1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * VMware vSockets Driver
4 *
5 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6 */
7
8 /* Implementation notes:
9 *
10 * - There are two kinds of sockets: those created by user action (such as
11 * calling socket(2)) and those created by incoming connection request packets.
12 *
13 * - There are two "global" tables, one for bound sockets (sockets that have
14 * specified an address that they are responsible for) and one for connected
15 * sockets (sockets that have established a connection with another socket).
16 * These tables are "global" in that all sockets on the system are placed
17 * within them. - Note, though, that the bound table contains an extra entry
18 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
19 * that list. The bound table is used solely for lookup of sockets when packets
20 * are received and that's not necessary for SOCK_DGRAM sockets since we create
21 * a datagram handle for each and need not perform a lookup. Keeping SOCK_DGRAM
22 * sockets out of the bound hash buckets will reduce the chance of collisions
23 * when looking for SOCK_STREAM sockets and prevents us from having to check the
24 * socket type in the hash table lookups.
25 *
26 * - Sockets created by user action will either be "client" sockets that
27 * initiate a connection or "server" sockets that listen for connections; we do
28 * not support simultaneous connects (two "client" sockets connecting).
29 *
30 * - "Server" sockets are referred to as listener sockets throughout this
31 * implementation because they are in the TCP_LISTEN state. When a
32 * connection request is received (the second kind of socket mentioned above),
33 * we create a new socket and refer to it as a pending socket. These pending
34 * sockets are placed on the pending connection list of the listener socket.
35 * When future packets are received for the address the listener socket is
36 * bound to, we check if the source of the packet is from one that has an
37 * existing pending connection. If it does, we process the packet for the
38 * pending socket. When that socket reaches the connected state, it is removed
39 * from the listener socket's pending list and enqueued in the listener
40 * socket's accept queue. Callers of accept(2) will accept connected sockets
41 * from the listener socket's accept queue. If the socket cannot be accepted
42 * for some reason then it is marked rejected. Once the connection is
43 * accepted, it is owned by the user process and the responsibility for cleanup
44 * falls with that user process.
45 *
46 * - It is possible that these pending sockets will never reach the connected
47 * state; in fact, we may never receive another packet after the connection
48 * request. Because of this, we must schedule a cleanup function to run in the
49 * future, after some amount of time passes where a connection should have been
50 * established. This function ensures that the socket is off all lists so it
51 * cannot be retrieved, then drops all references to the socket so it is cleaned
52 * up (sock_put() -> sk_free() -> our sk_destruct implementation). Note this
53 * function will also cleanup rejected sockets, those that reach the connected
54 * state but leave it before they have been accepted.
55 *
56 * - Lock ordering for pending or accept queue sockets is:
57 *
58 * lock_sock(listener);
59 * lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
60 *
61 * Using explicit nested locking keeps lockdep happy since normally only one
62 * lock of a given class may be taken at a time.
63 *
64 * - Sockets created by user action will be cleaned up when the user process
65 * calls close(2), causing our release implementation to be called. Our release
66 * implementation will perform some cleanup then drop the last reference so our
67 * sk_destruct implementation is invoked. Our sk_destruct implementation will
68 * perform additional cleanup that's common for both types of sockets.
69 *
70 * - A socket's reference count is what ensures that the structure won't be
71 * freed. Each entry in a list (such as the "global" bound and connected tables
72 * and the listener socket's pending list and connected queue) ensures a
73 * reference. When we defer work until process context and pass a socket as our
74 * argument, we must ensure the reference count is increased to ensure the
75 * socket isn't freed before the function is run; the deferred function will
76 * then drop the reference.
77 *
78 * - sk->sk_state uses the TCP state constants because they are widely used by
79 * other address families and exposed to userspace tools like ss(8):
80 *
81 * TCP_CLOSE - unconnected
82 * TCP_SYN_SENT - connecting
83 * TCP_ESTABLISHED - connected
84 * TCP_CLOSING - disconnecting
85 * TCP_LISTEN - listening
86 */
87
88 #include <linux/compat.h>
89 #include <linux/types.h>
90 #include <linux/bitops.h>
91 #include <linux/cred.h>
92 #include <linux/errqueue.h>
93 #include <linux/init.h>
94 #include <linux/io.h>
95 #include <linux/kernel.h>
96 #include <linux/sched/signal.h>
97 #include <linux/kmod.h>
98 #include <linux/list.h>
99 #include <linux/miscdevice.h>
100 #include <linux/module.h>
101 #include <linux/mutex.h>
102 #include <linux/net.h>
103 #include <linux/poll.h>
104 #include <linux/random.h>
105 #include <linux/skbuff.h>
106 #include <linux/smp.h>
107 #include <linux/socket.h>
108 #include <linux/stddef.h>
109 #include <linux/unistd.h>
110 #include <linux/wait.h>
111 #include <linux/workqueue.h>
112 #include <net/sock.h>
113 #include <net/af_vsock.h>
114 #include <uapi/linux/vm_sockets.h>
115 #include <uapi/asm-generic/ioctls.h>
116
117 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
118 static void vsock_sk_destruct(struct sock *sk);
119 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
120 static void vsock_close(struct sock *sk, long timeout);
121
122 /* Protocol family. */
123 struct proto vsock_proto = {
124 .name = "AF_VSOCK",
125 .owner = THIS_MODULE,
126 .obj_size = sizeof(struct vsock_sock),
127 .close = vsock_close,
128 #ifdef CONFIG_BPF_SYSCALL
129 .psock_update_sk_prot = vsock_bpf_update_proto,
130 #endif
131 };
132
133 /* The default peer timeout indicates how long we will wait for a peer response
134 * to a control message.
135 */
136 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
137
138 #define VSOCK_DEFAULT_BUFFER_SIZE (1024 * 256)
139 #define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256)
140 #define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128
141
142 /* Transport used for host->guest communication */
143 static const struct vsock_transport *transport_h2g;
144 /* Transport used for guest->host communication */
145 static const struct vsock_transport *transport_g2h;
146 /* Transport used for DGRAM communication */
147 static const struct vsock_transport *transport_dgram;
148 /* Transport used for local communication */
149 static const struct vsock_transport *transport_local;
150 static DEFINE_MUTEX(vsock_register_mutex);
151
152 /**** UTILS ****/
153
154 /* Each bound VSocket is stored in the bind hash table and each connected
155 * VSocket is stored in the connected hash table.
156 *
157 * Unbound sockets are all put on the same list attached to the end of the hash
158 * table (vsock_unbound_sockets). Bound sockets are added to the hash table in
159 * the bucket that their local address hashes to (vsock_bound_sockets(addr)
160 * represents the list that addr hashes to).
161 *
162 * Specifically, we initialize the vsock_bind_table array to a size of
163 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
164 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
165 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets. The hash function
166 * mods with VSOCK_HASH_SIZE to ensure this.
167 */
168 #define MAX_PORT_RETRIES 24
169
170 #define VSOCK_HASH(addr) ((addr)->svm_port % VSOCK_HASH_SIZE)
171 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
172 #define vsock_unbound_sockets (&vsock_bind_table[VSOCK_HASH_SIZE])
173
174 /* XXX This can probably be implemented in a better way. */
175 #define VSOCK_CONN_HASH(src, dst) \
176 (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
177 #define vsock_connected_sockets(src, dst) \
178 (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
179 #define vsock_connected_sockets_vsk(vsk) \
180 vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
181
182 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
183 EXPORT_SYMBOL_GPL(vsock_bind_table);
184 struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
185 EXPORT_SYMBOL_GPL(vsock_connected_table);
186 DEFINE_SPINLOCK(vsock_table_lock);
187 EXPORT_SYMBOL_GPL(vsock_table_lock);
188
189 /* Autobind this socket to the local address if necessary. */
vsock_auto_bind(struct vsock_sock * vsk)190 static int vsock_auto_bind(struct vsock_sock *vsk)
191 {
192 struct sock *sk = sk_vsock(vsk);
193 struct sockaddr_vm local_addr;
194
195 if (vsock_addr_bound(&vsk->local_addr))
196 return 0;
197 vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
198 return __vsock_bind(sk, &local_addr);
199 }
200
vsock_init_tables(void)201 static void vsock_init_tables(void)
202 {
203 int i;
204
205 for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
206 INIT_LIST_HEAD(&vsock_bind_table[i]);
207
208 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
209 INIT_LIST_HEAD(&vsock_connected_table[i]);
210 }
211
__vsock_insert_bound(struct list_head * list,struct vsock_sock * vsk)212 static void __vsock_insert_bound(struct list_head *list,
213 struct vsock_sock *vsk)
214 {
215 sock_hold(&vsk->sk);
216 list_add(&vsk->bound_table, list);
217 }
218
__vsock_insert_connected(struct list_head * list,struct vsock_sock * vsk)219 static void __vsock_insert_connected(struct list_head *list,
220 struct vsock_sock *vsk)
221 {
222 sock_hold(&vsk->sk);
223 list_add(&vsk->connected_table, list);
224 }
225
__vsock_remove_bound(struct vsock_sock * vsk)226 static void __vsock_remove_bound(struct vsock_sock *vsk)
227 {
228 list_del_init(&vsk->bound_table);
229 sock_put(&vsk->sk);
230 }
231
__vsock_remove_connected(struct vsock_sock * vsk)232 static void __vsock_remove_connected(struct vsock_sock *vsk)
233 {
234 list_del_init(&vsk->connected_table);
235 sock_put(&vsk->sk);
236 }
237
__vsock_find_bound_socket(struct sockaddr_vm * addr)238 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
239 {
240 struct vsock_sock *vsk;
241
242 list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) {
243 if (vsock_addr_equals_addr(addr, &vsk->local_addr))
244 return sk_vsock(vsk);
245
246 if (addr->svm_port == vsk->local_addr.svm_port &&
247 (vsk->local_addr.svm_cid == VMADDR_CID_ANY ||
248 addr->svm_cid == VMADDR_CID_ANY))
249 return sk_vsock(vsk);
250 }
251
252 return NULL;
253 }
254
__vsock_find_connected_socket(struct sockaddr_vm * src,struct sockaddr_vm * dst)255 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
256 struct sockaddr_vm *dst)
257 {
258 struct vsock_sock *vsk;
259
260 list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
261 connected_table) {
262 if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
263 dst->svm_port == vsk->local_addr.svm_port) {
264 return sk_vsock(vsk);
265 }
266 }
267
268 return NULL;
269 }
270
vsock_insert_unbound(struct vsock_sock * vsk)271 static void vsock_insert_unbound(struct vsock_sock *vsk)
272 {
273 spin_lock_bh(&vsock_table_lock);
274 __vsock_insert_bound(vsock_unbound_sockets, vsk);
275 spin_unlock_bh(&vsock_table_lock);
276 }
277
vsock_insert_connected(struct vsock_sock * vsk)278 void vsock_insert_connected(struct vsock_sock *vsk)
279 {
280 struct list_head *list = vsock_connected_sockets(
281 &vsk->remote_addr, &vsk->local_addr);
282
283 spin_lock_bh(&vsock_table_lock);
284 __vsock_insert_connected(list, vsk);
285 spin_unlock_bh(&vsock_table_lock);
286 }
287 EXPORT_SYMBOL_GPL(vsock_insert_connected);
288
vsock_remove_bound(struct vsock_sock * vsk)289 void vsock_remove_bound(struct vsock_sock *vsk)
290 {
291 spin_lock_bh(&vsock_table_lock);
292 if (__vsock_in_bound_table(vsk))
293 __vsock_remove_bound(vsk);
294 spin_unlock_bh(&vsock_table_lock);
295 }
296 EXPORT_SYMBOL_GPL(vsock_remove_bound);
297
vsock_remove_connected(struct vsock_sock * vsk)298 void vsock_remove_connected(struct vsock_sock *vsk)
299 {
300 spin_lock_bh(&vsock_table_lock);
301 if (__vsock_in_connected_table(vsk))
302 __vsock_remove_connected(vsk);
303 spin_unlock_bh(&vsock_table_lock);
304 }
305 EXPORT_SYMBOL_GPL(vsock_remove_connected);
306
vsock_find_bound_socket(struct sockaddr_vm * addr)307 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
308 {
309 struct sock *sk;
310
311 spin_lock_bh(&vsock_table_lock);
312 sk = __vsock_find_bound_socket(addr);
313 if (sk)
314 sock_hold(sk);
315
316 spin_unlock_bh(&vsock_table_lock);
317
318 return sk;
319 }
320 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
321
vsock_find_connected_socket(struct sockaddr_vm * src,struct sockaddr_vm * dst)322 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
323 struct sockaddr_vm *dst)
324 {
325 struct sock *sk;
326
327 spin_lock_bh(&vsock_table_lock);
328 sk = __vsock_find_connected_socket(src, dst);
329 if (sk)
330 sock_hold(sk);
331
332 spin_unlock_bh(&vsock_table_lock);
333
334 return sk;
335 }
336 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
337
vsock_remove_sock(struct vsock_sock * vsk)338 void vsock_remove_sock(struct vsock_sock *vsk)
339 {
340 /* Transport reassignment must not remove the binding. */
341 if (sock_flag(sk_vsock(vsk), SOCK_DEAD))
342 vsock_remove_bound(vsk);
343
344 vsock_remove_connected(vsk);
345 }
346 EXPORT_SYMBOL_GPL(vsock_remove_sock);
347
vsock_for_each_connected_socket(struct vsock_transport * transport,void (* fn)(struct sock * sk))348 void vsock_for_each_connected_socket(struct vsock_transport *transport,
349 void (*fn)(struct sock *sk))
350 {
351 int i;
352
353 spin_lock_bh(&vsock_table_lock);
354
355 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
356 struct vsock_sock *vsk;
357 list_for_each_entry(vsk, &vsock_connected_table[i],
358 connected_table) {
359 if (vsk->transport != transport)
360 continue;
361
362 fn(sk_vsock(vsk));
363 }
364 }
365
366 spin_unlock_bh(&vsock_table_lock);
367 }
368 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
369
vsock_add_pending(struct sock * listener,struct sock * pending)370 void vsock_add_pending(struct sock *listener, struct sock *pending)
371 {
372 struct vsock_sock *vlistener;
373 struct vsock_sock *vpending;
374
375 vlistener = vsock_sk(listener);
376 vpending = vsock_sk(pending);
377
378 sock_hold(pending);
379 sock_hold(listener);
380 list_add_tail(&vpending->pending_links, &vlistener->pending_links);
381 }
382 EXPORT_SYMBOL_GPL(vsock_add_pending);
383
vsock_remove_pending(struct sock * listener,struct sock * pending)384 void vsock_remove_pending(struct sock *listener, struct sock *pending)
385 {
386 struct vsock_sock *vpending = vsock_sk(pending);
387
388 list_del_init(&vpending->pending_links);
389 sock_put(listener);
390 sock_put(pending);
391 }
392 EXPORT_SYMBOL_GPL(vsock_remove_pending);
393
vsock_enqueue_accept(struct sock * listener,struct sock * connected)394 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
395 {
396 struct vsock_sock *vlistener;
397 struct vsock_sock *vconnected;
398
399 vlistener = vsock_sk(listener);
400 vconnected = vsock_sk(connected);
401
402 sock_hold(connected);
403 sock_hold(listener);
404 list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
405 }
406 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
407
vsock_use_local_transport(unsigned int remote_cid)408 static bool vsock_use_local_transport(unsigned int remote_cid)
409 {
410 lockdep_assert_held(&vsock_register_mutex);
411
412 if (!transport_local)
413 return false;
414
415 if (remote_cid == VMADDR_CID_LOCAL)
416 return true;
417
418 if (transport_g2h) {
419 return remote_cid == transport_g2h->get_local_cid();
420 } else {
421 return remote_cid == VMADDR_CID_HOST;
422 }
423 }
424
vsock_deassign_transport(struct vsock_sock * vsk)425 static void vsock_deassign_transport(struct vsock_sock *vsk)
426 {
427 if (!vsk->transport)
428 return;
429
430 vsk->transport->destruct(vsk);
431 module_put(vsk->transport->module);
432 vsk->transport = NULL;
433 }
434
435 /* Assign a transport to a socket and call the .init transport callback.
436 *
437 * Note: for connection oriented socket this must be called when vsk->remote_addr
438 * is set (e.g. during the connect() or when a connection request on a listener
439 * socket is received).
440 * The vsk->remote_addr is used to decide which transport to use:
441 * - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if
442 * g2h is not loaded, will use local transport;
443 * - remote CID <= VMADDR_CID_HOST or h2g is not loaded or remote flags field
444 * includes VMADDR_FLAG_TO_HOST flag value, will use guest->host transport;
445 * - remote CID > VMADDR_CID_HOST will use host->guest transport;
446 */
vsock_assign_transport(struct vsock_sock * vsk,struct vsock_sock * psk)447 int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk)
448 {
449 const struct vsock_transport *new_transport;
450 struct sock *sk = sk_vsock(vsk);
451 unsigned int remote_cid = vsk->remote_addr.svm_cid;
452 __u8 remote_flags;
453 int ret;
454
455 /* If the packet is coming with the source and destination CIDs higher
456 * than VMADDR_CID_HOST, then a vsock channel where all the packets are
457 * forwarded to the host should be established. Then the host will
458 * need to forward the packets to the guest.
459 *
460 * The flag is set on the (listen) receive path (psk is not NULL). On
461 * the connect path the flag can be set by the user space application.
462 */
463 if (psk && vsk->local_addr.svm_cid > VMADDR_CID_HOST &&
464 vsk->remote_addr.svm_cid > VMADDR_CID_HOST)
465 vsk->remote_addr.svm_flags |= VMADDR_FLAG_TO_HOST;
466
467 remote_flags = vsk->remote_addr.svm_flags;
468
469 mutex_lock(&vsock_register_mutex);
470
471 switch (sk->sk_type) {
472 case SOCK_DGRAM:
473 new_transport = transport_dgram;
474 break;
475 case SOCK_STREAM:
476 case SOCK_SEQPACKET:
477 if (vsock_use_local_transport(remote_cid))
478 new_transport = transport_local;
479 else if (remote_cid <= VMADDR_CID_HOST || !transport_h2g ||
480 (remote_flags & VMADDR_FLAG_TO_HOST))
481 new_transport = transport_g2h;
482 else
483 new_transport = transport_h2g;
484 break;
485 default:
486 ret = -ESOCKTNOSUPPORT;
487 goto err;
488 }
489
490 if (vsk->transport) {
491 if (vsk->transport == new_transport) {
492 ret = 0;
493 goto err;
494 }
495
496 /* transport->release() must be called with sock lock acquired.
497 * This path can only be taken during vsock_connect(), where we
498 * have already held the sock lock. In the other cases, this
499 * function is called on a new socket which is not assigned to
500 * any transport.
501 */
502 vsk->transport->release(vsk);
503 vsock_deassign_transport(vsk);
504
505 /* transport's release() and destruct() can touch some socket
506 * state, since we are reassigning the socket to a new transport
507 * during vsock_connect(), let's reset these fields to have a
508 * clean state.
509 */
510 sock_reset_flag(sk, SOCK_DONE);
511 sk->sk_state = TCP_CLOSE;
512 vsk->peer_shutdown = 0;
513 }
514
515 /* We increase the module refcnt to prevent the transport unloading
516 * while there are open sockets assigned to it.
517 */
518 if (!new_transport || !try_module_get(new_transport->module)) {
519 ret = -ENODEV;
520 goto err;
521 }
522
523 /* It's safe to release the mutex after a successful try_module_get().
524 * Whichever transport `new_transport` points at, it won't go away until
525 * the last module_put() below or in vsock_deassign_transport().
526 */
527 mutex_unlock(&vsock_register_mutex);
528
529 if (sk->sk_type == SOCK_SEQPACKET) {
530 if (!new_transport->seqpacket_allow ||
531 !new_transport->seqpacket_allow(remote_cid)) {
532 module_put(new_transport->module);
533 return -ESOCKTNOSUPPORT;
534 }
535 }
536
537 ret = new_transport->init(vsk, psk);
538 if (ret) {
539 module_put(new_transport->module);
540 return ret;
541 }
542
543 vsk->transport = new_transport;
544
545 return 0;
546 err:
547 mutex_unlock(&vsock_register_mutex);
548 return ret;
549 }
550 EXPORT_SYMBOL_GPL(vsock_assign_transport);
551
552 /*
553 * Provide safe access to static transport_{h2g,g2h,dgram,local} callbacks.
554 * Otherwise we may race with module removal. Do not use on `vsk->transport`.
555 */
vsock_registered_transport_cid(const struct vsock_transport ** transport)556 static u32 vsock_registered_transport_cid(const struct vsock_transport **transport)
557 {
558 u32 cid = VMADDR_CID_ANY;
559
560 mutex_lock(&vsock_register_mutex);
561 if (*transport)
562 cid = (*transport)->get_local_cid();
563 mutex_unlock(&vsock_register_mutex);
564
565 return cid;
566 }
567
vsock_find_cid(unsigned int cid)568 bool vsock_find_cid(unsigned int cid)
569 {
570 if (cid == vsock_registered_transport_cid(&transport_g2h))
571 return true;
572
573 if (transport_h2g && cid == VMADDR_CID_HOST)
574 return true;
575
576 if (transport_local && cid == VMADDR_CID_LOCAL)
577 return true;
578
579 return false;
580 }
581 EXPORT_SYMBOL_GPL(vsock_find_cid);
582
vsock_dequeue_accept(struct sock * listener)583 static struct sock *vsock_dequeue_accept(struct sock *listener)
584 {
585 struct vsock_sock *vlistener;
586 struct vsock_sock *vconnected;
587
588 vlistener = vsock_sk(listener);
589
590 if (list_empty(&vlistener->accept_queue))
591 return NULL;
592
593 vconnected = list_entry(vlistener->accept_queue.next,
594 struct vsock_sock, accept_queue);
595
596 list_del_init(&vconnected->accept_queue);
597 sock_put(listener);
598 /* The caller will need a reference on the connected socket so we let
599 * it call sock_put().
600 */
601
602 return sk_vsock(vconnected);
603 }
604
vsock_is_accept_queue_empty(struct sock * sk)605 static bool vsock_is_accept_queue_empty(struct sock *sk)
606 {
607 struct vsock_sock *vsk = vsock_sk(sk);
608 return list_empty(&vsk->accept_queue);
609 }
610
vsock_is_pending(struct sock * sk)611 static bool vsock_is_pending(struct sock *sk)
612 {
613 struct vsock_sock *vsk = vsock_sk(sk);
614 return !list_empty(&vsk->pending_links);
615 }
616
vsock_send_shutdown(struct sock * sk,int mode)617 static int vsock_send_shutdown(struct sock *sk, int mode)
618 {
619 struct vsock_sock *vsk = vsock_sk(sk);
620
621 if (!vsk->transport)
622 return -ENODEV;
623
624 return vsk->transport->shutdown(vsk, mode);
625 }
626
vsock_pending_work(struct work_struct * work)627 static void vsock_pending_work(struct work_struct *work)
628 {
629 struct sock *sk;
630 struct sock *listener;
631 struct vsock_sock *vsk;
632 bool cleanup;
633
634 vsk = container_of(work, struct vsock_sock, pending_work.work);
635 sk = sk_vsock(vsk);
636 listener = vsk->listener;
637 cleanup = true;
638
639 lock_sock(listener);
640 lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
641
642 if (vsock_is_pending(sk)) {
643 vsock_remove_pending(listener, sk);
644
645 sk_acceptq_removed(listener);
646 } else if (!vsk->rejected) {
647 /* We are not on the pending list and accept() did not reject
648 * us, so we must have been accepted by our user process. We
649 * just need to drop our references to the sockets and be on
650 * our way.
651 */
652 cleanup = false;
653 goto out;
654 }
655
656 /* We need to remove ourself from the global connected sockets list so
657 * incoming packets can't find this socket, and to reduce the reference
658 * count.
659 */
660 vsock_remove_connected(vsk);
661
662 sk->sk_state = TCP_CLOSE;
663
664 out:
665 release_sock(sk);
666 release_sock(listener);
667 if (cleanup)
668 sock_put(sk);
669
670 sock_put(sk);
671 sock_put(listener);
672 }
673
674 /**** SOCKET OPERATIONS ****/
675
__vsock_bind_connectible(struct vsock_sock * vsk,struct sockaddr_vm * addr)676 static int __vsock_bind_connectible(struct vsock_sock *vsk,
677 struct sockaddr_vm *addr)
678 {
679 static u32 port;
680 struct sockaddr_vm new_addr;
681
682 if (!port)
683 port = get_random_u32_above(LAST_RESERVED_PORT);
684
685 vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
686
687 if (addr->svm_port == VMADDR_PORT_ANY) {
688 bool found = false;
689 unsigned int i;
690
691 for (i = 0; i < MAX_PORT_RETRIES; i++) {
692 if (port == VMADDR_PORT_ANY ||
693 port <= LAST_RESERVED_PORT)
694 port = LAST_RESERVED_PORT + 1;
695
696 new_addr.svm_port = port++;
697
698 if (!__vsock_find_bound_socket(&new_addr)) {
699 found = true;
700 break;
701 }
702 }
703
704 if (!found)
705 return -EADDRNOTAVAIL;
706 } else {
707 /* If port is in reserved range, ensure caller
708 * has necessary privileges.
709 */
710 if (addr->svm_port <= LAST_RESERVED_PORT &&
711 !capable(CAP_NET_BIND_SERVICE)) {
712 return -EACCES;
713 }
714
715 if (__vsock_find_bound_socket(&new_addr))
716 return -EADDRINUSE;
717 }
718
719 vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
720
721 /* Remove connection oriented sockets from the unbound list and add them
722 * to the hash table for easy lookup by its address. The unbound list
723 * is simply an extra entry at the end of the hash table, a trick used
724 * by AF_UNIX.
725 */
726 __vsock_remove_bound(vsk);
727 __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
728
729 return 0;
730 }
731
__vsock_bind_dgram(struct vsock_sock * vsk,struct sockaddr_vm * addr)732 static int __vsock_bind_dgram(struct vsock_sock *vsk,
733 struct sockaddr_vm *addr)
734 {
735 return vsk->transport->dgram_bind(vsk, addr);
736 }
737
__vsock_bind(struct sock * sk,struct sockaddr_vm * addr)738 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
739 {
740 struct vsock_sock *vsk = vsock_sk(sk);
741 int retval;
742
743 /* First ensure this socket isn't already bound. */
744 if (vsock_addr_bound(&vsk->local_addr))
745 return -EINVAL;
746
747 /* Now bind to the provided address or select appropriate values if
748 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY). Note that
749 * like AF_INET prevents binding to a non-local IP address (in most
750 * cases), we only allow binding to a local CID.
751 */
752 if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid))
753 return -EADDRNOTAVAIL;
754
755 switch (sk->sk_socket->type) {
756 case SOCK_STREAM:
757 case SOCK_SEQPACKET:
758 spin_lock_bh(&vsock_table_lock);
759 retval = __vsock_bind_connectible(vsk, addr);
760 spin_unlock_bh(&vsock_table_lock);
761 break;
762
763 case SOCK_DGRAM:
764 retval = __vsock_bind_dgram(vsk, addr);
765 break;
766
767 default:
768 retval = -EINVAL;
769 break;
770 }
771
772 return retval;
773 }
774
775 static void vsock_connect_timeout(struct work_struct *work);
776
__vsock_create(struct net * net,struct socket * sock,struct sock * parent,gfp_t priority,unsigned short type,int kern)777 static struct sock *__vsock_create(struct net *net,
778 struct socket *sock,
779 struct sock *parent,
780 gfp_t priority,
781 unsigned short type,
782 int kern)
783 {
784 struct sock *sk;
785 struct vsock_sock *psk;
786 struct vsock_sock *vsk;
787
788 sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
789 if (!sk)
790 return NULL;
791
792 sock_init_data(sock, sk);
793
794 /* sk->sk_type is normally set in sock_init_data, but only if sock is
795 * non-NULL. We make sure that our sockets always have a type by
796 * setting it here if needed.
797 */
798 if (!sock)
799 sk->sk_type = type;
800
801 vsk = vsock_sk(sk);
802 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
803 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
804
805 sk->sk_destruct = vsock_sk_destruct;
806 sk->sk_backlog_rcv = vsock_queue_rcv_skb;
807 sock_reset_flag(sk, SOCK_DONE);
808
809 INIT_LIST_HEAD(&vsk->bound_table);
810 INIT_LIST_HEAD(&vsk->connected_table);
811 vsk->listener = NULL;
812 INIT_LIST_HEAD(&vsk->pending_links);
813 INIT_LIST_HEAD(&vsk->accept_queue);
814 vsk->rejected = false;
815 vsk->sent_request = false;
816 vsk->ignore_connecting_rst = false;
817 vsk->peer_shutdown = 0;
818 INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
819 INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
820
821 psk = parent ? vsock_sk(parent) : NULL;
822 if (parent) {
823 vsk->trusted = psk->trusted;
824 vsk->owner = get_cred(psk->owner);
825 vsk->connect_timeout = psk->connect_timeout;
826 vsk->buffer_size = psk->buffer_size;
827 vsk->buffer_min_size = psk->buffer_min_size;
828 vsk->buffer_max_size = psk->buffer_max_size;
829 security_sk_clone(parent, sk);
830 } else {
831 vsk->trusted = ns_capable_noaudit(&init_user_ns, CAP_NET_ADMIN);
832 vsk->owner = get_current_cred();
833 vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
834 vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE;
835 vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE;
836 vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE;
837 }
838
839 return sk;
840 }
841
sock_type_connectible(u16 type)842 static bool sock_type_connectible(u16 type)
843 {
844 return (type == SOCK_STREAM) || (type == SOCK_SEQPACKET);
845 }
846
__vsock_release(struct sock * sk,int level)847 static void __vsock_release(struct sock *sk, int level)
848 {
849 struct vsock_sock *vsk;
850 struct sock *pending;
851
852 vsk = vsock_sk(sk);
853 pending = NULL; /* Compiler warning. */
854
855 /* When "level" is SINGLE_DEPTH_NESTING, use the nested
856 * version to avoid the warning "possible recursive locking
857 * detected". When "level" is 0, lock_sock_nested(sk, level)
858 * is the same as lock_sock(sk).
859 */
860 lock_sock_nested(sk, level);
861
862 /* Indicate to vsock_remove_sock() that the socket is being released and
863 * can be removed from the bound_table. Unlike transport reassignment
864 * case, where the socket must remain bound despite vsock_remove_sock()
865 * being called from the transport release() callback.
866 */
867 sock_set_flag(sk, SOCK_DEAD);
868
869 if (vsk->transport)
870 vsk->transport->release(vsk);
871 else if (sock_type_connectible(sk->sk_type))
872 vsock_remove_sock(vsk);
873
874 sock_orphan(sk);
875 sk->sk_shutdown = SHUTDOWN_MASK;
876
877 skb_queue_purge(&sk->sk_receive_queue);
878
879 /* Clean up any sockets that never were accepted. */
880 while ((pending = vsock_dequeue_accept(sk)) != NULL) {
881 __vsock_release(pending, SINGLE_DEPTH_NESTING);
882 sock_put(pending);
883 }
884
885 release_sock(sk);
886 sock_put(sk);
887 }
888
vsock_sk_destruct(struct sock * sk)889 static void vsock_sk_destruct(struct sock *sk)
890 {
891 struct vsock_sock *vsk = vsock_sk(sk);
892
893 /* Flush MSG_ZEROCOPY leftovers. */
894 __skb_queue_purge(&sk->sk_error_queue);
895
896 vsock_deassign_transport(vsk);
897
898 /* When clearing these addresses, there's no need to set the family and
899 * possibly register the address family with the kernel.
900 */
901 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
902 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
903
904 put_cred(vsk->owner);
905 }
906
vsock_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)907 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
908 {
909 int err;
910
911 err = sock_queue_rcv_skb(sk, skb);
912 if (err)
913 kfree_skb(skb);
914
915 return err;
916 }
917
vsock_create_connected(struct sock * parent)918 struct sock *vsock_create_connected(struct sock *parent)
919 {
920 return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL,
921 parent->sk_type, 0);
922 }
923 EXPORT_SYMBOL_GPL(vsock_create_connected);
924
vsock_stream_has_data(struct vsock_sock * vsk)925 s64 vsock_stream_has_data(struct vsock_sock *vsk)
926 {
927 if (WARN_ON(!vsk->transport))
928 return 0;
929
930 return vsk->transport->stream_has_data(vsk);
931 }
932 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
933
vsock_connectible_has_data(struct vsock_sock * vsk)934 s64 vsock_connectible_has_data(struct vsock_sock *vsk)
935 {
936 struct sock *sk = sk_vsock(vsk);
937
938 if (WARN_ON(!vsk->transport))
939 return 0;
940
941 if (sk->sk_type == SOCK_SEQPACKET)
942 return vsk->transport->seqpacket_has_data(vsk);
943 else
944 return vsock_stream_has_data(vsk);
945 }
946 EXPORT_SYMBOL_GPL(vsock_connectible_has_data);
947
vsock_stream_has_space(struct vsock_sock * vsk)948 s64 vsock_stream_has_space(struct vsock_sock *vsk)
949 {
950 if (WARN_ON(!vsk->transport))
951 return 0;
952
953 return vsk->transport->stream_has_space(vsk);
954 }
955 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
956
vsock_data_ready(struct sock * sk)957 void vsock_data_ready(struct sock *sk)
958 {
959 struct vsock_sock *vsk = vsock_sk(sk);
960
961 if (vsock_stream_has_data(vsk) >= sk->sk_rcvlowat ||
962 sock_flag(sk, SOCK_DONE))
963 sk->sk_data_ready(sk);
964 }
965 EXPORT_SYMBOL_GPL(vsock_data_ready);
966
967 /* Dummy callback required by sockmap.
968 * See unconditional call of saved_close() in sock_map_close().
969 */
vsock_close(struct sock * sk,long timeout)970 static void vsock_close(struct sock *sk, long timeout)
971 {
972 }
973
vsock_release(struct socket * sock)974 static int vsock_release(struct socket *sock)
975 {
976 struct sock *sk = sock->sk;
977
978 if (!sk)
979 return 0;
980
981 sk->sk_prot->close(sk, 0);
982 __vsock_release(sk, 0);
983 sock->sk = NULL;
984 sock->state = SS_FREE;
985
986 return 0;
987 }
988
989 static int
vsock_bind(struct socket * sock,struct sockaddr * addr,int addr_len)990 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
991 {
992 int err;
993 struct sock *sk;
994 struct sockaddr_vm *vm_addr;
995
996 sk = sock->sk;
997
998 if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
999 return -EINVAL;
1000
1001 lock_sock(sk);
1002 err = __vsock_bind(sk, vm_addr);
1003 release_sock(sk);
1004
1005 return err;
1006 }
1007
vsock_getname(struct socket * sock,struct sockaddr * addr,int peer)1008 static int vsock_getname(struct socket *sock,
1009 struct sockaddr *addr, int peer)
1010 {
1011 int err;
1012 struct sock *sk;
1013 struct vsock_sock *vsk;
1014 struct sockaddr_vm *vm_addr;
1015
1016 sk = sock->sk;
1017 vsk = vsock_sk(sk);
1018 err = 0;
1019
1020 lock_sock(sk);
1021
1022 if (peer) {
1023 if (sock->state != SS_CONNECTED) {
1024 err = -ENOTCONN;
1025 goto out;
1026 }
1027 vm_addr = &vsk->remote_addr;
1028 } else {
1029 vm_addr = &vsk->local_addr;
1030 }
1031
1032 /* sys_getsockname() and sys_getpeername() pass us a
1033 * MAX_SOCK_ADDR-sized buffer and don't set addr_len. Unfortunately
1034 * that macro is defined in socket.c instead of .h, so we hardcode its
1035 * value here.
1036 */
1037 BUILD_BUG_ON(sizeof(*vm_addr) > 128);
1038 memcpy(addr, vm_addr, sizeof(*vm_addr));
1039 err = sizeof(*vm_addr);
1040
1041 out:
1042 release_sock(sk);
1043 return err;
1044 }
1045
vsock_linger(struct sock * sk)1046 void vsock_linger(struct sock *sk)
1047 {
1048 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1049 ssize_t (*unsent)(struct vsock_sock *vsk);
1050 struct vsock_sock *vsk = vsock_sk(sk);
1051 long timeout;
1052
1053 if (!sock_flag(sk, SOCK_LINGER))
1054 return;
1055
1056 timeout = sk->sk_lingertime;
1057 if (!timeout)
1058 return;
1059
1060 /* Transports must implement `unsent_bytes` if they want to support
1061 * SOCK_LINGER through `vsock_linger()` since we use it to check when
1062 * the socket can be closed.
1063 */
1064 unsent = vsk->transport->unsent_bytes;
1065 if (!unsent)
1066 return;
1067
1068 add_wait_queue(sk_sleep(sk), &wait);
1069
1070 do {
1071 if (sk_wait_event(sk, &timeout, unsent(vsk) == 0, &wait))
1072 break;
1073 } while (!signal_pending(current) && timeout);
1074
1075 remove_wait_queue(sk_sleep(sk), &wait);
1076 }
1077 EXPORT_SYMBOL_GPL(vsock_linger);
1078
vsock_shutdown(struct socket * sock,int mode)1079 static int vsock_shutdown(struct socket *sock, int mode)
1080 {
1081 int err;
1082 struct sock *sk;
1083
1084 /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
1085 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
1086 * here like the other address families do. Note also that the
1087 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
1088 * which is what we want.
1089 */
1090 mode++;
1091
1092 if ((mode & ~SHUTDOWN_MASK) || !mode)
1093 return -EINVAL;
1094
1095 /* If this is a connection oriented socket and it is not connected then
1096 * bail out immediately. If it is a DGRAM socket then we must first
1097 * kick the socket so that it wakes up from any sleeping calls, for
1098 * example recv(), and then afterwards return the error.
1099 */
1100
1101 sk = sock->sk;
1102
1103 lock_sock(sk);
1104 if (sock->state == SS_UNCONNECTED) {
1105 err = -ENOTCONN;
1106 if (sock_type_connectible(sk->sk_type))
1107 goto out;
1108 } else {
1109 sock->state = SS_DISCONNECTING;
1110 err = 0;
1111 }
1112
1113 /* Receive and send shutdowns are treated alike. */
1114 mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
1115 if (mode) {
1116 sk->sk_shutdown |= mode;
1117 sk->sk_state_change(sk);
1118
1119 if (sock_type_connectible(sk->sk_type)) {
1120 sock_reset_flag(sk, SOCK_DONE);
1121 vsock_send_shutdown(sk, mode);
1122 }
1123 }
1124
1125 out:
1126 release_sock(sk);
1127 return err;
1128 }
1129
vsock_poll(struct file * file,struct socket * sock,poll_table * wait)1130 static __poll_t vsock_poll(struct file *file, struct socket *sock,
1131 poll_table *wait)
1132 {
1133 struct sock *sk;
1134 __poll_t mask;
1135 struct vsock_sock *vsk;
1136
1137 sk = sock->sk;
1138 vsk = vsock_sk(sk);
1139
1140 poll_wait(file, sk_sleep(sk), wait);
1141 mask = 0;
1142
1143 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
1144 /* Signify that there has been an error on this socket. */
1145 mask |= EPOLLERR;
1146
1147 /* INET sockets treat local write shutdown and peer write shutdown as a
1148 * case of EPOLLHUP set.
1149 */
1150 if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
1151 ((sk->sk_shutdown & SEND_SHUTDOWN) &&
1152 (vsk->peer_shutdown & SEND_SHUTDOWN))) {
1153 mask |= EPOLLHUP;
1154 }
1155
1156 if (sk->sk_shutdown & RCV_SHUTDOWN ||
1157 vsk->peer_shutdown & SEND_SHUTDOWN) {
1158 mask |= EPOLLRDHUP;
1159 }
1160
1161 if (sk_is_readable(sk))
1162 mask |= EPOLLIN | EPOLLRDNORM;
1163
1164 if (sock->type == SOCK_DGRAM) {
1165 /* For datagram sockets we can read if there is something in
1166 * the queue and write as long as the socket isn't shutdown for
1167 * sending.
1168 */
1169 if (!skb_queue_empty_lockless(&sk->sk_receive_queue) ||
1170 (sk->sk_shutdown & RCV_SHUTDOWN)) {
1171 mask |= EPOLLIN | EPOLLRDNORM;
1172 }
1173
1174 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1175 mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
1176
1177 } else if (sock_type_connectible(sk->sk_type)) {
1178 const struct vsock_transport *transport;
1179
1180 lock_sock(sk);
1181
1182 transport = vsk->transport;
1183
1184 /* Listening sockets that have connections in their accept
1185 * queue can be read.
1186 */
1187 if (sk->sk_state == TCP_LISTEN
1188 && !vsock_is_accept_queue_empty(sk))
1189 mask |= EPOLLIN | EPOLLRDNORM;
1190
1191 /* If there is something in the queue then we can read. */
1192 if (transport && transport->stream_is_active(vsk) &&
1193 !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1194 bool data_ready_now = false;
1195 int target = sock_rcvlowat(sk, 0, INT_MAX);
1196 int ret = transport->notify_poll_in(
1197 vsk, target, &data_ready_now);
1198 if (ret < 0) {
1199 mask |= EPOLLERR;
1200 } else {
1201 if (data_ready_now)
1202 mask |= EPOLLIN | EPOLLRDNORM;
1203
1204 }
1205 }
1206
1207 /* Sockets whose connections have been closed, reset, or
1208 * terminated should also be considered read, and we check the
1209 * shutdown flag for that.
1210 */
1211 if (sk->sk_shutdown & RCV_SHUTDOWN ||
1212 vsk->peer_shutdown & SEND_SHUTDOWN) {
1213 mask |= EPOLLIN | EPOLLRDNORM;
1214 }
1215
1216 /* Connected sockets that can produce data can be written. */
1217 if (transport && sk->sk_state == TCP_ESTABLISHED) {
1218 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1219 bool space_avail_now = false;
1220 int ret = transport->notify_poll_out(
1221 vsk, 1, &space_avail_now);
1222 if (ret < 0) {
1223 mask |= EPOLLERR;
1224 } else {
1225 if (space_avail_now)
1226 /* Remove EPOLLWRBAND since INET
1227 * sockets are not setting it.
1228 */
1229 mask |= EPOLLOUT | EPOLLWRNORM;
1230
1231 }
1232 }
1233 }
1234
1235 /* Simulate INET socket poll behaviors, which sets
1236 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
1237 * but local send is not shutdown.
1238 */
1239 if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
1240 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1241 mask |= EPOLLOUT | EPOLLWRNORM;
1242
1243 }
1244
1245 release_sock(sk);
1246 }
1247
1248 return mask;
1249 }
1250
vsock_read_skb(struct sock * sk,skb_read_actor_t read_actor)1251 static int vsock_read_skb(struct sock *sk, skb_read_actor_t read_actor)
1252 {
1253 struct vsock_sock *vsk = vsock_sk(sk);
1254
1255 if (WARN_ON_ONCE(!vsk->transport))
1256 return -ENODEV;
1257
1258 return vsk->transport->read_skb(vsk, read_actor);
1259 }
1260
vsock_dgram_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)1261 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
1262 size_t len)
1263 {
1264 int err;
1265 struct sock *sk;
1266 struct vsock_sock *vsk;
1267 struct sockaddr_vm *remote_addr;
1268 const struct vsock_transport *transport;
1269
1270 if (msg->msg_flags & MSG_OOB)
1271 return -EOPNOTSUPP;
1272
1273 /* For now, MSG_DONTWAIT is always assumed... */
1274 err = 0;
1275 sk = sock->sk;
1276 vsk = vsock_sk(sk);
1277
1278 lock_sock(sk);
1279
1280 transport = vsk->transport;
1281
1282 err = vsock_auto_bind(vsk);
1283 if (err)
1284 goto out;
1285
1286
1287 /* If the provided message contains an address, use that. Otherwise
1288 * fall back on the socket's remote handle (if it has been connected).
1289 */
1290 if (msg->msg_name &&
1291 vsock_addr_cast(msg->msg_name, msg->msg_namelen,
1292 &remote_addr) == 0) {
1293 /* Ensure this address is of the right type and is a valid
1294 * destination.
1295 */
1296
1297 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1298 remote_addr->svm_cid = transport->get_local_cid();
1299
1300 if (!vsock_addr_bound(remote_addr)) {
1301 err = -EINVAL;
1302 goto out;
1303 }
1304 } else if (sock->state == SS_CONNECTED) {
1305 remote_addr = &vsk->remote_addr;
1306
1307 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1308 remote_addr->svm_cid = transport->get_local_cid();
1309
1310 /* XXX Should connect() or this function ensure remote_addr is
1311 * bound?
1312 */
1313 if (!vsock_addr_bound(&vsk->remote_addr)) {
1314 err = -EINVAL;
1315 goto out;
1316 }
1317 } else {
1318 err = -EINVAL;
1319 goto out;
1320 }
1321
1322 if (!transport->dgram_allow(remote_addr->svm_cid,
1323 remote_addr->svm_port)) {
1324 err = -EINVAL;
1325 goto out;
1326 }
1327
1328 err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1329
1330 out:
1331 release_sock(sk);
1332 return err;
1333 }
1334
vsock_dgram_connect(struct socket * sock,struct sockaddr * addr,int addr_len,int flags)1335 static int vsock_dgram_connect(struct socket *sock,
1336 struct sockaddr *addr, int addr_len, int flags)
1337 {
1338 int err;
1339 struct sock *sk;
1340 struct vsock_sock *vsk;
1341 struct sockaddr_vm *remote_addr;
1342
1343 sk = sock->sk;
1344 vsk = vsock_sk(sk);
1345
1346 err = vsock_addr_cast(addr, addr_len, &remote_addr);
1347 if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1348 lock_sock(sk);
1349 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1350 VMADDR_PORT_ANY);
1351 sock->state = SS_UNCONNECTED;
1352 release_sock(sk);
1353 return 0;
1354 } else if (err != 0)
1355 return -EINVAL;
1356
1357 lock_sock(sk);
1358
1359 err = vsock_auto_bind(vsk);
1360 if (err)
1361 goto out;
1362
1363 if (!vsk->transport->dgram_allow(remote_addr->svm_cid,
1364 remote_addr->svm_port)) {
1365 err = -EINVAL;
1366 goto out;
1367 }
1368
1369 memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1370 sock->state = SS_CONNECTED;
1371
1372 /* sock map disallows redirection of non-TCP sockets with sk_state !=
1373 * TCP_ESTABLISHED (see sock_map_redirect_allowed()), so we set
1374 * TCP_ESTABLISHED here to allow redirection of connected vsock dgrams.
1375 *
1376 * This doesn't seem to be abnormal state for datagram sockets, as the
1377 * same approach can be see in other datagram socket types as well
1378 * (such as unix sockets).
1379 */
1380 sk->sk_state = TCP_ESTABLISHED;
1381
1382 out:
1383 release_sock(sk);
1384 return err;
1385 }
1386
__vsock_dgram_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)1387 int __vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1388 size_t len, int flags)
1389 {
1390 struct sock *sk = sock->sk;
1391 struct vsock_sock *vsk = vsock_sk(sk);
1392
1393 return vsk->transport->dgram_dequeue(vsk, msg, len, flags);
1394 }
1395
vsock_dgram_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)1396 int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1397 size_t len, int flags)
1398 {
1399 #ifdef CONFIG_BPF_SYSCALL
1400 struct sock *sk = sock->sk;
1401 const struct proto *prot;
1402
1403 prot = READ_ONCE(sk->sk_prot);
1404 if (prot != &vsock_proto)
1405 return prot->recvmsg(sk, msg, len, flags, NULL);
1406 #endif
1407
1408 return __vsock_dgram_recvmsg(sock, msg, len, flags);
1409 }
1410 EXPORT_SYMBOL_GPL(vsock_dgram_recvmsg);
1411
vsock_do_ioctl(struct socket * sock,unsigned int cmd,int __user * arg)1412 static int vsock_do_ioctl(struct socket *sock, unsigned int cmd,
1413 int __user *arg)
1414 {
1415 struct sock *sk = sock->sk;
1416 struct vsock_sock *vsk;
1417 int ret;
1418
1419 vsk = vsock_sk(sk);
1420
1421 switch (cmd) {
1422 case SIOCINQ: {
1423 ssize_t n_bytes;
1424
1425 if (!vsk->transport) {
1426 ret = -EOPNOTSUPP;
1427 break;
1428 }
1429
1430 if (sock_type_connectible(sk->sk_type) &&
1431 sk->sk_state == TCP_LISTEN) {
1432 ret = -EINVAL;
1433 break;
1434 }
1435
1436 n_bytes = vsock_stream_has_data(vsk);
1437 if (n_bytes < 0) {
1438 ret = n_bytes;
1439 break;
1440 }
1441 ret = put_user(n_bytes, arg);
1442 break;
1443 }
1444 case SIOCOUTQ: {
1445 ssize_t n_bytes;
1446
1447 if (!vsk->transport || !vsk->transport->unsent_bytes) {
1448 ret = -EOPNOTSUPP;
1449 break;
1450 }
1451
1452 if (sock_type_connectible(sk->sk_type) && sk->sk_state == TCP_LISTEN) {
1453 ret = -EINVAL;
1454 break;
1455 }
1456
1457 n_bytes = vsk->transport->unsent_bytes(vsk);
1458 if (n_bytes < 0) {
1459 ret = n_bytes;
1460 break;
1461 }
1462
1463 ret = put_user(n_bytes, arg);
1464 break;
1465 }
1466 default:
1467 ret = -ENOIOCTLCMD;
1468 }
1469
1470 return ret;
1471 }
1472
vsock_ioctl(struct socket * sock,unsigned int cmd,unsigned long arg)1473 static int vsock_ioctl(struct socket *sock, unsigned int cmd,
1474 unsigned long arg)
1475 {
1476 int ret;
1477
1478 lock_sock(sock->sk);
1479 ret = vsock_do_ioctl(sock, cmd, (int __user *)arg);
1480 release_sock(sock->sk);
1481
1482 return ret;
1483 }
1484
1485 static const struct proto_ops vsock_dgram_ops = {
1486 .family = PF_VSOCK,
1487 .owner = THIS_MODULE,
1488 .release = vsock_release,
1489 .bind = vsock_bind,
1490 .connect = vsock_dgram_connect,
1491 .socketpair = sock_no_socketpair,
1492 .accept = sock_no_accept,
1493 .getname = vsock_getname,
1494 .poll = vsock_poll,
1495 .ioctl = vsock_ioctl,
1496 .listen = sock_no_listen,
1497 .shutdown = vsock_shutdown,
1498 .sendmsg = vsock_dgram_sendmsg,
1499 .recvmsg = vsock_dgram_recvmsg,
1500 .mmap = sock_no_mmap,
1501 .read_skb = vsock_read_skb,
1502 };
1503
vsock_transport_cancel_pkt(struct vsock_sock * vsk)1504 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1505 {
1506 const struct vsock_transport *transport = vsk->transport;
1507
1508 if (!transport || !transport->cancel_pkt)
1509 return -EOPNOTSUPP;
1510
1511 return transport->cancel_pkt(vsk);
1512 }
1513
vsock_connect_timeout(struct work_struct * work)1514 static void vsock_connect_timeout(struct work_struct *work)
1515 {
1516 struct sock *sk;
1517 struct vsock_sock *vsk;
1518
1519 vsk = container_of(work, struct vsock_sock, connect_work.work);
1520 sk = sk_vsock(vsk);
1521
1522 lock_sock(sk);
1523 if (sk->sk_state == TCP_SYN_SENT &&
1524 (sk->sk_shutdown != SHUTDOWN_MASK)) {
1525 sk->sk_state = TCP_CLOSE;
1526 sk->sk_socket->state = SS_UNCONNECTED;
1527 sk->sk_err = ETIMEDOUT;
1528 sk_error_report(sk);
1529 vsock_transport_cancel_pkt(vsk);
1530 }
1531 release_sock(sk);
1532
1533 sock_put(sk);
1534 }
1535
vsock_connect(struct socket * sock,struct sockaddr * addr,int addr_len,int flags)1536 static int vsock_connect(struct socket *sock, struct sockaddr *addr,
1537 int addr_len, int flags)
1538 {
1539 int err;
1540 struct sock *sk;
1541 struct vsock_sock *vsk;
1542 const struct vsock_transport *transport;
1543 struct sockaddr_vm *remote_addr;
1544 long timeout;
1545 DEFINE_WAIT(wait);
1546
1547 err = 0;
1548 sk = sock->sk;
1549 vsk = vsock_sk(sk);
1550
1551 lock_sock(sk);
1552
1553 /* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1554 switch (sock->state) {
1555 case SS_CONNECTED:
1556 err = -EISCONN;
1557 goto out;
1558 case SS_DISCONNECTING:
1559 err = -EINVAL;
1560 goto out;
1561 case SS_CONNECTING:
1562 /* This continues on so we can move sock into the SS_CONNECTED
1563 * state once the connection has completed (at which point err
1564 * will be set to zero also). Otherwise, we will either wait
1565 * for the connection or return -EALREADY should this be a
1566 * non-blocking call.
1567 */
1568 err = -EALREADY;
1569 if (flags & O_NONBLOCK)
1570 goto out;
1571 break;
1572 default:
1573 if ((sk->sk_state == TCP_LISTEN) ||
1574 vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1575 err = -EINVAL;
1576 goto out;
1577 }
1578
1579 /* Set the remote address that we are connecting to. */
1580 memcpy(&vsk->remote_addr, remote_addr,
1581 sizeof(vsk->remote_addr));
1582
1583 err = vsock_assign_transport(vsk, NULL);
1584 if (err)
1585 goto out;
1586
1587 transport = vsk->transport;
1588
1589 /* The hypervisor and well-known contexts do not have socket
1590 * endpoints.
1591 */
1592 if (!transport ||
1593 !transport->stream_allow(remote_addr->svm_cid,
1594 remote_addr->svm_port)) {
1595 err = -ENETUNREACH;
1596 goto out;
1597 }
1598
1599 if (vsock_msgzerocopy_allow(transport)) {
1600 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1601 } else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1602 /* If this option was set before 'connect()',
1603 * when transport was unknown, check that this
1604 * feature is supported here.
1605 */
1606 err = -EOPNOTSUPP;
1607 goto out;
1608 }
1609
1610 err = vsock_auto_bind(vsk);
1611 if (err)
1612 goto out;
1613
1614 sk->sk_state = TCP_SYN_SENT;
1615
1616 err = transport->connect(vsk);
1617 if (err < 0)
1618 goto out;
1619
1620 /* sk_err might have been set as a result of an earlier
1621 * (failed) connect attempt.
1622 */
1623 sk->sk_err = 0;
1624
1625 /* Mark sock as connecting and set the error code to in
1626 * progress in case this is a non-blocking connect.
1627 */
1628 sock->state = SS_CONNECTING;
1629 err = -EINPROGRESS;
1630 }
1631
1632 /* The receive path will handle all communication until we are able to
1633 * enter the connected state. Here we wait for the connection to be
1634 * completed or a notification of an error.
1635 */
1636 timeout = vsk->connect_timeout;
1637 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1638
1639 /* If the socket is already closing or it is in an error state, there
1640 * is no point in waiting.
1641 */
1642 while (sk->sk_state != TCP_ESTABLISHED &&
1643 sk->sk_state != TCP_CLOSING && sk->sk_err == 0) {
1644 if (flags & O_NONBLOCK) {
1645 /* If we're not going to block, we schedule a timeout
1646 * function to generate a timeout on the connection
1647 * attempt, in case the peer doesn't respond in a
1648 * timely manner. We hold on to the socket until the
1649 * timeout fires.
1650 */
1651 sock_hold(sk);
1652
1653 /* If the timeout function is already scheduled,
1654 * reschedule it, then ungrab the socket refcount to
1655 * keep it balanced.
1656 */
1657 if (mod_delayed_work(system_wq, &vsk->connect_work,
1658 timeout))
1659 sock_put(sk);
1660
1661 /* Skip ahead to preserve error code set above. */
1662 goto out_wait;
1663 }
1664
1665 release_sock(sk);
1666 timeout = schedule_timeout(timeout);
1667 lock_sock(sk);
1668
1669 if (signal_pending(current)) {
1670 err = sock_intr_errno(timeout);
1671 sk->sk_state = sk->sk_state == TCP_ESTABLISHED ? TCP_CLOSING : TCP_CLOSE;
1672 sock->state = SS_UNCONNECTED;
1673 vsock_transport_cancel_pkt(vsk);
1674 vsock_remove_connected(vsk);
1675 goto out_wait;
1676 } else if ((sk->sk_state != TCP_ESTABLISHED) && (timeout == 0)) {
1677 err = -ETIMEDOUT;
1678 sk->sk_state = TCP_CLOSE;
1679 sock->state = SS_UNCONNECTED;
1680 vsock_transport_cancel_pkt(vsk);
1681 goto out_wait;
1682 }
1683
1684 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1685 }
1686
1687 if (sk->sk_err) {
1688 err = -sk->sk_err;
1689 sk->sk_state = TCP_CLOSE;
1690 sock->state = SS_UNCONNECTED;
1691 } else {
1692 err = 0;
1693 }
1694
1695 out_wait:
1696 finish_wait(sk_sleep(sk), &wait);
1697 out:
1698 release_sock(sk);
1699 return err;
1700 }
1701
vsock_accept(struct socket * sock,struct socket * newsock,struct proto_accept_arg * arg)1702 static int vsock_accept(struct socket *sock, struct socket *newsock,
1703 struct proto_accept_arg *arg)
1704 {
1705 struct sock *listener;
1706 int err;
1707 struct sock *connected;
1708 struct vsock_sock *vconnected;
1709 long timeout;
1710 DEFINE_WAIT(wait);
1711
1712 err = 0;
1713 listener = sock->sk;
1714
1715 lock_sock(listener);
1716
1717 if (!sock_type_connectible(sock->type)) {
1718 err = -EOPNOTSUPP;
1719 goto out;
1720 }
1721
1722 if (listener->sk_state != TCP_LISTEN) {
1723 err = -EINVAL;
1724 goto out;
1725 }
1726
1727 /* Wait for children sockets to appear; these are the new sockets
1728 * created upon connection establishment.
1729 */
1730 timeout = sock_rcvtimeo(listener, arg->flags & O_NONBLOCK);
1731 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1732
1733 while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1734 listener->sk_err == 0) {
1735 release_sock(listener);
1736 timeout = schedule_timeout(timeout);
1737 finish_wait(sk_sleep(listener), &wait);
1738 lock_sock(listener);
1739
1740 if (signal_pending(current)) {
1741 err = sock_intr_errno(timeout);
1742 goto out;
1743 } else if (timeout == 0) {
1744 err = -EAGAIN;
1745 goto out;
1746 }
1747
1748 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1749 }
1750 finish_wait(sk_sleep(listener), &wait);
1751
1752 if (listener->sk_err)
1753 err = -listener->sk_err;
1754
1755 if (connected) {
1756 sk_acceptq_removed(listener);
1757
1758 lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1759 vconnected = vsock_sk(connected);
1760
1761 /* If the listener socket has received an error, then we should
1762 * reject this socket and return. Note that we simply mark the
1763 * socket rejected, drop our reference, and let the cleanup
1764 * function handle the cleanup; the fact that we found it in
1765 * the listener's accept queue guarantees that the cleanup
1766 * function hasn't run yet.
1767 */
1768 if (err) {
1769 vconnected->rejected = true;
1770 } else {
1771 newsock->state = SS_CONNECTED;
1772 sock_graft(connected, newsock);
1773 if (vsock_msgzerocopy_allow(vconnected->transport))
1774 set_bit(SOCK_SUPPORT_ZC,
1775 &connected->sk_socket->flags);
1776 }
1777
1778 release_sock(connected);
1779 sock_put(connected);
1780 }
1781
1782 out:
1783 release_sock(listener);
1784 return err;
1785 }
1786
vsock_listen(struct socket * sock,int backlog)1787 static int vsock_listen(struct socket *sock, int backlog)
1788 {
1789 int err;
1790 struct sock *sk;
1791 struct vsock_sock *vsk;
1792
1793 sk = sock->sk;
1794
1795 lock_sock(sk);
1796
1797 if (!sock_type_connectible(sk->sk_type)) {
1798 err = -EOPNOTSUPP;
1799 goto out;
1800 }
1801
1802 if (sock->state != SS_UNCONNECTED) {
1803 err = -EINVAL;
1804 goto out;
1805 }
1806
1807 vsk = vsock_sk(sk);
1808
1809 if (!vsock_addr_bound(&vsk->local_addr)) {
1810 err = -EINVAL;
1811 goto out;
1812 }
1813
1814 sk->sk_max_ack_backlog = backlog;
1815 sk->sk_state = TCP_LISTEN;
1816
1817 err = 0;
1818
1819 out:
1820 release_sock(sk);
1821 return err;
1822 }
1823
vsock_update_buffer_size(struct vsock_sock * vsk,const struct vsock_transport * transport,u64 val)1824 static void vsock_update_buffer_size(struct vsock_sock *vsk,
1825 const struct vsock_transport *transport,
1826 u64 val)
1827 {
1828 if (val > vsk->buffer_max_size)
1829 val = vsk->buffer_max_size;
1830
1831 if (val < vsk->buffer_min_size)
1832 val = vsk->buffer_min_size;
1833
1834 if (val != vsk->buffer_size &&
1835 transport && transport->notify_buffer_size)
1836 transport->notify_buffer_size(vsk, &val);
1837
1838 vsk->buffer_size = val;
1839 }
1840
vsock_connectible_setsockopt(struct socket * sock,int level,int optname,sockptr_t optval,unsigned int optlen)1841 static int vsock_connectible_setsockopt(struct socket *sock,
1842 int level,
1843 int optname,
1844 sockptr_t optval,
1845 unsigned int optlen)
1846 {
1847 int err;
1848 struct sock *sk;
1849 struct vsock_sock *vsk;
1850 const struct vsock_transport *transport;
1851 u64 val;
1852
1853 if (level != AF_VSOCK && level != SOL_SOCKET)
1854 return -ENOPROTOOPT;
1855
1856 #define COPY_IN(_v) \
1857 do { \
1858 if (optlen < sizeof(_v)) { \
1859 err = -EINVAL; \
1860 goto exit; \
1861 } \
1862 if (copy_from_sockptr(&_v, optval, sizeof(_v)) != 0) { \
1863 err = -EFAULT; \
1864 goto exit; \
1865 } \
1866 } while (0)
1867
1868 err = 0;
1869 sk = sock->sk;
1870 vsk = vsock_sk(sk);
1871
1872 lock_sock(sk);
1873
1874 transport = vsk->transport;
1875
1876 if (level == SOL_SOCKET) {
1877 int zerocopy;
1878
1879 if (optname != SO_ZEROCOPY) {
1880 release_sock(sk);
1881 return sock_setsockopt(sock, level, optname, optval, optlen);
1882 }
1883
1884 /* Use 'int' type here, because variable to
1885 * set this option usually has this type.
1886 */
1887 COPY_IN(zerocopy);
1888
1889 if (zerocopy < 0 || zerocopy > 1) {
1890 err = -EINVAL;
1891 goto exit;
1892 }
1893
1894 if (transport && !vsock_msgzerocopy_allow(transport)) {
1895 err = -EOPNOTSUPP;
1896 goto exit;
1897 }
1898
1899 sock_valbool_flag(sk, SOCK_ZEROCOPY, zerocopy);
1900 goto exit;
1901 }
1902
1903 switch (optname) {
1904 case SO_VM_SOCKETS_BUFFER_SIZE:
1905 COPY_IN(val);
1906 vsock_update_buffer_size(vsk, transport, val);
1907 break;
1908
1909 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1910 COPY_IN(val);
1911 vsk->buffer_max_size = val;
1912 vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1913 break;
1914
1915 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1916 COPY_IN(val);
1917 vsk->buffer_min_size = val;
1918 vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1919 break;
1920
1921 case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
1922 case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD: {
1923 struct __kernel_sock_timeval tv;
1924
1925 err = sock_copy_user_timeval(&tv, optval, optlen,
1926 optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
1927 if (err)
1928 break;
1929 if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1930 tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1931 vsk->connect_timeout = tv.tv_sec * HZ +
1932 DIV_ROUND_UP((unsigned long)tv.tv_usec, (USEC_PER_SEC / HZ));
1933 if (vsk->connect_timeout == 0)
1934 vsk->connect_timeout =
1935 VSOCK_DEFAULT_CONNECT_TIMEOUT;
1936
1937 } else {
1938 err = -ERANGE;
1939 }
1940 break;
1941 }
1942
1943 default:
1944 err = -ENOPROTOOPT;
1945 break;
1946 }
1947
1948 #undef COPY_IN
1949
1950 exit:
1951 release_sock(sk);
1952 return err;
1953 }
1954
vsock_connectible_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)1955 static int vsock_connectible_getsockopt(struct socket *sock,
1956 int level, int optname,
1957 char __user *optval,
1958 int __user *optlen)
1959 {
1960 struct sock *sk = sock->sk;
1961 struct vsock_sock *vsk = vsock_sk(sk);
1962
1963 union {
1964 u64 val64;
1965 struct old_timeval32 tm32;
1966 struct __kernel_old_timeval tm;
1967 struct __kernel_sock_timeval stm;
1968 } v;
1969
1970 int lv = sizeof(v.val64);
1971 int len;
1972
1973 if (level != AF_VSOCK)
1974 return -ENOPROTOOPT;
1975
1976 if (get_user(len, optlen))
1977 return -EFAULT;
1978
1979 memset(&v, 0, sizeof(v));
1980
1981 switch (optname) {
1982 case SO_VM_SOCKETS_BUFFER_SIZE:
1983 v.val64 = vsk->buffer_size;
1984 break;
1985
1986 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1987 v.val64 = vsk->buffer_max_size;
1988 break;
1989
1990 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1991 v.val64 = vsk->buffer_min_size;
1992 break;
1993
1994 case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
1995 case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD:
1996 lv = sock_get_timeout(vsk->connect_timeout, &v,
1997 optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
1998 break;
1999
2000 default:
2001 return -ENOPROTOOPT;
2002 }
2003
2004 if (len < lv)
2005 return -EINVAL;
2006 if (len > lv)
2007 len = lv;
2008 if (copy_to_user(optval, &v, len))
2009 return -EFAULT;
2010
2011 if (put_user(len, optlen))
2012 return -EFAULT;
2013
2014 return 0;
2015 }
2016
vsock_connectible_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)2017 static int vsock_connectible_sendmsg(struct socket *sock, struct msghdr *msg,
2018 size_t len)
2019 {
2020 struct sock *sk;
2021 struct vsock_sock *vsk;
2022 const struct vsock_transport *transport;
2023 ssize_t total_written;
2024 long timeout;
2025 int err;
2026 struct vsock_transport_send_notify_data send_data;
2027 DEFINE_WAIT_FUNC(wait, woken_wake_function);
2028
2029 sk = sock->sk;
2030 vsk = vsock_sk(sk);
2031 total_written = 0;
2032 err = 0;
2033
2034 if (msg->msg_flags & MSG_OOB)
2035 return -EOPNOTSUPP;
2036
2037 lock_sock(sk);
2038
2039 transport = vsk->transport;
2040
2041 /* Callers should not provide a destination with connection oriented
2042 * sockets.
2043 */
2044 if (msg->msg_namelen) {
2045 err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
2046 goto out;
2047 }
2048
2049 /* Send data only if both sides are not shutdown in the direction. */
2050 if (sk->sk_shutdown & SEND_SHUTDOWN ||
2051 vsk->peer_shutdown & RCV_SHUTDOWN) {
2052 err = -EPIPE;
2053 goto out;
2054 }
2055
2056 if (!transport || sk->sk_state != TCP_ESTABLISHED ||
2057 !vsock_addr_bound(&vsk->local_addr)) {
2058 err = -ENOTCONN;
2059 goto out;
2060 }
2061
2062 if (!vsock_addr_bound(&vsk->remote_addr)) {
2063 err = -EDESTADDRREQ;
2064 goto out;
2065 }
2066
2067 if (msg->msg_flags & MSG_ZEROCOPY &&
2068 !vsock_msgzerocopy_allow(transport)) {
2069 err = -EOPNOTSUPP;
2070 goto out;
2071 }
2072
2073 /* Wait for room in the produce queue to enqueue our user's data. */
2074 timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
2075
2076 err = transport->notify_send_init(vsk, &send_data);
2077 if (err < 0)
2078 goto out;
2079
2080 while (total_written < len) {
2081 ssize_t written;
2082
2083 add_wait_queue(sk_sleep(sk), &wait);
2084 while (vsock_stream_has_space(vsk) == 0 &&
2085 sk->sk_err == 0 &&
2086 !(sk->sk_shutdown & SEND_SHUTDOWN) &&
2087 !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
2088
2089 /* Don't wait for non-blocking sockets. */
2090 if (timeout == 0) {
2091 err = -EAGAIN;
2092 remove_wait_queue(sk_sleep(sk), &wait);
2093 goto out_err;
2094 }
2095
2096 err = transport->notify_send_pre_block(vsk, &send_data);
2097 if (err < 0) {
2098 remove_wait_queue(sk_sleep(sk), &wait);
2099 goto out_err;
2100 }
2101
2102 release_sock(sk);
2103 timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
2104 lock_sock(sk);
2105 if (signal_pending(current)) {
2106 err = sock_intr_errno(timeout);
2107 remove_wait_queue(sk_sleep(sk), &wait);
2108 goto out_err;
2109 } else if (timeout == 0) {
2110 err = -EAGAIN;
2111 remove_wait_queue(sk_sleep(sk), &wait);
2112 goto out_err;
2113 }
2114 }
2115 remove_wait_queue(sk_sleep(sk), &wait);
2116
2117 /* These checks occur both as part of and after the loop
2118 * conditional since we need to check before and after
2119 * sleeping.
2120 */
2121 if (sk->sk_err) {
2122 err = -sk->sk_err;
2123 goto out_err;
2124 } else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
2125 (vsk->peer_shutdown & RCV_SHUTDOWN)) {
2126 err = -EPIPE;
2127 goto out_err;
2128 }
2129
2130 err = transport->notify_send_pre_enqueue(vsk, &send_data);
2131 if (err < 0)
2132 goto out_err;
2133
2134 /* Note that enqueue will only write as many bytes as are free
2135 * in the produce queue, so we don't need to ensure len is
2136 * smaller than the queue size. It is the caller's
2137 * responsibility to check how many bytes we were able to send.
2138 */
2139
2140 if (sk->sk_type == SOCK_SEQPACKET) {
2141 written = transport->seqpacket_enqueue(vsk,
2142 msg, len - total_written);
2143 } else {
2144 written = transport->stream_enqueue(vsk,
2145 msg, len - total_written);
2146 }
2147
2148 if (written < 0) {
2149 err = written;
2150 goto out_err;
2151 }
2152
2153 total_written += written;
2154
2155 err = transport->notify_send_post_enqueue(
2156 vsk, written, &send_data);
2157 if (err < 0)
2158 goto out_err;
2159
2160 }
2161
2162 out_err:
2163 if (total_written > 0) {
2164 /* Return number of written bytes only if:
2165 * 1) SOCK_STREAM socket.
2166 * 2) SOCK_SEQPACKET socket when whole buffer is sent.
2167 */
2168 if (sk->sk_type == SOCK_STREAM || total_written == len)
2169 err = total_written;
2170 }
2171 out:
2172 if (sk->sk_type == SOCK_STREAM)
2173 err = sk_stream_error(sk, msg->msg_flags, err);
2174
2175 release_sock(sk);
2176 return err;
2177 }
2178
vsock_connectible_wait_data(struct sock * sk,struct wait_queue_entry * wait,long timeout,struct vsock_transport_recv_notify_data * recv_data,size_t target)2179 static int vsock_connectible_wait_data(struct sock *sk,
2180 struct wait_queue_entry *wait,
2181 long timeout,
2182 struct vsock_transport_recv_notify_data *recv_data,
2183 size_t target)
2184 {
2185 const struct vsock_transport *transport;
2186 struct vsock_sock *vsk;
2187 s64 data;
2188 int err;
2189
2190 vsk = vsock_sk(sk);
2191 err = 0;
2192 transport = vsk->transport;
2193
2194 while (1) {
2195 prepare_to_wait(sk_sleep(sk), wait, TASK_INTERRUPTIBLE);
2196 data = vsock_connectible_has_data(vsk);
2197 if (data != 0)
2198 break;
2199
2200 if (sk->sk_err != 0 ||
2201 (sk->sk_shutdown & RCV_SHUTDOWN) ||
2202 (vsk->peer_shutdown & SEND_SHUTDOWN)) {
2203 break;
2204 }
2205
2206 /* Don't wait for non-blocking sockets. */
2207 if (timeout == 0) {
2208 err = -EAGAIN;
2209 break;
2210 }
2211
2212 if (recv_data) {
2213 err = transport->notify_recv_pre_block(vsk, target, recv_data);
2214 if (err < 0)
2215 break;
2216 }
2217
2218 release_sock(sk);
2219 timeout = schedule_timeout(timeout);
2220 lock_sock(sk);
2221
2222 if (signal_pending(current)) {
2223 err = sock_intr_errno(timeout);
2224 break;
2225 } else if (timeout == 0) {
2226 err = -EAGAIN;
2227 break;
2228 }
2229 }
2230
2231 finish_wait(sk_sleep(sk), wait);
2232
2233 if (err)
2234 return err;
2235
2236 /* Internal transport error when checking for available
2237 * data. XXX This should be changed to a connection
2238 * reset in a later change.
2239 */
2240 if (data < 0)
2241 return -ENOMEM;
2242
2243 return data;
2244 }
2245
__vsock_stream_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags)2246 static int __vsock_stream_recvmsg(struct sock *sk, struct msghdr *msg,
2247 size_t len, int flags)
2248 {
2249 struct vsock_transport_recv_notify_data recv_data;
2250 const struct vsock_transport *transport;
2251 struct vsock_sock *vsk;
2252 ssize_t copied;
2253 size_t target;
2254 long timeout;
2255 int err;
2256
2257 DEFINE_WAIT(wait);
2258
2259 vsk = vsock_sk(sk);
2260 transport = vsk->transport;
2261
2262 /* We must not copy less than target bytes into the user's buffer
2263 * before returning successfully, so we wait for the consume queue to
2264 * have that much data to consume before dequeueing. Note that this
2265 * makes it impossible to handle cases where target is greater than the
2266 * queue size.
2267 */
2268 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2269 if (target >= transport->stream_rcvhiwat(vsk)) {
2270 err = -ENOMEM;
2271 goto out;
2272 }
2273 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2274 copied = 0;
2275
2276 err = transport->notify_recv_init(vsk, target, &recv_data);
2277 if (err < 0)
2278 goto out;
2279
2280
2281 while (1) {
2282 ssize_t read;
2283
2284 err = vsock_connectible_wait_data(sk, &wait, timeout,
2285 &recv_data, target);
2286 if (err <= 0)
2287 break;
2288
2289 err = transport->notify_recv_pre_dequeue(vsk, target,
2290 &recv_data);
2291 if (err < 0)
2292 break;
2293
2294 read = transport->stream_dequeue(vsk, msg, len - copied, flags);
2295 if (read < 0) {
2296 err = read;
2297 break;
2298 }
2299
2300 copied += read;
2301
2302 err = transport->notify_recv_post_dequeue(vsk, target, read,
2303 !(flags & MSG_PEEK), &recv_data);
2304 if (err < 0)
2305 goto out;
2306
2307 if (read >= target || flags & MSG_PEEK)
2308 break;
2309
2310 target -= read;
2311 }
2312
2313 if (sk->sk_err)
2314 err = -sk->sk_err;
2315 else if (sk->sk_shutdown & RCV_SHUTDOWN)
2316 err = 0;
2317
2318 if (copied > 0)
2319 err = copied;
2320
2321 out:
2322 return err;
2323 }
2324
__vsock_seqpacket_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags)2325 static int __vsock_seqpacket_recvmsg(struct sock *sk, struct msghdr *msg,
2326 size_t len, int flags)
2327 {
2328 const struct vsock_transport *transport;
2329 struct vsock_sock *vsk;
2330 ssize_t msg_len;
2331 long timeout;
2332 int err = 0;
2333 DEFINE_WAIT(wait);
2334
2335 vsk = vsock_sk(sk);
2336 transport = vsk->transport;
2337
2338 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2339
2340 err = vsock_connectible_wait_data(sk, &wait, timeout, NULL, 0);
2341 if (err <= 0)
2342 goto out;
2343
2344 msg_len = transport->seqpacket_dequeue(vsk, msg, flags);
2345
2346 if (msg_len < 0) {
2347 err = msg_len;
2348 goto out;
2349 }
2350
2351 if (sk->sk_err) {
2352 err = -sk->sk_err;
2353 } else if (sk->sk_shutdown & RCV_SHUTDOWN) {
2354 err = 0;
2355 } else {
2356 /* User sets MSG_TRUNC, so return real length of
2357 * packet.
2358 */
2359 if (flags & MSG_TRUNC)
2360 err = msg_len;
2361 else
2362 err = len - msg_data_left(msg);
2363
2364 /* Always set MSG_TRUNC if real length of packet is
2365 * bigger than user's buffer.
2366 */
2367 if (msg_len > len)
2368 msg->msg_flags |= MSG_TRUNC;
2369 }
2370
2371 out:
2372 return err;
2373 }
2374
2375 int
__vsock_connectible_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)2376 __vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2377 int flags)
2378 {
2379 struct sock *sk;
2380 struct vsock_sock *vsk;
2381 const struct vsock_transport *transport;
2382 int err;
2383
2384 sk = sock->sk;
2385
2386 if (unlikely(flags & MSG_ERRQUEUE))
2387 return sock_recv_errqueue(sk, msg, len, SOL_VSOCK, VSOCK_RECVERR);
2388
2389 vsk = vsock_sk(sk);
2390 err = 0;
2391
2392 lock_sock(sk);
2393
2394 transport = vsk->transport;
2395
2396 if (!transport || sk->sk_state != TCP_ESTABLISHED) {
2397 /* Recvmsg is supposed to return 0 if a peer performs an
2398 * orderly shutdown. Differentiate between that case and when a
2399 * peer has not connected or a local shutdown occurred with the
2400 * SOCK_DONE flag.
2401 */
2402 if (sock_flag(sk, SOCK_DONE))
2403 err = 0;
2404 else
2405 err = -ENOTCONN;
2406
2407 goto out;
2408 }
2409
2410 if (flags & MSG_OOB) {
2411 err = -EOPNOTSUPP;
2412 goto out;
2413 }
2414
2415 /* We don't check peer_shutdown flag here since peer may actually shut
2416 * down, but there can be data in the queue that a local socket can
2417 * receive.
2418 */
2419 if (sk->sk_shutdown & RCV_SHUTDOWN) {
2420 err = 0;
2421 goto out;
2422 }
2423
2424 /* It is valid on Linux to pass in a zero-length receive buffer. This
2425 * is not an error. We may as well bail out now.
2426 */
2427 if (!len) {
2428 err = 0;
2429 goto out;
2430 }
2431
2432 if (sk->sk_type == SOCK_STREAM)
2433 err = __vsock_stream_recvmsg(sk, msg, len, flags);
2434 else
2435 err = __vsock_seqpacket_recvmsg(sk, msg, len, flags);
2436
2437 out:
2438 release_sock(sk);
2439 return err;
2440 }
2441
2442 int
vsock_connectible_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)2443 vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2444 int flags)
2445 {
2446 #ifdef CONFIG_BPF_SYSCALL
2447 struct sock *sk = sock->sk;
2448 const struct proto *prot;
2449
2450 prot = READ_ONCE(sk->sk_prot);
2451 if (prot != &vsock_proto)
2452 return prot->recvmsg(sk, msg, len, flags, NULL);
2453 #endif
2454
2455 return __vsock_connectible_recvmsg(sock, msg, len, flags);
2456 }
2457 EXPORT_SYMBOL_GPL(vsock_connectible_recvmsg);
2458
vsock_set_rcvlowat(struct sock * sk,int val)2459 static int vsock_set_rcvlowat(struct sock *sk, int val)
2460 {
2461 const struct vsock_transport *transport;
2462 struct vsock_sock *vsk;
2463
2464 vsk = vsock_sk(sk);
2465
2466 if (val > vsk->buffer_size)
2467 return -EINVAL;
2468
2469 transport = vsk->transport;
2470
2471 if (transport && transport->notify_set_rcvlowat) {
2472 int err;
2473
2474 err = transport->notify_set_rcvlowat(vsk, val);
2475 if (err)
2476 return err;
2477 }
2478
2479 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
2480 return 0;
2481 }
2482
2483 static const struct proto_ops vsock_stream_ops = {
2484 .family = PF_VSOCK,
2485 .owner = THIS_MODULE,
2486 .release = vsock_release,
2487 .bind = vsock_bind,
2488 .connect = vsock_connect,
2489 .socketpair = sock_no_socketpair,
2490 .accept = vsock_accept,
2491 .getname = vsock_getname,
2492 .poll = vsock_poll,
2493 .ioctl = vsock_ioctl,
2494 .listen = vsock_listen,
2495 .shutdown = vsock_shutdown,
2496 .setsockopt = vsock_connectible_setsockopt,
2497 .getsockopt = vsock_connectible_getsockopt,
2498 .sendmsg = vsock_connectible_sendmsg,
2499 .recvmsg = vsock_connectible_recvmsg,
2500 .mmap = sock_no_mmap,
2501 .set_rcvlowat = vsock_set_rcvlowat,
2502 .read_skb = vsock_read_skb,
2503 };
2504
2505 static const struct proto_ops vsock_seqpacket_ops = {
2506 .family = PF_VSOCK,
2507 .owner = THIS_MODULE,
2508 .release = vsock_release,
2509 .bind = vsock_bind,
2510 .connect = vsock_connect,
2511 .socketpair = sock_no_socketpair,
2512 .accept = vsock_accept,
2513 .getname = vsock_getname,
2514 .poll = vsock_poll,
2515 .ioctl = vsock_ioctl,
2516 .listen = vsock_listen,
2517 .shutdown = vsock_shutdown,
2518 .setsockopt = vsock_connectible_setsockopt,
2519 .getsockopt = vsock_connectible_getsockopt,
2520 .sendmsg = vsock_connectible_sendmsg,
2521 .recvmsg = vsock_connectible_recvmsg,
2522 .mmap = sock_no_mmap,
2523 .read_skb = vsock_read_skb,
2524 };
2525
vsock_create(struct net * net,struct socket * sock,int protocol,int kern)2526 static int vsock_create(struct net *net, struct socket *sock,
2527 int protocol, int kern)
2528 {
2529 struct vsock_sock *vsk;
2530 struct sock *sk;
2531 int ret;
2532
2533 if (!sock)
2534 return -EINVAL;
2535
2536 if (protocol && protocol != PF_VSOCK)
2537 return -EPROTONOSUPPORT;
2538
2539 switch (sock->type) {
2540 case SOCK_DGRAM:
2541 sock->ops = &vsock_dgram_ops;
2542 break;
2543 case SOCK_STREAM:
2544 sock->ops = &vsock_stream_ops;
2545 break;
2546 case SOCK_SEQPACKET:
2547 sock->ops = &vsock_seqpacket_ops;
2548 break;
2549 default:
2550 return -ESOCKTNOSUPPORT;
2551 }
2552
2553 sock->state = SS_UNCONNECTED;
2554
2555 sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern);
2556 if (!sk)
2557 return -ENOMEM;
2558
2559 vsk = vsock_sk(sk);
2560
2561 if (sock->type == SOCK_DGRAM) {
2562 ret = vsock_assign_transport(vsk, NULL);
2563 if (ret < 0) {
2564 sock->sk = NULL;
2565 sock_put(sk);
2566 return ret;
2567 }
2568 }
2569
2570 /* SOCK_DGRAM doesn't have 'setsockopt' callback set in its
2571 * proto_ops, so there is no handler for custom logic.
2572 */
2573 if (sock_type_connectible(sock->type))
2574 set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
2575
2576 vsock_insert_unbound(vsk);
2577
2578 return 0;
2579 }
2580
2581 static const struct net_proto_family vsock_family_ops = {
2582 .family = AF_VSOCK,
2583 .create = vsock_create,
2584 .owner = THIS_MODULE,
2585 };
2586
vsock_dev_do_ioctl(struct file * filp,unsigned int cmd,void __user * ptr)2587 static long vsock_dev_do_ioctl(struct file *filp,
2588 unsigned int cmd, void __user *ptr)
2589 {
2590 u32 __user *p = ptr;
2591 int retval = 0;
2592 u32 cid;
2593
2594 switch (cmd) {
2595 case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
2596 /* To be compatible with the VMCI behavior, we prioritize the
2597 * guest CID instead of well-know host CID (VMADDR_CID_HOST).
2598 */
2599 cid = vsock_registered_transport_cid(&transport_g2h);
2600 if (cid == VMADDR_CID_ANY)
2601 cid = vsock_registered_transport_cid(&transport_h2g);
2602 if (cid == VMADDR_CID_ANY)
2603 cid = vsock_registered_transport_cid(&transport_local);
2604
2605 if (put_user(cid, p) != 0)
2606 retval = -EFAULT;
2607 break;
2608
2609 default:
2610 retval = -ENOIOCTLCMD;
2611 }
2612
2613 return retval;
2614 }
2615
vsock_dev_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)2616 static long vsock_dev_ioctl(struct file *filp,
2617 unsigned int cmd, unsigned long arg)
2618 {
2619 return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
2620 }
2621
2622 #ifdef CONFIG_COMPAT
vsock_dev_compat_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)2623 static long vsock_dev_compat_ioctl(struct file *filp,
2624 unsigned int cmd, unsigned long arg)
2625 {
2626 return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
2627 }
2628 #endif
2629
2630 static const struct file_operations vsock_device_ops = {
2631 .owner = THIS_MODULE,
2632 .unlocked_ioctl = vsock_dev_ioctl,
2633 #ifdef CONFIG_COMPAT
2634 .compat_ioctl = vsock_dev_compat_ioctl,
2635 #endif
2636 .open = nonseekable_open,
2637 };
2638
2639 static struct miscdevice vsock_device = {
2640 .name = "vsock",
2641 .fops = &vsock_device_ops,
2642 };
2643
vsock_init(void)2644 static int __init vsock_init(void)
2645 {
2646 int err = 0;
2647
2648 vsock_init_tables();
2649
2650 vsock_proto.owner = THIS_MODULE;
2651 vsock_device.minor = MISC_DYNAMIC_MINOR;
2652 err = misc_register(&vsock_device);
2653 if (err) {
2654 pr_err("Failed to register misc device\n");
2655 goto err_reset_transport;
2656 }
2657
2658 err = proto_register(&vsock_proto, 1); /* we want our slab */
2659 if (err) {
2660 pr_err("Cannot register vsock protocol\n");
2661 goto err_deregister_misc;
2662 }
2663
2664 err = sock_register(&vsock_family_ops);
2665 if (err) {
2666 pr_err("could not register af_vsock (%d) address family: %d\n",
2667 AF_VSOCK, err);
2668 goto err_unregister_proto;
2669 }
2670
2671 vsock_bpf_build_proto();
2672
2673 return 0;
2674
2675 err_unregister_proto:
2676 proto_unregister(&vsock_proto);
2677 err_deregister_misc:
2678 misc_deregister(&vsock_device);
2679 err_reset_transport:
2680 return err;
2681 }
2682
vsock_exit(void)2683 static void __exit vsock_exit(void)
2684 {
2685 misc_deregister(&vsock_device);
2686 sock_unregister(AF_VSOCK);
2687 proto_unregister(&vsock_proto);
2688 }
2689
vsock_core_get_transport(struct vsock_sock * vsk)2690 const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk)
2691 {
2692 return vsk->transport;
2693 }
2694 EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2695
vsock_core_register(const struct vsock_transport * t,int features)2696 int vsock_core_register(const struct vsock_transport *t, int features)
2697 {
2698 const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local;
2699 int err = mutex_lock_interruptible(&vsock_register_mutex);
2700
2701 if (err)
2702 return err;
2703
2704 t_h2g = transport_h2g;
2705 t_g2h = transport_g2h;
2706 t_dgram = transport_dgram;
2707 t_local = transport_local;
2708
2709 if (features & VSOCK_TRANSPORT_F_H2G) {
2710 if (t_h2g) {
2711 err = -EBUSY;
2712 goto err_busy;
2713 }
2714 t_h2g = t;
2715 }
2716
2717 if (features & VSOCK_TRANSPORT_F_G2H) {
2718 if (t_g2h) {
2719 err = -EBUSY;
2720 goto err_busy;
2721 }
2722 t_g2h = t;
2723 }
2724
2725 if (features & VSOCK_TRANSPORT_F_DGRAM) {
2726 if (t_dgram) {
2727 err = -EBUSY;
2728 goto err_busy;
2729 }
2730 t_dgram = t;
2731 }
2732
2733 if (features & VSOCK_TRANSPORT_F_LOCAL) {
2734 if (t_local) {
2735 err = -EBUSY;
2736 goto err_busy;
2737 }
2738 t_local = t;
2739 }
2740
2741 transport_h2g = t_h2g;
2742 transport_g2h = t_g2h;
2743 transport_dgram = t_dgram;
2744 transport_local = t_local;
2745
2746 err_busy:
2747 mutex_unlock(&vsock_register_mutex);
2748 return err;
2749 }
2750 EXPORT_SYMBOL_GPL(vsock_core_register);
2751
vsock_core_unregister(const struct vsock_transport * t)2752 void vsock_core_unregister(const struct vsock_transport *t)
2753 {
2754 mutex_lock(&vsock_register_mutex);
2755
2756 if (transport_h2g == t)
2757 transport_h2g = NULL;
2758
2759 if (transport_g2h == t)
2760 transport_g2h = NULL;
2761
2762 if (transport_dgram == t)
2763 transport_dgram = NULL;
2764
2765 if (transport_local == t)
2766 transport_local = NULL;
2767
2768 mutex_unlock(&vsock_register_mutex);
2769 }
2770 EXPORT_SYMBOL_GPL(vsock_core_unregister);
2771
2772 module_init(vsock_init);
2773 module_exit(vsock_exit);
2774
2775 MODULE_AUTHOR("VMware, Inc.");
2776 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2777 MODULE_VERSION("1.0.2.0-k");
2778 MODULE_LICENSE("GPL v2");
2779