 			}
1687 		}
1688 
1689 		/* Pick the last field, and its last index */
1690 		f--;
1691 		i--;
1692 		e = f->mt[rulemap[i].to].e;
1693 
1694 		/* synchronous gc never fails, there is no need to set on
1695 		 * NFT_SET_ELEM_DEAD_BIT.
1696 		 */
1697 		if (__nft_set_elem_expired(&e->ext, tstamp)) {
1698 			gc = nft_trans_gc_queue_sync(gc, GFP_KERNEL);
1699 			if (!gc)
1700 				return;
1701 
1702 			nft_pipapo_gc_deactivate(net, set, e);
1703 			pipapo_drop(m, rulemap);
1704 			nft_trans_gc_elem_add(gc, e);
1705 
1706 			/* And check again current first rule, which is now the
1707 			 * first we haven't checked.
1708 			 */
1709 		} else {
1710 			first_rule += rules_f0;
1711 		}
1712 	}
1713 
1714 	gc = nft_trans_gc_catchall_sync(gc);
1715 	if (gc) {
1716 		nft_trans_gc_queue_sync_done(gc);
1717 		priv->last_gc = jiffies;
1718 	}
1719 }
1720 
1721 /**
1722  * pipapo_free_fields() - Free per-field tables contained in matching data
1723  * @m:		Matching data
1724  */
1725 static void pipapo_free_fields(struct nft_pipapo_match *m)
1726 {
1727 	struct nft_pipapo_field *f;
1728 	int i;
1729 
1730 	nft_pipapo_for_each_field(f, i, m) {
1731 		kvfree(f->lt);
1732 		kvfree(f->mt);
1733 	}
1734 }
1735 
1736 static void pipapo_free_match(struct nft_pipapo_match *m)
1737 {
1738 	int i;
1739 
1740 	for_each_possible_cpu(i)
1741 		pipapo_free_scratch(m, i);
1742 
1743 	free_percpu(m->scratch);
1744 	pipapo_free_fields(m);
1745 
1746 	kfree(m);
1747 }
1748 
1749 /**
1750  * pipapo_reclaim_match - RCU callback to free fields from old matching data
1751  * @rcu:	RCU head
1752  */
1753 static void pipapo_reclaim_match(struct rcu_head *rcu)
1754 {
1755 	struct nft_pipapo_match *m;
1756 
1757 	m = container_of(rcu, struct nft_pipapo_match, rcu);
1758 	pipapo_free_match(m);
1759 }
1760 
1761 /**
1762  * nft_pipapo_commit() - Replace lookup data with current working copy
1763  * @set:	nftables API set representation
1764  *
1765  * While at it, check if we should perform garbage collection on the working
1766  * copy before committing it for lookup, and don't replace the table if the
1767  * working copy doesn't have pending changes.
1768  *
1769  * We also need to create a new working copy for subsequent insertions and
1770  * deletions.
1771  */
1772 static void nft_pipapo_commit(struct nft_set *set)
1773 {
1774 	struct nft_pipapo *priv = nft_set_priv(set);
1775 	struct nft_pipapo_match *old;
1776 
1777 	if (!priv->clone)
1778 		return;
1779 
1780 	if (time_after_eq(jiffies, priv->last_gc + nft_set_gc_interval(set)))
1781 		pipapo_gc(set, priv->clone);
1782 
1783 	old = rcu_replace_pointer(priv->match, priv->clone,
1784 				  nft_pipapo_transaction_mutex_held(set));
1785 	priv->clone = NULL;
1786 
1787 	if (old)
1788 		call_rcu(&old->rcu, pipapo_reclaim_match);
1789 }
1790 
1791 static void nft_pipapo_abort(const struct nft_set *set)
1792 {
1793 	struct nft_pipapo *priv = nft_set_priv(set);
1794 
1795 	if (!priv->clone)
1796 		return;
1797 	pipapo_free_match(priv->clone);
1798 	priv->clone = NULL;
1799 }
1800 
1801 /**
1802  * nft_pipapo_activate() - Mark element reference as active given key, commit
1803  * @net:	Network namespace
1804  * @set:	nftables API set representation
1805  * @elem_priv:	nftables API element representation containing key data
1806  *
1807  * On insertion, elements are added to a copy of the matching data currently
1808  * in use for lookups, and not directly inserted into current lookup data. Both
1809  * nft_pipapo_insert() and nft_pipapo_activate() are called once for each
1810  * element, hence we can't purpose either one as a real commit operation.
1811  */
1812 static void nft_pipapo_activate(const struct net *net,
1813 				const struct nft_set *set,
1814 				struct nft_elem_priv *elem_priv)
1815 {
1816 	struct nft_pipapo_elem *e = nft_elem_priv_cast(elem_priv);
1817 
1818 	nft_clear(net, &e->ext);
1819 }
1820 
1821 /**
1822  * nft_pipapo_deactivate() - Search for element and make it inactive
1823  * @net:	Network namespace
1824  * @set:	nftables API set representation
1825  * @elem:	nftables API element representation containing key data
1826  *
1827  * Return: deactivated element if found, NULL otherwise.
1828  */
1829 static struct nft_elem_priv *
1830 nft_pipapo_deactivate(const struct net *net, const struct nft_set *set,
1831 		      const struct nft_set_elem *elem)
1832 {
1833 	struct nft_pipapo_match *m = pipapo_maybe_clone(set);
1834 	struct nft_pipapo_elem *e;
1835 
1836 	/* removal must occur on priv->clone, if we are low on memory
1837 	 * we have no choice and must fail the removal request.
1838 	 */
1839 	if (!m)
1840 		return NULL;
1841 
1842 	e = pipapo_get(m, (const u8 *)elem->key.val.data,
1843 		       nft_genmask_next(net), nft_net_tstamp(net));
1844 	if (!e)
1845 		return NULL;
1846 
1847 	nft_set_elem_change_active(net, set, &e->ext);
1848 
1849 	return &e->priv;
1850 }
1851 
1852 /**
1853  * nft_pipapo_flush() - make element inactive
1854  * @net:	Network namespace
1855  * @set:	nftables API set representation
1856  * @elem_priv:	nftables API element representation containing key data
1857  *
1858  * This is functionally the same as nft_pipapo_deactivate(), with a slightly
1859  * different interface, and it's also called once for each element in a set
1860  * being flushed, so we can't implement, strictly speaking, a flush operation,
1861  * which would otherwise be as simple as allocating an empty copy of the
1862  * matching data.
1863  *
1864  * Note that we could in theory do that, mark the set as flushed, and ignore
1865  * subsequent calls, but we would leak all the elements after the first one,
1866  * because they wouldn't then be freed as result of API calls.
1867  *
1868  * Return: true if element was found and deactivated.
1869  */
1870 static void nft_pipapo_flush(const struct net *net, const struct nft_set *set,
1871 			     struct nft_elem_priv *elem_priv)
1872 {
1873 	struct nft_pipapo_elem *e = nft_elem_priv_cast(elem_priv);
1874 
1875 	nft_set_elem_change_active(net, set, &e->ext);
1876 }
1877 
1878 /**
1879  * pipapo_get_boundaries() - Get byte interval for associated rules
1880  * @f:		Field including lookup table
1881  * @first_rule:	First rule (lowest index)
1882  * @rule_count:	Number of associated rules
1883  * @left:	Byte expression for left boundary (start of range)
1884  * @right:	Byte expression for right boundary (end of range)
1885  *
1886  * Given the first rule and amount of rules that originated from the same entry,
1887  * build the original range associated with the entry, and calculate the length
1888  * of the originating netmask.
1889  *
1890  * In pictures:
1891  *
1892  *                     bucket
1893  *      group  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
1894  *        0                                                   1,2
1895  *        1   1,2
1896  *        2                                           1,2
1897  *        3                                   1,2
1898  *        4   1,2
1899  *        5        1   2
1900  *        6   1,2  1   1   1   1   1   1   1   1   1   1   1   1   1   1   1
1901  *        7   1,2 1,2  1   1   1   1   1   1   1   1   1   1   1   1   1   1
1902  *
1903  * this is the lookup table corresponding to the IPv4 range
1904  * 192.168.1.0-192.168.2.1, which was expanded to the two composing netmasks,
1905  * rule #1: 192.168.1.0/24, and rule #2: 192.168.2.0/31.
1906  *
1907  * This function fills @left and @right with the byte values of the leftmost
1908  * and rightmost bucket indices for the lowest and highest rule indices,
1909  * respectively. If @first_rule is 1 and @rule_count is 2, we obtain, in
1910  * nibbles:
1911  *   left:  < 12, 0, 10, 8, 0, 1, 0, 0 >
1912  *   right: < 12, 0, 10, 8, 0, 2, 2, 1 >
1913  * corresponding to bytes:
1914  *   left:  < 192, 168, 1, 0 >
1915  *   right: < 192, 168, 2, 1 >
1916  * with mask length irrelevant here, unused on return, as the range is already
1917  * defined by its start and end points. The mask length is relevant for a single
1918  * ranged entry instead: if @first_rule is 1 and @rule_count is 1, we ignore
1919  * rule 2 above: @left becomes < 192, 168, 1, 0 >, @right becomes
1920  * < 192, 168, 1, 255 >, and the mask length, calculated from the distances
1921  * between leftmost and rightmost bucket indices for each group, would be 24.
1922  *
1923  * Return: mask length, in bits.
1924  */
1925 static int pipapo_get_boundaries(struct nft_pipapo_field *f, int first_rule,
1926 				 int rule_count, u8 *left, u8 *right)
1927 {
1928 	int g, mask_len = 0, bit_offset = 0;
1929 	u8 *l = left, *r = right;
1930 
1931 	for (g = 0; g < f->groups; g++) {
1932 		int b, x0, x1;
1933 
1934 		x0 = -1;
1935 		x1 = -1;
1936 		for (b = 0; b < NFT_PIPAPO_BUCKETS(f->bb); b++) {
1937 			unsigned long *pos;
1938 
1939 			pos = NFT_PIPAPO_LT_ALIGN(f->lt) +
1940 			      (g * NFT_PIPAPO_BUCKETS(f->bb) + b) * f->bsize;
1941 			if (test_bit(first_rule, pos) && x0 == -1)
1942 				x0 = b;
1943 			if (test_bit(first_rule + rule_count - 1, pos))
1944 				x1 = b;
1945 		}
1946 
1947 		*l |= x0 << (BITS_PER_BYTE - f->bb - bit_offset);
1948 		*r |= x1 << (BITS_PER_BYTE - f->bb - bit_offset);
1949 
1950 		bit_offset += f->bb;
1951 		if (bit_offset >= BITS_PER_BYTE) {
1952 			bit_offset %= BITS_PER_BYTE;
1953 			l++;
1954 			r++;
1955 		}
1956 
1957 		if (x1 - x0 == 0)
1958 			mask_len += 4;
1959 		else if (x1 - x0 == 1)
1960 			mask_len += 3;
1961 		else if (x1 - x0 == 3)
1962 			mask_len += 2;
1963 		else if (x1 - x0 == 7)
1964 			mask_len += 1;
1965 	}
1966 
1967 	return mask_len;
1968 }
1969 
1970 /**
1971  * pipapo_match_field() - Match rules against byte ranges
1972  * @f:		Field including the lookup table
1973  * @first_rule:	First of associated rules originating from same entry
1974  * @rule_count:	Amount of associated rules
1975  * @start:	Start of range to be matched
1976  * @end:	End of range to be matched
1977  *
1978  * Return: true on match, false otherwise.
1979  */
1980 static bool pipapo_match_field(struct nft_pipapo_field *f,
1981 			       int first_rule, int rule_count,
1982 			       const u8 *start, const u8 *end)
1983 {
1984 	u8 right[NFT_PIPAPO_MAX_BYTES] = { 0 };
1985 	u8 left[NFT_PIPAPO_MAX_BYTES] = { 0 };
1986 
1987 	pipapo_get_boundaries(f, first_rule, rule_count, left, right);
1988 
1989 	return !memcmp(start, left,
1990 		       f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f)) &&
1991 	       !memcmp(end, right, f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f));
1992 }
1993 
1994 /**
1995  * nft_pipapo_remove() - Remove element given key, commit
1996  * @net:	Network namespace
1997  * @set:	nftables API set representation
1998  * @elem_priv:	nftables API element representation containing key data
1999  *
2000  * Similarly to nft_pipapo_activate(), this is used as commit operation by the
2001  * API, but it's called once per element in the pending transaction, so we can't
2002  * implement this as a single commit operation. Closest we can get is to remove
2003  * the matched element here, if any, and commit the updated matching data.
2004  */
2005 static void nft_pipapo_remove(const struct net *net, const struct nft_set *set,
2006 			      struct nft_elem_priv *elem_priv)
2007 {
2008 	struct nft_pipapo *priv = nft_set_priv(set);
2009 	struct nft_pipapo_match *m = priv->clone;
2010 	unsigned int rules_f0, first_rule = 0;
2011 	struct nft_pipapo_elem *e;
2012 	const u8 *data;
2013 
2014 	e = nft_elem_priv_cast(elem_priv);
2015 	data = (const u8 *)nft_set_ext_key(&e->ext);
2016 
2017 	while ((rules_f0 = pipapo_rules_same_key(m->f, first_rule))) {
2018 		union nft_pipapo_map_bucket rulemap[NFT_PIPAPO_MAX_FIELDS];
2019 		const u8 *match_start, *match_end;
2020 		struct nft_pipapo_field *f;
2021 		int i, start, rules_fx;
2022 
2023 		match_start = data;
2024 
2025 		if (nft_set_ext_exists(&e->ext, NFT_SET_EXT_KEY_END))
2026 			match_end = (const u8 *)nft_set_ext_key_end(&e->ext)->data;
2027 		else
2028 			match_end = data;
2029 
2030 		start = first_rule;
2031 		rules_fx = rules_f0;
2032 
2033 		nft_pipapo_for_each_field(f, i, m) {
2034 			bool last = i == m->field_count - 1;
2035 
2036 			if (!pipapo_match_field(f, start, rules_fx,
2037 						match_start, match_end))
2038 				break;
2039 
2040 			rulemap[i].to = start;
2041 			rulemap[i].n = rules_fx;
2042 
2043 			rules_fx = f->mt[start].n;
2044 			start = f->mt[start].to;
2045 
2046 			match_start += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
2047 			match_end += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
2048 
2049 			if (last && f->mt[rulemap[i].to].e == e) {
2050 				pipapo_drop(m, rulemap);
2051 				return;
2052 			}
2053 		}
2054 
2055 		first_rule += rules_f0;
2056 	}
2057 
2058 	WARN_ON_ONCE(1); /* elem_priv not found */
2059 }
2060 
2061 /**
2062  * nft_pipapo_do_walk() - Walk over elements in m
2063  * @ctx:	nftables API context
2064  * @set:	nftables API set representation
2065  * @m:		matching data pointing to key mapping array
2066  * @iter:	Iterator
2067  *
2068  * As elements are referenced in the mapping array for the last field, directly
2069  * scan that array: there's no need to follow rule mappings from the first
2070  * field. @m is protected either by RCU read lock or by transaction mutex.
2071  */
2072 static void nft_pipapo_do_walk(const struct nft_ctx *ctx, struct nft_set *set,
2073 			       const struct nft_pipapo_match *m,
2074 			       struct nft_set_iter *iter)
2075 {
2076 	const struct nft_pipapo_field *f;
2077 	unsigned int i, r;
2078 
2079 	for (i = 0, f = m->f; i < m->field_count - 1; i++, f++)
2080 		;
2081 
2082 	for (r = 0; r < f->rules; r++) {
2083 		struct nft_pipapo_elem *e;
2084 
2085 		if (r < f->rules - 1 && f->mt[r + 1].e == f->mt[r].e)
2086 			continue;
2087 
2088 		if (iter->count < iter->skip)
2089 			goto cont;
2090 
2091 		e = f->mt[r].e;
2092 
2093 		iter->err = iter->fn(ctx, set, iter, &e->priv);
2094 		if (iter->err < 0)
2095 			return;
2096 
2097 cont:
2098 		iter->count++;
2099 	}
2100 }
2101 
2102 /**
2103  * nft_pipapo_walk() - Walk over elements
2104  * @ctx:	nftables API context
2105  * @set:	nftables API set representation
2106  * @iter:	Iterator
2107  *
2108  * Test if destructive action is needed or not, clone active backend if needed
2109  * and call the real function to work on the data.
2110  */
2111 static void nft_pipapo_walk(const struct nft_ctx *ctx, struct nft_set *set,
2112 			    struct nft_set_iter *iter)
2113 {
2114 	struct nft_pipapo *priv = nft_set_priv(set);
2115 	const struct nft_pipapo_match *m;
2116 
2117 	switch (iter->type) {
2118 	case NFT_ITER_UPDATE:
2119 		m = pipapo_maybe_clone(set);
2120 		if (!m) {
2121 			iter->err = -ENOMEM;
2122 			return;
2123 		}
2124 
2125 		nft_pipapo_do_walk(ctx, set, m, iter);
2126 		break;
2127 	case NFT_ITER_READ:
2128 		rcu_read_lock();
2129 		m = rcu_dereference(priv->match);
2130 		nft_pipapo_do_walk(ctx, set, m, iter);
2131 		rcu_read_unlock();
2132 		break;
2133 	default:
2134 		iter->err = -EINVAL;
2135 		WARN_ON_ONCE(1);
2136 		break;
2137 	}
2138 }
2139 
2140 /**
2141  * nft_pipapo_privsize() - Return the size of private data for the set
2142  * @nla:	netlink attributes, ignored as size doesn't depend on them
2143  * @desc:	Set description, ignored as size doesn't depend on it
2144  *
2145  * Return: size of private data for this set implementation, in bytes
2146  */
2147 static u64 nft_pipapo_privsize(const struct nlattr * const nla[],
2148 			       const struct nft_set_desc *desc)
2149 {
2150 	return sizeof(struct nft_pipapo);
2151 }
2152 
2153 /**
2154  * nft_pipapo_estimate() - Set size, space and lookup complexity
2155  * @desc:	Set description, element count and field description used
2156  * @features:	Flags: NFT_SET_INTERVAL needs to be there
2157  * @est:	Storage for estimation data
2158  *
2159  * Return: true if set description is compatible, false otherwise
2160  */
2161 static bool nft_pipapo_estimate(const struct nft_set_desc *desc, u32 features,
2162 				struct nft_set_estimate *est)
2163 {
2164 	if (!(features & NFT_SET_INTERVAL) ||
2165 	    desc->field_count < NFT_PIPAPO_MIN_FIELDS)
2166 		return false;
2167 
2168 	est->size = pipapo_estimate_size(desc);
2169 	if (!est->size)
2170 		return false;
2171 
2172 	est->lookup = NFT_SET_CLASS_O_LOG_N;
2173 
2174 	est->space = NFT_SET_CLASS_O_N;
2175 
2176 	return true;
2177 }
2178 
2179 /**
2180  * nft_pipapo_init() - Initialise data for a set instance
2181  * @set:	nftables API set representation
2182  * @desc:	Set description
2183  * @nla:	netlink attributes
2184  *
2185  * Validate number and size of fields passed as NFTA_SET_DESC_CONCAT netlink
2186  * attributes, initialise internal set parameters, current instance of matching
2187  * data and a copy for subsequent insertions.
2188  *
2189  * Return: 0 on success, negative error code on failure.
2190  */
2191 static int nft_pipapo_init(const struct nft_set *set,
2192 			   const struct nft_set_desc *desc,
2193 			   const struct nlattr * const nla[])
2194 {
2195 	struct nft_pipapo *priv = nft_set_priv(set);
2196 	struct nft_pipapo_match *m;
2197 	struct nft_pipapo_field *f;
2198 	int err, i, field_count;
2199 
2200 	BUILD_BUG_ON(offsetof(struct nft_pipapo_elem, priv) != 0);
2201 
2202 	field_count = desc->field_count ? : 1;
2203 
2204 	BUILD_BUG_ON(NFT_PIPAPO_MAX_FIELDS > 255);
2205 	BUILD_BUG_ON(NFT_PIPAPO_MAX_FIELDS != NFT_REG32_COUNT);
2206 
2207 	if (field_count > NFT_PIPAPO_MAX_FIELDS)
2208 		return -EINVAL;
2209 
2210 	m = kmalloc(struct_size(m, f, field_count), GFP_KERNEL);
2211 	if (!m)
2212 		return -ENOMEM;
2213 
2214 	m->field_count = field_count;
2215 	m->bsize_max = 0;
2216 
2217 	m->scratch = alloc_percpu(struct nft_pipapo_scratch *);
2218 	if (!m->scratch) {
2219 		err = -ENOMEM;
2220 		goto out_scratch;
2221 	}
2222 	for_each_possible_cpu(i)
2223 		*per_cpu_ptr(m->scratch, i) = NULL;
2224 
2225 	rcu_head_init(&m->rcu);
2226 
2227 	nft_pipapo_for_each_field(f, i, m) {
2228 		unsigned int len = desc->field_len[i] ? : set->klen;
2229 
2230 		/* f->groups is u8 */
2231 		BUILD_BUG_ON((NFT_PIPAPO_MAX_BYTES *
2232 			      BITS_PER_BYTE / NFT_PIPAPO_GROUP_BITS_LARGE_SET) >= 256);
2233 
2234 		f->bb = NFT_PIPAPO_GROUP_BITS_INIT;
2235 		f->groups = len * NFT_PIPAPO_GROUPS_PER_BYTE(f);
2236 
2237 		priv->width += round_up(len, sizeof(u32));
2238 
2239 		f->bsize = 0;
2240 		f->rules = 0;
2241 		f->rules_alloc = 0;
2242 		f->lt = NULL;
2243 		f->mt = NULL;
2244 	}
2245 
2246 	rcu_assign_pointer(priv->match, m);
2247 
2248 	return 0;
2249 
2250 out_scratch:
2251 	kfree(m);
2252 
2253 	return err;
2254 }
2255 
2256 /**
2257  * nft_set_pipapo_match_destroy() - Destroy elements from key mapping array
2258  * @ctx:	context
2259  * @set:	nftables API set representation
2260  * @m:		matching data pointing to key mapping array
2261  */
2262 static void nft_set_pipapo_match_destroy(const struct nft_ctx *ctx,
2263 					 const struct nft_set *set,
2264 					 struct nft_pipapo_match *m)
2265 {
2266 	struct nft_pipapo_field *f;
2267 	unsigned int i, r;
2268 
2269 	for (i = 0, f = m->f; i < m->field_count - 1; i++, f++)
2270 		;
2271 
2272 	for (r = 0; r < f->rules; r++) {
2273 		struct nft_pipapo_elem *e;
2274 
2275 		if (r < f->rules - 1 && f->mt[r + 1].e == f->mt[r].e)
2276 			continue;
2277 
2278 		e = f->mt[r].e;
2279 
2280 		nf_tables_set_elem_destroy(ctx, set, &e->priv);
2281 	}
2282 }
2283 
2284 /**
2285  * nft_pipapo_destroy() - Free private data for set and all committed elements
2286  * @ctx:	context
2287  * @set:	nftables API set representation
2288  */
2289 static void nft_pipapo_destroy(const struct nft_ctx *ctx,
2290 			       const struct nft_set *set)
2291 {
2292 	struct nft_pipapo *priv = nft_set_priv(set);
2293 	struct nft_pipapo_match *m;
2294 
2295 	m = rcu_dereference_protected(priv->match, true);
2296 
2297 	if (priv->clone) {
2298 		nft_set_pipapo_match_destroy(ctx, set, priv->clone);
2299 		pipapo_free_match(priv->clone);
2300 		priv->clone = NULL;
2301 	} else {
2302 		nft_set_pipapo_match_destroy(ctx, set, m);
2303 	}
2304 
2305 	pipapo_free_match(m);
2306 }
2307 
2308 /**
2309  * nft_pipapo_gc_init() - Initialise garbage collection
2310  * @set:	nftables API set representation
2311  *
2312  * Instead of actually setting up a periodic work for garbage collection, as
2313  * this operation requires a swap of matching data with the working copy, we'll
2314  * do that opportunistically with other commit operations if the interval is
2315  * elapsed, so we just need to set the current jiffies timestamp here.
2316  */
2317 static void nft_pipapo_gc_init(const struct nft_set *set)
2318 {
2319 	struct nft_pipapo *priv = nft_set_priv(set);
2320 
2321 	priv->last_gc = jiffies;
2322 }
2323 
2324 const struct nft_set_type nft_set_pipapo_type = {
2325 	.features	= NFT_SET_INTERVAL | NFT_SET_MAP | NFT_SET_OBJECT |
2326 			  NFT_SET_TIMEOUT,
2327 	.ops		= {
2328 		.lookup		= nft_pipapo_lookup,
2329 		.insert		= nft_pipapo_insert,
2330 		.activate	= nft_pipapo_activate,
2331 		.deactivate	= nft_pipapo_deactivate,
2332 		.flush		= nft_pipapo_flush,
2333 		.remove		= nft_pipapo_remove,
2334 		.walk		= nft_pipapo_walk,
2335 		.get		= nft_pipapo_get,
2336 		.privsize	= nft_pipapo_privsize,
2337 		.estimate	= nft_pipapo_estimate,
2338 		.init		= nft_pipapo_init,
2339 		.destroy	= nft_pipapo_destroy,
2340 		.gc_init	= nft_pipapo_gc_init,
2341 		.commit		= nft_pipapo_commit,
2342 		.abort		= nft_pipapo_abort,
2343 		.elemsize	= offsetof(struct nft_pipapo_elem, ext),
2344 	},
2345 };
2346 
2347 #if defined(CONFIG_X86_64) && !defined(CONFIG_UML)
2348 const struct nft_set_type nft_set_pipapo_avx2_type = {
2349 	.features	= NFT_SET_INTERVAL | NFT_SET_MAP | NFT_SET_OBJECT |
2350 			  NFT_SET_TIMEOUT,
2351 	.ops		= {
2352 		.lookup		= nft_pipapo_avx2_lookup,
2353 		.insert		= nft_pipapo_insert,
2354 		.activate	= nft_pipapo_activate,
2355 		.deactivate	= nft_pipapo_deactivate,
2356 		.flush		= nft_pipapo_flush,
2357 		.remove		= nft_pipapo_remove,
2358 		.walk		= nft_pipapo_walk,
2359 		.get		= nft_pipapo_get,
2360 		.privsize	= nft_pipapo_privsize,
2361 		.estimate	= nft_pipapo_avx2_estimate,
2362 		.init		= nft_pipapo_init,
2363 		.destroy	= nft_pipapo_destroy,
2364 		.gc_init	= nft_pipapo_gc_init,
2365 		.commit		= nft_pipapo_commit,
2366 		.abort		= nft_pipapo_abort,
2367 		.elemsize	= offsetof(struct nft_pipapo_elem, ext),
2368 	},
2369 };
2370 #endif
2371