xref: /linux/net/vmw_vsock/af_vsock.c (revision 63467137ecc0ff6f804d53903ad87a2f0397a18b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VMware vSockets Driver
4  *
5  * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6  */
7 
8 /* Implementation notes:
9  *
10  * - There are two kinds of sockets: those created by user action (such as
11  * calling socket(2)) and those created by incoming connection request packets.
12  *
13  * - There are two "global" tables, one for bound sockets (sockets that have
14  * specified an address that they are responsible for) and one for connected
15  * sockets (sockets that have established a connection with another socket).
16  * These tables are "global" in that all sockets on the system are placed
17  * within them. - Note, though, that the bound table contains an extra entry
18  * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
19  * that list. The bound table is used solely for lookup of sockets when packets
20  * are received and that's not necessary for SOCK_DGRAM sockets since we create
21  * a datagram handle for each and need not perform a lookup.  Keeping SOCK_DGRAM
22  * sockets out of the bound hash buckets will reduce the chance of collisions
23  * when looking for SOCK_STREAM sockets and prevents us from having to check the
24  * socket type in the hash table lookups.
25  *
26  * - Sockets created by user action will either be "client" sockets that
27  * initiate a connection or "server" sockets that listen for connections; we do
28  * not support simultaneous connects (two "client" sockets connecting).
29  *
30  * - "Server" sockets are referred to as listener sockets throughout this
31  * implementation because they are in the TCP_LISTEN state.  When a
32  * connection request is received (the second kind of socket mentioned above),
33  * we create a new socket and refer to it as a pending socket.  These pending
34  * sockets are placed on the pending connection list of the listener socket.
35  * When future packets are received for the address the listener socket is
36  * bound to, we check if the source of the packet is from one that has an
37  * existing pending connection.  If it does, we process the packet for the
38  * pending socket.  When that socket reaches the connected state, it is removed
39  * from the listener socket's pending list and enqueued in the listener
40  * socket's accept queue.  Callers of accept(2) will accept connected sockets
41  * from the listener socket's accept queue.  If the socket cannot be accepted
42  * for some reason then it is marked rejected.  Once the connection is
43  * accepted, it is owned by the user process and the responsibility for cleanup
44  * falls with that user process.
45  *
46  * - It is possible that these pending sockets will never reach the connected
47  * state; in fact, we may never receive another packet after the connection
48  * request.  Because of this, we must schedule a cleanup function to run in the
49  * future, after some amount of time passes where a connection should have been
50  * established.  This function ensures that the socket is off all lists so it
51  * cannot be retrieved, then drops all references to the socket so it is cleaned
52  * up (sock_put() -> sk_free() -> our sk_destruct implementation).  Note this
53  * function will also cleanup rejected sockets, those that reach the connected
54  * state but leave it before they have been accepted.
55  *
56  * - Lock ordering for pending or accept queue sockets is:
57  *
58  *     lock_sock(listener);
59  *     lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
60  *
61  * Using explicit nested locking keeps lockdep happy since normally only one
62  * lock of a given class may be taken at a time.
63  *
64  * - Sockets created by user action will be cleaned up when the user process
65  * calls close(2), causing our release implementation to be called. Our release
66  * implementation will perform some cleanup then drop the last reference so our
67  * sk_destruct implementation is invoked.  Our sk_destruct implementation will
68  * perform additional cleanup that's common for both types of sockets.
69  *
70  * - A socket's reference count is what ensures that the structure won't be
71  * freed.  Each entry in a list (such as the "global" bound and connected tables
72  * and the listener socket's pending list and connected queue) ensures a
73  * reference.  When we defer work until process context and pass a socket as our
74  * argument, we must ensure the reference count is increased to ensure the
75  * socket isn't freed before the function is run; the deferred function will
76  * then drop the reference.
77  *
78  * - sk->sk_state uses the TCP state constants because they are widely used by
79  * other address families and exposed to userspace tools like ss(8):
80  *
81  *   TCP_CLOSE - unconnected
82  *   TCP_SYN_SENT - connecting
83  *   TCP_ESTABLISHED - connected
84  *   TCP_CLOSING - disconnecting
85  *   TCP_LISTEN - listening
86  */
87 
88 #include <linux/compat.h>
89 #include <linux/types.h>
90 #include <linux/bitops.h>
91 #include <linux/cred.h>
92 #include <linux/errqueue.h>
93 #include <linux/init.h>
94 #include <linux/io.h>
95 #include <linux/kernel.h>
96 #include <linux/sched/signal.h>
97 #include <linux/kmod.h>
98 #include <linux/list.h>
99 #include <linux/miscdevice.h>
100 #include <linux/module.h>
101 #include <linux/mutex.h>
102 #include <linux/net.h>
103 #include <linux/poll.h>
104 #include <linux/random.h>
105 #include <linux/skbuff.h>
106 #include <linux/smp.h>
107 #include <linux/socket.h>
108 #include <linux/stddef.h>
109 #include <linux/unistd.h>
110 #include <linux/wait.h>
111 #include <linux/workqueue.h>
112 #include <net/sock.h>
113 #include <net/af_vsock.h>
114 #include <uapi/linux/vm_sockets.h>
115 #include <uapi/asm-generic/ioctls.h>
116 
117 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
118 static void vsock_sk_destruct(struct sock *sk);
119 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
120 static void vsock_close(struct sock *sk, long timeout);
121 
122 /* Protocol family. */
123 struct proto vsock_proto = {
124 	.name = "AF_VSOCK",
125 	.owner = THIS_MODULE,
126 	.obj_size = sizeof(struct vsock_sock),
127 	.close = vsock_close,
128 #ifdef CONFIG_BPF_SYSCALL
129 	.psock_update_sk_prot = vsock_bpf_update_proto,
130 #endif
131 };
132 
133 /* The default peer timeout indicates how long we will wait for a peer response
134  * to a control message.
135  */
136 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
137 
138 #define VSOCK_DEFAULT_BUFFER_SIZE     (1024 * 256)
139 #define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256)
140 #define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128
141 
142 /* Transport used for host->guest communication */
143 static const struct vsock_transport *transport_h2g;
144 /* Transport used for guest->host communication */
145 static const struct vsock_transport *transport_g2h;
146 /* Transport used for DGRAM communication */
147 static const struct vsock_transport *transport_dgram;
148 /* Transport used for local communication */
149 static const struct vsock_transport *transport_local;
150 static DEFINE_MUTEX(vsock_register_mutex);
151 
152 /**** UTILS ****/
153 
154 /* Each bound VSocket is stored in the bind hash table and each connected
155  * VSocket is stored in the connected hash table.
156  *
157  * Unbound sockets are all put on the same list attached to the end of the hash
158  * table (vsock_unbound_sockets).  Bound sockets are added to the hash table in
159  * the bucket that their local address hashes to (vsock_bound_sockets(addr)
160  * represents the list that addr hashes to).
161  *
162  * Specifically, we initialize the vsock_bind_table array to a size of
163  * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
164  * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
165  * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets.  The hash function
166  * mods with VSOCK_HASH_SIZE to ensure this.
167  */
168 #define MAX_PORT_RETRIES        24
169 
170 #define VSOCK_HASH(addr)        ((addr)->svm_port % VSOCK_HASH_SIZE)
171 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
172 #define vsock_unbound_sockets     (&vsock_bind_table[VSOCK_HASH_SIZE])
173 
174 /* XXX This can probably be implemented in a better way. */
175 #define VSOCK_CONN_HASH(src, dst)				\
176 	(((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
177 #define vsock_connected_sockets(src, dst)		\
178 	(&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
179 #define vsock_connected_sockets_vsk(vsk)				\
180 	vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
181 
182 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
183 EXPORT_SYMBOL_GPL(vsock_bind_table);
184 struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
185 EXPORT_SYMBOL_GPL(vsock_connected_table);
186 DEFINE_SPINLOCK(vsock_table_lock);
187 EXPORT_SYMBOL_GPL(vsock_table_lock);
188 
189 /* Autobind this socket to the local address if necessary. */
vsock_auto_bind(struct vsock_sock * vsk)190 static int vsock_auto_bind(struct vsock_sock *vsk)
191 {
192 	struct sock *sk = sk_vsock(vsk);
193 	struct sockaddr_vm local_addr;
194 
195 	if (vsock_addr_bound(&vsk->local_addr))
196 		return 0;
197 	vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
198 	return __vsock_bind(sk, &local_addr);
199 }
200 
vsock_init_tables(void)201 static void vsock_init_tables(void)
202 {
203 	int i;
204 
205 	for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
206 		INIT_LIST_HEAD(&vsock_bind_table[i]);
207 
208 	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
209 		INIT_LIST_HEAD(&vsock_connected_table[i]);
210 }
211 
__vsock_insert_bound(struct list_head * list,struct vsock_sock * vsk)212 static void __vsock_insert_bound(struct list_head *list,
213 				 struct vsock_sock *vsk)
214 {
215 	sock_hold(&vsk->sk);
216 	list_add(&vsk->bound_table, list);
217 }
218 
__vsock_insert_connected(struct list_head * list,struct vsock_sock * vsk)219 static void __vsock_insert_connected(struct list_head *list,
220 				     struct vsock_sock *vsk)
221 {
222 	sock_hold(&vsk->sk);
223 	list_add(&vsk->connected_table, list);
224 }
225 
__vsock_remove_bound(struct vsock_sock * vsk)226 static void __vsock_remove_bound(struct vsock_sock *vsk)
227 {
228 	list_del_init(&vsk->bound_table);
229 	sock_put(&vsk->sk);
230 }
231 
__vsock_remove_connected(struct vsock_sock * vsk)232 static void __vsock_remove_connected(struct vsock_sock *vsk)
233 {
234 	list_del_init(&vsk->connected_table);
235 	sock_put(&vsk->sk);
236 }
237 
__vsock_find_bound_socket(struct sockaddr_vm * addr)238 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
239 {
240 	struct vsock_sock *vsk;
241 
242 	list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) {
243 		if (vsock_addr_equals_addr(addr, &vsk->local_addr))
244 			return sk_vsock(vsk);
245 
246 		if (addr->svm_port == vsk->local_addr.svm_port &&
247 		    (vsk->local_addr.svm_cid == VMADDR_CID_ANY ||
248 		     addr->svm_cid == VMADDR_CID_ANY))
249 			return sk_vsock(vsk);
250 	}
251 
252 	return NULL;
253 }
254 
__vsock_find_connected_socket(struct sockaddr_vm * src,struct sockaddr_vm * dst)255 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
256 						  struct sockaddr_vm *dst)
257 {
258 	struct vsock_sock *vsk;
259 
260 	list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
261 			    connected_table) {
262 		if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
263 		    dst->svm_port == vsk->local_addr.svm_port) {
264 			return sk_vsock(vsk);
265 		}
266 	}
267 
268 	return NULL;
269 }
270 
vsock_insert_unbound(struct vsock_sock * vsk)271 static void vsock_insert_unbound(struct vsock_sock *vsk)
272 {
273 	spin_lock_bh(&vsock_table_lock);
274 	__vsock_insert_bound(vsock_unbound_sockets, vsk);
275 	spin_unlock_bh(&vsock_table_lock);
276 }
277 
vsock_insert_connected(struct vsock_sock * vsk)278 void vsock_insert_connected(struct vsock_sock *vsk)
279 {
280 	struct list_head *list = vsock_connected_sockets(
281 		&vsk->remote_addr, &vsk->local_addr);
282 
283 	spin_lock_bh(&vsock_table_lock);
284 	__vsock_insert_connected(list, vsk);
285 	spin_unlock_bh(&vsock_table_lock);
286 }
287 EXPORT_SYMBOL_GPL(vsock_insert_connected);
288 
vsock_remove_bound(struct vsock_sock * vsk)289 void vsock_remove_bound(struct vsock_sock *vsk)
290 {
291 	spin_lock_bh(&vsock_table_lock);
292 	if (__vsock_in_bound_table(vsk))
293 		__vsock_remove_bound(vsk);
294 	spin_unlock_bh(&vsock_table_lock);
295 }
296 EXPORT_SYMBOL_GPL(vsock_remove_bound);
297 
vsock_remove_connected(struct vsock_sock * vsk)298 void vsock_remove_connected(struct vsock_sock *vsk)
299 {
300 	spin_lock_bh(&vsock_table_lock);
301 	if (__vsock_in_connected_table(vsk))
302 		__vsock_remove_connected(vsk);
303 	spin_unlock_bh(&vsock_table_lock);
304 }
305 EXPORT_SYMBOL_GPL(vsock_remove_connected);
306 
vsock_find_bound_socket(struct sockaddr_vm * addr)307 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
308 {
309 	struct sock *sk;
310 
311 	spin_lock_bh(&vsock_table_lock);
312 	sk = __vsock_find_bound_socket(addr);
313 	if (sk)
314 		sock_hold(sk);
315 
316 	spin_unlock_bh(&vsock_table_lock);
317 
318 	return sk;
319 }
320 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
321 
vsock_find_connected_socket(struct sockaddr_vm * src,struct sockaddr_vm * dst)322 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
323 					 struct sockaddr_vm *dst)
324 {
325 	struct sock *sk;
326 
327 	spin_lock_bh(&vsock_table_lock);
328 	sk = __vsock_find_connected_socket(src, dst);
329 	if (sk)
330 		sock_hold(sk);
331 
332 	spin_unlock_bh(&vsock_table_lock);
333 
334 	return sk;
335 }
336 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
337 
vsock_remove_sock(struct vsock_sock * vsk)338 void vsock_remove_sock(struct vsock_sock *vsk)
339 {
340 	/* Transport reassignment must not remove the binding. */
341 	if (sock_flag(sk_vsock(vsk), SOCK_DEAD))
342 		vsock_remove_bound(vsk);
343 
344 	vsock_remove_connected(vsk);
345 }
346 EXPORT_SYMBOL_GPL(vsock_remove_sock);
347 
vsock_for_each_connected_socket(struct vsock_transport * transport,void (* fn)(struct sock * sk))348 void vsock_for_each_connected_socket(struct vsock_transport *transport,
349 				     void (*fn)(struct sock *sk))
350 {
351 	int i;
352 
353 	spin_lock_bh(&vsock_table_lock);
354 
355 	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
356 		struct vsock_sock *vsk;
357 		list_for_each_entry(vsk, &vsock_connected_table[i],
358 				    connected_table) {
359 			if (vsk->transport != transport)
360 				continue;
361 
362 			fn(sk_vsock(vsk));
363 		}
364 	}
365 
366 	spin_unlock_bh(&vsock_table_lock);
367 }
368 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
369 
vsock_add_pending(struct sock * listener,struct sock * pending)370 void vsock_add_pending(struct sock *listener, struct sock *pending)
371 {
372 	struct vsock_sock *vlistener;
373 	struct vsock_sock *vpending;
374 
375 	vlistener = vsock_sk(listener);
376 	vpending = vsock_sk(pending);
377 
378 	sock_hold(pending);
379 	sock_hold(listener);
380 	list_add_tail(&vpending->pending_links, &vlistener->pending_links);
381 }
382 EXPORT_SYMBOL_GPL(vsock_add_pending);
383 
vsock_remove_pending(struct sock * listener,struct sock * pending)384 void vsock_remove_pending(struct sock *listener, struct sock *pending)
385 {
386 	struct vsock_sock *vpending = vsock_sk(pending);
387 
388 	list_del_init(&vpending->pending_links);
389 	sock_put(listener);
390 	sock_put(pending);
391 }
392 EXPORT_SYMBOL_GPL(vsock_remove_pending);
393 
vsock_enqueue_accept(struct sock * listener,struct sock * connected)394 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
395 {
396 	struct vsock_sock *vlistener;
397 	struct vsock_sock *vconnected;
398 
399 	vlistener = vsock_sk(listener);
400 	vconnected = vsock_sk(connected);
401 
402 	sock_hold(connected);
403 	sock_hold(listener);
404 	list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
405 }
406 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
407 
vsock_use_local_transport(unsigned int remote_cid)408 static bool vsock_use_local_transport(unsigned int remote_cid)
409 {
410 	lockdep_assert_held(&vsock_register_mutex);
411 
412 	if (!transport_local)
413 		return false;
414 
415 	if (remote_cid == VMADDR_CID_LOCAL)
416 		return true;
417 
418 	if (transport_g2h) {
419 		return remote_cid == transport_g2h->get_local_cid();
420 	} else {
421 		return remote_cid == VMADDR_CID_HOST;
422 	}
423 }
424 
vsock_deassign_transport(struct vsock_sock * vsk)425 static void vsock_deassign_transport(struct vsock_sock *vsk)
426 {
427 	if (!vsk->transport)
428 		return;
429 
430 	vsk->transport->destruct(vsk);
431 	module_put(vsk->transport->module);
432 	vsk->transport = NULL;
433 }
434 
435 /* Assign a transport to a socket and call the .init transport callback.
436  *
437  * Note: for connection oriented socket this must be called when vsk->remote_addr
438  * is set (e.g. during the connect() or when a connection request on a listener
439  * socket is received).
440  * The vsk->remote_addr is used to decide which transport to use:
441  *  - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if
442  *    g2h is not loaded, will use local transport;
443  *  - remote CID <= VMADDR_CID_HOST or h2g is not loaded or remote flags field
444  *    includes VMADDR_FLAG_TO_HOST flag value, will use guest->host transport;
445  *  - remote CID > VMADDR_CID_HOST will use host->guest transport;
446  */
vsock_assign_transport(struct vsock_sock * vsk,struct vsock_sock * psk)447 int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk)
448 {
449 	const struct vsock_transport *new_transport;
450 	struct sock *sk = sk_vsock(vsk);
451 	unsigned int remote_cid = vsk->remote_addr.svm_cid;
452 	__u8 remote_flags;
453 	int ret;
454 
455 	/* If the packet is coming with the source and destination CIDs higher
456 	 * than VMADDR_CID_HOST, then a vsock channel where all the packets are
457 	 * forwarded to the host should be established. Then the host will
458 	 * need to forward the packets to the guest.
459 	 *
460 	 * The flag is set on the (listen) receive path (psk is not NULL). On
461 	 * the connect path the flag can be set by the user space application.
462 	 */
463 	if (psk && vsk->local_addr.svm_cid > VMADDR_CID_HOST &&
464 	    vsk->remote_addr.svm_cid > VMADDR_CID_HOST)
465 		vsk->remote_addr.svm_flags |= VMADDR_FLAG_TO_HOST;
466 
467 	remote_flags = vsk->remote_addr.svm_flags;
468 
469 	mutex_lock(&vsock_register_mutex);
470 
471 	switch (sk->sk_type) {
472 	case SOCK_DGRAM:
473 		new_transport = transport_dgram;
474 		break;
475 	case SOCK_STREAM:
476 	case SOCK_SEQPACKET:
477 		if (vsock_use_local_transport(remote_cid))
478 			new_transport = transport_local;
479 		else if (remote_cid <= VMADDR_CID_HOST || !transport_h2g ||
480 			 (remote_flags & VMADDR_FLAG_TO_HOST))
481 			new_transport = transport_g2h;
482 		else
483 			new_transport = transport_h2g;
484 		break;
485 	default:
486 		ret = -ESOCKTNOSUPPORT;
487 		goto err;
488 	}
489 
490 	if (vsk->transport) {
491 		if (vsk->transport == new_transport) {
492 			ret = 0;
493 			goto err;
494 		}
495 
496 		/* transport->release() must be called with sock lock acquired.
497 		 * This path can only be taken during vsock_connect(), where we
498 		 * have already held the sock lock. In the other cases, this
499 		 * function is called on a new socket which is not assigned to
500 		 * any transport.
501 		 */
502 		vsk->transport->release(vsk);
503 		vsock_deassign_transport(vsk);
504 
505 		/* transport's release() and destruct() can touch some socket
506 		 * state, since we are reassigning the socket to a new transport
507 		 * during vsock_connect(), let's reset these fields to have a
508 		 * clean state.
509 		 */
510 		sock_reset_flag(sk, SOCK_DONE);
511 		sk->sk_state = TCP_CLOSE;
512 		vsk->peer_shutdown = 0;
513 	}
514 
515 	/* We increase the module refcnt to prevent the transport unloading
516 	 * while there are open sockets assigned to it.
517 	 */
518 	if (!new_transport || !try_module_get(new_transport->module)) {
519 		ret = -ENODEV;
520 		goto err;
521 	}
522 
523 	/* It's safe to release the mutex after a successful try_module_get().
524 	 * Whichever transport `new_transport` points at, it won't go away until
525 	 * the last module_put() below or in vsock_deassign_transport().
526 	 */
527 	mutex_unlock(&vsock_register_mutex);
528 
529 	if (sk->sk_type == SOCK_SEQPACKET) {
530 		if (!new_transport->seqpacket_allow ||
531 		    !new_transport->seqpacket_allow(remote_cid)) {
532 			module_put(new_transport->module);
533 			return -ESOCKTNOSUPPORT;
534 		}
535 	}
536 
537 	ret = new_transport->init(vsk, psk);
538 	if (ret) {
539 		module_put(new_transport->module);
540 		return ret;
541 	}
542 
543 	vsk->transport = new_transport;
544 
545 	return 0;
546 err:
547 	mutex_unlock(&vsock_register_mutex);
548 	return ret;
549 }
550 EXPORT_SYMBOL_GPL(vsock_assign_transport);
551 
552 /*
553  * Provide safe access to static transport_{h2g,g2h,dgram,local} callbacks.
554  * Otherwise we may race with module removal. Do not use on `vsk->transport`.
555  */
vsock_registered_transport_cid(const struct vsock_transport ** transport)556 static u32 vsock_registered_transport_cid(const struct vsock_transport **transport)
557 {
558 	u32 cid = VMADDR_CID_ANY;
559 
560 	mutex_lock(&vsock_register_mutex);
561 	if (*transport)
562 		cid = (*transport)->get_local_cid();
563 	mutex_unlock(&vsock_register_mutex);
564 
565 	return cid;
566 }
567 
vsock_find_cid(unsigned int cid)568 bool vsock_find_cid(unsigned int cid)
569 {
570 	if (cid == vsock_registered_transport_cid(&transport_g2h))
571 		return true;
572 
573 	if (transport_h2g && cid == VMADDR_CID_HOST)
574 		return true;
575 
576 	if (transport_local && cid == VMADDR_CID_LOCAL)
577 		return true;
578 
579 	return false;
580 }
581 EXPORT_SYMBOL_GPL(vsock_find_cid);
582 
vsock_dequeue_accept(struct sock * listener)583 static struct sock *vsock_dequeue_accept(struct sock *listener)
584 {
585 	struct vsock_sock *vlistener;
586 	struct vsock_sock *vconnected;
587 
588 	vlistener = vsock_sk(listener);
589 
590 	if (list_empty(&vlistener->accept_queue))
591 		return NULL;
592 
593 	vconnected = list_entry(vlistener->accept_queue.next,
594 				struct vsock_sock, accept_queue);
595 
596 	list_del_init(&vconnected->accept_queue);
597 	sock_put(listener);
598 	/* The caller will need a reference on the connected socket so we let
599 	 * it call sock_put().
600 	 */
601 
602 	return sk_vsock(vconnected);
603 }
604 
vsock_is_accept_queue_empty(struct sock * sk)605 static bool vsock_is_accept_queue_empty(struct sock *sk)
606 {
607 	struct vsock_sock *vsk = vsock_sk(sk);
608 	return list_empty(&vsk->accept_queue);
609 }
610 
vsock_is_pending(struct sock * sk)611 static bool vsock_is_pending(struct sock *sk)
612 {
613 	struct vsock_sock *vsk = vsock_sk(sk);
614 	return !list_empty(&vsk->pending_links);
615 }
616 
vsock_send_shutdown(struct sock * sk,int mode)617 static int vsock_send_shutdown(struct sock *sk, int mode)
618 {
619 	struct vsock_sock *vsk = vsock_sk(sk);
620 
621 	if (!vsk->transport)
622 		return -ENODEV;
623 
624 	return vsk->transport->shutdown(vsk, mode);
625 }
626 
vsock_pending_work(struct work_struct * work)627 static void vsock_pending_work(struct work_struct *work)
628 {
629 	struct sock *sk;
630 	struct sock *listener;
631 	struct vsock_sock *vsk;
632 	bool cleanup;
633 
634 	vsk = container_of(work, struct vsock_sock, pending_work.work);
635 	sk = sk_vsock(vsk);
636 	listener = vsk->listener;
637 	cleanup = true;
638 
639 	lock_sock(listener);
640 	lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
641 
642 	if (vsock_is_pending(sk)) {
643 		vsock_remove_pending(listener, sk);
644 
645 		sk_acceptq_removed(listener);
646 	} else if (!vsk->rejected) {
647 		/* We are not on the pending list and accept() did not reject
648 		 * us, so we must have been accepted by our user process.  We
649 		 * just need to drop our references to the sockets and be on
650 		 * our way.
651 		 */
652 		cleanup = false;
653 		goto out;
654 	}
655 
656 	/* We need to remove ourself from the global connected sockets list so
657 	 * incoming packets can't find this socket, and to reduce the reference
658 	 * count.
659 	 */
660 	vsock_remove_connected(vsk);
661 
662 	sk->sk_state = TCP_CLOSE;
663 
664 out:
665 	release_sock(sk);
666 	release_sock(listener);
667 	if (cleanup)
668 		sock_put(sk);
669 
670 	sock_put(sk);
671 	sock_put(listener);
672 }
673 
674 /**** SOCKET OPERATIONS ****/
675 
__vsock_bind_connectible(struct vsock_sock * vsk,struct sockaddr_vm * addr)676 static int __vsock_bind_connectible(struct vsock_sock *vsk,
677 				    struct sockaddr_vm *addr)
678 {
679 	static u32 port;
680 	struct sockaddr_vm new_addr;
681 
682 	if (!port)
683 		port = get_random_u32_above(LAST_RESERVED_PORT);
684 
685 	vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
686 
687 	if (addr->svm_port == VMADDR_PORT_ANY) {
688 		bool found = false;
689 		unsigned int i;
690 
691 		for (i = 0; i < MAX_PORT_RETRIES; i++) {
692 			if (port == VMADDR_PORT_ANY ||
693 			    port <= LAST_RESERVED_PORT)
694 				port = LAST_RESERVED_PORT + 1;
695 
696 			new_addr.svm_port = port++;
697 
698 			if (!__vsock_find_bound_socket(&new_addr)) {
699 				found = true;
700 				break;
701 			}
702 		}
703 
704 		if (!found)
705 			return -EADDRNOTAVAIL;
706 	} else {
707 		/* If port is in reserved range, ensure caller
708 		 * has necessary privileges.
709 		 */
710 		if (addr->svm_port <= LAST_RESERVED_PORT &&
711 		    !capable(CAP_NET_BIND_SERVICE)) {
712 			return -EACCES;
713 		}
714 
715 		if (__vsock_find_bound_socket(&new_addr))
716 			return -EADDRINUSE;
717 	}
718 
719 	vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
720 
721 	/* Remove connection oriented sockets from the unbound list and add them
722 	 * to the hash table for easy lookup by its address.  The unbound list
723 	 * is simply an extra entry at the end of the hash table, a trick used
724 	 * by AF_UNIX.
725 	 */
726 	__vsock_remove_bound(vsk);
727 	__vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
728 
729 	return 0;
730 }
731 
__vsock_bind_dgram(struct vsock_sock * vsk,struct sockaddr_vm * addr)732 static int __vsock_bind_dgram(struct vsock_sock *vsk,
733 			      struct sockaddr_vm *addr)
734 {
735 	return vsk->transport->dgram_bind(vsk, addr);
736 }
737 
__vsock_bind(struct sock * sk,struct sockaddr_vm * addr)738 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
739 {
740 	struct vsock_sock *vsk = vsock_sk(sk);
741 	int retval;
742 
743 	/* First ensure this socket isn't already bound. */
744 	if (vsock_addr_bound(&vsk->local_addr))
745 		return -EINVAL;
746 
747 	/* Now bind to the provided address or select appropriate values if
748 	 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY).  Note that
749 	 * like AF_INET prevents binding to a non-local IP address (in most
750 	 * cases), we only allow binding to a local CID.
751 	 */
752 	if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid))
753 		return -EADDRNOTAVAIL;
754 
755 	switch (sk->sk_socket->type) {
756 	case SOCK_STREAM:
757 	case SOCK_SEQPACKET:
758 		spin_lock_bh(&vsock_table_lock);
759 		retval = __vsock_bind_connectible(vsk, addr);
760 		spin_unlock_bh(&vsock_table_lock);
761 		break;
762 
763 	case SOCK_DGRAM:
764 		retval = __vsock_bind_dgram(vsk, addr);
765 		break;
766 
767 	default:
768 		retval = -EINVAL;
769 		break;
770 	}
771 
772 	return retval;
773 }
774 
775 static void vsock_connect_timeout(struct work_struct *work);
776 
__vsock_create(struct net * net,struct socket * sock,struct sock * parent,gfp_t priority,unsigned short type,int kern)777 static struct sock *__vsock_create(struct net *net,
778 				   struct socket *sock,
779 				   struct sock *parent,
780 				   gfp_t priority,
781 				   unsigned short type,
782 				   int kern)
783 {
784 	struct sock *sk;
785 	struct vsock_sock *psk;
786 	struct vsock_sock *vsk;
787 
788 	sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
789 	if (!sk)
790 		return NULL;
791 
792 	sock_init_data(sock, sk);
793 
794 	/* sk->sk_type is normally set in sock_init_data, but only if sock is
795 	 * non-NULL. We make sure that our sockets always have a type by
796 	 * setting it here if needed.
797 	 */
798 	if (!sock)
799 		sk->sk_type = type;
800 
801 	vsk = vsock_sk(sk);
802 	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
803 	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
804 
805 	sk->sk_destruct = vsock_sk_destruct;
806 	sk->sk_backlog_rcv = vsock_queue_rcv_skb;
807 	sock_reset_flag(sk, SOCK_DONE);
808 
809 	INIT_LIST_HEAD(&vsk->bound_table);
810 	INIT_LIST_HEAD(&vsk->connected_table);
811 	vsk->listener = NULL;
812 	INIT_LIST_HEAD(&vsk->pending_links);
813 	INIT_LIST_HEAD(&vsk->accept_queue);
814 	vsk->rejected = false;
815 	vsk->sent_request = false;
816 	vsk->ignore_connecting_rst = false;
817 	vsk->peer_shutdown = 0;
818 	INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
819 	INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
820 
821 	psk = parent ? vsock_sk(parent) : NULL;
822 	if (parent) {
823 		vsk->trusted = psk->trusted;
824 		vsk->owner = get_cred(psk->owner);
825 		vsk->connect_timeout = psk->connect_timeout;
826 		vsk->buffer_size = psk->buffer_size;
827 		vsk->buffer_min_size = psk->buffer_min_size;
828 		vsk->buffer_max_size = psk->buffer_max_size;
829 		security_sk_clone(parent, sk);
830 	} else {
831 		vsk->trusted = ns_capable_noaudit(&init_user_ns, CAP_NET_ADMIN);
832 		vsk->owner = get_current_cred();
833 		vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
834 		vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE;
835 		vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE;
836 		vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE;
837 	}
838 
839 	return sk;
840 }
841 
sock_type_connectible(u16 type)842 static bool sock_type_connectible(u16 type)
843 {
844 	return (type == SOCK_STREAM) || (type == SOCK_SEQPACKET);
845 }
846 
__vsock_release(struct sock * sk,int level)847 static void __vsock_release(struct sock *sk, int level)
848 {
849 	struct vsock_sock *vsk;
850 	struct sock *pending;
851 
852 	vsk = vsock_sk(sk);
853 	pending = NULL;	/* Compiler warning. */
854 
855 	/* When "level" is SINGLE_DEPTH_NESTING, use the nested
856 	 * version to avoid the warning "possible recursive locking
857 	 * detected". When "level" is 0, lock_sock_nested(sk, level)
858 	 * is the same as lock_sock(sk).
859 	 */
860 	lock_sock_nested(sk, level);
861 
862 	/* Indicate to vsock_remove_sock() that the socket is being released and
863 	 * can be removed from the bound_table. Unlike transport reassignment
864 	 * case, where the socket must remain bound despite vsock_remove_sock()
865 	 * being called from the transport release() callback.
866 	 */
867 	sock_set_flag(sk, SOCK_DEAD);
868 
869 	if (vsk->transport)
870 		vsk->transport->release(vsk);
871 	else if (sock_type_connectible(sk->sk_type))
872 		vsock_remove_sock(vsk);
873 
874 	sock_orphan(sk);
875 	sk->sk_shutdown = SHUTDOWN_MASK;
876 
877 	skb_queue_purge(&sk->sk_receive_queue);
878 
879 	/* Clean up any sockets that never were accepted. */
880 	while ((pending = vsock_dequeue_accept(sk)) != NULL) {
881 		__vsock_release(pending, SINGLE_DEPTH_NESTING);
882 		sock_put(pending);
883 	}
884 
885 	release_sock(sk);
886 	sock_put(sk);
887 }
888 
vsock_sk_destruct(struct sock * sk)889 static void vsock_sk_destruct(struct sock *sk)
890 {
891 	struct vsock_sock *vsk = vsock_sk(sk);
892 
893 	/* Flush MSG_ZEROCOPY leftovers. */
894 	__skb_queue_purge(&sk->sk_error_queue);
895 
896 	vsock_deassign_transport(vsk);
897 
898 	/* When clearing these addresses, there's no need to set the family and
899 	 * possibly register the address family with the kernel.
900 	 */
901 	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
902 	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
903 
904 	put_cred(vsk->owner);
905 }
906 
vsock_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)907 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
908 {
909 	int err;
910 
911 	err = sock_queue_rcv_skb(sk, skb);
912 	if (err)
913 		kfree_skb(skb);
914 
915 	return err;
916 }
917 
vsock_create_connected(struct sock * parent)918 struct sock *vsock_create_connected(struct sock *parent)
919 {
920 	return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL,
921 			      parent->sk_type, 0);
922 }
923 EXPORT_SYMBOL_GPL(vsock_create_connected);
924 
vsock_stream_has_data(struct vsock_sock * vsk)925 s64 vsock_stream_has_data(struct vsock_sock *vsk)
926 {
927 	if (WARN_ON(!vsk->transport))
928 		return 0;
929 
930 	return vsk->transport->stream_has_data(vsk);
931 }
932 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
933 
vsock_connectible_has_data(struct vsock_sock * vsk)934 s64 vsock_connectible_has_data(struct vsock_sock *vsk)
935 {
936 	struct sock *sk = sk_vsock(vsk);
937 
938 	if (WARN_ON(!vsk->transport))
939 		return 0;
940 
941 	if (sk->sk_type == SOCK_SEQPACKET)
942 		return vsk->transport->seqpacket_has_data(vsk);
943 	else
944 		return vsock_stream_has_data(vsk);
945 }
946 EXPORT_SYMBOL_GPL(vsock_connectible_has_data);
947 
vsock_stream_has_space(struct vsock_sock * vsk)948 s64 vsock_stream_has_space(struct vsock_sock *vsk)
949 {
950 	if (WARN_ON(!vsk->transport))
951 		return 0;
952 
953 	return vsk->transport->stream_has_space(vsk);
954 }
955 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
956 
vsock_data_ready(struct sock * sk)957 void vsock_data_ready(struct sock *sk)
958 {
959 	struct vsock_sock *vsk = vsock_sk(sk);
960 
961 	if (vsock_stream_has_data(vsk) >= sk->sk_rcvlowat ||
962 	    sock_flag(sk, SOCK_DONE))
963 		sk->sk_data_ready(sk);
964 }
965 EXPORT_SYMBOL_GPL(vsock_data_ready);
966 
967 /* Dummy callback required by sockmap.
968  * See unconditional call of saved_close() in sock_map_close().
969  */
vsock_close(struct sock * sk,long timeout)970 static void vsock_close(struct sock *sk, long timeout)
971 {
972 }
973 
vsock_release(struct socket * sock)974 static int vsock_release(struct socket *sock)
975 {
976 	struct sock *sk = sock->sk;
977 
978 	if (!sk)
979 		return 0;
980 
981 	sk->sk_prot->close(sk, 0);
982 	__vsock_release(sk, 0);
983 	sock->sk = NULL;
984 	sock->state = SS_FREE;
985 
986 	return 0;
987 }
988 
989 static int
vsock_bind(struct socket * sock,struct sockaddr * addr,int addr_len)990 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
991 {
992 	int err;
993 	struct sock *sk;
994 	struct sockaddr_vm *vm_addr;
995 
996 	sk = sock->sk;
997 
998 	if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
999 		return -EINVAL;
1000 
1001 	lock_sock(sk);
1002 	err = __vsock_bind(sk, vm_addr);
1003 	release_sock(sk);
1004 
1005 	return err;
1006 }
1007 
vsock_getname(struct socket * sock,struct sockaddr * addr,int peer)1008 static int vsock_getname(struct socket *sock,
1009 			 struct sockaddr *addr, int peer)
1010 {
1011 	int err;
1012 	struct sock *sk;
1013 	struct vsock_sock *vsk;
1014 	struct sockaddr_vm *vm_addr;
1015 
1016 	sk = sock->sk;
1017 	vsk = vsock_sk(sk);
1018 	err = 0;
1019 
1020 	lock_sock(sk);
1021 
1022 	if (peer) {
1023 		if (sock->state != SS_CONNECTED) {
1024 			err = -ENOTCONN;
1025 			goto out;
1026 		}
1027 		vm_addr = &vsk->remote_addr;
1028 	} else {
1029 		vm_addr = &vsk->local_addr;
1030 	}
1031 
1032 	/* sys_getsockname() and sys_getpeername() pass us a
1033 	 * MAX_SOCK_ADDR-sized buffer and don't set addr_len.  Unfortunately
1034 	 * that macro is defined in socket.c instead of .h, so we hardcode its
1035 	 * value here.
1036 	 */
1037 	BUILD_BUG_ON(sizeof(*vm_addr) > 128);
1038 	memcpy(addr, vm_addr, sizeof(*vm_addr));
1039 	err = sizeof(*vm_addr);
1040 
1041 out:
1042 	release_sock(sk);
1043 	return err;
1044 }
1045 
vsock_linger(struct sock * sk)1046 void vsock_linger(struct sock *sk)
1047 {
1048 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1049 	ssize_t (*unsent)(struct vsock_sock *vsk);
1050 	struct vsock_sock *vsk = vsock_sk(sk);
1051 	long timeout;
1052 
1053 	if (!sock_flag(sk, SOCK_LINGER))
1054 		return;
1055 
1056 	timeout = sk->sk_lingertime;
1057 	if (!timeout)
1058 		return;
1059 
1060 	/* Transports must implement `unsent_bytes` if they want to support
1061 	 * SOCK_LINGER through `vsock_linger()` since we use it to check when
1062 	 * the socket can be closed.
1063 	 */
1064 	unsent = vsk->transport->unsent_bytes;
1065 	if (!unsent)
1066 		return;
1067 
1068 	add_wait_queue(sk_sleep(sk), &wait);
1069 
1070 	do {
1071 		if (sk_wait_event(sk, &timeout, unsent(vsk) == 0, &wait))
1072 			break;
1073 	} while (!signal_pending(current) && timeout);
1074 
1075 	remove_wait_queue(sk_sleep(sk), &wait);
1076 }
1077 EXPORT_SYMBOL_GPL(vsock_linger);
1078 
vsock_shutdown(struct socket * sock,int mode)1079 static int vsock_shutdown(struct socket *sock, int mode)
1080 {
1081 	int err;
1082 	struct sock *sk;
1083 
1084 	/* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
1085 	 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
1086 	 * here like the other address families do.  Note also that the
1087 	 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
1088 	 * which is what we want.
1089 	 */
1090 	mode++;
1091 
1092 	if ((mode & ~SHUTDOWN_MASK) || !mode)
1093 		return -EINVAL;
1094 
1095 	/* If this is a connection oriented socket and it is not connected then
1096 	 * bail out immediately.  If it is a DGRAM socket then we must first
1097 	 * kick the socket so that it wakes up from any sleeping calls, for
1098 	 * example recv(), and then afterwards return the error.
1099 	 */
1100 
1101 	sk = sock->sk;
1102 
1103 	lock_sock(sk);
1104 	if (sock->state == SS_UNCONNECTED) {
1105 		err = -ENOTCONN;
1106 		if (sock_type_connectible(sk->sk_type))
1107 			goto out;
1108 	} else {
1109 		sock->state = SS_DISCONNECTING;
1110 		err = 0;
1111 	}
1112 
1113 	/* Receive and send shutdowns are treated alike. */
1114 	mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
1115 	if (mode) {
1116 		sk->sk_shutdown |= mode;
1117 		sk->sk_state_change(sk);
1118 
1119 		if (sock_type_connectible(sk->sk_type)) {
1120 			sock_reset_flag(sk, SOCK_DONE);
1121 			vsock_send_shutdown(sk, mode);
1122 		}
1123 	}
1124 
1125 out:
1126 	release_sock(sk);
1127 	return err;
1128 }
1129 
vsock_poll(struct file * file,struct socket * sock,poll_table * wait)1130 static __poll_t vsock_poll(struct file *file, struct socket *sock,
1131 			       poll_table *wait)
1132 {
1133 	struct sock *sk;
1134 	__poll_t mask;
1135 	struct vsock_sock *vsk;
1136 
1137 	sk = sock->sk;
1138 	vsk = vsock_sk(sk);
1139 
1140 	poll_wait(file, sk_sleep(sk), wait);
1141 	mask = 0;
1142 
1143 	if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
1144 		/* Signify that there has been an error on this socket. */
1145 		mask |= EPOLLERR;
1146 
1147 	/* INET sockets treat local write shutdown and peer write shutdown as a
1148 	 * case of EPOLLHUP set.
1149 	 */
1150 	if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
1151 	    ((sk->sk_shutdown & SEND_SHUTDOWN) &&
1152 	     (vsk->peer_shutdown & SEND_SHUTDOWN))) {
1153 		mask |= EPOLLHUP;
1154 	}
1155 
1156 	if (sk->sk_shutdown & RCV_SHUTDOWN ||
1157 	    vsk->peer_shutdown & SEND_SHUTDOWN) {
1158 		mask |= EPOLLRDHUP;
1159 	}
1160 
1161 	if (sk_is_readable(sk))
1162 		mask |= EPOLLIN | EPOLLRDNORM;
1163 
1164 	if (sock->type == SOCK_DGRAM) {
1165 		/* For datagram sockets we can read if there is something in
1166 		 * the queue and write as long as the socket isn't shutdown for
1167 		 * sending.
1168 		 */
1169 		if (!skb_queue_empty_lockless(&sk->sk_receive_queue) ||
1170 		    (sk->sk_shutdown & RCV_SHUTDOWN)) {
1171 			mask |= EPOLLIN | EPOLLRDNORM;
1172 		}
1173 
1174 		if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1175 			mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
1176 
1177 	} else if (sock_type_connectible(sk->sk_type)) {
1178 		const struct vsock_transport *transport;
1179 
1180 		lock_sock(sk);
1181 
1182 		transport = vsk->transport;
1183 
1184 		/* Listening sockets that have connections in their accept
1185 		 * queue can be read.
1186 		 */
1187 		if (sk->sk_state == TCP_LISTEN
1188 		    && !vsock_is_accept_queue_empty(sk))
1189 			mask |= EPOLLIN | EPOLLRDNORM;
1190 
1191 		/* If there is something in the queue then we can read. */
1192 		if (transport && transport->stream_is_active(vsk) &&
1193 		    !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1194 			bool data_ready_now = false;
1195 			int target = sock_rcvlowat(sk, 0, INT_MAX);
1196 			int ret = transport->notify_poll_in(
1197 					vsk, target, &data_ready_now);
1198 			if (ret < 0) {
1199 				mask |= EPOLLERR;
1200 			} else {
1201 				if (data_ready_now)
1202 					mask |= EPOLLIN | EPOLLRDNORM;
1203 
1204 			}
1205 		}
1206 
1207 		/* Sockets whose connections have been closed, reset, or
1208 		 * terminated should also be considered read, and we check the
1209 		 * shutdown flag for that.
1210 		 */
1211 		if (sk->sk_shutdown & RCV_SHUTDOWN ||
1212 		    vsk->peer_shutdown & SEND_SHUTDOWN) {
1213 			mask |= EPOLLIN | EPOLLRDNORM;
1214 		}
1215 
1216 		/* Connected sockets that can produce data can be written. */
1217 		if (transport && sk->sk_state == TCP_ESTABLISHED) {
1218 			if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1219 				bool space_avail_now = false;
1220 				int ret = transport->notify_poll_out(
1221 						vsk, 1, &space_avail_now);
1222 				if (ret < 0) {
1223 					mask |= EPOLLERR;
1224 				} else {
1225 					if (space_avail_now)
1226 						/* Remove EPOLLWRBAND since INET
1227 						 * sockets are not setting it.
1228 						 */
1229 						mask |= EPOLLOUT | EPOLLWRNORM;
1230 
1231 				}
1232 			}
1233 		}
1234 
1235 		/* Simulate INET socket poll behaviors, which sets
1236 		 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
1237 		 * but local send is not shutdown.
1238 		 */
1239 		if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
1240 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1241 				mask |= EPOLLOUT | EPOLLWRNORM;
1242 
1243 		}
1244 
1245 		release_sock(sk);
1246 	}
1247 
1248 	return mask;
1249 }
1250 
vsock_read_skb(struct sock * sk,skb_read_actor_t read_actor)1251 static int vsock_read_skb(struct sock *sk, skb_read_actor_t read_actor)
1252 {
1253 	struct vsock_sock *vsk = vsock_sk(sk);
1254 
1255 	if (WARN_ON_ONCE(!vsk->transport))
1256 		return -ENODEV;
1257 
1258 	return vsk->transport->read_skb(vsk, read_actor);
1259 }
1260 
vsock_dgram_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)1261 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
1262 			       size_t len)
1263 {
1264 	int err;
1265 	struct sock *sk;
1266 	struct vsock_sock *vsk;
1267 	struct sockaddr_vm *remote_addr;
1268 	const struct vsock_transport *transport;
1269 
1270 	if (msg->msg_flags & MSG_OOB)
1271 		return -EOPNOTSUPP;
1272 
1273 	/* For now, MSG_DONTWAIT is always assumed... */
1274 	err = 0;
1275 	sk = sock->sk;
1276 	vsk = vsock_sk(sk);
1277 
1278 	lock_sock(sk);
1279 
1280 	transport = vsk->transport;
1281 
1282 	err = vsock_auto_bind(vsk);
1283 	if (err)
1284 		goto out;
1285 
1286 
1287 	/* If the provided message contains an address, use that.  Otherwise
1288 	 * fall back on the socket's remote handle (if it has been connected).
1289 	 */
1290 	if (msg->msg_name &&
1291 	    vsock_addr_cast(msg->msg_name, msg->msg_namelen,
1292 			    &remote_addr) == 0) {
1293 		/* Ensure this address is of the right type and is a valid
1294 		 * destination.
1295 		 */
1296 
1297 		if (remote_addr->svm_cid == VMADDR_CID_ANY)
1298 			remote_addr->svm_cid = transport->get_local_cid();
1299 
1300 		if (!vsock_addr_bound(remote_addr)) {
1301 			err = -EINVAL;
1302 			goto out;
1303 		}
1304 	} else if (sock->state == SS_CONNECTED) {
1305 		remote_addr = &vsk->remote_addr;
1306 
1307 		if (remote_addr->svm_cid == VMADDR_CID_ANY)
1308 			remote_addr->svm_cid = transport->get_local_cid();
1309 
1310 		/* XXX Should connect() or this function ensure remote_addr is
1311 		 * bound?
1312 		 */
1313 		if (!vsock_addr_bound(&vsk->remote_addr)) {
1314 			err = -EINVAL;
1315 			goto out;
1316 		}
1317 	} else {
1318 		err = -EINVAL;
1319 		goto out;
1320 	}
1321 
1322 	if (!transport->dgram_allow(remote_addr->svm_cid,
1323 				    remote_addr->svm_port)) {
1324 		err = -EINVAL;
1325 		goto out;
1326 	}
1327 
1328 	err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1329 
1330 out:
1331 	release_sock(sk);
1332 	return err;
1333 }
1334 
vsock_dgram_connect(struct socket * sock,struct sockaddr * addr,int addr_len,int flags)1335 static int vsock_dgram_connect(struct socket *sock,
1336 			       struct sockaddr *addr, int addr_len, int flags)
1337 {
1338 	int err;
1339 	struct sock *sk;
1340 	struct vsock_sock *vsk;
1341 	struct sockaddr_vm *remote_addr;
1342 
1343 	sk = sock->sk;
1344 	vsk = vsock_sk(sk);
1345 
1346 	err = vsock_addr_cast(addr, addr_len, &remote_addr);
1347 	if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1348 		lock_sock(sk);
1349 		vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1350 				VMADDR_PORT_ANY);
1351 		sock->state = SS_UNCONNECTED;
1352 		release_sock(sk);
1353 		return 0;
1354 	} else if (err != 0)
1355 		return -EINVAL;
1356 
1357 	lock_sock(sk);
1358 
1359 	err = vsock_auto_bind(vsk);
1360 	if (err)
1361 		goto out;
1362 
1363 	if (!vsk->transport->dgram_allow(remote_addr->svm_cid,
1364 					 remote_addr->svm_port)) {
1365 		err = -EINVAL;
1366 		goto out;
1367 	}
1368 
1369 	memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1370 	sock->state = SS_CONNECTED;
1371 
1372 	/* sock map disallows redirection of non-TCP sockets with sk_state !=
1373 	 * TCP_ESTABLISHED (see sock_map_redirect_allowed()), so we set
1374 	 * TCP_ESTABLISHED here to allow redirection of connected vsock dgrams.
1375 	 *
1376 	 * This doesn't seem to be abnormal state for datagram sockets, as the
1377 	 * same approach can be see in other datagram socket types as well
1378 	 * (such as unix sockets).
1379 	 */
1380 	sk->sk_state = TCP_ESTABLISHED;
1381 
1382 out:
1383 	release_sock(sk);
1384 	return err;
1385 }
1386 
__vsock_dgram_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)1387 int __vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1388 			  size_t len, int flags)
1389 {
1390 	struct sock *sk = sock->sk;
1391 	struct vsock_sock *vsk = vsock_sk(sk);
1392 
1393 	return vsk->transport->dgram_dequeue(vsk, msg, len, flags);
1394 }
1395 
vsock_dgram_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)1396 int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1397 			size_t len, int flags)
1398 {
1399 #ifdef CONFIG_BPF_SYSCALL
1400 	struct sock *sk = sock->sk;
1401 	const struct proto *prot;
1402 
1403 	prot = READ_ONCE(sk->sk_prot);
1404 	if (prot != &vsock_proto)
1405 		return prot->recvmsg(sk, msg, len, flags, NULL);
1406 #endif
1407 
1408 	return __vsock_dgram_recvmsg(sock, msg, len, flags);
1409 }
1410 EXPORT_SYMBOL_GPL(vsock_dgram_recvmsg);
1411 
vsock_do_ioctl(struct socket * sock,unsigned int cmd,int __user * arg)1412 static int vsock_do_ioctl(struct socket *sock, unsigned int cmd,
1413 			  int __user *arg)
1414 {
1415 	struct sock *sk = sock->sk;
1416 	struct vsock_sock *vsk;
1417 	int ret;
1418 
1419 	vsk = vsock_sk(sk);
1420 
1421 	switch (cmd) {
1422 	case SIOCINQ: {
1423 		ssize_t n_bytes;
1424 
1425 		if (!vsk->transport) {
1426 			ret = -EOPNOTSUPP;
1427 			break;
1428 		}
1429 
1430 		if (sock_type_connectible(sk->sk_type) &&
1431 		    sk->sk_state == TCP_LISTEN) {
1432 			ret = -EINVAL;
1433 			break;
1434 		}
1435 
1436 		n_bytes = vsock_stream_has_data(vsk);
1437 		if (n_bytes < 0) {
1438 			ret = n_bytes;
1439 			break;
1440 		}
1441 		ret = put_user(n_bytes, arg);
1442 		break;
1443 	}
1444 	case SIOCOUTQ: {
1445 		ssize_t n_bytes;
1446 
1447 		if (!vsk->transport || !vsk->transport->unsent_bytes) {
1448 			ret = -EOPNOTSUPP;
1449 			break;
1450 		}
1451 
1452 		if (sock_type_connectible(sk->sk_type) && sk->sk_state == TCP_LISTEN) {
1453 			ret = -EINVAL;
1454 			break;
1455 		}
1456 
1457 		n_bytes = vsk->transport->unsent_bytes(vsk);
1458 		if (n_bytes < 0) {
1459 			ret = n_bytes;
1460 			break;
1461 		}
1462 
1463 		ret = put_user(n_bytes, arg);
1464 		break;
1465 	}
1466 	default:
1467 		ret = -ENOIOCTLCMD;
1468 	}
1469 
1470 	return ret;
1471 }
1472 
vsock_ioctl(struct socket * sock,unsigned int cmd,unsigned long arg)1473 static int vsock_ioctl(struct socket *sock, unsigned int cmd,
1474 		       unsigned long arg)
1475 {
1476 	int ret;
1477 
1478 	lock_sock(sock->sk);
1479 	ret = vsock_do_ioctl(sock, cmd, (int __user *)arg);
1480 	release_sock(sock->sk);
1481 
1482 	return ret;
1483 }
1484 
1485 static const struct proto_ops vsock_dgram_ops = {
1486 	.family = PF_VSOCK,
1487 	.owner = THIS_MODULE,
1488 	.release = vsock_release,
1489 	.bind = vsock_bind,
1490 	.connect = vsock_dgram_connect,
1491 	.socketpair = sock_no_socketpair,
1492 	.accept = sock_no_accept,
1493 	.getname = vsock_getname,
1494 	.poll = vsock_poll,
1495 	.ioctl = vsock_ioctl,
1496 	.listen = sock_no_listen,
1497 	.shutdown = vsock_shutdown,
1498 	.sendmsg = vsock_dgram_sendmsg,
1499 	.recvmsg = vsock_dgram_recvmsg,
1500 	.mmap = sock_no_mmap,
1501 	.read_skb = vsock_read_skb,
1502 };
1503 
vsock_transport_cancel_pkt(struct vsock_sock * vsk)1504 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1505 {
1506 	const struct vsock_transport *transport = vsk->transport;
1507 
1508 	if (!transport || !transport->cancel_pkt)
1509 		return -EOPNOTSUPP;
1510 
1511 	return transport->cancel_pkt(vsk);
1512 }
1513 
vsock_connect_timeout(struct work_struct * work)1514 static void vsock_connect_timeout(struct work_struct *work)
1515 {
1516 	struct sock *sk;
1517 	struct vsock_sock *vsk;
1518 
1519 	vsk = container_of(work, struct vsock_sock, connect_work.work);
1520 	sk = sk_vsock(vsk);
1521 
1522 	lock_sock(sk);
1523 	if (sk->sk_state == TCP_SYN_SENT &&
1524 	    (sk->sk_shutdown != SHUTDOWN_MASK)) {
1525 		sk->sk_state = TCP_CLOSE;
1526 		sk->sk_socket->state = SS_UNCONNECTED;
1527 		sk->sk_err = ETIMEDOUT;
1528 		sk_error_report(sk);
1529 		vsock_transport_cancel_pkt(vsk);
1530 	}
1531 	release_sock(sk);
1532 
1533 	sock_put(sk);
1534 }
1535 
vsock_connect(struct socket * sock,struct sockaddr * addr,int addr_len,int flags)1536 static int vsock_connect(struct socket *sock, struct sockaddr *addr,
1537 			 int addr_len, int flags)
1538 {
1539 	int err;
1540 	struct sock *sk;
1541 	struct vsock_sock *vsk;
1542 	const struct vsock_transport *transport;
1543 	struct sockaddr_vm *remote_addr;
1544 	long timeout;
1545 	DEFINE_WAIT(wait);
1546 
1547 	err = 0;
1548 	sk = sock->sk;
1549 	vsk = vsock_sk(sk);
1550 
1551 	lock_sock(sk);
1552 
1553 	/* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1554 	switch (sock->state) {
1555 	case SS_CONNECTED:
1556 		err = -EISCONN;
1557 		goto out;
1558 	case SS_DISCONNECTING:
1559 		err = -EINVAL;
1560 		goto out;
1561 	case SS_CONNECTING:
1562 		/* This continues on so we can move sock into the SS_CONNECTED
1563 		 * state once the connection has completed (at which point err
1564 		 * will be set to zero also).  Otherwise, we will either wait
1565 		 * for the connection or return -EALREADY should this be a
1566 		 * non-blocking call.
1567 		 */
1568 		err = -EALREADY;
1569 		if (flags & O_NONBLOCK)
1570 			goto out;
1571 		break;
1572 	default:
1573 		if ((sk->sk_state == TCP_LISTEN) ||
1574 		    vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1575 			err = -EINVAL;
1576 			goto out;
1577 		}
1578 
1579 		/* Set the remote address that we are connecting to. */
1580 		memcpy(&vsk->remote_addr, remote_addr,
1581 		       sizeof(vsk->remote_addr));
1582 
1583 		err = vsock_assign_transport(vsk, NULL);
1584 		if (err)
1585 			goto out;
1586 
1587 		transport = vsk->transport;
1588 
1589 		/* The hypervisor and well-known contexts do not have socket
1590 		 * endpoints.
1591 		 */
1592 		if (!transport ||
1593 		    !transport->stream_allow(remote_addr->svm_cid,
1594 					     remote_addr->svm_port)) {
1595 			err = -ENETUNREACH;
1596 			goto out;
1597 		}
1598 
1599 		if (vsock_msgzerocopy_allow(transport)) {
1600 			set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1601 		} else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1602 			/* If this option was set before 'connect()',
1603 			 * when transport was unknown, check that this
1604 			 * feature is supported here.
1605 			 */
1606 			err = -EOPNOTSUPP;
1607 			goto out;
1608 		}
1609 
1610 		err = vsock_auto_bind(vsk);
1611 		if (err)
1612 			goto out;
1613 
1614 		sk->sk_state = TCP_SYN_SENT;
1615 
1616 		err = transport->connect(vsk);
1617 		if (err < 0)
1618 			goto out;
1619 
1620 		/* sk_err might have been set as a result of an earlier
1621 		 * (failed) connect attempt.
1622 		 */
1623 		sk->sk_err = 0;
1624 
1625 		/* Mark sock as connecting and set the error code to in
1626 		 * progress in case this is a non-blocking connect.
1627 		 */
1628 		sock->state = SS_CONNECTING;
1629 		err = -EINPROGRESS;
1630 	}
1631 
1632 	/* The receive path will handle all communication until we are able to
1633 	 * enter the connected state.  Here we wait for the connection to be
1634 	 * completed or a notification of an error.
1635 	 */
1636 	timeout = vsk->connect_timeout;
1637 	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1638 
1639 	/* If the socket is already closing or it is in an error state, there
1640 	 * is no point in waiting.
1641 	 */
1642 	while (sk->sk_state != TCP_ESTABLISHED &&
1643 	       sk->sk_state != TCP_CLOSING && sk->sk_err == 0) {
1644 		if (flags & O_NONBLOCK) {
1645 			/* If we're not going to block, we schedule a timeout
1646 			 * function to generate a timeout on the connection
1647 			 * attempt, in case the peer doesn't respond in a
1648 			 * timely manner. We hold on to the socket until the
1649 			 * timeout fires.
1650 			 */
1651 			sock_hold(sk);
1652 
1653 			/* If the timeout function is already scheduled,
1654 			 * reschedule it, then ungrab the socket refcount to
1655 			 * keep it balanced.
1656 			 */
1657 			if (mod_delayed_work(system_wq, &vsk->connect_work,
1658 					     timeout))
1659 				sock_put(sk);
1660 
1661 			/* Skip ahead to preserve error code set above. */
1662 			goto out_wait;
1663 		}
1664 
1665 		release_sock(sk);
1666 		timeout = schedule_timeout(timeout);
1667 		lock_sock(sk);
1668 
1669 		if (signal_pending(current)) {
1670 			err = sock_intr_errno(timeout);
1671 			sk->sk_state = sk->sk_state == TCP_ESTABLISHED ? TCP_CLOSING : TCP_CLOSE;
1672 			sock->state = SS_UNCONNECTED;
1673 			vsock_transport_cancel_pkt(vsk);
1674 			vsock_remove_connected(vsk);
1675 			goto out_wait;
1676 		} else if ((sk->sk_state != TCP_ESTABLISHED) && (timeout == 0)) {
1677 			err = -ETIMEDOUT;
1678 			sk->sk_state = TCP_CLOSE;
1679 			sock->state = SS_UNCONNECTED;
1680 			vsock_transport_cancel_pkt(vsk);
1681 			goto out_wait;
1682 		}
1683 
1684 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1685 	}
1686 
1687 	if (sk->sk_err) {
1688 		err = -sk->sk_err;
1689 		sk->sk_state = TCP_CLOSE;
1690 		sock->state = SS_UNCONNECTED;
1691 	} else {
1692 		err = 0;
1693 	}
1694 
1695 out_wait:
1696 	finish_wait(sk_sleep(sk), &wait);
1697 out:
1698 	release_sock(sk);
1699 	return err;
1700 }
1701 
vsock_accept(struct socket * sock,struct socket * newsock,struct proto_accept_arg * arg)1702 static int vsock_accept(struct socket *sock, struct socket *newsock,
1703 			struct proto_accept_arg *arg)
1704 {
1705 	struct sock *listener;
1706 	int err;
1707 	struct sock *connected;
1708 	struct vsock_sock *vconnected;
1709 	long timeout;
1710 	DEFINE_WAIT(wait);
1711 
1712 	err = 0;
1713 	listener = sock->sk;
1714 
1715 	lock_sock(listener);
1716 
1717 	if (!sock_type_connectible(sock->type)) {
1718 		err = -EOPNOTSUPP;
1719 		goto out;
1720 	}
1721 
1722 	if (listener->sk_state != TCP_LISTEN) {
1723 		err = -EINVAL;
1724 		goto out;
1725 	}
1726 
1727 	/* Wait for children sockets to appear; these are the new sockets
1728 	 * created upon connection establishment.
1729 	 */
1730 	timeout = sock_rcvtimeo(listener, arg->flags & O_NONBLOCK);
1731 	prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1732 
1733 	while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1734 	       listener->sk_err == 0) {
1735 		release_sock(listener);
1736 		timeout = schedule_timeout(timeout);
1737 		finish_wait(sk_sleep(listener), &wait);
1738 		lock_sock(listener);
1739 
1740 		if (signal_pending(current)) {
1741 			err = sock_intr_errno(timeout);
1742 			goto out;
1743 		} else if (timeout == 0) {
1744 			err = -EAGAIN;
1745 			goto out;
1746 		}
1747 
1748 		prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1749 	}
1750 	finish_wait(sk_sleep(listener), &wait);
1751 
1752 	if (listener->sk_err)
1753 		err = -listener->sk_err;
1754 
1755 	if (connected) {
1756 		sk_acceptq_removed(listener);
1757 
1758 		lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1759 		vconnected = vsock_sk(connected);
1760 
1761 		/* If the listener socket has received an error, then we should
1762 		 * reject this socket and return.  Note that we simply mark the
1763 		 * socket rejected, drop our reference, and let the cleanup
1764 		 * function handle the cleanup; the fact that we found it in
1765 		 * the listener's accept queue guarantees that the cleanup
1766 		 * function hasn't run yet.
1767 		 */
1768 		if (err) {
1769 			vconnected->rejected = true;
1770 		} else {
1771 			newsock->state = SS_CONNECTED;
1772 			sock_graft(connected, newsock);
1773 			if (vsock_msgzerocopy_allow(vconnected->transport))
1774 				set_bit(SOCK_SUPPORT_ZC,
1775 					&connected->sk_socket->flags);
1776 		}
1777 
1778 		release_sock(connected);
1779 		sock_put(connected);
1780 	}
1781 
1782 out:
1783 	release_sock(listener);
1784 	return err;
1785 }
1786 
vsock_listen(struct socket * sock,int backlog)1787 static int vsock_listen(struct socket *sock, int backlog)
1788 {
1789 	int err;
1790 	struct sock *sk;
1791 	struct vsock_sock *vsk;
1792 
1793 	sk = sock->sk;
1794 
1795 	lock_sock(sk);
1796 
1797 	if (!sock_type_connectible(sk->sk_type)) {
1798 		err = -EOPNOTSUPP;
1799 		goto out;
1800 	}
1801 
1802 	if (sock->state != SS_UNCONNECTED) {
1803 		err = -EINVAL;
1804 		goto out;
1805 	}
1806 
1807 	vsk = vsock_sk(sk);
1808 
1809 	if (!vsock_addr_bound(&vsk->local_addr)) {
1810 		err = -EINVAL;
1811 		goto out;
1812 	}
1813 
1814 	sk->sk_max_ack_backlog = backlog;
1815 	sk->sk_state = TCP_LISTEN;
1816 
1817 	err = 0;
1818 
1819 out:
1820 	release_sock(sk);
1821 	return err;
1822 }
1823 
vsock_update_buffer_size(struct vsock_sock * vsk,const struct vsock_transport * transport,u64 val)1824 static void vsock_update_buffer_size(struct vsock_sock *vsk,
1825 				     const struct vsock_transport *transport,
1826 				     u64 val)
1827 {
1828 	if (val > vsk->buffer_max_size)
1829 		val = vsk->buffer_max_size;
1830 
1831 	if (val < vsk->buffer_min_size)
1832 		val = vsk->buffer_min_size;
1833 
1834 	if (val != vsk->buffer_size &&
1835 	    transport && transport->notify_buffer_size)
1836 		transport->notify_buffer_size(vsk, &val);
1837 
1838 	vsk->buffer_size = val;
1839 }
1840 
vsock_connectible_setsockopt(struct socket * sock,int level,int optname,sockptr_t optval,unsigned int optlen)1841 static int vsock_connectible_setsockopt(struct socket *sock,
1842 					int level,
1843 					int optname,
1844 					sockptr_t optval,
1845 					unsigned int optlen)
1846 {
1847 	int err;
1848 	struct sock *sk;
1849 	struct vsock_sock *vsk;
1850 	const struct vsock_transport *transport;
1851 	u64 val;
1852 
1853 	if (level != AF_VSOCK && level != SOL_SOCKET)
1854 		return -ENOPROTOOPT;
1855 
1856 #define COPY_IN(_v)                                       \
1857 	do {						  \
1858 		if (optlen < sizeof(_v)) {		  \
1859 			err = -EINVAL;			  \
1860 			goto exit;			  \
1861 		}					  \
1862 		if (copy_from_sockptr(&_v, optval, sizeof(_v)) != 0) {	\
1863 			err = -EFAULT;					\
1864 			goto exit;					\
1865 		}							\
1866 	} while (0)
1867 
1868 	err = 0;
1869 	sk = sock->sk;
1870 	vsk = vsock_sk(sk);
1871 
1872 	lock_sock(sk);
1873 
1874 	transport = vsk->transport;
1875 
1876 	if (level == SOL_SOCKET) {
1877 		int zerocopy;
1878 
1879 		if (optname != SO_ZEROCOPY) {
1880 			release_sock(sk);
1881 			return sock_setsockopt(sock, level, optname, optval, optlen);
1882 		}
1883 
1884 		/* Use 'int' type here, because variable to
1885 		 * set this option usually has this type.
1886 		 */
1887 		COPY_IN(zerocopy);
1888 
1889 		if (zerocopy < 0 || zerocopy > 1) {
1890 			err = -EINVAL;
1891 			goto exit;
1892 		}
1893 
1894 		if (transport && !vsock_msgzerocopy_allow(transport)) {
1895 			err = -EOPNOTSUPP;
1896 			goto exit;
1897 		}
1898 
1899 		sock_valbool_flag(sk, SOCK_ZEROCOPY, zerocopy);
1900 		goto exit;
1901 	}
1902 
1903 	switch (optname) {
1904 	case SO_VM_SOCKETS_BUFFER_SIZE:
1905 		COPY_IN(val);
1906 		vsock_update_buffer_size(vsk, transport, val);
1907 		break;
1908 
1909 	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1910 		COPY_IN(val);
1911 		vsk->buffer_max_size = val;
1912 		vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1913 		break;
1914 
1915 	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1916 		COPY_IN(val);
1917 		vsk->buffer_min_size = val;
1918 		vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1919 		break;
1920 
1921 	case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
1922 	case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD: {
1923 		struct __kernel_sock_timeval tv;
1924 
1925 		err = sock_copy_user_timeval(&tv, optval, optlen,
1926 					     optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
1927 		if (err)
1928 			break;
1929 		if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1930 		    tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1931 			vsk->connect_timeout = tv.tv_sec * HZ +
1932 				DIV_ROUND_UP((unsigned long)tv.tv_usec, (USEC_PER_SEC / HZ));
1933 			if (vsk->connect_timeout == 0)
1934 				vsk->connect_timeout =
1935 				    VSOCK_DEFAULT_CONNECT_TIMEOUT;
1936 
1937 		} else {
1938 			err = -ERANGE;
1939 		}
1940 		break;
1941 	}
1942 
1943 	default:
1944 		err = -ENOPROTOOPT;
1945 		break;
1946 	}
1947 
1948 #undef COPY_IN
1949 
1950 exit:
1951 	release_sock(sk);
1952 	return err;
1953 }
1954 
vsock_connectible_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)1955 static int vsock_connectible_getsockopt(struct socket *sock,
1956 					int level, int optname,
1957 					char __user *optval,
1958 					int __user *optlen)
1959 {
1960 	struct sock *sk = sock->sk;
1961 	struct vsock_sock *vsk = vsock_sk(sk);
1962 
1963 	union {
1964 		u64 val64;
1965 		struct old_timeval32 tm32;
1966 		struct __kernel_old_timeval tm;
1967 		struct  __kernel_sock_timeval stm;
1968 	} v;
1969 
1970 	int lv = sizeof(v.val64);
1971 	int len;
1972 
1973 	if (level != AF_VSOCK)
1974 		return -ENOPROTOOPT;
1975 
1976 	if (get_user(len, optlen))
1977 		return -EFAULT;
1978 
1979 	memset(&v, 0, sizeof(v));
1980 
1981 	switch (optname) {
1982 	case SO_VM_SOCKETS_BUFFER_SIZE:
1983 		v.val64 = vsk->buffer_size;
1984 		break;
1985 
1986 	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1987 		v.val64 = vsk->buffer_max_size;
1988 		break;
1989 
1990 	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1991 		v.val64 = vsk->buffer_min_size;
1992 		break;
1993 
1994 	case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
1995 	case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD:
1996 		lv = sock_get_timeout(vsk->connect_timeout, &v,
1997 				      optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
1998 		break;
1999 
2000 	default:
2001 		return -ENOPROTOOPT;
2002 	}
2003 
2004 	if (len < lv)
2005 		return -EINVAL;
2006 	if (len > lv)
2007 		len = lv;
2008 	if (copy_to_user(optval, &v, len))
2009 		return -EFAULT;
2010 
2011 	if (put_user(len, optlen))
2012 		return -EFAULT;
2013 
2014 	return 0;
2015 }
2016 
vsock_connectible_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)2017 static int vsock_connectible_sendmsg(struct socket *sock, struct msghdr *msg,
2018 				     size_t len)
2019 {
2020 	struct sock *sk;
2021 	struct vsock_sock *vsk;
2022 	const struct vsock_transport *transport;
2023 	ssize_t total_written;
2024 	long timeout;
2025 	int err;
2026 	struct vsock_transport_send_notify_data send_data;
2027 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
2028 
2029 	sk = sock->sk;
2030 	vsk = vsock_sk(sk);
2031 	total_written = 0;
2032 	err = 0;
2033 
2034 	if (msg->msg_flags & MSG_OOB)
2035 		return -EOPNOTSUPP;
2036 
2037 	lock_sock(sk);
2038 
2039 	transport = vsk->transport;
2040 
2041 	/* Callers should not provide a destination with connection oriented
2042 	 * sockets.
2043 	 */
2044 	if (msg->msg_namelen) {
2045 		err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
2046 		goto out;
2047 	}
2048 
2049 	/* Send data only if both sides are not shutdown in the direction. */
2050 	if (sk->sk_shutdown & SEND_SHUTDOWN ||
2051 	    vsk->peer_shutdown & RCV_SHUTDOWN) {
2052 		err = -EPIPE;
2053 		goto out;
2054 	}
2055 
2056 	if (!transport || sk->sk_state != TCP_ESTABLISHED ||
2057 	    !vsock_addr_bound(&vsk->local_addr)) {
2058 		err = -ENOTCONN;
2059 		goto out;
2060 	}
2061 
2062 	if (!vsock_addr_bound(&vsk->remote_addr)) {
2063 		err = -EDESTADDRREQ;
2064 		goto out;
2065 	}
2066 
2067 	if (msg->msg_flags & MSG_ZEROCOPY &&
2068 	    !vsock_msgzerocopy_allow(transport)) {
2069 		err = -EOPNOTSUPP;
2070 		goto out;
2071 	}
2072 
2073 	/* Wait for room in the produce queue to enqueue our user's data. */
2074 	timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
2075 
2076 	err = transport->notify_send_init(vsk, &send_data);
2077 	if (err < 0)
2078 		goto out;
2079 
2080 	while (total_written < len) {
2081 		ssize_t written;
2082 
2083 		add_wait_queue(sk_sleep(sk), &wait);
2084 		while (vsock_stream_has_space(vsk) == 0 &&
2085 		       sk->sk_err == 0 &&
2086 		       !(sk->sk_shutdown & SEND_SHUTDOWN) &&
2087 		       !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
2088 
2089 			/* Don't wait for non-blocking sockets. */
2090 			if (timeout == 0) {
2091 				err = -EAGAIN;
2092 				remove_wait_queue(sk_sleep(sk), &wait);
2093 				goto out_err;
2094 			}
2095 
2096 			err = transport->notify_send_pre_block(vsk, &send_data);
2097 			if (err < 0) {
2098 				remove_wait_queue(sk_sleep(sk), &wait);
2099 				goto out_err;
2100 			}
2101 
2102 			release_sock(sk);
2103 			timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
2104 			lock_sock(sk);
2105 			if (signal_pending(current)) {
2106 				err = sock_intr_errno(timeout);
2107 				remove_wait_queue(sk_sleep(sk), &wait);
2108 				goto out_err;
2109 			} else if (timeout == 0) {
2110 				err = -EAGAIN;
2111 				remove_wait_queue(sk_sleep(sk), &wait);
2112 				goto out_err;
2113 			}
2114 		}
2115 		remove_wait_queue(sk_sleep(sk), &wait);
2116 
2117 		/* These checks occur both as part of and after the loop
2118 		 * conditional since we need to check before and after
2119 		 * sleeping.
2120 		 */
2121 		if (sk->sk_err) {
2122 			err = -sk->sk_err;
2123 			goto out_err;
2124 		} else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
2125 			   (vsk->peer_shutdown & RCV_SHUTDOWN)) {
2126 			err = -EPIPE;
2127 			goto out_err;
2128 		}
2129 
2130 		err = transport->notify_send_pre_enqueue(vsk, &send_data);
2131 		if (err < 0)
2132 			goto out_err;
2133 
2134 		/* Note that enqueue will only write as many bytes as are free
2135 		 * in the produce queue, so we don't need to ensure len is
2136 		 * smaller than the queue size.  It is the caller's
2137 		 * responsibility to check how many bytes we were able to send.
2138 		 */
2139 
2140 		if (sk->sk_type == SOCK_SEQPACKET) {
2141 			written = transport->seqpacket_enqueue(vsk,
2142 						msg, len - total_written);
2143 		} else {
2144 			written = transport->stream_enqueue(vsk,
2145 					msg, len - total_written);
2146 		}
2147 
2148 		if (written < 0) {
2149 			err = written;
2150 			goto out_err;
2151 		}
2152 
2153 		total_written += written;
2154 
2155 		err = transport->notify_send_post_enqueue(
2156 				vsk, written, &send_data);
2157 		if (err < 0)
2158 			goto out_err;
2159 
2160 	}
2161 
2162 out_err:
2163 	if (total_written > 0) {
2164 		/* Return number of written bytes only if:
2165 		 * 1) SOCK_STREAM socket.
2166 		 * 2) SOCK_SEQPACKET socket when whole buffer is sent.
2167 		 */
2168 		if (sk->sk_type == SOCK_STREAM || total_written == len)
2169 			err = total_written;
2170 	}
2171 out:
2172 	if (sk->sk_type == SOCK_STREAM)
2173 		err = sk_stream_error(sk, msg->msg_flags, err);
2174 
2175 	release_sock(sk);
2176 	return err;
2177 }
2178 
vsock_connectible_wait_data(struct sock * sk,struct wait_queue_entry * wait,long timeout,struct vsock_transport_recv_notify_data * recv_data,size_t target)2179 static int vsock_connectible_wait_data(struct sock *sk,
2180 				       struct wait_queue_entry *wait,
2181 				       long timeout,
2182 				       struct vsock_transport_recv_notify_data *recv_data,
2183 				       size_t target)
2184 {
2185 	const struct vsock_transport *transport;
2186 	struct vsock_sock *vsk;
2187 	s64 data;
2188 	int err;
2189 
2190 	vsk = vsock_sk(sk);
2191 	err = 0;
2192 	transport = vsk->transport;
2193 
2194 	while (1) {
2195 		prepare_to_wait(sk_sleep(sk), wait, TASK_INTERRUPTIBLE);
2196 		data = vsock_connectible_has_data(vsk);
2197 		if (data != 0)
2198 			break;
2199 
2200 		if (sk->sk_err != 0 ||
2201 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2202 		    (vsk->peer_shutdown & SEND_SHUTDOWN)) {
2203 			break;
2204 		}
2205 
2206 		/* Don't wait for non-blocking sockets. */
2207 		if (timeout == 0) {
2208 			err = -EAGAIN;
2209 			break;
2210 		}
2211 
2212 		if (recv_data) {
2213 			err = transport->notify_recv_pre_block(vsk, target, recv_data);
2214 			if (err < 0)
2215 				break;
2216 		}
2217 
2218 		release_sock(sk);
2219 		timeout = schedule_timeout(timeout);
2220 		lock_sock(sk);
2221 
2222 		if (signal_pending(current)) {
2223 			err = sock_intr_errno(timeout);
2224 			break;
2225 		} else if (timeout == 0) {
2226 			err = -EAGAIN;
2227 			break;
2228 		}
2229 	}
2230 
2231 	finish_wait(sk_sleep(sk), wait);
2232 
2233 	if (err)
2234 		return err;
2235 
2236 	/* Internal transport error when checking for available
2237 	 * data. XXX This should be changed to a connection
2238 	 * reset in a later change.
2239 	 */
2240 	if (data < 0)
2241 		return -ENOMEM;
2242 
2243 	return data;
2244 }
2245 
__vsock_stream_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags)2246 static int __vsock_stream_recvmsg(struct sock *sk, struct msghdr *msg,
2247 				  size_t len, int flags)
2248 {
2249 	struct vsock_transport_recv_notify_data recv_data;
2250 	const struct vsock_transport *transport;
2251 	struct vsock_sock *vsk;
2252 	ssize_t copied;
2253 	size_t target;
2254 	long timeout;
2255 	int err;
2256 
2257 	DEFINE_WAIT(wait);
2258 
2259 	vsk = vsock_sk(sk);
2260 	transport = vsk->transport;
2261 
2262 	/* We must not copy less than target bytes into the user's buffer
2263 	 * before returning successfully, so we wait for the consume queue to
2264 	 * have that much data to consume before dequeueing.  Note that this
2265 	 * makes it impossible to handle cases where target is greater than the
2266 	 * queue size.
2267 	 */
2268 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2269 	if (target >= transport->stream_rcvhiwat(vsk)) {
2270 		err = -ENOMEM;
2271 		goto out;
2272 	}
2273 	timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2274 	copied = 0;
2275 
2276 	err = transport->notify_recv_init(vsk, target, &recv_data);
2277 	if (err < 0)
2278 		goto out;
2279 
2280 
2281 	while (1) {
2282 		ssize_t read;
2283 
2284 		err = vsock_connectible_wait_data(sk, &wait, timeout,
2285 						  &recv_data, target);
2286 		if (err <= 0)
2287 			break;
2288 
2289 		err = transport->notify_recv_pre_dequeue(vsk, target,
2290 							 &recv_data);
2291 		if (err < 0)
2292 			break;
2293 
2294 		read = transport->stream_dequeue(vsk, msg, len - copied, flags);
2295 		if (read < 0) {
2296 			err = read;
2297 			break;
2298 		}
2299 
2300 		copied += read;
2301 
2302 		err = transport->notify_recv_post_dequeue(vsk, target, read,
2303 						!(flags & MSG_PEEK), &recv_data);
2304 		if (err < 0)
2305 			goto out;
2306 
2307 		if (read >= target || flags & MSG_PEEK)
2308 			break;
2309 
2310 		target -= read;
2311 	}
2312 
2313 	if (sk->sk_err)
2314 		err = -sk->sk_err;
2315 	else if (sk->sk_shutdown & RCV_SHUTDOWN)
2316 		err = 0;
2317 
2318 	if (copied > 0)
2319 		err = copied;
2320 
2321 out:
2322 	return err;
2323 }
2324 
__vsock_seqpacket_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags)2325 static int __vsock_seqpacket_recvmsg(struct sock *sk, struct msghdr *msg,
2326 				     size_t len, int flags)
2327 {
2328 	const struct vsock_transport *transport;
2329 	struct vsock_sock *vsk;
2330 	ssize_t msg_len;
2331 	long timeout;
2332 	int err = 0;
2333 	DEFINE_WAIT(wait);
2334 
2335 	vsk = vsock_sk(sk);
2336 	transport = vsk->transport;
2337 
2338 	timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2339 
2340 	err = vsock_connectible_wait_data(sk, &wait, timeout, NULL, 0);
2341 	if (err <= 0)
2342 		goto out;
2343 
2344 	msg_len = transport->seqpacket_dequeue(vsk, msg, flags);
2345 
2346 	if (msg_len < 0) {
2347 		err = msg_len;
2348 		goto out;
2349 	}
2350 
2351 	if (sk->sk_err) {
2352 		err = -sk->sk_err;
2353 	} else if (sk->sk_shutdown & RCV_SHUTDOWN) {
2354 		err = 0;
2355 	} else {
2356 		/* User sets MSG_TRUNC, so return real length of
2357 		 * packet.
2358 		 */
2359 		if (flags & MSG_TRUNC)
2360 			err = msg_len;
2361 		else
2362 			err = len - msg_data_left(msg);
2363 
2364 		/* Always set MSG_TRUNC if real length of packet is
2365 		 * bigger than user's buffer.
2366 		 */
2367 		if (msg_len > len)
2368 			msg->msg_flags |= MSG_TRUNC;
2369 	}
2370 
2371 out:
2372 	return err;
2373 }
2374 
2375 int
__vsock_connectible_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)2376 __vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2377 			    int flags)
2378 {
2379 	struct sock *sk;
2380 	struct vsock_sock *vsk;
2381 	const struct vsock_transport *transport;
2382 	int err;
2383 
2384 	sk = sock->sk;
2385 
2386 	if (unlikely(flags & MSG_ERRQUEUE))
2387 		return sock_recv_errqueue(sk, msg, len, SOL_VSOCK, VSOCK_RECVERR);
2388 
2389 	vsk = vsock_sk(sk);
2390 	err = 0;
2391 
2392 	lock_sock(sk);
2393 
2394 	transport = vsk->transport;
2395 
2396 	if (!transport || sk->sk_state != TCP_ESTABLISHED) {
2397 		/* Recvmsg is supposed to return 0 if a peer performs an
2398 		 * orderly shutdown. Differentiate between that case and when a
2399 		 * peer has not connected or a local shutdown occurred with the
2400 		 * SOCK_DONE flag.
2401 		 */
2402 		if (sock_flag(sk, SOCK_DONE))
2403 			err = 0;
2404 		else
2405 			err = -ENOTCONN;
2406 
2407 		goto out;
2408 	}
2409 
2410 	if (flags & MSG_OOB) {
2411 		err = -EOPNOTSUPP;
2412 		goto out;
2413 	}
2414 
2415 	/* We don't check peer_shutdown flag here since peer may actually shut
2416 	 * down, but there can be data in the queue that a local socket can
2417 	 * receive.
2418 	 */
2419 	if (sk->sk_shutdown & RCV_SHUTDOWN) {
2420 		err = 0;
2421 		goto out;
2422 	}
2423 
2424 	/* It is valid on Linux to pass in a zero-length receive buffer.  This
2425 	 * is not an error.  We may as well bail out now.
2426 	 */
2427 	if (!len) {
2428 		err = 0;
2429 		goto out;
2430 	}
2431 
2432 	if (sk->sk_type == SOCK_STREAM)
2433 		err = __vsock_stream_recvmsg(sk, msg, len, flags);
2434 	else
2435 		err = __vsock_seqpacket_recvmsg(sk, msg, len, flags);
2436 
2437 out:
2438 	release_sock(sk);
2439 	return err;
2440 }
2441 
2442 int
vsock_connectible_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)2443 vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2444 			  int flags)
2445 {
2446 #ifdef CONFIG_BPF_SYSCALL
2447 	struct sock *sk = sock->sk;
2448 	const struct proto *prot;
2449 
2450 	prot = READ_ONCE(sk->sk_prot);
2451 	if (prot != &vsock_proto)
2452 		return prot->recvmsg(sk, msg, len, flags, NULL);
2453 #endif
2454 
2455 	return __vsock_connectible_recvmsg(sock, msg, len, flags);
2456 }
2457 EXPORT_SYMBOL_GPL(vsock_connectible_recvmsg);
2458 
vsock_set_rcvlowat(struct sock * sk,int val)2459 static int vsock_set_rcvlowat(struct sock *sk, int val)
2460 {
2461 	const struct vsock_transport *transport;
2462 	struct vsock_sock *vsk;
2463 
2464 	vsk = vsock_sk(sk);
2465 
2466 	if (val > vsk->buffer_size)
2467 		return -EINVAL;
2468 
2469 	transport = vsk->transport;
2470 
2471 	if (transport && transport->notify_set_rcvlowat) {
2472 		int err;
2473 
2474 		err = transport->notify_set_rcvlowat(vsk, val);
2475 		if (err)
2476 			return err;
2477 	}
2478 
2479 	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
2480 	return 0;
2481 }
2482 
2483 static const struct proto_ops vsock_stream_ops = {
2484 	.family = PF_VSOCK,
2485 	.owner = THIS_MODULE,
2486 	.release = vsock_release,
2487 	.bind = vsock_bind,
2488 	.connect = vsock_connect,
2489 	.socketpair = sock_no_socketpair,
2490 	.accept = vsock_accept,
2491 	.getname = vsock_getname,
2492 	.poll = vsock_poll,
2493 	.ioctl = vsock_ioctl,
2494 	.listen = vsock_listen,
2495 	.shutdown = vsock_shutdown,
2496 	.setsockopt = vsock_connectible_setsockopt,
2497 	.getsockopt = vsock_connectible_getsockopt,
2498 	.sendmsg = vsock_connectible_sendmsg,
2499 	.recvmsg = vsock_connectible_recvmsg,
2500 	.mmap = sock_no_mmap,
2501 	.set_rcvlowat = vsock_set_rcvlowat,
2502 	.read_skb = vsock_read_skb,
2503 };
2504 
2505 static const struct proto_ops vsock_seqpacket_ops = {
2506 	.family = PF_VSOCK,
2507 	.owner = THIS_MODULE,
2508 	.release = vsock_release,
2509 	.bind = vsock_bind,
2510 	.connect = vsock_connect,
2511 	.socketpair = sock_no_socketpair,
2512 	.accept = vsock_accept,
2513 	.getname = vsock_getname,
2514 	.poll = vsock_poll,
2515 	.ioctl = vsock_ioctl,
2516 	.listen = vsock_listen,
2517 	.shutdown = vsock_shutdown,
2518 	.setsockopt = vsock_connectible_setsockopt,
2519 	.getsockopt = vsock_connectible_getsockopt,
2520 	.sendmsg = vsock_connectible_sendmsg,
2521 	.recvmsg = vsock_connectible_recvmsg,
2522 	.mmap = sock_no_mmap,
2523 	.read_skb = vsock_read_skb,
2524 };
2525 
vsock_create(struct net * net,struct socket * sock,int protocol,int kern)2526 static int vsock_create(struct net *net, struct socket *sock,
2527 			int protocol, int kern)
2528 {
2529 	struct vsock_sock *vsk;
2530 	struct sock *sk;
2531 	int ret;
2532 
2533 	if (!sock)
2534 		return -EINVAL;
2535 
2536 	if (protocol && protocol != PF_VSOCK)
2537 		return -EPROTONOSUPPORT;
2538 
2539 	switch (sock->type) {
2540 	case SOCK_DGRAM:
2541 		sock->ops = &vsock_dgram_ops;
2542 		break;
2543 	case SOCK_STREAM:
2544 		sock->ops = &vsock_stream_ops;
2545 		break;
2546 	case SOCK_SEQPACKET:
2547 		sock->ops = &vsock_seqpacket_ops;
2548 		break;
2549 	default:
2550 		return -ESOCKTNOSUPPORT;
2551 	}
2552 
2553 	sock->state = SS_UNCONNECTED;
2554 
2555 	sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern);
2556 	if (!sk)
2557 		return -ENOMEM;
2558 
2559 	vsk = vsock_sk(sk);
2560 
2561 	if (sock->type == SOCK_DGRAM) {
2562 		ret = vsock_assign_transport(vsk, NULL);
2563 		if (ret < 0) {
2564 			sock->sk = NULL;
2565 			sock_put(sk);
2566 			return ret;
2567 		}
2568 	}
2569 
2570 	/* SOCK_DGRAM doesn't have 'setsockopt' callback set in its
2571 	 * proto_ops, so there is no handler for custom logic.
2572 	 */
2573 	if (sock_type_connectible(sock->type))
2574 		set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
2575 
2576 	vsock_insert_unbound(vsk);
2577 
2578 	return 0;
2579 }
2580 
2581 static const struct net_proto_family vsock_family_ops = {
2582 	.family = AF_VSOCK,
2583 	.create = vsock_create,
2584 	.owner = THIS_MODULE,
2585 };
2586 
vsock_dev_do_ioctl(struct file * filp,unsigned int cmd,void __user * ptr)2587 static long vsock_dev_do_ioctl(struct file *filp,
2588 			       unsigned int cmd, void __user *ptr)
2589 {
2590 	u32 __user *p = ptr;
2591 	int retval = 0;
2592 	u32 cid;
2593 
2594 	switch (cmd) {
2595 	case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
2596 		/* To be compatible with the VMCI behavior, we prioritize the
2597 		 * guest CID instead of well-know host CID (VMADDR_CID_HOST).
2598 		 */
2599 		cid = vsock_registered_transport_cid(&transport_g2h);
2600 		if (cid == VMADDR_CID_ANY)
2601 			cid = vsock_registered_transport_cid(&transport_h2g);
2602 		if (cid == VMADDR_CID_ANY)
2603 			cid = vsock_registered_transport_cid(&transport_local);
2604 
2605 		if (put_user(cid, p) != 0)
2606 			retval = -EFAULT;
2607 		break;
2608 
2609 	default:
2610 		retval = -ENOIOCTLCMD;
2611 	}
2612 
2613 	return retval;
2614 }
2615 
vsock_dev_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)2616 static long vsock_dev_ioctl(struct file *filp,
2617 			    unsigned int cmd, unsigned long arg)
2618 {
2619 	return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
2620 }
2621 
2622 #ifdef CONFIG_COMPAT
vsock_dev_compat_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)2623 static long vsock_dev_compat_ioctl(struct file *filp,
2624 				   unsigned int cmd, unsigned long arg)
2625 {
2626 	return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
2627 }
2628 #endif
2629 
2630 static const struct file_operations vsock_device_ops = {
2631 	.owner		= THIS_MODULE,
2632 	.unlocked_ioctl	= vsock_dev_ioctl,
2633 #ifdef CONFIG_COMPAT
2634 	.compat_ioctl	= vsock_dev_compat_ioctl,
2635 #endif
2636 	.open		= nonseekable_open,
2637 };
2638 
2639 static struct miscdevice vsock_device = {
2640 	.name		= "vsock",
2641 	.fops		= &vsock_device_ops,
2642 };
2643 
vsock_init(void)2644 static int __init vsock_init(void)
2645 {
2646 	int err = 0;
2647 
2648 	vsock_init_tables();
2649 
2650 	vsock_proto.owner = THIS_MODULE;
2651 	vsock_device.minor = MISC_DYNAMIC_MINOR;
2652 	err = misc_register(&vsock_device);
2653 	if (err) {
2654 		pr_err("Failed to register misc device\n");
2655 		goto err_reset_transport;
2656 	}
2657 
2658 	err = proto_register(&vsock_proto, 1);	/* we want our slab */
2659 	if (err) {
2660 		pr_err("Cannot register vsock protocol\n");
2661 		goto err_deregister_misc;
2662 	}
2663 
2664 	err = sock_register(&vsock_family_ops);
2665 	if (err) {
2666 		pr_err("could not register af_vsock (%d) address family: %d\n",
2667 		       AF_VSOCK, err);
2668 		goto err_unregister_proto;
2669 	}
2670 
2671 	vsock_bpf_build_proto();
2672 
2673 	return 0;
2674 
2675 err_unregister_proto:
2676 	proto_unregister(&vsock_proto);
2677 err_deregister_misc:
2678 	misc_deregister(&vsock_device);
2679 err_reset_transport:
2680 	return err;
2681 }
2682 
vsock_exit(void)2683 static void __exit vsock_exit(void)
2684 {
2685 	misc_deregister(&vsock_device);
2686 	sock_unregister(AF_VSOCK);
2687 	proto_unregister(&vsock_proto);
2688 }
2689 
vsock_core_get_transport(struct vsock_sock * vsk)2690 const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk)
2691 {
2692 	return vsk->transport;
2693 }
2694 EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2695 
vsock_core_register(const struct vsock_transport * t,int features)2696 int vsock_core_register(const struct vsock_transport *t, int features)
2697 {
2698 	const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local;
2699 	int err = mutex_lock_interruptible(&vsock_register_mutex);
2700 
2701 	if (err)
2702 		return err;
2703 
2704 	t_h2g = transport_h2g;
2705 	t_g2h = transport_g2h;
2706 	t_dgram = transport_dgram;
2707 	t_local = transport_local;
2708 
2709 	if (features & VSOCK_TRANSPORT_F_H2G) {
2710 		if (t_h2g) {
2711 			err = -EBUSY;
2712 			goto err_busy;
2713 		}
2714 		t_h2g = t;
2715 	}
2716 
2717 	if (features & VSOCK_TRANSPORT_F_G2H) {
2718 		if (t_g2h) {
2719 			err = -EBUSY;
2720 			goto err_busy;
2721 		}
2722 		t_g2h = t;
2723 	}
2724 
2725 	if (features & VSOCK_TRANSPORT_F_DGRAM) {
2726 		if (t_dgram) {
2727 			err = -EBUSY;
2728 			goto err_busy;
2729 		}
2730 		t_dgram = t;
2731 	}
2732 
2733 	if (features & VSOCK_TRANSPORT_F_LOCAL) {
2734 		if (t_local) {
2735 			err = -EBUSY;
2736 			goto err_busy;
2737 		}
2738 		t_local = t;
2739 	}
2740 
2741 	transport_h2g = t_h2g;
2742 	transport_g2h = t_g2h;
2743 	transport_dgram = t_dgram;
2744 	transport_local = t_local;
2745 
2746 err_busy:
2747 	mutex_unlock(&vsock_register_mutex);
2748 	return err;
2749 }
2750 EXPORT_SYMBOL_GPL(vsock_core_register);
2751 
vsock_core_unregister(const struct vsock_transport * t)2752 void vsock_core_unregister(const struct vsock_transport *t)
2753 {
2754 	mutex_lock(&vsock_register_mutex);
2755 
2756 	if (transport_h2g == t)
2757 		transport_h2g = NULL;
2758 
2759 	if (transport_g2h == t)
2760 		transport_g2h = NULL;
2761 
2762 	if (transport_dgram == t)
2763 		transport_dgram = NULL;
2764 
2765 	if (transport_local == t)
2766 		transport_local = NULL;
2767 
2768 	mutex_unlock(&vsock_register_mutex);
2769 }
2770 EXPORT_SYMBOL_GPL(vsock_core_unregister);
2771 
2772 module_init(vsock_init);
2773 module_exit(vsock_exit);
2774 
2775 MODULE_AUTHOR("VMware, Inc.");
2776 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2777 MODULE_VERSION("1.0.2.0-k");
2778 MODULE_LICENSE("GPL v2");
2779