1 // SPDX-License-Identifier: GPL-2.0-only
2
3 /* PIPAPO: PIle PAcket POlicies: set for arbitrary concatenations of ranges
4 *
5 * Copyright (c) 2019-2020 Red Hat GmbH
6 *
7 * Author: Stefano Brivio <sbrivio@redhat.com>
8 */
9
10 /**
11 * DOC: Theory of Operation
12 *
13 *
14 * Problem
15 * -------
16 *
17 * Match packet bytes against entries composed of ranged or non-ranged packet
18 * field specifiers, mapping them to arbitrary references. For example:
19 *
20 * ::
21 *
22 * --- fields --->
23 * | [net],[port],[net]... => [reference]
24 * entries [net],[port],[net]... => [reference]
25 * | [net],[port],[net]... => [reference]
26 * V ...
27 *
28 * where [net] fields can be IP ranges or netmasks, and [port] fields are port
29 * ranges. Arbitrary packet fields can be matched.
30 *
31 *
32 * Algorithm Overview
33 * ------------------
34 *
35 * This algorithm is loosely inspired by [Ligatti 2010], and fundamentally
36 * relies on the consideration that every contiguous range in a space of b bits
37 * can be converted into b * 2 netmasks, from Theorem 3 in [Rottenstreich 2010],
38 * as also illustrated in Section 9 of [Kogan 2014].
39 *
40 * Classification against a number of entries, that require matching given bits
41 * of a packet field, is performed by grouping those bits in sets of arbitrary
42 * size, and classifying packet bits one group at a time.
43 *
44 * Example:
45 * to match the source port (16 bits) of a packet, we can divide those 16 bits
46 * in 4 groups of 4 bits each. Given the entry:
47 * 0000 0001 0101 1001
48 * and a packet with source port:
49 * 0000 0001 1010 1001
50 * first and second groups match, but the third doesn't. We conclude that the
51 * packet doesn't match the given entry.
52 *
53 * Translate the set to a sequence of lookup tables, one per field. Each table
54 * has two dimensions: bit groups to be matched for a single packet field, and
55 * all the possible values of said groups (buckets). Input entries are
56 * represented as one or more rules, depending on the number of composing
57 * netmasks for the given field specifier, and a group match is indicated as a
58 * set bit, with number corresponding to the rule index, in all the buckets
59 * whose value matches the entry for a given group.
60 *
61 * Rules are mapped between fields through an array of x, n pairs, with each
62 * item mapping a matched rule to one or more rules. The position of the pair in
63 * the array indicates the matched rule to be mapped to the next field, x
64 * indicates the first rule index in the next field, and n the amount of
65 * next-field rules the current rule maps to.
66 *
67 * The mapping array for the last field maps to the desired references.
68 *
69 * To match, we perform table lookups using the values of grouped packet bits,
70 * and use a sequence of bitwise operations to progressively evaluate rule
71 * matching.
72 *
73 * A stand-alone, reference implementation, also including notes about possible
74 * future optimisations, is available at:
75 * https://pipapo.lameexcu.se/
76 *
77 * Insertion
78 * ---------
79 *
80 * - For each packet field:
81 *
82 * - divide the b packet bits we want to classify into groups of size t,
83 * obtaining ceil(b / t) groups
84 *
85 * Example: match on destination IP address, with t = 4: 32 bits, 8 groups
86 * of 4 bits each
87 *
88 * - allocate a lookup table with one column ("bucket") for each possible
89 * value of a group, and with one row for each group
90 *
91 * Example: 8 groups, 2^4 buckets:
92 *
93 * ::
94 *
95 * bucket
96 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
97 * 0
98 * 1
99 * 2
100 * 3
101 * 4
102 * 5
103 * 6
104 * 7
105 *
106 * - map the bits we want to classify for the current field, for a given
107 * entry, to a single rule for non-ranged and netmask set items, and to one
108 * or multiple rules for ranges. Ranges are expanded to composing netmasks
109 * by pipapo_expand().
110 *
111 * Example: 2 entries, 10.0.0.5:1024 and 192.168.1.0-192.168.2.1:2048
112 * - rule #0: 10.0.0.5
113 * - rule #1: 192.168.1.0/24
114 * - rule #2: 192.168.2.0/31
115 *
116 * - insert references to the rules in the lookup table, selecting buckets
117 * according to bit values of a rule in the given group. This is done by
118 * pipapo_insert().
119 *
120 * Example: given:
121 * - rule #0: 10.0.0.5 mapping to buckets
122 * < 0 10 0 0 0 0 0 5 >
123 * - rule #1: 192.168.1.0/24 mapping to buckets
124 * < 12 0 10 8 0 1 < 0..15 > < 0..15 > >
125 * - rule #2: 192.168.2.0/31 mapping to buckets
126 * < 12 0 10 8 0 2 0 < 0..1 > >
127 *
128 * these bits are set in the lookup table:
129 *
130 * ::
131 *
132 * bucket
133 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
134 * 0 0 1,2
135 * 1 1,2 0
136 * 2 0 1,2
137 * 3 0 1,2
138 * 4 0,1,2
139 * 5 0 1 2
140 * 6 0,1,2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
141 * 7 1,2 1,2 1 1 1 0,1 1 1 1 1 1 1 1 1 1 1
142 *
143 * - if this is not the last field in the set, fill a mapping array that maps
144 * rules from the lookup table to rules belonging to the same entry in
145 * the next lookup table, done by pipapo_map().
146 *
147 * Note that as rules map to contiguous ranges of rules, given how netmask
148 * expansion and insertion is performed, &union nft_pipapo_map_bucket stores
149 * this information as pairs of first rule index, rule count.
150 *
151 * Example: 2 entries, 10.0.0.5:1024 and 192.168.1.0-192.168.2.1:2048,
152 * given lookup table #0 for field 0 (see example above):
153 *
154 * ::
155 *
156 * bucket
157 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
158 * 0 0 1,2
159 * 1 1,2 0
160 * 2 0 1,2
161 * 3 0 1,2
162 * 4 0,1,2
163 * 5 0 1 2
164 * 6 0,1,2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
165 * 7 1,2 1,2 1 1 1 0,1 1 1 1 1 1 1 1 1 1 1
166 *
167 * and lookup table #1 for field 1 with:
168 * - rule #0: 1024 mapping to buckets
169 * < 0 0 4 0 >
170 * - rule #1: 2048 mapping to buckets
171 * < 0 0 5 0 >
172 *
173 * ::
174 *
175 * bucket
176 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
177 * 0 0,1
178 * 1 0,1
179 * 2 0 1
180 * 3 0,1
181 *
182 * we need to map rules for 10.0.0.5 in lookup table #0 (rule #0) to 1024
183 * in lookup table #1 (rule #0) and rules for 192.168.1.0-192.168.2.1
184 * (rules #1, #2) to 2048 in lookup table #2 (rule #1):
185 *
186 * ::
187 *
188 * rule indices in current field: 0 1 2
189 * map to rules in next field: 0 1 1
190 *
191 * - if this is the last field in the set, fill a mapping array that maps
192 * rules from the last lookup table to element pointers, also done by
193 * pipapo_map().
194 *
195 * Note that, in this implementation, we have two elements (start, end) for
196 * each entry. The pointer to the end element is stored in this array, and
197 * the pointer to the start element is linked from it.
198 *
199 * Example: entry 10.0.0.5:1024 has a corresponding &struct nft_pipapo_elem
200 * pointer, 0x66, and element for 192.168.1.0-192.168.2.1:2048 is at 0x42.
201 * From the rules of lookup table #1 as mapped above:
202 *
203 * ::
204 *
205 * rule indices in last field: 0 1
206 * map to elements: 0x66 0x42
207 *
208 *
209 * Matching
210 * --------
211 *
212 * We use a result bitmap, with the size of a single lookup table bucket, to
213 * represent the matching state that applies at every algorithm step. This is
214 * done by pipapo_lookup().
215 *
216 * - For each packet field:
217 *
218 * - start with an all-ones result bitmap (res_map in pipapo_lookup())
219 *
220 * - perform a lookup into the table corresponding to the current field,
221 * for each group, and at every group, AND the current result bitmap with
222 * the value from the lookup table bucket
223 *
224 * ::
225 *
226 * Example: 192.168.1.5 < 12 0 10 8 0 1 0 5 >, with lookup table from
227 * insertion examples.
228 * Lookup table buckets are at least 3 bits wide, we'll assume 8 bits for
229 * convenience in this example. Initial result bitmap is 0xff, the steps
230 * below show the value of the result bitmap after each group is processed:
231 *
232 * bucket
233 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
234 * 0 0 1,2
235 * result bitmap is now: 0xff & 0x6 [bucket 12] = 0x6
236 *
237 * 1 1,2 0
238 * result bitmap is now: 0x6 & 0x6 [bucket 0] = 0x6
239 *
240 * 2 0 1,2
241 * result bitmap is now: 0x6 & 0x6 [bucket 10] = 0x6
242 *
243 * 3 0 1,2
244 * result bitmap is now: 0x6 & 0x6 [bucket 8] = 0x6
245 *
246 * 4 0,1,2
247 * result bitmap is now: 0x6 & 0x7 [bucket 0] = 0x6
248 *
249 * 5 0 1 2
250 * result bitmap is now: 0x6 & 0x2 [bucket 1] = 0x2
251 *
252 * 6 0,1,2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
253 * result bitmap is now: 0x2 & 0x7 [bucket 0] = 0x2
254 *
255 * 7 1,2 1,2 1 1 1 0,1 1 1 1 1 1 1 1 1 1 1
256 * final result bitmap for this field is: 0x2 & 0x3 [bucket 5] = 0x2
257 *
258 * - at the next field, start with a new, all-zeroes result bitmap. For each
259 * bit set in the previous result bitmap, fill the new result bitmap
260 * (fill_map in pipapo_lookup()) with the rule indices from the
261 * corresponding buckets of the mapping field for this field, done by
262 * pipapo_refill()
263 *
264 * Example: with mapping table from insertion examples, with the current
265 * result bitmap from the previous example, 0x02:
266 *
267 * ::
268 *
269 * rule indices in current field: 0 1 2
270 * map to rules in next field: 0 1 1
271 *
272 * the new result bitmap will be 0x02: rule 1 was set, and rule 1 will be
273 * set.
274 *
275 * We can now extend this example to cover the second iteration of the step
276 * above (lookup and AND bitmap): assuming the port field is
277 * 2048 < 0 0 5 0 >, with starting result bitmap 0x2, and lookup table
278 * for "port" field from pre-computation example:
279 *
280 * ::
281 *
282 * bucket
283 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
284 * 0 0,1
285 * 1 0,1
286 * 2 0 1
287 * 3 0,1
288 *
289 * operations are: 0x2 & 0x3 [bucket 0] & 0x3 [bucket 0] & 0x2 [bucket 5]
290 * & 0x3 [bucket 0], resulting bitmap is 0x2.
291 *
292 * - if this is the last field in the set, look up the value from the mapping
293 * array corresponding to the final result bitmap
294 *
295 * Example: 0x2 resulting bitmap from 192.168.1.5:2048, mapping array for
296 * last field from insertion example:
297 *
298 * ::
299 *
300 * rule indices in last field: 0 1
301 * map to elements: 0x66 0x42
302 *
303 * the matching element is at 0x42.
304 *
305 *
306 * References
307 * ----------
308 *
309 * [Ligatti 2010]
310 * A Packet-classification Algorithm for Arbitrary Bitmask Rules, with
311 * Automatic Time-space Tradeoffs
312 * Jay Ligatti, Josh Kuhn, and Chris Gage.
313 * Proceedings of the IEEE International Conference on Computer
314 * Communication Networks (ICCCN), August 2010.
315 * https://www.cse.usf.edu/~ligatti/papers/grouper-conf.pdf
316 *
317 * [Rottenstreich 2010]
318 * Worst-Case TCAM Rule Expansion
319 * Ori Rottenstreich and Isaac Keslassy.
320 * 2010 Proceedings IEEE INFOCOM, San Diego, CA, 2010.
321 * http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.212.4592&rep=rep1&type=pdf
322 *
323 * [Kogan 2014]
324 * SAX-PAC (Scalable And eXpressive PAcket Classification)
325 * Kirill Kogan, Sergey Nikolenko, Ori Rottenstreich, William Culhane,
326 * and Patrick Eugster.
327 * Proceedings of the 2014 ACM conference on SIGCOMM, August 2014.
328 * https://www.sigcomm.org/sites/default/files/ccr/papers/2014/August/2619239-2626294.pdf
329 */
330
331 #include <linux/kernel.h>
332 #include <linux/init.h>
333 #include <linux/module.h>
334 #include <linux/netlink.h>
335 #include <linux/netfilter.h>
336 #include <linux/netfilter/nf_tables.h>
337 #include <net/netfilter/nf_tables_core.h>
338 #include <uapi/linux/netfilter/nf_tables.h>
339 #include <linux/bitmap.h>
340 #include <linux/bitops.h>
341
342 #include "nft_set_pipapo_avx2.h"
343 #include "nft_set_pipapo.h"
344
345 /**
346 * pipapo_refill() - For each set bit, set bits from selected mapping table item
347 * @map: Bitmap to be scanned for set bits
348 * @len: Length of bitmap in longs
349 * @rules: Number of rules in field
350 * @dst: Destination bitmap
351 * @mt: Mapping table containing bit set specifiers
352 * @match_only: Find a single bit and return, don't fill
353 *
354 * Iteration over set bits with __builtin_ctzl(): Daniel Lemire, public domain.
355 *
356 * For each bit set in map, select the bucket from mapping table with index
357 * corresponding to the position of the bit set. Use start bit and amount of
358 * bits specified in bucket to fill region in dst.
359 *
360 * Return: -1 on no match, bit position on 'match_only', 0 otherwise.
361 */
pipapo_refill(unsigned long * map,unsigned int len,unsigned int rules,unsigned long * dst,const union nft_pipapo_map_bucket * mt,bool match_only)362 int pipapo_refill(unsigned long *map, unsigned int len, unsigned int rules,
363 unsigned long *dst,
364 const union nft_pipapo_map_bucket *mt, bool match_only)
365 {
366 unsigned long bitset;
367 unsigned int k;
368 int ret = -1;
369
370 for (k = 0; k < len; k++) {
371 bitset = map[k];
372 while (bitset) {
373 unsigned long t = bitset & -bitset;
374 int r = __builtin_ctzl(bitset);
375 int i = k * BITS_PER_LONG + r;
376
377 if (unlikely(i >= rules)) {
378 map[k] = 0;
379 return -1;
380 }
381
382 if (match_only) {
383 bitmap_clear(map, i, 1);
384 return i;
385 }
386
387 ret = 0;
388
389 bitmap_set(dst, mt[i].to, mt[i].n);
390
391 bitset ^= t;
392 }
393 map[k] = 0;
394 }
395
396 return ret;
397 }
398
399 /**
400 * pipapo_get() - Get matching element reference given key data
401 * @m: storage containing the set elements
402 * @data: Key data to be matched against existing elements
403 * @genmask: If set, check that element is active in given genmask
404 * @tstamp: timestamp to check for expired elements
405 *
406 * For more details, see DOC: Theory of Operation.
407 *
408 * This is the main lookup function. It matches key data against either
409 * the working match set or the uncommitted copy, depending on what the
410 * caller passed to us.
411 * nft_pipapo_get (lookup from userspace/control plane) and nft_pipapo_lookup
412 * (datapath lookup) pass the active copy.
413 * The insertion path will pass the uncommitted working copy.
414 *
415 * Return: pointer to &struct nft_pipapo_elem on match, NULL otherwise.
416 */
pipapo_get(const struct nft_pipapo_match * m,const u8 * data,u8 genmask,u64 tstamp)417 static struct nft_pipapo_elem *pipapo_get(const struct nft_pipapo_match *m,
418 const u8 *data, u8 genmask,
419 u64 tstamp)
420 {
421 struct nft_pipapo_scratch *scratch;
422 unsigned long *res_map, *fill_map;
423 const struct nft_pipapo_field *f;
424 bool map_index;
425 int i;
426
427 local_bh_disable();
428
429 scratch = *raw_cpu_ptr(m->scratch);
430 if (unlikely(!scratch))
431 goto out;
432
433 map_index = scratch->map_index;
434
435 res_map = scratch->map + (map_index ? m->bsize_max : 0);
436 fill_map = scratch->map + (map_index ? 0 : m->bsize_max);
437
438 pipapo_resmap_init(m, res_map);
439
440 nft_pipapo_for_each_field(f, i, m) {
441 bool last = i == m->field_count - 1;
442 int b;
443
444 /* For each bit group: select lookup table bucket depending on
445 * packet bytes value, then AND bucket value
446 */
447 if (likely(f->bb == 8))
448 pipapo_and_field_buckets_8bit(f, res_map, data);
449 else
450 pipapo_and_field_buckets_4bit(f, res_map, data);
451 NFT_PIPAPO_GROUP_BITS_ARE_8_OR_4;
452
453 data += f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f);
454
455 /* Now populate the bitmap for the next field, unless this is
456 * the last field, in which case return the matched 'ext'
457 * pointer if any.
458 *
459 * Now res_map contains the matching bitmap, and fill_map is the
460 * bitmap for the next field.
461 */
462 next_match:
463 b = pipapo_refill(res_map, f->bsize, f->rules, fill_map, f->mt,
464 last);
465 if (b < 0) {
466 scratch->map_index = map_index;
467 local_bh_enable();
468
469 return NULL;
470 }
471
472 if (last) {
473 struct nft_pipapo_elem *e;
474
475 e = f->mt[b].e;
476 if (unlikely(__nft_set_elem_expired(&e->ext, tstamp) ||
477 !nft_set_elem_active(&e->ext, genmask)))
478 goto next_match;
479
480 /* Last field: we're just returning the key without
481 * filling the initial bitmap for the next field, so the
482 * current inactive bitmap is clean and can be reused as
483 * *next* bitmap (not initial) for the next packet.
484 */
485 scratch->map_index = map_index;
486 local_bh_enable();
487 return e;
488 }
489
490 /* Swap bitmap indices: res_map is the initial bitmap for the
491 * next field, and fill_map is guaranteed to be all-zeroes at
492 * this point.
493 */
494 map_index = !map_index;
495 swap(res_map, fill_map);
496
497 data += NFT_PIPAPO_GROUPS_PADDING(f);
498 }
499
500 out:
501 local_bh_enable();
502 return NULL;
503 }
504
505 /**
506 * nft_pipapo_lookup() - Dataplane fronted for main lookup function
507 * @net: Network namespace
508 * @set: nftables API set representation
509 * @key: pointer to nft registers containing key data
510 *
511 * This function is called from the data path. It will search for
512 * an element matching the given key in the current active copy.
513 *
514 * Return: ntables API extension pointer or NULL if no match.
515 */
516 const struct nft_set_ext *
nft_pipapo_lookup(const struct net * net,const struct nft_set * set,const u32 * key)517 nft_pipapo_lookup(const struct net *net, const struct nft_set *set,
518 const u32 *key)
519 {
520 struct nft_pipapo *priv = nft_set_priv(set);
521 u8 genmask = nft_genmask_cur(net);
522 const struct nft_pipapo_match *m;
523 const struct nft_pipapo_elem *e;
524
525 m = rcu_dereference(priv->match);
526 e = pipapo_get(m, (const u8 *)key, genmask, get_jiffies_64());
527
528 return e ? &e->ext : NULL;
529 }
530
531 /**
532 * nft_pipapo_get() - Get matching element reference given key data
533 * @net: Network namespace
534 * @set: nftables API set representation
535 * @elem: nftables API element representation containing key data
536 * @flags: Unused
537 *
538 * This function is called from the control plane path under
539 * RCU read lock.
540 *
541 * Return: set element private pointer or ERR_PTR(-ENOENT).
542 */
543 static struct nft_elem_priv *
nft_pipapo_get(const struct net * net,const struct nft_set * set,const struct nft_set_elem * elem,unsigned int flags)544 nft_pipapo_get(const struct net *net, const struct nft_set *set,
545 const struct nft_set_elem *elem, unsigned int flags)
546 {
547 struct nft_pipapo *priv = nft_set_priv(set);
548 struct nft_pipapo_match *m = rcu_dereference(priv->match);
549 struct nft_pipapo_elem *e;
550
551 e = pipapo_get(m, (const u8 *)elem->key.val.data,
552 nft_genmask_cur(net), get_jiffies_64());
553 if (!e)
554 return ERR_PTR(-ENOENT);
555
556 return &e->priv;
557 }
558
559 /**
560 * pipapo_realloc_mt() - Reallocate mapping table if needed upon resize
561 * @f: Field containing mapping table
562 * @old_rules: Amount of existing mapped rules
563 * @rules: Amount of new rules to map
564 *
565 * Return: 0 on success, negative error code on failure.
566 */
pipapo_realloc_mt(struct nft_pipapo_field * f,unsigned int old_rules,unsigned int rules)567 static int pipapo_realloc_mt(struct nft_pipapo_field *f,
568 unsigned int old_rules, unsigned int rules)
569 {
570 union nft_pipapo_map_bucket *new_mt = NULL, *old_mt = f->mt;
571 const unsigned int extra = PAGE_SIZE / sizeof(*new_mt);
572 unsigned int rules_alloc = rules;
573
574 might_sleep();
575
576 if (unlikely(rules == 0))
577 goto out_free;
578
579 /* growing and enough space left, no action needed */
580 if (rules > old_rules && f->rules_alloc > rules)
581 return 0;
582
583 /* downsize and extra slack has not grown too large */
584 if (rules < old_rules) {
585 unsigned int remove = f->rules_alloc - rules;
586
587 if (remove < (2u * extra))
588 return 0;
589 }
590
591 /* If set needs more than one page of memory for rules then
592 * allocate another extra page to avoid frequent reallocation.
593 */
594 if (rules > extra &&
595 check_add_overflow(rules, extra, &rules_alloc))
596 return -EOVERFLOW;
597
598 if (rules_alloc > (INT_MAX / sizeof(*new_mt)))
599 return -ENOMEM;
600
601 new_mt = kvmalloc_array(rules_alloc, sizeof(*new_mt), GFP_KERNEL_ACCOUNT);
602 if (!new_mt)
603 return -ENOMEM;
604
605 if (old_mt)
606 memcpy(new_mt, old_mt, min(old_rules, rules) * sizeof(*new_mt));
607
608 if (rules > old_rules) {
609 memset(new_mt + old_rules, 0,
610 (rules - old_rules) * sizeof(*new_mt));
611 }
612 out_free:
613 f->rules_alloc = rules_alloc;
614 f->mt = new_mt;
615
616 kvfree(old_mt);
617
618 return 0;
619 }
620
621
622 /**
623 * lt_calculate_size() - Get storage size for lookup table with overflow check
624 * @groups: Amount of bit groups
625 * @bb: Number of bits grouped together in lookup table buckets
626 * @bsize: Size of each bucket in lookup table, in longs
627 *
628 * Return: allocation size including alignment overhead, negative on overflow
629 */
lt_calculate_size(unsigned int groups,unsigned int bb,unsigned int bsize)630 static ssize_t lt_calculate_size(unsigned int groups, unsigned int bb,
631 unsigned int bsize)
632 {
633 ssize_t ret = groups * NFT_PIPAPO_BUCKETS(bb) * sizeof(long);
634
635 if (check_mul_overflow(ret, bsize, &ret))
636 return -1;
637 if (check_add_overflow(ret, NFT_PIPAPO_ALIGN_HEADROOM, &ret))
638 return -1;
639 if (ret > INT_MAX)
640 return -1;
641
642 return ret;
643 }
644
645 /**
646 * pipapo_resize() - Resize lookup or mapping table, or both
647 * @f: Field containing lookup and mapping tables
648 * @old_rules: Previous amount of rules in field
649 * @rules: New amount of rules
650 *
651 * Increase, decrease or maintain tables size depending on new amount of rules,
652 * and copy data over. In case the new size is smaller, throw away data for
653 * highest-numbered rules.
654 *
655 * Return: 0 on success, -ENOMEM on allocation failure.
656 */
pipapo_resize(struct nft_pipapo_field * f,unsigned int old_rules,unsigned int rules)657 static int pipapo_resize(struct nft_pipapo_field *f,
658 unsigned int old_rules, unsigned int rules)
659 {
660 long *new_lt = NULL, *new_p, *old_lt = f->lt, *old_p;
661 unsigned int new_bucket_size, copy;
662 int group, bucket, err;
663 ssize_t lt_size;
664
665 if (rules >= NFT_PIPAPO_RULE0_MAX)
666 return -ENOSPC;
667
668 new_bucket_size = DIV_ROUND_UP(rules, BITS_PER_LONG);
669 #ifdef NFT_PIPAPO_ALIGN
670 new_bucket_size = roundup(new_bucket_size,
671 NFT_PIPAPO_ALIGN / sizeof(*new_lt));
672 #endif
673
674 if (new_bucket_size == f->bsize)
675 goto mt;
676
677 if (new_bucket_size > f->bsize)
678 copy = f->bsize;
679 else
680 copy = new_bucket_size;
681
682 lt_size = lt_calculate_size(f->groups, f->bb, new_bucket_size);
683 if (lt_size < 0)
684 return -ENOMEM;
685
686 new_lt = kvzalloc(lt_size, GFP_KERNEL_ACCOUNT);
687 if (!new_lt)
688 return -ENOMEM;
689
690 new_p = NFT_PIPAPO_LT_ALIGN(new_lt);
691 old_p = NFT_PIPAPO_LT_ALIGN(old_lt);
692
693 for (group = 0; group < f->groups; group++) {
694 for (bucket = 0; bucket < NFT_PIPAPO_BUCKETS(f->bb); bucket++) {
695 memcpy(new_p, old_p, copy * sizeof(*new_p));
696 new_p += copy;
697 old_p += copy;
698
699 if (new_bucket_size > f->bsize)
700 new_p += new_bucket_size - f->bsize;
701 else
702 old_p += f->bsize - new_bucket_size;
703 }
704 }
705
706 mt:
707 err = pipapo_realloc_mt(f, old_rules, rules);
708 if (err) {
709 kvfree(new_lt);
710 return err;
711 }
712
713 if (new_lt) {
714 f->bsize = new_bucket_size;
715 f->lt = new_lt;
716 kvfree(old_lt);
717 }
718
719 return 0;
720 }
721
722 /**
723 * pipapo_bucket_set() - Set rule bit in bucket given group and group value
724 * @f: Field containing lookup table
725 * @rule: Rule index
726 * @group: Group index
727 * @v: Value of bit group
728 */
pipapo_bucket_set(struct nft_pipapo_field * f,int rule,int group,int v)729 static void pipapo_bucket_set(struct nft_pipapo_field *f, int rule, int group,
730 int v)
731 {
732 unsigned long *pos;
733
734 pos = NFT_PIPAPO_LT_ALIGN(f->lt);
735 pos += f->bsize * NFT_PIPAPO_BUCKETS(f->bb) * group;
736 pos += f->bsize * v;
737
738 __set_bit(rule, pos);
739 }
740
741 /**
742 * pipapo_lt_4b_to_8b() - Switch lookup table group width from 4 bits to 8 bits
743 * @old_groups: Number of current groups
744 * @bsize: Size of one bucket, in longs
745 * @old_lt: Pointer to the current lookup table
746 * @new_lt: Pointer to the new, pre-allocated lookup table
747 *
748 * Each bucket with index b in the new lookup table, belonging to group g, is
749 * filled with the bit intersection between:
750 * - bucket with index given by the upper 4 bits of b, from group g, and
751 * - bucket with index given by the lower 4 bits of b, from group g + 1
752 *
753 * That is, given buckets from the new lookup table N(x, y) and the old lookup
754 * table O(x, y), with x bucket index, and y group index:
755 *
756 * N(b, g) := O(b / 16, g) & O(b % 16, g + 1)
757 *
758 * This ensures equivalence of the matching results on lookup. Two examples in
759 * pictures:
760 *
761 * bucket
762 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ... 254 255
763 * 0 ^
764 * 1 | ^
765 * ... ( & ) |
766 * / \ |
767 * / \ .-( & )-.
768 * / bucket \ | |
769 * group 0 / 1 2 3 \ 4 5 6 7 8 9 10 11 12 13 |14 15 |
770 * 0 / \ | |
771 * 1 \ | |
772 * 2 | --'
773 * 3 '-
774 * ...
775 */
pipapo_lt_4b_to_8b(int old_groups,int bsize,unsigned long * old_lt,unsigned long * new_lt)776 static void pipapo_lt_4b_to_8b(int old_groups, int bsize,
777 unsigned long *old_lt, unsigned long *new_lt)
778 {
779 int g, b, i;
780
781 for (g = 0; g < old_groups / 2; g++) {
782 int src_g0 = g * 2, src_g1 = g * 2 + 1;
783
784 for (b = 0; b < NFT_PIPAPO_BUCKETS(8); b++) {
785 int src_b0 = b / NFT_PIPAPO_BUCKETS(4);
786 int src_b1 = b % NFT_PIPAPO_BUCKETS(4);
787 int src_i0 = src_g0 * NFT_PIPAPO_BUCKETS(4) + src_b0;
788 int src_i1 = src_g1 * NFT_PIPAPO_BUCKETS(4) + src_b1;
789
790 for (i = 0; i < bsize; i++) {
791 *new_lt = old_lt[src_i0 * bsize + i] &
792 old_lt[src_i1 * bsize + i];
793 new_lt++;
794 }
795 }
796 }
797 }
798
799 /**
800 * pipapo_lt_8b_to_4b() - Switch lookup table group width from 8 bits to 4 bits
801 * @old_groups: Number of current groups
802 * @bsize: Size of one bucket, in longs
803 * @old_lt: Pointer to the current lookup table
804 * @new_lt: Pointer to the new, pre-allocated lookup table
805 *
806 * Each bucket with index b in the new lookup table, belonging to group g, is
807 * filled with the bit union of:
808 * - all the buckets with index such that the upper four bits of the lower byte
809 * equal b, from group g, with g odd
810 * - all the buckets with index such that the lower four bits equal b, from
811 * group g, with g even
812 *
813 * That is, given buckets from the new lookup table N(x, y) and the old lookup
814 * table O(x, y), with x bucket index, and y group index:
815 *
816 * - with g odd: N(b, g) := U(O(x, g) for each x : x = (b & 0xf0) >> 4)
817 * - with g even: N(b, g) := U(O(x, g) for each x : x = b & 0x0f)
818 *
819 * where U() denotes the arbitrary union operation (binary OR of n terms). This
820 * ensures equivalence of the matching results on lookup.
821 */
pipapo_lt_8b_to_4b(int old_groups,int bsize,unsigned long * old_lt,unsigned long * new_lt)822 static void pipapo_lt_8b_to_4b(int old_groups, int bsize,
823 unsigned long *old_lt, unsigned long *new_lt)
824 {
825 int g, b, bsrc, i;
826
827 memset(new_lt, 0, old_groups * 2 * NFT_PIPAPO_BUCKETS(4) * bsize *
828 sizeof(unsigned long));
829
830 for (g = 0; g < old_groups * 2; g += 2) {
831 int src_g = g / 2;
832
833 for (b = 0; b < NFT_PIPAPO_BUCKETS(4); b++) {
834 for (bsrc = NFT_PIPAPO_BUCKETS(8) * src_g;
835 bsrc < NFT_PIPAPO_BUCKETS(8) * (src_g + 1);
836 bsrc++) {
837 if (((bsrc & 0xf0) >> 4) != b)
838 continue;
839
840 for (i = 0; i < bsize; i++)
841 new_lt[i] |= old_lt[bsrc * bsize + i];
842 }
843
844 new_lt += bsize;
845 }
846
847 for (b = 0; b < NFT_PIPAPO_BUCKETS(4); b++) {
848 for (bsrc = NFT_PIPAPO_BUCKETS(8) * src_g;
849 bsrc < NFT_PIPAPO_BUCKETS(8) * (src_g + 1);
850 bsrc++) {
851 if ((bsrc & 0x0f) != b)
852 continue;
853
854 for (i = 0; i < bsize; i++)
855 new_lt[i] |= old_lt[bsrc * bsize + i];
856 }
857
858 new_lt += bsize;
859 }
860 }
861 }
862
863 /**
864 * pipapo_lt_bits_adjust() - Adjust group size for lookup table if needed
865 * @f: Field containing lookup table
866 */
pipapo_lt_bits_adjust(struct nft_pipapo_field * f)867 static void pipapo_lt_bits_adjust(struct nft_pipapo_field *f)
868 {
869 unsigned int groups, bb;
870 unsigned long *new_lt;
871 ssize_t lt_size;
872
873 lt_size = f->groups * NFT_PIPAPO_BUCKETS(f->bb) * f->bsize *
874 sizeof(*f->lt);
875
876 if (f->bb == NFT_PIPAPO_GROUP_BITS_SMALL_SET &&
877 lt_size > NFT_PIPAPO_LT_SIZE_HIGH) {
878 groups = f->groups * 2;
879 bb = NFT_PIPAPO_GROUP_BITS_LARGE_SET;
880
881 lt_size = lt_calculate_size(groups, bb, f->bsize);
882 if (lt_size < 0)
883 return;
884 } else if (f->bb == NFT_PIPAPO_GROUP_BITS_LARGE_SET &&
885 lt_size < NFT_PIPAPO_LT_SIZE_LOW) {
886 groups = f->groups / 2;
887 bb = NFT_PIPAPO_GROUP_BITS_SMALL_SET;
888
889 lt_size = lt_calculate_size(groups, bb, f->bsize);
890 if (lt_size < 0)
891 return;
892
893 /* Don't increase group width if the resulting lookup table size
894 * would exceed the upper size threshold for a "small" set.
895 */
896 if (lt_size > NFT_PIPAPO_LT_SIZE_HIGH)
897 return;
898 } else {
899 return;
900 }
901
902 new_lt = kvzalloc(lt_size, GFP_KERNEL_ACCOUNT);
903 if (!new_lt)
904 return;
905
906 NFT_PIPAPO_GROUP_BITS_ARE_8_OR_4;
907 if (f->bb == 4 && bb == 8) {
908 pipapo_lt_4b_to_8b(f->groups, f->bsize,
909 NFT_PIPAPO_LT_ALIGN(f->lt),
910 NFT_PIPAPO_LT_ALIGN(new_lt));
911 } else if (f->bb == 8 && bb == 4) {
912 pipapo_lt_8b_to_4b(f->groups, f->bsize,
913 NFT_PIPAPO_LT_ALIGN(f->lt),
914 NFT_PIPAPO_LT_ALIGN(new_lt));
915 } else {
916 BUG();
917 }
918
919 f->groups = groups;
920 f->bb = bb;
921 kvfree(f->lt);
922 f->lt = new_lt;
923 }
924
925 /**
926 * pipapo_insert() - Insert new rule in field given input key and mask length
927 * @f: Field containing lookup table
928 * @k: Input key for classification, without nftables padding
929 * @mask_bits: Length of mask; matches field length for non-ranged entry
930 *
931 * Insert a new rule reference in lookup buckets corresponding to k and
932 * mask_bits.
933 *
934 * Return: 1 on success (one rule inserted), negative error code on failure.
935 */
pipapo_insert(struct nft_pipapo_field * f,const uint8_t * k,int mask_bits)936 static int pipapo_insert(struct nft_pipapo_field *f, const uint8_t *k,
937 int mask_bits)
938 {
939 unsigned int rule = f->rules, group, ret, bit_offset = 0;
940
941 ret = pipapo_resize(f, f->rules, f->rules + 1);
942 if (ret)
943 return ret;
944
945 f->rules++;
946
947 for (group = 0; group < f->groups; group++) {
948 int i, v;
949 u8 mask;
950
951 v = k[group / (BITS_PER_BYTE / f->bb)];
952 v &= GENMASK(BITS_PER_BYTE - bit_offset - 1, 0);
953 v >>= (BITS_PER_BYTE - bit_offset) - f->bb;
954
955 bit_offset += f->bb;
956 bit_offset %= BITS_PER_BYTE;
957
958 if (mask_bits >= (group + 1) * f->bb) {
959 /* Not masked */
960 pipapo_bucket_set(f, rule, group, v);
961 } else if (mask_bits <= group * f->bb) {
962 /* Completely masked */
963 for (i = 0; i < NFT_PIPAPO_BUCKETS(f->bb); i++)
964 pipapo_bucket_set(f, rule, group, i);
965 } else {
966 /* The mask limit falls on this group */
967 mask = GENMASK(f->bb - 1, 0);
968 mask >>= mask_bits - group * f->bb;
969 for (i = 0; i < NFT_PIPAPO_BUCKETS(f->bb); i++) {
970 if ((i & ~mask) == (v & ~mask))
971 pipapo_bucket_set(f, rule, group, i);
972 }
973 }
974 }
975
976 pipapo_lt_bits_adjust(f);
977
978 return 1;
979 }
980
981 /**
982 * pipapo_step_diff() - Check if setting @step bit in netmask would change it
983 * @base: Mask we are expanding
984 * @step: Step bit for given expansion step
985 * @len: Total length of mask space (set and unset bits), bytes
986 *
987 * Convenience function for mask expansion.
988 *
989 * Return: true if step bit changes mask (i.e. isn't set), false otherwise.
990 */
pipapo_step_diff(u8 * base,int step,int len)991 static bool pipapo_step_diff(u8 *base, int step, int len)
992 {
993 /* Network order, byte-addressed */
994 #ifdef __BIG_ENDIAN__
995 return !(BIT(step % BITS_PER_BYTE) & base[step / BITS_PER_BYTE]);
996 #else
997 return !(BIT(step % BITS_PER_BYTE) &
998 base[len - 1 - step / BITS_PER_BYTE]);
999 #endif
1000 }
1001
1002 /**
1003 * pipapo_step_after_end() - Check if mask exceeds range end with given step
1004 * @base: Mask we are expanding
1005 * @end: End of range
1006 * @step: Step bit for given expansion step, highest bit to be set
1007 * @len: Total length of mask space (set and unset bits), bytes
1008 *
1009 * Convenience function for mask expansion.
1010 *
1011 * Return: true if mask exceeds range setting step bits, false otherwise.
1012 */
pipapo_step_after_end(const u8 * base,const u8 * end,int step,int len)1013 static bool pipapo_step_after_end(const u8 *base, const u8 *end, int step,
1014 int len)
1015 {
1016 u8 tmp[NFT_PIPAPO_MAX_BYTES];
1017 int i;
1018
1019 memcpy(tmp, base, len);
1020
1021 /* Network order, byte-addressed */
1022 for (i = 0; i <= step; i++)
1023 #ifdef __BIG_ENDIAN__
1024 tmp[i / BITS_PER_BYTE] |= BIT(i % BITS_PER_BYTE);
1025 #else
1026 tmp[len - 1 - i / BITS_PER_BYTE] |= BIT(i % BITS_PER_BYTE);
1027 #endif
1028
1029 return memcmp(tmp, end, len) > 0;
1030 }
1031
1032 /**
1033 * pipapo_base_sum() - Sum step bit to given len-sized netmask base with carry
1034 * @base: Netmask base
1035 * @step: Step bit to sum
1036 * @len: Netmask length, bytes
1037 */
pipapo_base_sum(u8 * base,int step,int len)1038 static void pipapo_base_sum(u8 *base, int step, int len)
1039 {
1040 bool carry = false;
1041 int i;
1042
1043 /* Network order, byte-addressed */
1044 #ifdef __BIG_ENDIAN__
1045 for (i = step / BITS_PER_BYTE; i < len; i++) {
1046 #else
1047 for (i = len - 1 - step / BITS_PER_BYTE; i >= 0; i--) {
1048 #endif
1049 if (carry)
1050 base[i]++;
1051 else
1052 base[i] += 1 << (step % BITS_PER_BYTE);
1053
1054 if (base[i])
1055 break;
1056
1057 carry = true;
1058 }
1059 }
1060
1061 /**
1062 * pipapo_expand() - Expand to composing netmasks, insert into lookup table
1063 * @f: Field containing lookup table
1064 * @start: Start of range
1065 * @end: End of range
1066 * @len: Length of value in bits
1067 *
1068 * Expand range to composing netmasks and insert corresponding rule references
1069 * in lookup buckets.
1070 *
1071 * Return: number of inserted rules on success, negative error code on failure.
1072 */
1073 static int pipapo_expand(struct nft_pipapo_field *f,
1074 const u8 *start, const u8 *end, int len)
1075 {
1076 int step, masks = 0, bytes = DIV_ROUND_UP(len, BITS_PER_BYTE);
1077 u8 base[NFT_PIPAPO_MAX_BYTES];
1078
1079 memcpy(base, start, bytes);
1080 while (memcmp(base, end, bytes) <= 0) {
1081 int err;
1082
1083 step = 0;
1084 while (pipapo_step_diff(base, step, bytes)) {
1085 if (pipapo_step_after_end(base, end, step, bytes))
1086 break;
1087
1088 step++;
1089 if (step >= len) {
1090 if (!masks) {
1091 err = pipapo_insert(f, base, 0);
1092 if (err < 0)
1093 return err;
1094 masks = 1;
1095 }
1096 goto out;
1097 }
1098 }
1099
1100 err = pipapo_insert(f, base, len - step);
1101
1102 if (err < 0)
1103 return err;
1104
1105 masks++;
1106 pipapo_base_sum(base, step, bytes);
1107 }
1108 out:
1109 return masks;
1110 }
1111
1112 /**
1113 * pipapo_map() - Insert rules in mapping tables, mapping them between fields
1114 * @m: Matching data, including mapping table
1115 * @map: Table of rule maps: array of first rule and amount of rules
1116 * in next field a given rule maps to, for each field
1117 * @e: For last field, nft_set_ext pointer matching rules map to
1118 */
1119 static void pipapo_map(struct nft_pipapo_match *m,
1120 union nft_pipapo_map_bucket map[NFT_PIPAPO_MAX_FIELDS],
1121 struct nft_pipapo_elem *e)
1122 {
1123 struct nft_pipapo_field *f;
1124 int i, j;
1125
1126 for (i = 0, f = m->f; i < m->field_count - 1; i++, f++) {
1127 for (j = 0; j < map[i].n; j++) {
1128 f->mt[map[i].to + j].to = map[i + 1].to;
1129 f->mt[map[i].to + j].n = map[i + 1].n;
1130 }
1131 }
1132
1133 /* Last field: map to ext instead of mapping to next field */
1134 for (j = 0; j < map[i].n; j++)
1135 f->mt[map[i].to + j].e = e;
1136 }
1137
1138 /**
1139 * pipapo_free_scratch() - Free per-CPU map at original (not aligned) address
1140 * @m: Matching data
1141 * @cpu: CPU number
1142 */
1143 static void pipapo_free_scratch(const struct nft_pipapo_match *m, unsigned int cpu)
1144 {
1145 struct nft_pipapo_scratch *s;
1146 void *mem;
1147
1148 s = *per_cpu_ptr(m->scratch, cpu);
1149 if (!s)
1150 return;
1151
1152 mem = s;
1153 mem -= s->align_off;
1154 kvfree(mem);
1155 }
1156
1157 /**
1158 * pipapo_realloc_scratch() - Reallocate scratch maps for partial match results
1159 * @clone: Copy of matching data with pending insertions and deletions
1160 * @bsize_max: Maximum bucket size, scratch maps cover two buckets
1161 *
1162 * Return: 0 on success, -ENOMEM on failure.
1163 */
1164 static int pipapo_realloc_scratch(struct nft_pipapo_match *clone,
1165 unsigned long bsize_max)
1166 {
1167 int i;
1168
1169 for_each_possible_cpu(i) {
1170 struct nft_pipapo_scratch *scratch;
1171 #ifdef NFT_PIPAPO_ALIGN
1172 void *scratch_aligned;
1173 u32 align_off;
1174 #endif
1175 scratch = kvzalloc_node(struct_size(scratch, map, bsize_max * 2) +
1176 NFT_PIPAPO_ALIGN_HEADROOM,
1177 GFP_KERNEL_ACCOUNT, cpu_to_node(i));
1178 if (!scratch) {
1179 /* On failure, there's no need to undo previous
1180 * allocations: this means that some scratch maps have
1181 * a bigger allocated size now (this is only called on
1182 * insertion), but the extra space won't be used by any
1183 * CPU as new elements are not inserted and m->bsize_max
1184 * is not updated.
1185 */
1186 return -ENOMEM;
1187 }
1188
1189 pipapo_free_scratch(clone, i);
1190
1191 #ifdef NFT_PIPAPO_ALIGN
1192 /* Align &scratch->map (not the struct itself): the extra
1193 * %NFT_PIPAPO_ALIGN_HEADROOM bytes passed to kzalloc_node()
1194 * above guarantee we can waste up to those bytes in order
1195 * to align the map field regardless of its offset within
1196 * the struct.
1197 */
1198 BUILD_BUG_ON(offsetof(struct nft_pipapo_scratch, map) > NFT_PIPAPO_ALIGN_HEADROOM);
1199
1200 scratch_aligned = NFT_PIPAPO_LT_ALIGN(&scratch->map);
1201 scratch_aligned -= offsetof(struct nft_pipapo_scratch, map);
1202 align_off = scratch_aligned - (void *)scratch;
1203
1204 scratch = scratch_aligned;
1205 scratch->align_off = align_off;
1206 #endif
1207 *per_cpu_ptr(clone->scratch, i) = scratch;
1208 }
1209
1210 return 0;
1211 }
1212
1213 static bool nft_pipapo_transaction_mutex_held(const struct nft_set *set)
1214 {
1215 #ifdef CONFIG_PROVE_LOCKING
1216 const struct net *net = read_pnet(&set->net);
1217
1218 return lockdep_is_held(&nft_pernet(net)->commit_mutex);
1219 #else
1220 return true;
1221 #endif
1222 }
1223
1224 static struct nft_pipapo_match *pipapo_clone(struct nft_pipapo_match *old);
1225
1226 /**
1227 * pipapo_maybe_clone() - Build clone for pending data changes, if not existing
1228 * @set: nftables API set representation
1229 *
1230 * Return: newly created or existing clone, if any. NULL on allocation failure
1231 */
1232 static struct nft_pipapo_match *pipapo_maybe_clone(const struct nft_set *set)
1233 {
1234 struct nft_pipapo *priv = nft_set_priv(set);
1235 struct nft_pipapo_match *m;
1236
1237 if (priv->clone)
1238 return priv->clone;
1239
1240 m = rcu_dereference_protected(priv->match,
1241 nft_pipapo_transaction_mutex_held(set));
1242 priv->clone = pipapo_clone(m);
1243
1244 return priv->clone;
1245 }
1246
1247 /**
1248 * nft_pipapo_insert() - Validate and insert ranged elements
1249 * @net: Network namespace
1250 * @set: nftables API set representation
1251 * @elem: nftables API element representation containing key data
1252 * @elem_priv: Filled with pointer to &struct nft_set_ext in inserted element
1253 *
1254 * Return: 0 on success, error pointer on failure.
1255 */
1256 static int nft_pipapo_insert(const struct net *net, const struct nft_set *set,
1257 const struct nft_set_elem *elem,
1258 struct nft_elem_priv **elem_priv)
1259 {
1260 const struct nft_set_ext *ext = nft_set_elem_ext(set, elem->priv);
1261 union nft_pipapo_map_bucket rulemap[NFT_PIPAPO_MAX_FIELDS];
1262 const u8 *start = (const u8 *)elem->key.val.data, *end;
1263 struct nft_pipapo_match *m = pipapo_maybe_clone(set);
1264 u8 genmask = nft_genmask_next(net);
1265 struct nft_pipapo_elem *e, *dup;
1266 u64 tstamp = nft_net_tstamp(net);
1267 struct nft_pipapo_field *f;
1268 const u8 *start_p, *end_p;
1269 int i, bsize_max, err = 0;
1270
1271 if (!m)
1272 return -ENOMEM;
1273
1274 if (nft_set_ext_exists(ext, NFT_SET_EXT_KEY_END))
1275 end = (const u8 *)nft_set_ext_key_end(ext)->data;
1276 else
1277 end = start;
1278
1279 dup = pipapo_get(m, start, genmask, tstamp);
1280 if (dup) {
1281 /* Check if we already have the same exact entry */
1282 const struct nft_data *dup_key, *dup_end;
1283
1284 dup_key = nft_set_ext_key(&dup->ext);
1285 if (nft_set_ext_exists(&dup->ext, NFT_SET_EXT_KEY_END))
1286 dup_end = nft_set_ext_key_end(&dup->ext);
1287 else
1288 dup_end = dup_key;
1289
1290 if (!memcmp(start, dup_key->data, sizeof(*dup_key->data)) &&
1291 !memcmp(end, dup_end->data, sizeof(*dup_end->data))) {
1292 *elem_priv = &dup->priv;
1293 return -EEXIST;
1294 }
1295
1296 return -ENOTEMPTY;
1297 }
1298
1299 /* Look for partially overlapping entries */
1300 dup = pipapo_get(m, end, nft_genmask_next(net), tstamp);
1301 if (dup) {
1302 *elem_priv = &dup->priv;
1303 return -ENOTEMPTY;
1304 }
1305
1306 /* Validate */
1307 start_p = start;
1308 end_p = end;
1309
1310 /* some helpers return -1, or 0 >= for valid rule pos,
1311 * so we cannot support more than INT_MAX rules at this time.
1312 */
1313 BUILD_BUG_ON(NFT_PIPAPO_RULE0_MAX > INT_MAX);
1314
1315 nft_pipapo_for_each_field(f, i, m) {
1316 if (f->rules >= NFT_PIPAPO_RULE0_MAX)
1317 return -ENOSPC;
1318
1319 if (memcmp(start_p, end_p,
1320 f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f)) > 0)
1321 return -EINVAL;
1322
1323 start_p += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
1324 end_p += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
1325 }
1326
1327 /* Insert */
1328 bsize_max = m->bsize_max;
1329
1330 nft_pipapo_for_each_field(f, i, m) {
1331 int ret;
1332
1333 rulemap[i].to = f->rules;
1334
1335 ret = memcmp(start, end,
1336 f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f));
1337 if (!ret)
1338 ret = pipapo_insert(f, start, f->groups * f->bb);
1339 else
1340 ret = pipapo_expand(f, start, end, f->groups * f->bb);
1341
1342 if (ret < 0)
1343 return ret;
1344
1345 if (f->bsize > bsize_max)
1346 bsize_max = f->bsize;
1347
1348 rulemap[i].n = ret;
1349
1350 start += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
1351 end += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
1352 }
1353
1354 if (!*get_cpu_ptr(m->scratch) || bsize_max > m->bsize_max) {
1355 put_cpu_ptr(m->scratch);
1356
1357 err = pipapo_realloc_scratch(m, bsize_max);
1358 if (err)
1359 return err;
1360
1361 m->bsize_max = bsize_max;
1362 } else {
1363 put_cpu_ptr(m->scratch);
1364 }
1365
1366 e = nft_elem_priv_cast(elem->priv);
1367 *elem_priv = &e->priv;
1368
1369 pipapo_map(m, rulemap, e);
1370
1371 return 0;
1372 }
1373
1374 /**
1375 * pipapo_clone() - Clone matching data to create new working copy
1376 * @old: Existing matching data
1377 *
1378 * Return: copy of matching data passed as 'old' or NULL.
1379 */
1380 static struct nft_pipapo_match *pipapo_clone(struct nft_pipapo_match *old)
1381 {
1382 struct nft_pipapo_field *dst, *src;
1383 struct nft_pipapo_match *new;
1384 int i;
1385
1386 new = kmalloc(struct_size(new, f, old->field_count), GFP_KERNEL_ACCOUNT);
1387 if (!new)
1388 return NULL;
1389
1390 new->field_count = old->field_count;
1391 new->bsize_max = old->bsize_max;
1392
1393 new->scratch = alloc_percpu(*new->scratch);
1394 if (!new->scratch)
1395 goto out_scratch;
1396
1397 for_each_possible_cpu(i)
1398 *per_cpu_ptr(new->scratch, i) = NULL;
1399
1400 if (pipapo_realloc_scratch(new, old->bsize_max))
1401 goto out_scratch_realloc;
1402
1403 rcu_head_init(&new->rcu);
1404
1405 src = old->f;
1406 dst = new->f;
1407
1408 for (i = 0; i < old->field_count; i++) {
1409 unsigned long *new_lt;
1410 ssize_t lt_size;
1411
1412 memcpy(dst, src, offsetof(struct nft_pipapo_field, lt));
1413
1414 lt_size = lt_calculate_size(src->groups, src->bb, src->bsize);
1415 if (lt_size < 0)
1416 goto out_lt;
1417
1418 new_lt = kvzalloc(lt_size, GFP_KERNEL_ACCOUNT);
1419 if (!new_lt)
1420 goto out_lt;
1421
1422 dst->lt = new_lt;
1423
1424 memcpy(NFT_PIPAPO_LT_ALIGN(new_lt),
1425 NFT_PIPAPO_LT_ALIGN(src->lt),
1426 src->bsize * sizeof(*dst->lt) *
1427 src->groups * NFT_PIPAPO_BUCKETS(src->bb));
1428
1429 if (src->rules > 0) {
1430 if (src->rules_alloc > (INT_MAX / sizeof(*src->mt)))
1431 goto out_mt;
1432
1433 dst->mt = kvmalloc_array(src->rules_alloc,
1434 sizeof(*src->mt),
1435 GFP_KERNEL_ACCOUNT);
1436 if (!dst->mt)
1437 goto out_mt;
1438
1439 memcpy(dst->mt, src->mt, src->rules * sizeof(*src->mt));
1440 } else {
1441 dst->mt = NULL;
1442 dst->rules_alloc = 0;
1443 }
1444
1445 src++;
1446 dst++;
1447 }
1448
1449 return new;
1450
1451 out_mt:
1452 kvfree(dst->lt);
1453 out_lt:
1454 for (dst--; i > 0; i--) {
1455 kvfree(dst->mt);
1456 kvfree(dst->lt);
1457 dst--;
1458 }
1459 out_scratch_realloc:
1460 for_each_possible_cpu(i)
1461 pipapo_free_scratch(new, i);
1462 out_scratch:
1463 free_percpu(new->scratch);
1464 kfree(new);
1465
1466 return NULL;
1467 }
1468
1469 /**
1470 * pipapo_rules_same_key() - Get number of rules originated from the same entry
1471 * @f: Field containing mapping table
1472 * @first: Index of first rule in set of rules mapping to same entry
1473 *
1474 * Using the fact that all rules in a field that originated from the same entry
1475 * will map to the same set of rules in the next field, or to the same element
1476 * reference, return the cardinality of the set of rules that originated from
1477 * the same entry as the rule with index @first, @first rule included.
1478 *
1479 * In pictures:
1480 * rules
1481 * field #0 0 1 2 3 4
1482 * map to: 0 1 2-4 2-4 5-9
1483 * . . ....... . ...
1484 * | | | | \ \
1485 * | | | | \ \
1486 * | | | | \ \
1487 * ' ' ' ' ' \
1488 * in field #1 0 1 2 3 4 5 ...
1489 *
1490 * if this is called for rule 2 on field #0, it will return 3, as also rules 2
1491 * and 3 in field 0 map to the same set of rules (2, 3, 4) in the next field.
1492 *
1493 * For the last field in a set, we can rely on associated entries to map to the
1494 * same element references.
1495 *
1496 * Return: Number of rules that originated from the same entry as @first.
1497 */
1498 static unsigned int pipapo_rules_same_key(struct nft_pipapo_field *f, unsigned int first)
1499 {
1500 struct nft_pipapo_elem *e = NULL; /* Keep gcc happy */
1501 unsigned int r;
1502
1503 for (r = first; r < f->rules; r++) {
1504 if (r != first && e != f->mt[r].e)
1505 return r - first;
1506
1507 e = f->mt[r].e;
1508 }
1509
1510 if (r != first)
1511 return r - first;
1512
1513 return 0;
1514 }
1515
1516 /**
1517 * pipapo_unmap() - Remove rules from mapping tables, renumber remaining ones
1518 * @mt: Mapping array
1519 * @rules: Original amount of rules in mapping table
1520 * @start: First rule index to be removed
1521 * @n: Amount of rules to be removed
1522 * @to_offset: First rule index, in next field, this group of rules maps to
1523 * @is_last: If this is the last field, delete reference from mapping array
1524 *
1525 * This is used to unmap rules from the mapping table for a single field,
1526 * maintaining consistency and compactness for the existing ones.
1527 *
1528 * In pictures: let's assume that we want to delete rules 2 and 3 from the
1529 * following mapping array:
1530 *
1531 * rules
1532 * 0 1 2 3 4
1533 * map to: 4-10 4-10 11-15 11-15 16-18
1534 *
1535 * the result will be:
1536 *
1537 * rules
1538 * 0 1 2
1539 * map to: 4-10 4-10 11-13
1540 *
1541 * for fields before the last one. In case this is the mapping table for the
1542 * last field in a set, and rules map to pointers to &struct nft_pipapo_elem:
1543 *
1544 * rules
1545 * 0 1 2 3 4
1546 * element pointers: 0x42 0x42 0x33 0x33 0x44
1547 *
1548 * the result will be:
1549 *
1550 * rules
1551 * 0 1 2
1552 * element pointers: 0x42 0x42 0x44
1553 */
1554 static void pipapo_unmap(union nft_pipapo_map_bucket *mt, unsigned int rules,
1555 unsigned int start, unsigned int n,
1556 unsigned int to_offset, bool is_last)
1557 {
1558 int i;
1559
1560 memmove(mt + start, mt + start + n, (rules - start - n) * sizeof(*mt));
1561 memset(mt + rules - n, 0, n * sizeof(*mt));
1562
1563 if (is_last)
1564 return;
1565
1566 for (i = start; i < rules - n; i++)
1567 mt[i].to -= to_offset;
1568 }
1569
1570 /**
1571 * pipapo_drop() - Delete entry from lookup and mapping tables, given rule map
1572 * @m: Matching data
1573 * @rulemap: Table of rule maps, arrays of first rule and amount of rules
1574 * in next field a given entry maps to, for each field
1575 *
1576 * For each rule in lookup table buckets mapping to this set of rules, drop
1577 * all bits set in lookup table mapping. In pictures, assuming we want to drop
1578 * rules 0 and 1 from this lookup table:
1579 *
1580 * bucket
1581 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1582 * 0 0 1,2
1583 * 1 1,2 0
1584 * 2 0 1,2
1585 * 3 0 1,2
1586 * 4 0,1,2
1587 * 5 0 1 2
1588 * 6 0,1,2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1589 * 7 1,2 1,2 1 1 1 0,1 1 1 1 1 1 1 1 1 1 1
1590 *
1591 * rule 2 becomes rule 0, and the result will be:
1592 *
1593 * bucket
1594 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1595 * 0 0
1596 * 1 0
1597 * 2 0
1598 * 3 0
1599 * 4 0
1600 * 5 0
1601 * 6 0
1602 * 7 0 0
1603 *
1604 * once this is done, call unmap() to drop all the corresponding rule references
1605 * from mapping tables.
1606 */
1607 static void pipapo_drop(struct nft_pipapo_match *m,
1608 union nft_pipapo_map_bucket rulemap[])
1609 {
1610 struct nft_pipapo_field *f;
1611 int i;
1612
1613 nft_pipapo_for_each_field(f, i, m) {
1614 int g;
1615
1616 for (g = 0; g < f->groups; g++) {
1617 unsigned long *pos;
1618 int b;
1619
1620 pos = NFT_PIPAPO_LT_ALIGN(f->lt) + g *
1621 NFT_PIPAPO_BUCKETS(f->bb) * f->bsize;
1622
1623 for (b = 0; b < NFT_PIPAPO_BUCKETS(f->bb); b++) {
1624 bitmap_cut(pos, pos, rulemap[i].to,
1625 rulemap[i].n,
1626 f->bsize * BITS_PER_LONG);
1627
1628 pos += f->bsize;
1629 }
1630 }
1631
1632 pipapo_unmap(f->mt, f->rules, rulemap[i].to, rulemap[i].n,
1633 rulemap[i + 1].n, i == m->field_count - 1);
1634 if (pipapo_resize(f, f->rules, f->rules - rulemap[i].n)) {
1635 /* We can ignore this, a failure to shrink tables down
1636 * doesn't make tables invalid.
1637 */
1638 ;
1639 }
1640 f->rules -= rulemap[i].n;
1641
1642 pipapo_lt_bits_adjust(f);
1643 }
1644 }
1645
1646 static void nft_pipapo_gc_deactivate(struct net *net, struct nft_set *set,
1647 struct nft_pipapo_elem *e)
1648
1649 {
1650 nft_setelem_data_deactivate(net, set, &e->priv);
1651 }
1652
1653 /**
1654 * pipapo_gc() - Drop expired entries from set, destroy start and end elements
1655 * @set: nftables API set representation
1656 * @m: Matching data
1657 */
1658 static void pipapo_gc(struct nft_set *set, struct nft_pipapo_match *m)
1659 {
1660 struct nft_pipapo *priv = nft_set_priv(set);
1661 struct net *net = read_pnet(&set->net);
1662 unsigned int rules_f0, first_rule = 0;
1663 u64 tstamp = nft_net_tstamp(net);
1664 struct nft_pipapo_elem *e;
1665 struct nft_trans_gc *gc;
1666
1667 gc = nft_trans_gc_alloc(set, 0, GFP_KERNEL);
1668 if (!gc)
1669 return;
1670
1671 while ((rules_f0 = pipapo_rules_same_key(m->f, first_rule))) {
1672 union nft_pipapo_map_bucket rulemap[NFT_PIPAPO_MAX_FIELDS];
1673 const struct nft_pipapo_field *f;
1674 unsigned int i, start, rules_fx;
1675
1676 start = first_rule;
1677 rules_fx = rules_f0;
1678
1679 nft_pipapo_for_each_field(f, i, m) {
1680 rulemap[i].to = start;
1681 rulemap[i].n = rules_fx;
1682
1683 if (i < m->field_count - 1) {
1684 rules_fx = f->mt[start].n;
1685 start = f->mt[start].to;
1686 }
1687 }
1688
1689 /* Pick the last field, and its last index */
1690 f--;
1691 i--;
1692 e = f->mt[rulemap[i].to].e;
1693
1694 /* synchronous gc never fails, there is no need to set on
1695 * NFT_SET_ELEM_DEAD_BIT.
1696 */
1697 if (__nft_set_elem_expired(&e->ext, tstamp)) {
1698 gc = nft_trans_gc_queue_sync(gc, GFP_KERNEL);
1699 if (!gc)
1700 return;
1701
1702 nft_pipapo_gc_deactivate(net, set, e);
1703 pipapo_drop(m, rulemap);
1704 nft_trans_gc_elem_add(gc, e);
1705
1706 /* And check again current first rule, which is now the
1707 * first we haven't checked.
1708 */
1709 } else {
1710 first_rule += rules_f0;
1711 }
1712 }
1713
1714 gc = nft_trans_gc_catchall_sync(gc);
1715 if (gc) {
1716 nft_trans_gc_queue_sync_done(gc);
1717 priv->last_gc = jiffies;
1718 }
1719 }
1720
1721 /**
1722 * pipapo_free_fields() - Free per-field tables contained in matching data
1723 * @m: Matching data
1724 */
1725 static void pipapo_free_fields(struct nft_pipapo_match *m)
1726 {
1727 struct nft_pipapo_field *f;
1728 int i;
1729
1730 nft_pipapo_for_each_field(f, i, m) {
1731 kvfree(f->lt);
1732 kvfree(f->mt);
1733 }
1734 }
1735
1736 static void pipapo_free_match(struct nft_pipapo_match *m)
1737 {
1738 int i;
1739
1740 for_each_possible_cpu(i)
1741 pipapo_free_scratch(m, i);
1742
1743 free_percpu(m->scratch);
1744 pipapo_free_fields(m);
1745
1746 kfree(m);
1747 }
1748
1749 /**
1750 * pipapo_reclaim_match - RCU callback to free fields from old matching data
1751 * @rcu: RCU head
1752 */
1753 static void pipapo_reclaim_match(struct rcu_head *rcu)
1754 {
1755 struct nft_pipapo_match *m;
1756
1757 m = container_of(rcu, struct nft_pipapo_match, rcu);
1758 pipapo_free_match(m);
1759 }
1760
1761 /**
1762 * nft_pipapo_commit() - Replace lookup data with current working copy
1763 * @set: nftables API set representation
1764 *
1765 * While at it, check if we should perform garbage collection on the working
1766 * copy before committing it for lookup, and don't replace the table if the
1767 * working copy doesn't have pending changes.
1768 *
1769 * We also need to create a new working copy for subsequent insertions and
1770 * deletions.
1771 */
1772 static void nft_pipapo_commit(struct nft_set *set)
1773 {
1774 struct nft_pipapo *priv = nft_set_priv(set);
1775 struct nft_pipapo_match *old;
1776
1777 if (!priv->clone)
1778 return;
1779
1780 if (time_after_eq(jiffies, priv->last_gc + nft_set_gc_interval(set)))
1781 pipapo_gc(set, priv->clone);
1782
1783 old = rcu_replace_pointer(priv->match, priv->clone,
1784 nft_pipapo_transaction_mutex_held(set));
1785 priv->clone = NULL;
1786
1787 if (old)
1788 call_rcu(&old->rcu, pipapo_reclaim_match);
1789 }
1790
1791 static void nft_pipapo_abort(const struct nft_set *set)
1792 {
1793 struct nft_pipapo *priv = nft_set_priv(set);
1794
1795 if (!priv->clone)
1796 return;
1797 pipapo_free_match(priv->clone);
1798 priv->clone = NULL;
1799 }
1800
1801 /**
1802 * nft_pipapo_activate() - Mark element reference as active given key, commit
1803 * @net: Network namespace
1804 * @set: nftables API set representation
1805 * @elem_priv: nftables API element representation containing key data
1806 *
1807 * On insertion, elements are added to a copy of the matching data currently
1808 * in use for lookups, and not directly inserted into current lookup data. Both
1809 * nft_pipapo_insert() and nft_pipapo_activate() are called once for each
1810 * element, hence we can't purpose either one as a real commit operation.
1811 */
1812 static void nft_pipapo_activate(const struct net *net,
1813 const struct nft_set *set,
1814 struct nft_elem_priv *elem_priv)
1815 {
1816 struct nft_pipapo_elem *e = nft_elem_priv_cast(elem_priv);
1817
1818 nft_clear(net, &e->ext);
1819 }
1820
1821 /**
1822 * nft_pipapo_deactivate() - Search for element and make it inactive
1823 * @net: Network namespace
1824 * @set: nftables API set representation
1825 * @elem: nftables API element representation containing key data
1826 *
1827 * Return: deactivated element if found, NULL otherwise.
1828 */
1829 static struct nft_elem_priv *
1830 nft_pipapo_deactivate(const struct net *net, const struct nft_set *set,
1831 const struct nft_set_elem *elem)
1832 {
1833 struct nft_pipapo_match *m = pipapo_maybe_clone(set);
1834 struct nft_pipapo_elem *e;
1835
1836 /* removal must occur on priv->clone, if we are low on memory
1837 * we have no choice and must fail the removal request.
1838 */
1839 if (!m)
1840 return NULL;
1841
1842 e = pipapo_get(m, (const u8 *)elem->key.val.data,
1843 nft_genmask_next(net), nft_net_tstamp(net));
1844 if (!e)
1845 return NULL;
1846
1847 nft_set_elem_change_active(net, set, &e->ext);
1848
1849 return &e->priv;
1850 }
1851
1852 /**
1853 * nft_pipapo_flush() - make element inactive
1854 * @net: Network namespace
1855 * @set: nftables API set representation
1856 * @elem_priv: nftables API element representation containing key data
1857 *
1858 * This is functionally the same as nft_pipapo_deactivate(), with a slightly
1859 * different interface, and it's also called once for each element in a set
1860 * being flushed, so we can't implement, strictly speaking, a flush operation,
1861 * which would otherwise be as simple as allocating an empty copy of the
1862 * matching data.
1863 *
1864 * Note that we could in theory do that, mark the set as flushed, and ignore
1865 * subsequent calls, but we would leak all the elements after the first one,
1866 * because they wouldn't then be freed as result of API calls.
1867 *
1868 * Return: true if element was found and deactivated.
1869 */
1870 static void nft_pipapo_flush(const struct net *net, const struct nft_set *set,
1871 struct nft_elem_priv *elem_priv)
1872 {
1873 struct nft_pipapo_elem *e = nft_elem_priv_cast(elem_priv);
1874
1875 nft_set_elem_change_active(net, set, &e->ext);
1876 }
1877
1878 /**
1879 * pipapo_get_boundaries() - Get byte interval for associated rules
1880 * @f: Field including lookup table
1881 * @first_rule: First rule (lowest index)
1882 * @rule_count: Number of associated rules
1883 * @left: Byte expression for left boundary (start of range)
1884 * @right: Byte expression for right boundary (end of range)
1885 *
1886 * Given the first rule and amount of rules that originated from the same entry,
1887 * build the original range associated with the entry, and calculate the length
1888 * of the originating netmask.
1889 *
1890 * In pictures:
1891 *
1892 * bucket
1893 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1894 * 0 1,2
1895 * 1 1,2
1896 * 2 1,2
1897 * 3 1,2
1898 * 4 1,2
1899 * 5 1 2
1900 * 6 1,2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1901 * 7 1,2 1,2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1902 *
1903 * this is the lookup table corresponding to the IPv4 range
1904 * 192.168.1.0-192.168.2.1, which was expanded to the two composing netmasks,
1905 * rule #1: 192.168.1.0/24, and rule #2: 192.168.2.0/31.
1906 *
1907 * This function fills @left and @right with the byte values of the leftmost
1908 * and rightmost bucket indices for the lowest and highest rule indices,
1909 * respectively. If @first_rule is 1 and @rule_count is 2, we obtain, in
1910 * nibbles:
1911 * left: < 12, 0, 10, 8, 0, 1, 0, 0 >
1912 * right: < 12, 0, 10, 8, 0, 2, 2, 1 >
1913 * corresponding to bytes:
1914 * left: < 192, 168, 1, 0 >
1915 * right: < 192, 168, 2, 1 >
1916 * with mask length irrelevant here, unused on return, as the range is already
1917 * defined by its start and end points. The mask length is relevant for a single
1918 * ranged entry instead: if @first_rule is 1 and @rule_count is 1, we ignore
1919 * rule 2 above: @left becomes < 192, 168, 1, 0 >, @right becomes
1920 * < 192, 168, 1, 255 >, and the mask length, calculated from the distances
1921 * between leftmost and rightmost bucket indices for each group, would be 24.
1922 *
1923 * Return: mask length, in bits.
1924 */
1925 static int pipapo_get_boundaries(struct nft_pipapo_field *f, int first_rule,
1926 int rule_count, u8 *left, u8 *right)
1927 {
1928 int g, mask_len = 0, bit_offset = 0;
1929 u8 *l = left, *r = right;
1930
1931 for (g = 0; g < f->groups; g++) {
1932 int b, x0, x1;
1933
1934 x0 = -1;
1935 x1 = -1;
1936 for (b = 0; b < NFT_PIPAPO_BUCKETS(f->bb); b++) {
1937 unsigned long *pos;
1938
1939 pos = NFT_PIPAPO_LT_ALIGN(f->lt) +
1940 (g * NFT_PIPAPO_BUCKETS(f->bb) + b) * f->bsize;
1941 if (test_bit(first_rule, pos) && x0 == -1)
1942 x0 = b;
1943 if (test_bit(first_rule + rule_count - 1, pos))
1944 x1 = b;
1945 }
1946
1947 *l |= x0 << (BITS_PER_BYTE - f->bb - bit_offset);
1948 *r |= x1 << (BITS_PER_BYTE - f->bb - bit_offset);
1949
1950 bit_offset += f->bb;
1951 if (bit_offset >= BITS_PER_BYTE) {
1952 bit_offset %= BITS_PER_BYTE;
1953 l++;
1954 r++;
1955 }
1956
1957 if (x1 - x0 == 0)
1958 mask_len += 4;
1959 else if (x1 - x0 == 1)
1960 mask_len += 3;
1961 else if (x1 - x0 == 3)
1962 mask_len += 2;
1963 else if (x1 - x0 == 7)
1964 mask_len += 1;
1965 }
1966
1967 return mask_len;
1968 }
1969
1970 /**
1971 * pipapo_match_field() - Match rules against byte ranges
1972 * @f: Field including the lookup table
1973 * @first_rule: First of associated rules originating from same entry
1974 * @rule_count: Amount of associated rules
1975 * @start: Start of range to be matched
1976 * @end: End of range to be matched
1977 *
1978 * Return: true on match, false otherwise.
1979 */
1980 static bool pipapo_match_field(struct nft_pipapo_field *f,
1981 int first_rule, int rule_count,
1982 const u8 *start, const u8 *end)
1983 {
1984 u8 right[NFT_PIPAPO_MAX_BYTES] = { 0 };
1985 u8 left[NFT_PIPAPO_MAX_BYTES] = { 0 };
1986
1987 pipapo_get_boundaries(f, first_rule, rule_count, left, right);
1988
1989 return !memcmp(start, left,
1990 f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f)) &&
1991 !memcmp(end, right, f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f));
1992 }
1993
1994 /**
1995 * nft_pipapo_remove() - Remove element given key, commit
1996 * @net: Network namespace
1997 * @set: nftables API set representation
1998 * @elem_priv: nftables API element representation containing key data
1999 *
2000 * Similarly to nft_pipapo_activate(), this is used as commit operation by the
2001 * API, but it's called once per element in the pending transaction, so we can't
2002 * implement this as a single commit operation. Closest we can get is to remove
2003 * the matched element here, if any, and commit the updated matching data.
2004 */
2005 static void nft_pipapo_remove(const struct net *net, const struct nft_set *set,
2006 struct nft_elem_priv *elem_priv)
2007 {
2008 struct nft_pipapo *priv = nft_set_priv(set);
2009 struct nft_pipapo_match *m = priv->clone;
2010 unsigned int rules_f0, first_rule = 0;
2011 struct nft_pipapo_elem *e;
2012 const u8 *data;
2013
2014 e = nft_elem_priv_cast(elem_priv);
2015 data = (const u8 *)nft_set_ext_key(&e->ext);
2016
2017 while ((rules_f0 = pipapo_rules_same_key(m->f, first_rule))) {
2018 union nft_pipapo_map_bucket rulemap[NFT_PIPAPO_MAX_FIELDS];
2019 const u8 *match_start, *match_end;
2020 struct nft_pipapo_field *f;
2021 int i, start, rules_fx;
2022
2023 match_start = data;
2024
2025 if (nft_set_ext_exists(&e->ext, NFT_SET_EXT_KEY_END))
2026 match_end = (const u8 *)nft_set_ext_key_end(&e->ext)->data;
2027 else
2028 match_end = data;
2029
2030 start = first_rule;
2031 rules_fx = rules_f0;
2032
2033 nft_pipapo_for_each_field(f, i, m) {
2034 bool last = i == m->field_count - 1;
2035
2036 if (!pipapo_match_field(f, start, rules_fx,
2037 match_start, match_end))
2038 break;
2039
2040 rulemap[i].to = start;
2041 rulemap[i].n = rules_fx;
2042
2043 rules_fx = f->mt[start].n;
2044 start = f->mt[start].to;
2045
2046 match_start += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
2047 match_end += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
2048
2049 if (last && f->mt[rulemap[i].to].e == e) {
2050 pipapo_drop(m, rulemap);
2051 return;
2052 }
2053 }
2054
2055 first_rule += rules_f0;
2056 }
2057
2058 WARN_ON_ONCE(1); /* elem_priv not found */
2059 }
2060
2061 /**
2062 * nft_pipapo_do_walk() - Walk over elements in m
2063 * @ctx: nftables API context
2064 * @set: nftables API set representation
2065 * @m: matching data pointing to key mapping array
2066 * @iter: Iterator
2067 *
2068 * As elements are referenced in the mapping array for the last field, directly
2069 * scan that array: there's no need to follow rule mappings from the first
2070 * field. @m is protected either by RCU read lock or by transaction mutex.
2071 */
2072 static void nft_pipapo_do_walk(const struct nft_ctx *ctx, struct nft_set *set,
2073 const struct nft_pipapo_match *m,
2074 struct nft_set_iter *iter)
2075 {
2076 const struct nft_pipapo_field *f;
2077 unsigned int i, r;
2078
2079 for (i = 0, f = m->f; i < m->field_count - 1; i++, f++)
2080 ;
2081
2082 for (r = 0; r < f->rules; r++) {
2083 struct nft_pipapo_elem *e;
2084
2085 if (r < f->rules - 1 && f->mt[r + 1].e == f->mt[r].e)
2086 continue;
2087
2088 if (iter->count < iter->skip)
2089 goto cont;
2090
2091 e = f->mt[r].e;
2092
2093 iter->err = iter->fn(ctx, set, iter, &e->priv);
2094 if (iter->err < 0)
2095 return;
2096
2097 cont:
2098 iter->count++;
2099 }
2100 }
2101
2102 /**
2103 * nft_pipapo_walk() - Walk over elements
2104 * @ctx: nftables API context
2105 * @set: nftables API set representation
2106 * @iter: Iterator
2107 *
2108 * Test if destructive action is needed or not, clone active backend if needed
2109 * and call the real function to work on the data.
2110 */
2111 static void nft_pipapo_walk(const struct nft_ctx *ctx, struct nft_set *set,
2112 struct nft_set_iter *iter)
2113 {
2114 struct nft_pipapo *priv = nft_set_priv(set);
2115 const struct nft_pipapo_match *m;
2116
2117 switch (iter->type) {
2118 case NFT_ITER_UPDATE:
2119 m = pipapo_maybe_clone(set);
2120 if (!m) {
2121 iter->err = -ENOMEM;
2122 return;
2123 }
2124
2125 nft_pipapo_do_walk(ctx, set, m, iter);
2126 break;
2127 case NFT_ITER_READ:
2128 rcu_read_lock();
2129 m = rcu_dereference(priv->match);
2130 nft_pipapo_do_walk(ctx, set, m, iter);
2131 rcu_read_unlock();
2132 break;
2133 default:
2134 iter->err = -EINVAL;
2135 WARN_ON_ONCE(1);
2136 break;
2137 }
2138 }
2139
2140 /**
2141 * nft_pipapo_privsize() - Return the size of private data for the set
2142 * @nla: netlink attributes, ignored as size doesn't depend on them
2143 * @desc: Set description, ignored as size doesn't depend on it
2144 *
2145 * Return: size of private data for this set implementation, in bytes
2146 */
2147 static u64 nft_pipapo_privsize(const struct nlattr * const nla[],
2148 const struct nft_set_desc *desc)
2149 {
2150 return sizeof(struct nft_pipapo);
2151 }
2152
2153 /**
2154 * nft_pipapo_estimate() - Set size, space and lookup complexity
2155 * @desc: Set description, element count and field description used
2156 * @features: Flags: NFT_SET_INTERVAL needs to be there
2157 * @est: Storage for estimation data
2158 *
2159 * Return: true if set description is compatible, false otherwise
2160 */
2161 static bool nft_pipapo_estimate(const struct nft_set_desc *desc, u32 features,
2162 struct nft_set_estimate *est)
2163 {
2164 if (!(features & NFT_SET_INTERVAL) ||
2165 desc->field_count < NFT_PIPAPO_MIN_FIELDS)
2166 return false;
2167
2168 est->size = pipapo_estimate_size(desc);
2169 if (!est->size)
2170 return false;
2171
2172 est->lookup = NFT_SET_CLASS_O_LOG_N;
2173
2174 est->space = NFT_SET_CLASS_O_N;
2175
2176 return true;
2177 }
2178
2179 /**
2180 * nft_pipapo_init() - Initialise data for a set instance
2181 * @set: nftables API set representation
2182 * @desc: Set description
2183 * @nla: netlink attributes
2184 *
2185 * Validate number and size of fields passed as NFTA_SET_DESC_CONCAT netlink
2186 * attributes, initialise internal set parameters, current instance of matching
2187 * data and a copy for subsequent insertions.
2188 *
2189 * Return: 0 on success, negative error code on failure.
2190 */
2191 static int nft_pipapo_init(const struct nft_set *set,
2192 const struct nft_set_desc *desc,
2193 const struct nlattr * const nla[])
2194 {
2195 struct nft_pipapo *priv = nft_set_priv(set);
2196 struct nft_pipapo_match *m;
2197 struct nft_pipapo_field *f;
2198 int err, i, field_count;
2199
2200 BUILD_BUG_ON(offsetof(struct nft_pipapo_elem, priv) != 0);
2201
2202 field_count = desc->field_count ? : 1;
2203
2204 BUILD_BUG_ON(NFT_PIPAPO_MAX_FIELDS > 255);
2205 BUILD_BUG_ON(NFT_PIPAPO_MAX_FIELDS != NFT_REG32_COUNT);
2206
2207 if (field_count > NFT_PIPAPO_MAX_FIELDS)
2208 return -EINVAL;
2209
2210 m = kmalloc(struct_size(m, f, field_count), GFP_KERNEL);
2211 if (!m)
2212 return -ENOMEM;
2213
2214 m->field_count = field_count;
2215 m->bsize_max = 0;
2216
2217 m->scratch = alloc_percpu(struct nft_pipapo_scratch *);
2218 if (!m->scratch) {
2219 err = -ENOMEM;
2220 goto out_scratch;
2221 }
2222 for_each_possible_cpu(i)
2223 *per_cpu_ptr(m->scratch, i) = NULL;
2224
2225 rcu_head_init(&m->rcu);
2226
2227 nft_pipapo_for_each_field(f, i, m) {
2228 unsigned int len = desc->field_len[i] ? : set->klen;
2229
2230 /* f->groups is u8 */
2231 BUILD_BUG_ON((NFT_PIPAPO_MAX_BYTES *
2232 BITS_PER_BYTE / NFT_PIPAPO_GROUP_BITS_LARGE_SET) >= 256);
2233
2234 f->bb = NFT_PIPAPO_GROUP_BITS_INIT;
2235 f->groups = len * NFT_PIPAPO_GROUPS_PER_BYTE(f);
2236
2237 priv->width += round_up(len, sizeof(u32));
2238
2239 f->bsize = 0;
2240 f->rules = 0;
2241 f->rules_alloc = 0;
2242 f->lt = NULL;
2243 f->mt = NULL;
2244 }
2245
2246 rcu_assign_pointer(priv->match, m);
2247
2248 return 0;
2249
2250 out_scratch:
2251 kfree(m);
2252
2253 return err;
2254 }
2255
2256 /**
2257 * nft_set_pipapo_match_destroy() - Destroy elements from key mapping array
2258 * @ctx: context
2259 * @set: nftables API set representation
2260 * @m: matching data pointing to key mapping array
2261 */
2262 static void nft_set_pipapo_match_destroy(const struct nft_ctx *ctx,
2263 const struct nft_set *set,
2264 struct nft_pipapo_match *m)
2265 {
2266 struct nft_pipapo_field *f;
2267 unsigned int i, r;
2268
2269 for (i = 0, f = m->f; i < m->field_count - 1; i++, f++)
2270 ;
2271
2272 for (r = 0; r < f->rules; r++) {
2273 struct nft_pipapo_elem *e;
2274
2275 if (r < f->rules - 1 && f->mt[r + 1].e == f->mt[r].e)
2276 continue;
2277
2278 e = f->mt[r].e;
2279
2280 nf_tables_set_elem_destroy(ctx, set, &e->priv);
2281 }
2282 }
2283
2284 /**
2285 * nft_pipapo_destroy() - Free private data for set and all committed elements
2286 * @ctx: context
2287 * @set: nftables API set representation
2288 */
2289 static void nft_pipapo_destroy(const struct nft_ctx *ctx,
2290 const struct nft_set *set)
2291 {
2292 struct nft_pipapo *priv = nft_set_priv(set);
2293 struct nft_pipapo_match *m;
2294
2295 m = rcu_dereference_protected(priv->match, true);
2296
2297 if (priv->clone) {
2298 nft_set_pipapo_match_destroy(ctx, set, priv->clone);
2299 pipapo_free_match(priv->clone);
2300 priv->clone = NULL;
2301 } else {
2302 nft_set_pipapo_match_destroy(ctx, set, m);
2303 }
2304
2305 pipapo_free_match(m);
2306 }
2307
2308 /**
2309 * nft_pipapo_gc_init() - Initialise garbage collection
2310 * @set: nftables API set representation
2311 *
2312 * Instead of actually setting up a periodic work for garbage collection, as
2313 * this operation requires a swap of matching data with the working copy, we'll
2314 * do that opportunistically with other commit operations if the interval is
2315 * elapsed, so we just need to set the current jiffies timestamp here.
2316 */
2317 static void nft_pipapo_gc_init(const struct nft_set *set)
2318 {
2319 struct nft_pipapo *priv = nft_set_priv(set);
2320
2321 priv->last_gc = jiffies;
2322 }
2323
2324 const struct nft_set_type nft_set_pipapo_type = {
2325 .features = NFT_SET_INTERVAL | NFT_SET_MAP | NFT_SET_OBJECT |
2326 NFT_SET_TIMEOUT,
2327 .ops = {
2328 .lookup = nft_pipapo_lookup,
2329 .insert = nft_pipapo_insert,
2330 .activate = nft_pipapo_activate,
2331 .deactivate = nft_pipapo_deactivate,
2332 .flush = nft_pipapo_flush,
2333 .remove = nft_pipapo_remove,
2334 .walk = nft_pipapo_walk,
2335 .get = nft_pipapo_get,
2336 .privsize = nft_pipapo_privsize,
2337 .estimate = nft_pipapo_estimate,
2338 .init = nft_pipapo_init,
2339 .destroy = nft_pipapo_destroy,
2340 .gc_init = nft_pipapo_gc_init,
2341 .commit = nft_pipapo_commit,
2342 .abort = nft_pipapo_abort,
2343 .elemsize = offsetof(struct nft_pipapo_elem, ext),
2344 },
2345 };
2346
2347 #if defined(CONFIG_X86_64) && !defined(CONFIG_UML)
2348 const struct nft_set_type nft_set_pipapo_avx2_type = {
2349 .features = NFT_SET_INTERVAL | NFT_SET_MAP | NFT_SET_OBJECT |
2350 NFT_SET_TIMEOUT,
2351 .ops = {
2352 .lookup = nft_pipapo_avx2_lookup,
2353 .insert = nft_pipapo_insert,
2354 .activate = nft_pipapo_activate,
2355 .deactivate = nft_pipapo_deactivate,
2356 .flush = nft_pipapo_flush,
2357 .remove = nft_pipapo_remove,
2358 .walk = nft_pipapo_walk,
2359 .get = nft_pipapo_get,
2360 .privsize = nft_pipapo_privsize,
2361 .estimate = nft_pipapo_avx2_estimate,
2362 .init = nft_pipapo_init,
2363 .destroy = nft_pipapo_destroy,
2364 .gc_init = nft_pipapo_gc_init,
2365 .commit = nft_pipapo_commit,
2366 .abort = nft_pipapo_abort,
2367 .elemsize = offsetof(struct nft_pipapo_elem, ext),
2368 },
2369 };
2370 #endif
2371