1 /*
2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
3 *
4 * Copyright (C) 2012 Marvell
5 *
6 * Rami Rosen <rosenr@marvell.com>
7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
8 *
9 * This file is licensed under the terms of the GNU General Public
10 * License version 2. This program is licensed "as is" without any
11 * warranty of any kind, whether express or implied.
12 */
13
14 #include <linux/clk.h>
15 #include <linux/cpu.h>
16 #include <linux/etherdevice.h>
17 #include <linux/if_vlan.h>
18 #include <linux/inetdevice.h>
19 #include <linux/interrupt.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/mbus.h>
23 #include <linux/module.h>
24 #include <linux/netdevice.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_mdio.h>
29 #include <linux/of_net.h>
30 #include <linux/phy/phy.h>
31 #include <linux/phy.h>
32 #include <linux/phylink.h>
33 #include <linux/platform_device.h>
34 #include <linux/skbuff.h>
35 #include <net/hwbm.h>
36 #include "mvneta_bm.h"
37 #include <net/ip.h>
38 #include <net/ipv6.h>
39 #include <net/tso.h>
40 #include <net/page_pool.h>
41 #include <linux/bpf_trace.h>
42
43 /* Registers */
44 #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2))
45 #define MVNETA_RXQ_HW_BUF_ALLOC BIT(0)
46 #define MVNETA_RXQ_SHORT_POOL_ID_SHIFT 4
47 #define MVNETA_RXQ_SHORT_POOL_ID_MASK 0x30
48 #define MVNETA_RXQ_LONG_POOL_ID_SHIFT 6
49 #define MVNETA_RXQ_LONG_POOL_ID_MASK 0xc0
50 #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8)
51 #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8)
52 #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2))
53 #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16)
54 #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2))
55 #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2))
56 #define MVNETA_RXQ_BUF_SIZE_SHIFT 19
57 #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19)
58 #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2))
59 #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff
60 #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2))
61 #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16
62 #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255
63 #define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool) (0x1700 + ((pool) << 2))
64 #define MVNETA_PORT_POOL_BUFFER_SZ_SHIFT 3
65 #define MVNETA_PORT_POOL_BUFFER_SZ_MASK 0xfff8
66 #define MVNETA_PORT_RX_RESET 0x1cc0
67 #define MVNETA_PORT_RX_DMA_RESET BIT(0)
68 #define MVNETA_PHY_ADDR 0x2000
69 #define MVNETA_PHY_ADDR_MASK 0x1f
70 #define MVNETA_MBUS_RETRY 0x2010
71 #define MVNETA_UNIT_INTR_CAUSE 0x2080
72 #define MVNETA_UNIT_CONTROL 0x20B0
73 #define MVNETA_PHY_POLLING_ENABLE BIT(1)
74 #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3))
75 #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3))
76 #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2))
77 #define MVNETA_BASE_ADDR_ENABLE 0x2290
78 #define MVNETA_ACCESS_PROTECT_ENABLE 0x2294
79 #define MVNETA_PORT_CONFIG 0x2400
80 #define MVNETA_UNI_PROMISC_MODE BIT(0)
81 #define MVNETA_DEF_RXQ(q) ((q) << 1)
82 #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4)
83 #define MVNETA_TX_UNSET_ERR_SUM BIT(12)
84 #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16)
85 #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19)
86 #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22)
87 #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25)
88 #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \
89 MVNETA_DEF_RXQ_ARP(q) | \
90 MVNETA_DEF_RXQ_TCP(q) | \
91 MVNETA_DEF_RXQ_UDP(q) | \
92 MVNETA_DEF_RXQ_BPDU(q) | \
93 MVNETA_TX_UNSET_ERR_SUM | \
94 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
95 #define MVNETA_PORT_CONFIG_EXTEND 0x2404
96 #define MVNETA_MAC_ADDR_LOW 0x2414
97 #define MVNETA_MAC_ADDR_HIGH 0x2418
98 #define MVNETA_SDMA_CONFIG 0x241c
99 #define MVNETA_SDMA_BRST_SIZE_16 4
100 #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1)
101 #define MVNETA_RX_NO_DATA_SWAP BIT(4)
102 #define MVNETA_TX_NO_DATA_SWAP BIT(5)
103 #define MVNETA_DESC_SWAP BIT(6)
104 #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22)
105 #define MVNETA_PORT_STATUS 0x2444
106 #define MVNETA_TX_IN_PRGRS BIT(1)
107 #define MVNETA_TX_FIFO_EMPTY BIT(8)
108 #define MVNETA_RX_MIN_FRAME_SIZE 0x247c
109 /* Only exists on Armada XP and Armada 370 */
110 #define MVNETA_SERDES_CFG 0x24A0
111 #define MVNETA_SGMII_SERDES_PROTO 0x0cc7
112 #define MVNETA_QSGMII_SERDES_PROTO 0x0667
113 #define MVNETA_HSGMII_SERDES_PROTO 0x1107
114 #define MVNETA_TYPE_PRIO 0x24bc
115 #define MVNETA_FORCE_UNI BIT(21)
116 #define MVNETA_TXQ_CMD_1 0x24e4
117 #define MVNETA_TXQ_CMD 0x2448
118 #define MVNETA_TXQ_DISABLE_SHIFT 8
119 #define MVNETA_TXQ_ENABLE_MASK 0x000000ff
120 #define MVNETA_RX_DISCARD_FRAME_COUNT 0x2484
121 #define MVNETA_OVERRUN_FRAME_COUNT 0x2488
122 #define MVNETA_GMAC_CLOCK_DIVIDER 0x24f4
123 #define MVNETA_GMAC_1MS_CLOCK_ENABLE BIT(31)
124 #define MVNETA_ACC_MODE 0x2500
125 #define MVNETA_BM_ADDRESS 0x2504
126 #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2))
127 #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff
128 #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00
129 #define MVNETA_CPU_RXQ_ACCESS(rxq) BIT(rxq)
130 #define MVNETA_CPU_TXQ_ACCESS(txq) BIT(txq + 8)
131 #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2))
132
133 /* Exception Interrupt Port/Queue Cause register
134 *
135 * Their behavior depend of the mapping done using the PCPX2Q
136 * registers. For a given CPU if the bit associated to a queue is not
137 * set, then for the register a read from this CPU will always return
138 * 0 and a write won't do anything
139 */
140
141 #define MVNETA_INTR_NEW_CAUSE 0x25a0
142 #define MVNETA_INTR_NEW_MASK 0x25a4
143
144 /* bits 0..7 = TXQ SENT, one bit per queue.
145 * bits 8..15 = RXQ OCCUP, one bit per queue.
146 * bits 16..23 = RXQ FREE, one bit per queue.
147 * bit 29 = OLD_REG_SUM, see old reg ?
148 * bit 30 = TX_ERR_SUM, one bit for 4 ports
149 * bit 31 = MISC_SUM, one bit for 4 ports
150 */
151 #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0)
152 #define MVNETA_TX_INTR_MASK_ALL (0xff << 0)
153 #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8)
154 #define MVNETA_RX_INTR_MASK_ALL (0xff << 8)
155 #define MVNETA_MISCINTR_INTR_MASK BIT(31)
156
157 #define MVNETA_INTR_OLD_CAUSE 0x25a8
158 #define MVNETA_INTR_OLD_MASK 0x25ac
159
160 /* Data Path Port/Queue Cause Register */
161 #define MVNETA_INTR_MISC_CAUSE 0x25b0
162 #define MVNETA_INTR_MISC_MASK 0x25b4
163
164 #define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0)
165 #define MVNETA_CAUSE_LINK_CHANGE BIT(1)
166 #define MVNETA_CAUSE_PTP BIT(4)
167
168 #define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7)
169 #define MVNETA_CAUSE_RX_OVERRUN BIT(8)
170 #define MVNETA_CAUSE_RX_CRC_ERROR BIT(9)
171 #define MVNETA_CAUSE_RX_LARGE_PKT BIT(10)
172 #define MVNETA_CAUSE_TX_UNDERUN BIT(11)
173 #define MVNETA_CAUSE_PRBS_ERR BIT(12)
174 #define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13)
175 #define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14)
176
177 #define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16
178 #define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
179 #define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
180
181 #define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24
182 #define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
183 #define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
184
185 #define MVNETA_INTR_ENABLE 0x25b8
186 #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00
187 #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0x000000ff
188
189 #define MVNETA_RXQ_CMD 0x2680
190 #define MVNETA_RXQ_DISABLE_SHIFT 8
191 #define MVNETA_RXQ_ENABLE_MASK 0x000000ff
192 #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4))
193 #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4))
194 #define MVNETA_GMAC_CTRL_0 0x2c00
195 #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2
196 #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc
197 #define MVNETA_GMAC0_PORT_1000BASE_X BIT(1)
198 #define MVNETA_GMAC0_PORT_ENABLE BIT(0)
199 #define MVNETA_GMAC_CTRL_2 0x2c08
200 #define MVNETA_GMAC2_INBAND_AN_ENABLE BIT(0)
201 #define MVNETA_GMAC2_PCS_ENABLE BIT(3)
202 #define MVNETA_GMAC2_PORT_RGMII BIT(4)
203 #define MVNETA_GMAC2_PORT_RESET BIT(6)
204 #define MVNETA_GMAC_STATUS 0x2c10
205 #define MVNETA_GMAC_LINK_UP BIT(0)
206 #define MVNETA_GMAC_SPEED_1000 BIT(1)
207 #define MVNETA_GMAC_SPEED_100 BIT(2)
208 #define MVNETA_GMAC_FULL_DUPLEX BIT(3)
209 #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4)
210 #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5)
211 #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6)
212 #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7)
213 #define MVNETA_GMAC_AN_COMPLETE BIT(11)
214 #define MVNETA_GMAC_SYNC_OK BIT(14)
215 #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c
216 #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0)
217 #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1)
218 #define MVNETA_GMAC_INBAND_AN_ENABLE BIT(2)
219 #define MVNETA_GMAC_AN_BYPASS_ENABLE BIT(3)
220 #define MVNETA_GMAC_INBAND_RESTART_AN BIT(4)
221 #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5)
222 #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6)
223 #define MVNETA_GMAC_AN_SPEED_EN BIT(7)
224 #define MVNETA_GMAC_CONFIG_FLOW_CTRL BIT(8)
225 #define MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL BIT(9)
226 #define MVNETA_GMAC_AN_FLOW_CTRL_EN BIT(11)
227 #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12)
228 #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13)
229 #define MVNETA_GMAC_CTRL_4 0x2c90
230 #define MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE BIT(1)
231 #define MVNETA_MIB_COUNTERS_BASE 0x3000
232 #define MVNETA_MIB_LATE_COLLISION 0x7c
233 #define MVNETA_DA_FILT_SPEC_MCAST 0x3400
234 #define MVNETA_DA_FILT_OTH_MCAST 0x3500
235 #define MVNETA_DA_FILT_UCAST_BASE 0x3600
236 #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2))
237 #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2))
238 #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000
239 #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16)
240 #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2))
241 #define MVNETA_TXQ_DEC_SENT_SHIFT 16
242 #define MVNETA_TXQ_DEC_SENT_MASK 0xff
243 #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2))
244 #define MVNETA_TXQ_SENT_DESC_SHIFT 16
245 #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000
246 #define MVNETA_PORT_TX_RESET 0x3cf0
247 #define MVNETA_PORT_TX_DMA_RESET BIT(0)
248 #define MVNETA_TX_MTU 0x3e0c
249 #define MVNETA_TX_TOKEN_SIZE 0x3e14
250 #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff
251 #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2))
252 #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff
253
254 #define MVNETA_LPI_CTRL_0 0x2cc0
255 #define MVNETA_LPI_CTRL_1 0x2cc4
256 #define MVNETA_LPI_REQUEST_ENABLE BIT(0)
257 #define MVNETA_LPI_CTRL_2 0x2cc8
258 #define MVNETA_LPI_STATUS 0x2ccc
259
260 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff
261
262 /* Descriptor ring Macros */
263 #define MVNETA_QUEUE_NEXT_DESC(q, index) \
264 (((index) < (q)->last_desc) ? ((index) + 1) : 0)
265
266 /* Various constants */
267
268 /* Coalescing */
269 #define MVNETA_TXDONE_COAL_PKTS 0 /* interrupt per packet */
270 #define MVNETA_RX_COAL_PKTS 32
271 #define MVNETA_RX_COAL_USEC 100
272
273 /* The two bytes Marvell header. Either contains a special value used
274 * by Marvell switches when a specific hardware mode is enabled (not
275 * supported by this driver) or is filled automatically by zeroes on
276 * the RX side. Those two bytes being at the front of the Ethernet
277 * header, they allow to have the IP header aligned on a 4 bytes
278 * boundary automatically: the hardware skips those two bytes on its
279 * own.
280 */
281 #define MVNETA_MH_SIZE 2
282
283 #define MVNETA_VLAN_TAG_LEN 4
284
285 #define MVNETA_TX_CSUM_DEF_SIZE 1600
286 #define MVNETA_TX_CSUM_MAX_SIZE 9800
287 #define MVNETA_ACC_MODE_EXT1 1
288 #define MVNETA_ACC_MODE_EXT2 2
289
290 #define MVNETA_MAX_DECODE_WIN 6
291
292 /* Timeout constants */
293 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000
294 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000
295 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000
296
297 #define MVNETA_TX_MTU_MAX 0x3ffff
298
299 /* The RSS lookup table actually has 256 entries but we do not use
300 * them yet
301 */
302 #define MVNETA_RSS_LU_TABLE_SIZE 1
303
304 /* Max number of Rx descriptors */
305 #define MVNETA_MAX_RXD 512
306
307 /* Max number of Tx descriptors */
308 #define MVNETA_MAX_TXD 1024
309
310 /* Max number of allowed TCP segments for software TSO */
311 #define MVNETA_MAX_TSO_SEGS 100
312
313 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
314
315 /* descriptor aligned size */
316 #define MVNETA_DESC_ALIGNED_SIZE 32
317
318 /* Number of bytes to be taken into account by HW when putting incoming data
319 * to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet
320 * offset supported in MVNETA_RXQ_CONFIG_REG(q) registers.
321 */
322 #define MVNETA_RX_PKT_OFFSET_CORRECTION 64
323
324 #define MVNETA_RX_PKT_SIZE(mtu) \
325 ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
326 ETH_HLEN + ETH_FCS_LEN, \
327 cache_line_size())
328
329 /* Driver assumes that the last 3 bits are 0 */
330 #define MVNETA_SKB_HEADROOM ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8)
331 #define MVNETA_SKB_PAD (SKB_DATA_ALIGN(sizeof(struct skb_shared_info) + \
332 MVNETA_SKB_HEADROOM))
333 #define MVNETA_MAX_RX_BUF_SIZE (PAGE_SIZE - MVNETA_SKB_PAD)
334
335 #define IS_TSO_HEADER(txq, addr) \
336 ((addr >= txq->tso_hdrs_phys) && \
337 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
338
339 #define MVNETA_RX_GET_BM_POOL_ID(rxd) \
340 (((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT)
341
342 enum {
343 ETHTOOL_STAT_EEE_WAKEUP,
344 ETHTOOL_STAT_SKB_ALLOC_ERR,
345 ETHTOOL_STAT_REFILL_ERR,
346 ETHTOOL_XDP_REDIRECT,
347 ETHTOOL_XDP_PASS,
348 ETHTOOL_XDP_DROP,
349 ETHTOOL_XDP_TX,
350 ETHTOOL_XDP_TX_ERR,
351 ETHTOOL_XDP_XMIT,
352 ETHTOOL_XDP_XMIT_ERR,
353 ETHTOOL_MAX_STATS,
354 };
355
356 struct mvneta_statistic {
357 unsigned short offset;
358 unsigned short type;
359 const char name[ETH_GSTRING_LEN];
360 };
361
362 #define T_REG_32 32
363 #define T_REG_64 64
364 #define T_SW 1
365
366 #define MVNETA_XDP_PASS 0
367 #define MVNETA_XDP_DROPPED BIT(0)
368 #define MVNETA_XDP_TX BIT(1)
369 #define MVNETA_XDP_REDIR BIT(2)
370
371 static const struct mvneta_statistic mvneta_statistics[] = {
372 { 0x3000, T_REG_64, "good_octets_received", },
373 { 0x3010, T_REG_32, "good_frames_received", },
374 { 0x3008, T_REG_32, "bad_octets_received", },
375 { 0x3014, T_REG_32, "bad_frames_received", },
376 { 0x3018, T_REG_32, "broadcast_frames_received", },
377 { 0x301c, T_REG_32, "multicast_frames_received", },
378 { 0x3050, T_REG_32, "unrec_mac_control_received", },
379 { 0x3058, T_REG_32, "good_fc_received", },
380 { 0x305c, T_REG_32, "bad_fc_received", },
381 { 0x3060, T_REG_32, "undersize_received", },
382 { 0x3064, T_REG_32, "fragments_received", },
383 { 0x3068, T_REG_32, "oversize_received", },
384 { 0x306c, T_REG_32, "jabber_received", },
385 { 0x3070, T_REG_32, "mac_receive_error", },
386 { 0x3074, T_REG_32, "bad_crc_event", },
387 { 0x3078, T_REG_32, "collision", },
388 { 0x307c, T_REG_32, "late_collision", },
389 { 0x2484, T_REG_32, "rx_discard", },
390 { 0x2488, T_REG_32, "rx_overrun", },
391 { 0x3020, T_REG_32, "frames_64_octets", },
392 { 0x3024, T_REG_32, "frames_65_to_127_octets", },
393 { 0x3028, T_REG_32, "frames_128_to_255_octets", },
394 { 0x302c, T_REG_32, "frames_256_to_511_octets", },
395 { 0x3030, T_REG_32, "frames_512_to_1023_octets", },
396 { 0x3034, T_REG_32, "frames_1024_to_max_octets", },
397 { 0x3038, T_REG_64, "good_octets_sent", },
398 { 0x3040, T_REG_32, "good_frames_sent", },
399 { 0x3044, T_REG_32, "excessive_collision", },
400 { 0x3048, T_REG_32, "multicast_frames_sent", },
401 { 0x304c, T_REG_32, "broadcast_frames_sent", },
402 { 0x3054, T_REG_32, "fc_sent", },
403 { 0x300c, T_REG_32, "internal_mac_transmit_err", },
404 { ETHTOOL_STAT_EEE_WAKEUP, T_SW, "eee_wakeup_errors", },
405 { ETHTOOL_STAT_SKB_ALLOC_ERR, T_SW, "skb_alloc_errors", },
406 { ETHTOOL_STAT_REFILL_ERR, T_SW, "refill_errors", },
407 { ETHTOOL_XDP_REDIRECT, T_SW, "rx_xdp_redirect", },
408 { ETHTOOL_XDP_PASS, T_SW, "rx_xdp_pass", },
409 { ETHTOOL_XDP_DROP, T_SW, "rx_xdp_drop", },
410 { ETHTOOL_XDP_TX, T_SW, "rx_xdp_tx", },
411 { ETHTOOL_XDP_TX_ERR, T_SW, "rx_xdp_tx_errors", },
412 { ETHTOOL_XDP_XMIT, T_SW, "tx_xdp_xmit", },
413 { ETHTOOL_XDP_XMIT_ERR, T_SW, "tx_xdp_xmit_errors", },
414 };
415
416 struct mvneta_stats {
417 u64 rx_packets;
418 u64 rx_bytes;
419 u64 tx_packets;
420 u64 tx_bytes;
421 /* xdp */
422 u64 xdp_redirect;
423 u64 xdp_pass;
424 u64 xdp_drop;
425 u64 xdp_xmit;
426 u64 xdp_xmit_err;
427 u64 xdp_tx;
428 u64 xdp_tx_err;
429 };
430
431 struct mvneta_ethtool_stats {
432 struct mvneta_stats ps;
433 u64 skb_alloc_error;
434 u64 refill_error;
435 };
436
437 struct mvneta_pcpu_stats {
438 struct u64_stats_sync syncp;
439
440 struct mvneta_ethtool_stats es;
441 u64 rx_dropped;
442 u64 rx_errors;
443 };
444
445 struct mvneta_pcpu_port {
446 /* Pointer to the shared port */
447 struct mvneta_port *pp;
448
449 /* Pointer to the CPU-local NAPI struct */
450 struct napi_struct napi;
451
452 /* Cause of the previous interrupt */
453 u32 cause_rx_tx;
454 };
455
456 enum {
457 __MVNETA_DOWN,
458 };
459
460 struct mvneta_port {
461 u8 id;
462 struct mvneta_pcpu_port __percpu *ports;
463 struct mvneta_pcpu_stats __percpu *stats;
464
465 unsigned long state;
466
467 int pkt_size;
468 void __iomem *base;
469 struct mvneta_rx_queue *rxqs;
470 struct mvneta_tx_queue *txqs;
471 struct net_device *dev;
472 struct hlist_node node_online;
473 struct hlist_node node_dead;
474 int rxq_def;
475 /* Protect the access to the percpu interrupt registers,
476 * ensuring that the configuration remains coherent.
477 */
478 spinlock_t lock;
479 bool is_stopped;
480
481 u32 cause_rx_tx;
482 struct napi_struct napi;
483
484 struct bpf_prog *xdp_prog;
485
486 /* Core clock */
487 struct clk *clk;
488 /* AXI clock */
489 struct clk *clk_bus;
490 u8 mcast_count[256];
491 u16 tx_ring_size;
492 u16 rx_ring_size;
493
494 phy_interface_t phy_interface;
495 struct device_node *dn;
496 unsigned int tx_csum_limit;
497 struct phylink *phylink;
498 struct phylink_config phylink_config;
499 struct phy *comphy;
500
501 struct mvneta_bm *bm_priv;
502 struct mvneta_bm_pool *pool_long;
503 struct mvneta_bm_pool *pool_short;
504 int bm_win_id;
505
506 bool eee_enabled;
507 bool eee_active;
508 bool tx_lpi_enabled;
509
510 u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)];
511
512 u32 indir[MVNETA_RSS_LU_TABLE_SIZE];
513
514 /* Flags for special SoC configurations */
515 bool neta_armada3700;
516 u16 rx_offset_correction;
517 const struct mbus_dram_target_info *dram_target_info;
518 };
519
520 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
521 * layout of the transmit and reception DMA descriptors, and their
522 * layout is therefore defined by the hardware design
523 */
524
525 #define MVNETA_TX_L3_OFF_SHIFT 0
526 #define MVNETA_TX_IP_HLEN_SHIFT 8
527 #define MVNETA_TX_L4_UDP BIT(16)
528 #define MVNETA_TX_L3_IP6 BIT(17)
529 #define MVNETA_TXD_IP_CSUM BIT(18)
530 #define MVNETA_TXD_Z_PAD BIT(19)
531 #define MVNETA_TXD_L_DESC BIT(20)
532 #define MVNETA_TXD_F_DESC BIT(21)
533 #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \
534 MVNETA_TXD_L_DESC | \
535 MVNETA_TXD_F_DESC)
536 #define MVNETA_TX_L4_CSUM_FULL BIT(30)
537 #define MVNETA_TX_L4_CSUM_NOT BIT(31)
538
539 #define MVNETA_RXD_ERR_CRC 0x0
540 #define MVNETA_RXD_BM_POOL_SHIFT 13
541 #define MVNETA_RXD_BM_POOL_MASK (BIT(13) | BIT(14))
542 #define MVNETA_RXD_ERR_SUMMARY BIT(16)
543 #define MVNETA_RXD_ERR_OVERRUN BIT(17)
544 #define MVNETA_RXD_ERR_LEN BIT(18)
545 #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18))
546 #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18))
547 #define MVNETA_RXD_L3_IP4 BIT(25)
548 #define MVNETA_RXD_LAST_DESC BIT(26)
549 #define MVNETA_RXD_FIRST_DESC BIT(27)
550 #define MVNETA_RXD_FIRST_LAST_DESC (MVNETA_RXD_FIRST_DESC | \
551 MVNETA_RXD_LAST_DESC)
552 #define MVNETA_RXD_L4_CSUM_OK BIT(30)
553
554 #if defined(__LITTLE_ENDIAN)
555 struct mvneta_tx_desc {
556 u32 command; /* Options used by HW for packet transmitting.*/
557 u16 reserved1; /* csum_l4 (for future use) */
558 u16 data_size; /* Data size of transmitted packet in bytes */
559 u32 buf_phys_addr; /* Physical addr of transmitted buffer */
560 u32 reserved2; /* hw_cmd - (for future use, PMT) */
561 u32 reserved3[4]; /* Reserved - (for future use) */
562 };
563
564 struct mvneta_rx_desc {
565 u32 status; /* Info about received packet */
566 u16 reserved1; /* pnc_info - (for future use, PnC) */
567 u16 data_size; /* Size of received packet in bytes */
568
569 u32 buf_phys_addr; /* Physical address of the buffer */
570 u32 reserved2; /* pnc_flow_id (for future use, PnC) */
571
572 u32 buf_cookie; /* cookie for access to RX buffer in rx path */
573 u16 reserved3; /* prefetch_cmd, for future use */
574 u16 reserved4; /* csum_l4 - (for future use, PnC) */
575
576 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
577 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
578 };
579 #else
580 struct mvneta_tx_desc {
581 u16 data_size; /* Data size of transmitted packet in bytes */
582 u16 reserved1; /* csum_l4 (for future use) */
583 u32 command; /* Options used by HW for packet transmitting.*/
584 u32 reserved2; /* hw_cmd - (for future use, PMT) */
585 u32 buf_phys_addr; /* Physical addr of transmitted buffer */
586 u32 reserved3[4]; /* Reserved - (for future use) */
587 };
588
589 struct mvneta_rx_desc {
590 u16 data_size; /* Size of received packet in bytes */
591 u16 reserved1; /* pnc_info - (for future use, PnC) */
592 u32 status; /* Info about received packet */
593
594 u32 reserved2; /* pnc_flow_id (for future use, PnC) */
595 u32 buf_phys_addr; /* Physical address of the buffer */
596
597 u16 reserved4; /* csum_l4 - (for future use, PnC) */
598 u16 reserved3; /* prefetch_cmd, for future use */
599 u32 buf_cookie; /* cookie for access to RX buffer in rx path */
600
601 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
602 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
603 };
604 #endif
605
606 enum mvneta_tx_buf_type {
607 MVNETA_TYPE_SKB,
608 MVNETA_TYPE_XDP_TX,
609 MVNETA_TYPE_XDP_NDO,
610 };
611
612 struct mvneta_tx_buf {
613 enum mvneta_tx_buf_type type;
614 union {
615 struct xdp_frame *xdpf;
616 struct sk_buff *skb;
617 };
618 };
619
620 struct mvneta_tx_queue {
621 /* Number of this TX queue, in the range 0-7 */
622 u8 id;
623
624 /* Number of TX DMA descriptors in the descriptor ring */
625 int size;
626
627 /* Number of currently used TX DMA descriptor in the
628 * descriptor ring
629 */
630 int count;
631 int pending;
632 int tx_stop_threshold;
633 int tx_wake_threshold;
634
635 /* Array of transmitted buffers */
636 struct mvneta_tx_buf *buf;
637
638 /* Index of last TX DMA descriptor that was inserted */
639 int txq_put_index;
640
641 /* Index of the TX DMA descriptor to be cleaned up */
642 int txq_get_index;
643
644 u32 done_pkts_coal;
645
646 /* Virtual address of the TX DMA descriptors array */
647 struct mvneta_tx_desc *descs;
648
649 /* DMA address of the TX DMA descriptors array */
650 dma_addr_t descs_phys;
651
652 /* Index of the last TX DMA descriptor */
653 int last_desc;
654
655 /* Index of the next TX DMA descriptor to process */
656 int next_desc_to_proc;
657
658 /* DMA buffers for TSO headers */
659 char *tso_hdrs;
660
661 /* DMA address of TSO headers */
662 dma_addr_t tso_hdrs_phys;
663
664 /* Affinity mask for CPUs*/
665 cpumask_t affinity_mask;
666 };
667
668 struct mvneta_rx_queue {
669 /* rx queue number, in the range 0-7 */
670 u8 id;
671
672 /* num of rx descriptors in the rx descriptor ring */
673 int size;
674
675 u32 pkts_coal;
676 u32 time_coal;
677
678 /* page_pool */
679 struct page_pool *page_pool;
680 struct xdp_rxq_info xdp_rxq;
681
682 /* Virtual address of the RX buffer */
683 void **buf_virt_addr;
684
685 /* Virtual address of the RX DMA descriptors array */
686 struct mvneta_rx_desc *descs;
687
688 /* DMA address of the RX DMA descriptors array */
689 dma_addr_t descs_phys;
690
691 /* Index of the last RX DMA descriptor */
692 int last_desc;
693
694 /* Index of the next RX DMA descriptor to process */
695 int next_desc_to_proc;
696
697 /* Index of first RX DMA descriptor to refill */
698 int first_to_refill;
699 u32 refill_num;
700 };
701
702 static enum cpuhp_state online_hpstate;
703 /* The hardware supports eight (8) rx queues, but we are only allowing
704 * the first one to be used. Therefore, let's just allocate one queue.
705 */
706 static int rxq_number = 8;
707 static int txq_number = 8;
708
709 static int rxq_def;
710
711 static int rx_copybreak __read_mostly = 256;
712
713 /* HW BM need that each port be identify by a unique ID */
714 static int global_port_id;
715
716 #define MVNETA_DRIVER_NAME "mvneta"
717 #define MVNETA_DRIVER_VERSION "1.0"
718
719 /* Utility/helper methods */
720
721 /* Write helper method */
mvreg_write(struct mvneta_port * pp,u32 offset,u32 data)722 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
723 {
724 writel(data, pp->base + offset);
725 }
726
727 /* Read helper method */
mvreg_read(struct mvneta_port * pp,u32 offset)728 static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
729 {
730 return readl(pp->base + offset);
731 }
732
733 /* Increment txq get counter */
mvneta_txq_inc_get(struct mvneta_tx_queue * txq)734 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
735 {
736 txq->txq_get_index++;
737 if (txq->txq_get_index == txq->size)
738 txq->txq_get_index = 0;
739 }
740
741 /* Increment txq put counter */
mvneta_txq_inc_put(struct mvneta_tx_queue * txq)742 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
743 {
744 txq->txq_put_index++;
745 if (txq->txq_put_index == txq->size)
746 txq->txq_put_index = 0;
747 }
748
749
750 /* Clear all MIB counters */
mvneta_mib_counters_clear(struct mvneta_port * pp)751 static void mvneta_mib_counters_clear(struct mvneta_port *pp)
752 {
753 int i;
754
755 /* Perform dummy reads from MIB counters */
756 for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
757 mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
758 mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT);
759 mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT);
760 }
761
762 /* Get System Network Statistics */
763 static void
mvneta_get_stats64(struct net_device * dev,struct rtnl_link_stats64 * stats)764 mvneta_get_stats64(struct net_device *dev,
765 struct rtnl_link_stats64 *stats)
766 {
767 struct mvneta_port *pp = netdev_priv(dev);
768 unsigned int start;
769 int cpu;
770
771 for_each_possible_cpu(cpu) {
772 struct mvneta_pcpu_stats *cpu_stats;
773 u64 rx_packets;
774 u64 rx_bytes;
775 u64 rx_dropped;
776 u64 rx_errors;
777 u64 tx_packets;
778 u64 tx_bytes;
779
780 cpu_stats = per_cpu_ptr(pp->stats, cpu);
781 do {
782 start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
783 rx_packets = cpu_stats->es.ps.rx_packets;
784 rx_bytes = cpu_stats->es.ps.rx_bytes;
785 rx_dropped = cpu_stats->rx_dropped;
786 rx_errors = cpu_stats->rx_errors;
787 tx_packets = cpu_stats->es.ps.tx_packets;
788 tx_bytes = cpu_stats->es.ps.tx_bytes;
789 } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
790
791 stats->rx_packets += rx_packets;
792 stats->rx_bytes += rx_bytes;
793 stats->rx_dropped += rx_dropped;
794 stats->rx_errors += rx_errors;
795 stats->tx_packets += tx_packets;
796 stats->tx_bytes += tx_bytes;
797 }
798
799 stats->tx_dropped = dev->stats.tx_dropped;
800 }
801
802 /* Rx descriptors helper methods */
803
804 /* Checks whether the RX descriptor having this status is both the first
805 * and the last descriptor for the RX packet. Each RX packet is currently
806 * received through a single RX descriptor, so not having each RX
807 * descriptor with its first and last bits set is an error
808 */
mvneta_rxq_desc_is_first_last(u32 status)809 static int mvneta_rxq_desc_is_first_last(u32 status)
810 {
811 return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
812 MVNETA_RXD_FIRST_LAST_DESC;
813 }
814
815 /* Add number of descriptors ready to receive new packets */
mvneta_rxq_non_occup_desc_add(struct mvneta_port * pp,struct mvneta_rx_queue * rxq,int ndescs)816 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
817 struct mvneta_rx_queue *rxq,
818 int ndescs)
819 {
820 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
821 * be added at once
822 */
823 while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
824 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
825 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
826 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
827 ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
828 }
829
830 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
831 (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
832 }
833
834 /* Get number of RX descriptors occupied by received packets */
mvneta_rxq_busy_desc_num_get(struct mvneta_port * pp,struct mvneta_rx_queue * rxq)835 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
836 struct mvneta_rx_queue *rxq)
837 {
838 u32 val;
839
840 val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
841 return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
842 }
843
844 /* Update num of rx desc called upon return from rx path or
845 * from mvneta_rxq_drop_pkts().
846 */
mvneta_rxq_desc_num_update(struct mvneta_port * pp,struct mvneta_rx_queue * rxq,int rx_done,int rx_filled)847 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
848 struct mvneta_rx_queue *rxq,
849 int rx_done, int rx_filled)
850 {
851 u32 val;
852
853 if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
854 val = rx_done |
855 (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
856 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
857 return;
858 }
859
860 /* Only 255 descriptors can be added at once */
861 while ((rx_done > 0) || (rx_filled > 0)) {
862 if (rx_done <= 0xff) {
863 val = rx_done;
864 rx_done = 0;
865 } else {
866 val = 0xff;
867 rx_done -= 0xff;
868 }
869 if (rx_filled <= 0xff) {
870 val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
871 rx_filled = 0;
872 } else {
873 val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
874 rx_filled -= 0xff;
875 }
876 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
877 }
878 }
879
880 /* Get pointer to next RX descriptor to be processed by SW */
881 static struct mvneta_rx_desc *
mvneta_rxq_next_desc_get(struct mvneta_rx_queue * rxq)882 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
883 {
884 int rx_desc = rxq->next_desc_to_proc;
885
886 rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
887 prefetch(rxq->descs + rxq->next_desc_to_proc);
888 return rxq->descs + rx_desc;
889 }
890
891 /* Change maximum receive size of the port. */
mvneta_max_rx_size_set(struct mvneta_port * pp,int max_rx_size)892 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
893 {
894 u32 val;
895
896 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
897 val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
898 val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
899 MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
900 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
901 }
902
903
904 /* Set rx queue offset */
mvneta_rxq_offset_set(struct mvneta_port * pp,struct mvneta_rx_queue * rxq,int offset)905 static void mvneta_rxq_offset_set(struct mvneta_port *pp,
906 struct mvneta_rx_queue *rxq,
907 int offset)
908 {
909 u32 val;
910
911 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
912 val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
913
914 /* Offset is in */
915 val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
916 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
917 }
918
919
920 /* Tx descriptors helper methods */
921
922 /* Update HW with number of TX descriptors to be sent */
mvneta_txq_pend_desc_add(struct mvneta_port * pp,struct mvneta_tx_queue * txq,int pend_desc)923 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
924 struct mvneta_tx_queue *txq,
925 int pend_desc)
926 {
927 u32 val;
928
929 pend_desc += txq->pending;
930
931 /* Only 255 Tx descriptors can be added at once */
932 do {
933 val = min(pend_desc, 255);
934 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
935 pend_desc -= val;
936 } while (pend_desc > 0);
937 txq->pending = 0;
938 }
939
940 /* Get pointer to next TX descriptor to be processed (send) by HW */
941 static struct mvneta_tx_desc *
mvneta_txq_next_desc_get(struct mvneta_tx_queue * txq)942 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
943 {
944 int tx_desc = txq->next_desc_to_proc;
945
946 txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
947 return txq->descs + tx_desc;
948 }
949
950 /* Release the last allocated TX descriptor. Useful to handle DMA
951 * mapping failures in the TX path.
952 */
mvneta_txq_desc_put(struct mvneta_tx_queue * txq)953 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
954 {
955 if (txq->next_desc_to_proc == 0)
956 txq->next_desc_to_proc = txq->last_desc - 1;
957 else
958 txq->next_desc_to_proc--;
959 }
960
961 /* Set rxq buf size */
mvneta_rxq_buf_size_set(struct mvneta_port * pp,struct mvneta_rx_queue * rxq,int buf_size)962 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
963 struct mvneta_rx_queue *rxq,
964 int buf_size)
965 {
966 u32 val;
967
968 val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
969
970 val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
971 val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
972
973 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
974 }
975
976 /* Disable buffer management (BM) */
mvneta_rxq_bm_disable(struct mvneta_port * pp,struct mvneta_rx_queue * rxq)977 static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
978 struct mvneta_rx_queue *rxq)
979 {
980 u32 val;
981
982 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
983 val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
984 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
985 }
986
987 /* Enable buffer management (BM) */
mvneta_rxq_bm_enable(struct mvneta_port * pp,struct mvneta_rx_queue * rxq)988 static void mvneta_rxq_bm_enable(struct mvneta_port *pp,
989 struct mvneta_rx_queue *rxq)
990 {
991 u32 val;
992
993 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
994 val |= MVNETA_RXQ_HW_BUF_ALLOC;
995 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
996 }
997
998 /* Notify HW about port's assignment of pool for bigger packets */
mvneta_rxq_long_pool_set(struct mvneta_port * pp,struct mvneta_rx_queue * rxq)999 static void mvneta_rxq_long_pool_set(struct mvneta_port *pp,
1000 struct mvneta_rx_queue *rxq)
1001 {
1002 u32 val;
1003
1004 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
1005 val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK;
1006 val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT);
1007
1008 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
1009 }
1010
1011 /* Notify HW about port's assignment of pool for smaller packets */
mvneta_rxq_short_pool_set(struct mvneta_port * pp,struct mvneta_rx_queue * rxq)1012 static void mvneta_rxq_short_pool_set(struct mvneta_port *pp,
1013 struct mvneta_rx_queue *rxq)
1014 {
1015 u32 val;
1016
1017 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
1018 val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK;
1019 val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT);
1020
1021 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
1022 }
1023
1024 /* Set port's receive buffer size for assigned BM pool */
mvneta_bm_pool_bufsize_set(struct mvneta_port * pp,int buf_size,u8 pool_id)1025 static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp,
1026 int buf_size,
1027 u8 pool_id)
1028 {
1029 u32 val;
1030
1031 if (!IS_ALIGNED(buf_size, 8)) {
1032 dev_warn(pp->dev->dev.parent,
1033 "illegal buf_size value %d, round to %d\n",
1034 buf_size, ALIGN(buf_size, 8));
1035 buf_size = ALIGN(buf_size, 8);
1036 }
1037
1038 val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id));
1039 val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK;
1040 mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val);
1041 }
1042
1043 /* Configure MBUS window in order to enable access BM internal SRAM */
mvneta_mbus_io_win_set(struct mvneta_port * pp,u32 base,u32 wsize,u8 target,u8 attr)1044 static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize,
1045 u8 target, u8 attr)
1046 {
1047 u32 win_enable, win_protect;
1048 int i;
1049
1050 win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE);
1051
1052 if (pp->bm_win_id < 0) {
1053 /* Find first not occupied window */
1054 for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) {
1055 if (win_enable & (1 << i)) {
1056 pp->bm_win_id = i;
1057 break;
1058 }
1059 }
1060 if (i == MVNETA_MAX_DECODE_WIN)
1061 return -ENOMEM;
1062 } else {
1063 i = pp->bm_win_id;
1064 }
1065
1066 mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
1067 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
1068
1069 if (i < 4)
1070 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
1071
1072 mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) |
1073 (attr << 8) | target);
1074
1075 mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000);
1076
1077 win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE);
1078 win_protect |= 3 << (2 * i);
1079 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
1080
1081 win_enable &= ~(1 << i);
1082 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
1083
1084 return 0;
1085 }
1086
mvneta_bm_port_mbus_init(struct mvneta_port * pp)1087 static int mvneta_bm_port_mbus_init(struct mvneta_port *pp)
1088 {
1089 u32 wsize;
1090 u8 target, attr;
1091 int err;
1092
1093 /* Get BM window information */
1094 err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize,
1095 &target, &attr);
1096 if (err < 0)
1097 return err;
1098
1099 pp->bm_win_id = -1;
1100
1101 /* Open NETA -> BM window */
1102 err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize,
1103 target, attr);
1104 if (err < 0) {
1105 netdev_info(pp->dev, "fail to configure mbus window to BM\n");
1106 return err;
1107 }
1108 return 0;
1109 }
1110
1111 /* Assign and initialize pools for port. In case of fail
1112 * buffer manager will remain disabled for current port.
1113 */
mvneta_bm_port_init(struct platform_device * pdev,struct mvneta_port * pp)1114 static int mvneta_bm_port_init(struct platform_device *pdev,
1115 struct mvneta_port *pp)
1116 {
1117 struct device_node *dn = pdev->dev.of_node;
1118 u32 long_pool_id, short_pool_id;
1119
1120 if (!pp->neta_armada3700) {
1121 int ret;
1122
1123 ret = mvneta_bm_port_mbus_init(pp);
1124 if (ret)
1125 return ret;
1126 }
1127
1128 if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) {
1129 netdev_info(pp->dev, "missing long pool id\n");
1130 return -EINVAL;
1131 }
1132
1133 /* Create port's long pool depending on mtu */
1134 pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id,
1135 MVNETA_BM_LONG, pp->id,
1136 MVNETA_RX_PKT_SIZE(pp->dev->mtu));
1137 if (!pp->pool_long) {
1138 netdev_info(pp->dev, "fail to obtain long pool for port\n");
1139 return -ENOMEM;
1140 }
1141
1142 pp->pool_long->port_map |= 1 << pp->id;
1143
1144 mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size,
1145 pp->pool_long->id);
1146
1147 /* If short pool id is not defined, assume using single pool */
1148 if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id))
1149 short_pool_id = long_pool_id;
1150
1151 /* Create port's short pool */
1152 pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id,
1153 MVNETA_BM_SHORT, pp->id,
1154 MVNETA_BM_SHORT_PKT_SIZE);
1155 if (!pp->pool_short) {
1156 netdev_info(pp->dev, "fail to obtain short pool for port\n");
1157 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1158 return -ENOMEM;
1159 }
1160
1161 if (short_pool_id != long_pool_id) {
1162 pp->pool_short->port_map |= 1 << pp->id;
1163 mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size,
1164 pp->pool_short->id);
1165 }
1166
1167 return 0;
1168 }
1169
1170 /* Update settings of a pool for bigger packets */
mvneta_bm_update_mtu(struct mvneta_port * pp,int mtu)1171 static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu)
1172 {
1173 struct mvneta_bm_pool *bm_pool = pp->pool_long;
1174 struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool;
1175 int num;
1176
1177 /* Release all buffers from long pool */
1178 mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id);
1179 if (hwbm_pool->buf_num) {
1180 WARN(1, "cannot free all buffers in pool %d\n",
1181 bm_pool->id);
1182 goto bm_mtu_err;
1183 }
1184
1185 bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu);
1186 bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size);
1187 hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1188 SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size));
1189
1190 /* Fill entire long pool */
1191 num = hwbm_pool_add(hwbm_pool, hwbm_pool->size);
1192 if (num != hwbm_pool->size) {
1193 WARN(1, "pool %d: %d of %d allocated\n",
1194 bm_pool->id, num, hwbm_pool->size);
1195 goto bm_mtu_err;
1196 }
1197 mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id);
1198
1199 return;
1200
1201 bm_mtu_err:
1202 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1203 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id);
1204
1205 pp->bm_priv = NULL;
1206 pp->rx_offset_correction = MVNETA_SKB_HEADROOM;
1207 mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1);
1208 netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n");
1209 }
1210
1211 /* Start the Ethernet port RX and TX activity */
mvneta_port_up(struct mvneta_port * pp)1212 static void mvneta_port_up(struct mvneta_port *pp)
1213 {
1214 int queue;
1215 u32 q_map;
1216
1217 /* Enable all initialized TXs. */
1218 q_map = 0;
1219 for (queue = 0; queue < txq_number; queue++) {
1220 struct mvneta_tx_queue *txq = &pp->txqs[queue];
1221 if (txq->descs)
1222 q_map |= (1 << queue);
1223 }
1224 mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
1225
1226 q_map = 0;
1227 /* Enable all initialized RXQs. */
1228 for (queue = 0; queue < rxq_number; queue++) {
1229 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
1230
1231 if (rxq->descs)
1232 q_map |= (1 << queue);
1233 }
1234 mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
1235 }
1236
1237 /* Stop the Ethernet port activity */
mvneta_port_down(struct mvneta_port * pp)1238 static void mvneta_port_down(struct mvneta_port *pp)
1239 {
1240 u32 val;
1241 int count;
1242
1243 /* Stop Rx port activity. Check port Rx activity. */
1244 val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
1245
1246 /* Issue stop command for active channels only */
1247 if (val != 0)
1248 mvreg_write(pp, MVNETA_RXQ_CMD,
1249 val << MVNETA_RXQ_DISABLE_SHIFT);
1250
1251 /* Wait for all Rx activity to terminate. */
1252 count = 0;
1253 do {
1254 if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
1255 netdev_warn(pp->dev,
1256 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n",
1257 val);
1258 break;
1259 }
1260 mdelay(1);
1261
1262 val = mvreg_read(pp, MVNETA_RXQ_CMD);
1263 } while (val & MVNETA_RXQ_ENABLE_MASK);
1264
1265 /* Stop Tx port activity. Check port Tx activity. Issue stop
1266 * command for active channels only
1267 */
1268 val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
1269
1270 if (val != 0)
1271 mvreg_write(pp, MVNETA_TXQ_CMD,
1272 (val << MVNETA_TXQ_DISABLE_SHIFT));
1273
1274 /* Wait for all Tx activity to terminate. */
1275 count = 0;
1276 do {
1277 if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
1278 netdev_warn(pp->dev,
1279 "TIMEOUT for TX stopped status=0x%08x\n",
1280 val);
1281 break;
1282 }
1283 mdelay(1);
1284
1285 /* Check TX Command reg that all Txqs are stopped */
1286 val = mvreg_read(pp, MVNETA_TXQ_CMD);
1287
1288 } while (val & MVNETA_TXQ_ENABLE_MASK);
1289
1290 /* Double check to verify that TX FIFO is empty */
1291 count = 0;
1292 do {
1293 if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
1294 netdev_warn(pp->dev,
1295 "TX FIFO empty timeout status=0x%08x\n",
1296 val);
1297 break;
1298 }
1299 mdelay(1);
1300
1301 val = mvreg_read(pp, MVNETA_PORT_STATUS);
1302 } while (!(val & MVNETA_TX_FIFO_EMPTY) &&
1303 (val & MVNETA_TX_IN_PRGRS));
1304
1305 udelay(200);
1306 }
1307
1308 /* Enable the port by setting the port enable bit of the MAC control register */
mvneta_port_enable(struct mvneta_port * pp)1309 static void mvneta_port_enable(struct mvneta_port *pp)
1310 {
1311 u32 val;
1312
1313 /* Enable port */
1314 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1315 val |= MVNETA_GMAC0_PORT_ENABLE;
1316 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1317 }
1318
1319 /* Disable the port and wait for about 200 usec before retuning */
mvneta_port_disable(struct mvneta_port * pp)1320 static void mvneta_port_disable(struct mvneta_port *pp)
1321 {
1322 u32 val;
1323
1324 /* Reset the Enable bit in the Serial Control Register */
1325 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1326 val &= ~MVNETA_GMAC0_PORT_ENABLE;
1327 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1328
1329 udelay(200);
1330 }
1331
1332 /* Multicast tables methods */
1333
1334 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
mvneta_set_ucast_table(struct mvneta_port * pp,int queue)1335 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
1336 {
1337 int offset;
1338 u32 val;
1339
1340 if (queue == -1) {
1341 val = 0;
1342 } else {
1343 val = 0x1 | (queue << 1);
1344 val |= (val << 24) | (val << 16) | (val << 8);
1345 }
1346
1347 for (offset = 0; offset <= 0xc; offset += 4)
1348 mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
1349 }
1350
1351 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
mvneta_set_special_mcast_table(struct mvneta_port * pp,int queue)1352 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
1353 {
1354 int offset;
1355 u32 val;
1356
1357 if (queue == -1) {
1358 val = 0;
1359 } else {
1360 val = 0x1 | (queue << 1);
1361 val |= (val << 24) | (val << 16) | (val << 8);
1362 }
1363
1364 for (offset = 0; offset <= 0xfc; offset += 4)
1365 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
1366
1367 }
1368
1369 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
mvneta_set_other_mcast_table(struct mvneta_port * pp,int queue)1370 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
1371 {
1372 int offset;
1373 u32 val;
1374
1375 if (queue == -1) {
1376 memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
1377 val = 0;
1378 } else {
1379 memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
1380 val = 0x1 | (queue << 1);
1381 val |= (val << 24) | (val << 16) | (val << 8);
1382 }
1383
1384 for (offset = 0; offset <= 0xfc; offset += 4)
1385 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
1386 }
1387
mvneta_percpu_unmask_interrupt(void * arg)1388 static void mvneta_percpu_unmask_interrupt(void *arg)
1389 {
1390 struct mvneta_port *pp = arg;
1391
1392 /* All the queue are unmasked, but actually only the ones
1393 * mapped to this CPU will be unmasked
1394 */
1395 mvreg_write(pp, MVNETA_INTR_NEW_MASK,
1396 MVNETA_RX_INTR_MASK_ALL |
1397 MVNETA_TX_INTR_MASK_ALL |
1398 MVNETA_MISCINTR_INTR_MASK);
1399 }
1400
mvneta_percpu_mask_interrupt(void * arg)1401 static void mvneta_percpu_mask_interrupt(void *arg)
1402 {
1403 struct mvneta_port *pp = arg;
1404
1405 /* All the queue are masked, but actually only the ones
1406 * mapped to this CPU will be masked
1407 */
1408 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
1409 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
1410 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
1411 }
1412
mvneta_percpu_clear_intr_cause(void * arg)1413 static void mvneta_percpu_clear_intr_cause(void *arg)
1414 {
1415 struct mvneta_port *pp = arg;
1416
1417 /* All the queue are cleared, but actually only the ones
1418 * mapped to this CPU will be cleared
1419 */
1420 mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
1421 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
1422 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
1423 }
1424
1425 /* This method sets defaults to the NETA port:
1426 * Clears interrupt Cause and Mask registers.
1427 * Clears all MAC tables.
1428 * Sets defaults to all registers.
1429 * Resets RX and TX descriptor rings.
1430 * Resets PHY.
1431 * This method can be called after mvneta_port_down() to return the port
1432 * settings to defaults.
1433 */
mvneta_defaults_set(struct mvneta_port * pp)1434 static void mvneta_defaults_set(struct mvneta_port *pp)
1435 {
1436 int cpu;
1437 int queue;
1438 u32 val;
1439 int max_cpu = num_present_cpus();
1440
1441 /* Clear all Cause registers */
1442 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
1443
1444 /* Mask all interrupts */
1445 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
1446 mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
1447
1448 /* Enable MBUS Retry bit16 */
1449 mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
1450
1451 /* Set CPU queue access map. CPUs are assigned to the RX and
1452 * TX queues modulo their number. If there is only one TX
1453 * queue then it is assigned to the CPU associated to the
1454 * default RX queue.
1455 */
1456 for_each_present_cpu(cpu) {
1457 int rxq_map = 0, txq_map = 0;
1458 int rxq, txq;
1459 if (!pp->neta_armada3700) {
1460 for (rxq = 0; rxq < rxq_number; rxq++)
1461 if ((rxq % max_cpu) == cpu)
1462 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
1463
1464 for (txq = 0; txq < txq_number; txq++)
1465 if ((txq % max_cpu) == cpu)
1466 txq_map |= MVNETA_CPU_TXQ_ACCESS(txq);
1467
1468 /* With only one TX queue we configure a special case
1469 * which will allow to get all the irq on a single
1470 * CPU
1471 */
1472 if (txq_number == 1)
1473 txq_map = (cpu == pp->rxq_def) ?
1474 MVNETA_CPU_TXQ_ACCESS(1) : 0;
1475
1476 } else {
1477 txq_map = MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
1478 rxq_map = MVNETA_CPU_RXQ_ACCESS_ALL_MASK;
1479 }
1480
1481 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
1482 }
1483
1484 /* Reset RX and TX DMAs */
1485 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
1486 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
1487
1488 /* Disable Legacy WRR, Disable EJP, Release from reset */
1489 mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
1490 for (queue = 0; queue < txq_number; queue++) {
1491 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
1492 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
1493 }
1494
1495 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
1496 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
1497
1498 /* Set Port Acceleration Mode */
1499 if (pp->bm_priv)
1500 /* HW buffer management + legacy parser */
1501 val = MVNETA_ACC_MODE_EXT2;
1502 else
1503 /* SW buffer management + legacy parser */
1504 val = MVNETA_ACC_MODE_EXT1;
1505 mvreg_write(pp, MVNETA_ACC_MODE, val);
1506
1507 if (pp->bm_priv)
1508 mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr);
1509
1510 /* Update val of portCfg register accordingly with all RxQueue types */
1511 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
1512 mvreg_write(pp, MVNETA_PORT_CONFIG, val);
1513
1514 val = 0;
1515 mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
1516 mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
1517
1518 /* Build PORT_SDMA_CONFIG_REG */
1519 val = 0;
1520
1521 /* Default burst size */
1522 val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1523 val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1524 val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
1525
1526 #if defined(__BIG_ENDIAN)
1527 val |= MVNETA_DESC_SWAP;
1528 #endif
1529
1530 /* Assign port SDMA configuration */
1531 mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
1532
1533 /* Disable PHY polling in hardware, since we're using the
1534 * kernel phylib to do this.
1535 */
1536 val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
1537 val &= ~MVNETA_PHY_POLLING_ENABLE;
1538 mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
1539
1540 mvneta_set_ucast_table(pp, -1);
1541 mvneta_set_special_mcast_table(pp, -1);
1542 mvneta_set_other_mcast_table(pp, -1);
1543
1544 /* Set port interrupt enable register - default enable all */
1545 mvreg_write(pp, MVNETA_INTR_ENABLE,
1546 (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
1547 | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
1548
1549 mvneta_mib_counters_clear(pp);
1550 }
1551
1552 /* Set max sizes for tx queues */
mvneta_txq_max_tx_size_set(struct mvneta_port * pp,int max_tx_size)1553 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
1554
1555 {
1556 u32 val, size, mtu;
1557 int queue;
1558
1559 mtu = max_tx_size * 8;
1560 if (mtu > MVNETA_TX_MTU_MAX)
1561 mtu = MVNETA_TX_MTU_MAX;
1562
1563 /* Set MTU */
1564 val = mvreg_read(pp, MVNETA_TX_MTU);
1565 val &= ~MVNETA_TX_MTU_MAX;
1566 val |= mtu;
1567 mvreg_write(pp, MVNETA_TX_MTU, val);
1568
1569 /* TX token size and all TXQs token size must be larger that MTU */
1570 val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
1571
1572 size = val & MVNETA_TX_TOKEN_SIZE_MAX;
1573 if (size < mtu) {
1574 size = mtu;
1575 val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
1576 val |= size;
1577 mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
1578 }
1579 for (queue = 0; queue < txq_number; queue++) {
1580 val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
1581
1582 size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
1583 if (size < mtu) {
1584 size = mtu;
1585 val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
1586 val |= size;
1587 mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
1588 }
1589 }
1590 }
1591
1592 /* Set unicast address */
mvneta_set_ucast_addr(struct mvneta_port * pp,u8 last_nibble,int queue)1593 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
1594 int queue)
1595 {
1596 unsigned int unicast_reg;
1597 unsigned int tbl_offset;
1598 unsigned int reg_offset;
1599
1600 /* Locate the Unicast table entry */
1601 last_nibble = (0xf & last_nibble);
1602
1603 /* offset from unicast tbl base */
1604 tbl_offset = (last_nibble / 4) * 4;
1605
1606 /* offset within the above reg */
1607 reg_offset = last_nibble % 4;
1608
1609 unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
1610
1611 if (queue == -1) {
1612 /* Clear accepts frame bit at specified unicast DA tbl entry */
1613 unicast_reg &= ~(0xff << (8 * reg_offset));
1614 } else {
1615 unicast_reg &= ~(0xff << (8 * reg_offset));
1616 unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1617 }
1618
1619 mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
1620 }
1621
1622 /* Set mac address */
mvneta_mac_addr_set(struct mvneta_port * pp,unsigned char * addr,int queue)1623 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
1624 int queue)
1625 {
1626 unsigned int mac_h;
1627 unsigned int mac_l;
1628
1629 if (queue != -1) {
1630 mac_l = (addr[4] << 8) | (addr[5]);
1631 mac_h = (addr[0] << 24) | (addr[1] << 16) |
1632 (addr[2] << 8) | (addr[3] << 0);
1633
1634 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1635 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1636 }
1637
1638 /* Accept frames of this address */
1639 mvneta_set_ucast_addr(pp, addr[5], queue);
1640 }
1641
1642 /* Set the number of packets that will be received before RX interrupt
1643 * will be generated by HW.
1644 */
mvneta_rx_pkts_coal_set(struct mvneta_port * pp,struct mvneta_rx_queue * rxq,u32 value)1645 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1646 struct mvneta_rx_queue *rxq, u32 value)
1647 {
1648 mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1649 value | MVNETA_RXQ_NON_OCCUPIED(0));
1650 }
1651
1652 /* Set the time delay in usec before RX interrupt will be generated by
1653 * HW.
1654 */
mvneta_rx_time_coal_set(struct mvneta_port * pp,struct mvneta_rx_queue * rxq,u32 value)1655 static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1656 struct mvneta_rx_queue *rxq, u32 value)
1657 {
1658 u32 val;
1659 unsigned long clk_rate;
1660
1661 clk_rate = clk_get_rate(pp->clk);
1662 val = (clk_rate / 1000000) * value;
1663
1664 mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1665 }
1666
1667 /* Set threshold for TX_DONE pkts coalescing */
mvneta_tx_done_pkts_coal_set(struct mvneta_port * pp,struct mvneta_tx_queue * txq,u32 value)1668 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1669 struct mvneta_tx_queue *txq, u32 value)
1670 {
1671 u32 val;
1672
1673 val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1674
1675 val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1676 val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1677
1678 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1679 }
1680
1681 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
mvneta_rx_desc_fill(struct mvneta_rx_desc * rx_desc,u32 phys_addr,void * virt_addr,struct mvneta_rx_queue * rxq)1682 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1683 u32 phys_addr, void *virt_addr,
1684 struct mvneta_rx_queue *rxq)
1685 {
1686 int i;
1687
1688 rx_desc->buf_phys_addr = phys_addr;
1689 i = rx_desc - rxq->descs;
1690 rxq->buf_virt_addr[i] = virt_addr;
1691 }
1692
1693 /* Decrement sent descriptors counter */
mvneta_txq_sent_desc_dec(struct mvneta_port * pp,struct mvneta_tx_queue * txq,int sent_desc)1694 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1695 struct mvneta_tx_queue *txq,
1696 int sent_desc)
1697 {
1698 u32 val;
1699
1700 /* Only 255 TX descriptors can be updated at once */
1701 while (sent_desc > 0xff) {
1702 val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1703 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1704 sent_desc = sent_desc - 0xff;
1705 }
1706
1707 val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1708 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1709 }
1710
1711 /* Get number of TX descriptors already sent by HW */
mvneta_txq_sent_desc_num_get(struct mvneta_port * pp,struct mvneta_tx_queue * txq)1712 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1713 struct mvneta_tx_queue *txq)
1714 {
1715 u32 val;
1716 int sent_desc;
1717
1718 val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1719 sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1720 MVNETA_TXQ_SENT_DESC_SHIFT;
1721
1722 return sent_desc;
1723 }
1724
1725 /* Get number of sent descriptors and decrement counter.
1726 * The number of sent descriptors is returned.
1727 */
mvneta_txq_sent_desc_proc(struct mvneta_port * pp,struct mvneta_tx_queue * txq)1728 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1729 struct mvneta_tx_queue *txq)
1730 {
1731 int sent_desc;
1732
1733 /* Get number of sent descriptors */
1734 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1735
1736 /* Decrement sent descriptors counter */
1737 if (sent_desc)
1738 mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1739
1740 return sent_desc;
1741 }
1742
1743 /* Set TXQ descriptors fields relevant for CSUM calculation */
mvneta_txq_desc_csum(int l3_offs,int l3_proto,int ip_hdr_len,int l4_proto)1744 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1745 int ip_hdr_len, int l4_proto)
1746 {
1747 u32 command;
1748
1749 /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1750 * G_L4_chk, L4_type; required only for checksum
1751 * calculation
1752 */
1753 command = l3_offs << MVNETA_TX_L3_OFF_SHIFT;
1754 command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1755
1756 if (l3_proto == htons(ETH_P_IP))
1757 command |= MVNETA_TXD_IP_CSUM;
1758 else
1759 command |= MVNETA_TX_L3_IP6;
1760
1761 if (l4_proto == IPPROTO_TCP)
1762 command |= MVNETA_TX_L4_CSUM_FULL;
1763 else if (l4_proto == IPPROTO_UDP)
1764 command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1765 else
1766 command |= MVNETA_TX_L4_CSUM_NOT;
1767
1768 return command;
1769 }
1770
1771
1772 /* Display more error info */
mvneta_rx_error(struct mvneta_port * pp,struct mvneta_rx_desc * rx_desc)1773 static void mvneta_rx_error(struct mvneta_port *pp,
1774 struct mvneta_rx_desc *rx_desc)
1775 {
1776 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1777 u32 status = rx_desc->status;
1778
1779 /* update per-cpu counter */
1780 u64_stats_update_begin(&stats->syncp);
1781 stats->rx_errors++;
1782 u64_stats_update_end(&stats->syncp);
1783
1784 switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1785 case MVNETA_RXD_ERR_CRC:
1786 netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1787 status, rx_desc->data_size);
1788 break;
1789 case MVNETA_RXD_ERR_OVERRUN:
1790 netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1791 status, rx_desc->data_size);
1792 break;
1793 case MVNETA_RXD_ERR_LEN:
1794 netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1795 status, rx_desc->data_size);
1796 break;
1797 case MVNETA_RXD_ERR_RESOURCE:
1798 netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1799 status, rx_desc->data_size);
1800 break;
1801 }
1802 }
1803
1804 /* Handle RX checksum offload based on the descriptor's status */
mvneta_rx_csum(struct mvneta_port * pp,u32 status,struct sk_buff * skb)1805 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
1806 struct sk_buff *skb)
1807 {
1808 if ((pp->dev->features & NETIF_F_RXCSUM) &&
1809 (status & MVNETA_RXD_L3_IP4) &&
1810 (status & MVNETA_RXD_L4_CSUM_OK)) {
1811 skb->csum = 0;
1812 skb->ip_summed = CHECKSUM_UNNECESSARY;
1813 return;
1814 }
1815
1816 skb->ip_summed = CHECKSUM_NONE;
1817 }
1818
1819 /* Return tx queue pointer (find last set bit) according to <cause> returned
1820 * form tx_done reg. <cause> must not be null. The return value is always a
1821 * valid queue for matching the first one found in <cause>.
1822 */
mvneta_tx_done_policy(struct mvneta_port * pp,u32 cause)1823 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1824 u32 cause)
1825 {
1826 int queue = fls(cause) - 1;
1827
1828 return &pp->txqs[queue];
1829 }
1830
1831 /* Free tx queue skbuffs */
mvneta_txq_bufs_free(struct mvneta_port * pp,struct mvneta_tx_queue * txq,int num,struct netdev_queue * nq,bool napi)1832 static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1833 struct mvneta_tx_queue *txq, int num,
1834 struct netdev_queue *nq, bool napi)
1835 {
1836 unsigned int bytes_compl = 0, pkts_compl = 0;
1837 int i;
1838
1839 for (i = 0; i < num; i++) {
1840 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_get_index];
1841 struct mvneta_tx_desc *tx_desc = txq->descs +
1842 txq->txq_get_index;
1843
1844 mvneta_txq_inc_get(txq);
1845
1846 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr) &&
1847 buf->type != MVNETA_TYPE_XDP_TX)
1848 dma_unmap_single(pp->dev->dev.parent,
1849 tx_desc->buf_phys_addr,
1850 tx_desc->data_size, DMA_TO_DEVICE);
1851 if (buf->type == MVNETA_TYPE_SKB && buf->skb) {
1852 bytes_compl += buf->skb->len;
1853 pkts_compl++;
1854 dev_kfree_skb_any(buf->skb);
1855 } else if (buf->type == MVNETA_TYPE_XDP_TX ||
1856 buf->type == MVNETA_TYPE_XDP_NDO) {
1857 if (napi && buf->type == MVNETA_TYPE_XDP_TX)
1858 xdp_return_frame_rx_napi(buf->xdpf);
1859 else
1860 xdp_return_frame(buf->xdpf);
1861 }
1862 }
1863
1864 netdev_tx_completed_queue(nq, pkts_compl, bytes_compl);
1865 }
1866
1867 /* Handle end of transmission */
mvneta_txq_done(struct mvneta_port * pp,struct mvneta_tx_queue * txq)1868 static void mvneta_txq_done(struct mvneta_port *pp,
1869 struct mvneta_tx_queue *txq)
1870 {
1871 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1872 int tx_done;
1873
1874 tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1875 if (!tx_done)
1876 return;
1877
1878 mvneta_txq_bufs_free(pp, txq, tx_done, nq, true);
1879
1880 txq->count -= tx_done;
1881
1882 if (netif_tx_queue_stopped(nq)) {
1883 if (txq->count <= txq->tx_wake_threshold)
1884 netif_tx_wake_queue(nq);
1885 }
1886 }
1887
1888 /* Refill processing for SW buffer management */
1889 /* Allocate page per descriptor */
mvneta_rx_refill(struct mvneta_port * pp,struct mvneta_rx_desc * rx_desc,struct mvneta_rx_queue * rxq,gfp_t gfp_mask)1890 static int mvneta_rx_refill(struct mvneta_port *pp,
1891 struct mvneta_rx_desc *rx_desc,
1892 struct mvneta_rx_queue *rxq,
1893 gfp_t gfp_mask)
1894 {
1895 dma_addr_t phys_addr;
1896 struct page *page;
1897
1898 page = page_pool_alloc_pages(rxq->page_pool,
1899 gfp_mask | __GFP_NOWARN);
1900 if (!page)
1901 return -ENOMEM;
1902
1903 phys_addr = page_pool_get_dma_addr(page) + pp->rx_offset_correction;
1904 mvneta_rx_desc_fill(rx_desc, phys_addr, page, rxq);
1905
1906 return 0;
1907 }
1908
1909 /* Handle tx checksum */
mvneta_skb_tx_csum(struct mvneta_port * pp,struct sk_buff * skb)1910 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
1911 {
1912 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1913 int ip_hdr_len = 0;
1914 __be16 l3_proto = vlan_get_protocol(skb);
1915 u8 l4_proto;
1916
1917 if (l3_proto == htons(ETH_P_IP)) {
1918 struct iphdr *ip4h = ip_hdr(skb);
1919
1920 /* Calculate IPv4 checksum and L4 checksum */
1921 ip_hdr_len = ip4h->ihl;
1922 l4_proto = ip4h->protocol;
1923 } else if (l3_proto == htons(ETH_P_IPV6)) {
1924 struct ipv6hdr *ip6h = ipv6_hdr(skb);
1925
1926 /* Read l4_protocol from one of IPv6 extra headers */
1927 if (skb_network_header_len(skb) > 0)
1928 ip_hdr_len = (skb_network_header_len(skb) >> 2);
1929 l4_proto = ip6h->nexthdr;
1930 } else
1931 return MVNETA_TX_L4_CSUM_NOT;
1932
1933 return mvneta_txq_desc_csum(skb_network_offset(skb),
1934 l3_proto, ip_hdr_len, l4_proto);
1935 }
1936
1937 return MVNETA_TX_L4_CSUM_NOT;
1938 }
1939
1940 /* Drop packets received by the RXQ and free buffers */
mvneta_rxq_drop_pkts(struct mvneta_port * pp,struct mvneta_rx_queue * rxq)1941 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1942 struct mvneta_rx_queue *rxq)
1943 {
1944 int rx_done, i;
1945
1946 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1947 if (rx_done)
1948 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1949
1950 if (pp->bm_priv) {
1951 for (i = 0; i < rx_done; i++) {
1952 struct mvneta_rx_desc *rx_desc =
1953 mvneta_rxq_next_desc_get(rxq);
1954 u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
1955 struct mvneta_bm_pool *bm_pool;
1956
1957 bm_pool = &pp->bm_priv->bm_pools[pool_id];
1958 /* Return dropped buffer to the pool */
1959 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
1960 rx_desc->buf_phys_addr);
1961 }
1962 return;
1963 }
1964
1965 for (i = 0; i < rxq->size; i++) {
1966 struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1967 void *data = rxq->buf_virt_addr[i];
1968 if (!data || !(rx_desc->buf_phys_addr))
1969 continue;
1970
1971 page_pool_put_full_page(rxq->page_pool, data, false);
1972 }
1973 if (xdp_rxq_info_is_reg(&rxq->xdp_rxq))
1974 xdp_rxq_info_unreg(&rxq->xdp_rxq);
1975 page_pool_destroy(rxq->page_pool);
1976 rxq->page_pool = NULL;
1977 }
1978
1979 static void
mvneta_update_stats(struct mvneta_port * pp,struct mvneta_stats * ps)1980 mvneta_update_stats(struct mvneta_port *pp,
1981 struct mvneta_stats *ps)
1982 {
1983 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1984
1985 u64_stats_update_begin(&stats->syncp);
1986 stats->es.ps.rx_packets += ps->rx_packets;
1987 stats->es.ps.rx_bytes += ps->rx_bytes;
1988 /* xdp */
1989 stats->es.ps.xdp_redirect += ps->xdp_redirect;
1990 stats->es.ps.xdp_pass += ps->xdp_pass;
1991 stats->es.ps.xdp_drop += ps->xdp_drop;
1992 u64_stats_update_end(&stats->syncp);
1993 }
1994
1995 static inline
mvneta_rx_refill_queue(struct mvneta_port * pp,struct mvneta_rx_queue * rxq)1996 int mvneta_rx_refill_queue(struct mvneta_port *pp, struct mvneta_rx_queue *rxq)
1997 {
1998 struct mvneta_rx_desc *rx_desc;
1999 int curr_desc = rxq->first_to_refill;
2000 int i;
2001
2002 for (i = 0; (i < rxq->refill_num) && (i < 64); i++) {
2003 rx_desc = rxq->descs + curr_desc;
2004 if (!(rx_desc->buf_phys_addr)) {
2005 if (mvneta_rx_refill(pp, rx_desc, rxq, GFP_ATOMIC)) {
2006 struct mvneta_pcpu_stats *stats;
2007
2008 pr_err("Can't refill queue %d. Done %d from %d\n",
2009 rxq->id, i, rxq->refill_num);
2010
2011 stats = this_cpu_ptr(pp->stats);
2012 u64_stats_update_begin(&stats->syncp);
2013 stats->es.refill_error++;
2014 u64_stats_update_end(&stats->syncp);
2015 break;
2016 }
2017 }
2018 curr_desc = MVNETA_QUEUE_NEXT_DESC(rxq, curr_desc);
2019 }
2020 rxq->refill_num -= i;
2021 rxq->first_to_refill = curr_desc;
2022
2023 return i;
2024 }
2025
2026 static void
mvneta_xdp_put_buff(struct mvneta_port * pp,struct mvneta_rx_queue * rxq,struct xdp_buff * xdp,int sync_len,bool napi)2027 mvneta_xdp_put_buff(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2028 struct xdp_buff *xdp, int sync_len, bool napi)
2029 {
2030 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2031 int i;
2032
2033 for (i = 0; i < sinfo->nr_frags; i++)
2034 page_pool_put_full_page(rxq->page_pool,
2035 skb_frag_page(&sinfo->frags[i]), napi);
2036 page_pool_put_page(rxq->page_pool, virt_to_head_page(xdp->data),
2037 sync_len, napi);
2038 }
2039
2040 static int
mvneta_xdp_submit_frame(struct mvneta_port * pp,struct mvneta_tx_queue * txq,struct xdp_frame * xdpf,bool dma_map)2041 mvneta_xdp_submit_frame(struct mvneta_port *pp, struct mvneta_tx_queue *txq,
2042 struct xdp_frame *xdpf, bool dma_map)
2043 {
2044 struct mvneta_tx_desc *tx_desc;
2045 struct mvneta_tx_buf *buf;
2046 dma_addr_t dma_addr;
2047
2048 if (txq->count >= txq->tx_stop_threshold)
2049 return MVNETA_XDP_DROPPED;
2050
2051 tx_desc = mvneta_txq_next_desc_get(txq);
2052
2053 buf = &txq->buf[txq->txq_put_index];
2054 if (dma_map) {
2055 /* ndo_xdp_xmit */
2056 dma_addr = dma_map_single(pp->dev->dev.parent, xdpf->data,
2057 xdpf->len, DMA_TO_DEVICE);
2058 if (dma_mapping_error(pp->dev->dev.parent, dma_addr)) {
2059 mvneta_txq_desc_put(txq);
2060 return MVNETA_XDP_DROPPED;
2061 }
2062 buf->type = MVNETA_TYPE_XDP_NDO;
2063 } else {
2064 struct page *page = virt_to_page(xdpf->data);
2065
2066 dma_addr = page_pool_get_dma_addr(page) +
2067 sizeof(*xdpf) + xdpf->headroom;
2068 dma_sync_single_for_device(pp->dev->dev.parent, dma_addr,
2069 xdpf->len, DMA_BIDIRECTIONAL);
2070 buf->type = MVNETA_TYPE_XDP_TX;
2071 }
2072 buf->xdpf = xdpf;
2073
2074 tx_desc->command = MVNETA_TXD_FLZ_DESC;
2075 tx_desc->buf_phys_addr = dma_addr;
2076 tx_desc->data_size = xdpf->len;
2077
2078 mvneta_txq_inc_put(txq);
2079 txq->pending++;
2080 txq->count++;
2081
2082 return MVNETA_XDP_TX;
2083 }
2084
2085 static int
mvneta_xdp_xmit_back(struct mvneta_port * pp,struct xdp_buff * xdp)2086 mvneta_xdp_xmit_back(struct mvneta_port *pp, struct xdp_buff *xdp)
2087 {
2088 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2089 struct mvneta_tx_queue *txq;
2090 struct netdev_queue *nq;
2091 struct xdp_frame *xdpf;
2092 int cpu;
2093 u32 ret;
2094
2095 xdpf = xdp_convert_buff_to_frame(xdp);
2096 if (unlikely(!xdpf))
2097 return MVNETA_XDP_DROPPED;
2098
2099 cpu = smp_processor_id();
2100 txq = &pp->txqs[cpu % txq_number];
2101 nq = netdev_get_tx_queue(pp->dev, txq->id);
2102
2103 __netif_tx_lock(nq, cpu);
2104 ret = mvneta_xdp_submit_frame(pp, txq, xdpf, false);
2105 if (ret == MVNETA_XDP_TX) {
2106 u64_stats_update_begin(&stats->syncp);
2107 stats->es.ps.tx_bytes += xdpf->len;
2108 stats->es.ps.tx_packets++;
2109 stats->es.ps.xdp_tx++;
2110 u64_stats_update_end(&stats->syncp);
2111
2112 mvneta_txq_pend_desc_add(pp, txq, 0);
2113 } else {
2114 u64_stats_update_begin(&stats->syncp);
2115 stats->es.ps.xdp_tx_err++;
2116 u64_stats_update_end(&stats->syncp);
2117 }
2118 __netif_tx_unlock(nq);
2119
2120 return ret;
2121 }
2122
2123 static int
mvneta_xdp_xmit(struct net_device * dev,int num_frame,struct xdp_frame ** frames,u32 flags)2124 mvneta_xdp_xmit(struct net_device *dev, int num_frame,
2125 struct xdp_frame **frames, u32 flags)
2126 {
2127 struct mvneta_port *pp = netdev_priv(dev);
2128 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2129 int i, nxmit_byte = 0, nxmit = num_frame;
2130 int cpu = smp_processor_id();
2131 struct mvneta_tx_queue *txq;
2132 struct netdev_queue *nq;
2133 u32 ret;
2134
2135 if (unlikely(test_bit(__MVNETA_DOWN, &pp->state)))
2136 return -ENETDOWN;
2137
2138 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
2139 return -EINVAL;
2140
2141 txq = &pp->txqs[cpu % txq_number];
2142 nq = netdev_get_tx_queue(pp->dev, txq->id);
2143
2144 __netif_tx_lock(nq, cpu);
2145 for (i = 0; i < num_frame; i++) {
2146 ret = mvneta_xdp_submit_frame(pp, txq, frames[i], true);
2147 if (ret == MVNETA_XDP_TX) {
2148 nxmit_byte += frames[i]->len;
2149 } else {
2150 xdp_return_frame_rx_napi(frames[i]);
2151 nxmit--;
2152 }
2153 }
2154
2155 if (unlikely(flags & XDP_XMIT_FLUSH))
2156 mvneta_txq_pend_desc_add(pp, txq, 0);
2157 __netif_tx_unlock(nq);
2158
2159 u64_stats_update_begin(&stats->syncp);
2160 stats->es.ps.tx_bytes += nxmit_byte;
2161 stats->es.ps.tx_packets += nxmit;
2162 stats->es.ps.xdp_xmit += nxmit;
2163 stats->es.ps.xdp_xmit_err += num_frame - nxmit;
2164 u64_stats_update_end(&stats->syncp);
2165
2166 return nxmit;
2167 }
2168
2169 static int
mvneta_run_xdp(struct mvneta_port * pp,struct mvneta_rx_queue * rxq,struct bpf_prog * prog,struct xdp_buff * xdp,u32 frame_sz,struct mvneta_stats * stats)2170 mvneta_run_xdp(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2171 struct bpf_prog *prog, struct xdp_buff *xdp,
2172 u32 frame_sz, struct mvneta_stats *stats)
2173 {
2174 unsigned int len, data_len, sync;
2175 u32 ret, act;
2176
2177 len = xdp->data_end - xdp->data_hard_start - pp->rx_offset_correction;
2178 data_len = xdp->data_end - xdp->data;
2179 act = bpf_prog_run_xdp(prog, xdp);
2180
2181 /* Due xdp_adjust_tail: DMA sync for_device cover max len CPU touch */
2182 sync = xdp->data_end - xdp->data_hard_start - pp->rx_offset_correction;
2183 sync = max(sync, len);
2184
2185 switch (act) {
2186 case XDP_PASS:
2187 stats->xdp_pass++;
2188 return MVNETA_XDP_PASS;
2189 case XDP_REDIRECT: {
2190 int err;
2191
2192 err = xdp_do_redirect(pp->dev, xdp, prog);
2193 if (unlikely(err)) {
2194 mvneta_xdp_put_buff(pp, rxq, xdp, sync, true);
2195 ret = MVNETA_XDP_DROPPED;
2196 } else {
2197 ret = MVNETA_XDP_REDIR;
2198 stats->xdp_redirect++;
2199 }
2200 break;
2201 }
2202 case XDP_TX:
2203 ret = mvneta_xdp_xmit_back(pp, xdp);
2204 if (ret != MVNETA_XDP_TX)
2205 mvneta_xdp_put_buff(pp, rxq, xdp, sync, true);
2206 break;
2207 default:
2208 bpf_warn_invalid_xdp_action(act);
2209 fallthrough;
2210 case XDP_ABORTED:
2211 trace_xdp_exception(pp->dev, prog, act);
2212 fallthrough;
2213 case XDP_DROP:
2214 mvneta_xdp_put_buff(pp, rxq, xdp, sync, true);
2215 ret = MVNETA_XDP_DROPPED;
2216 stats->xdp_drop++;
2217 break;
2218 }
2219
2220 stats->rx_bytes += frame_sz + xdp->data_end - xdp->data - data_len;
2221 stats->rx_packets++;
2222
2223 return ret;
2224 }
2225
2226 static void
mvneta_swbm_rx_frame(struct mvneta_port * pp,struct mvneta_rx_desc * rx_desc,struct mvneta_rx_queue * rxq,struct xdp_buff * xdp,int * size,struct page * page)2227 mvneta_swbm_rx_frame(struct mvneta_port *pp,
2228 struct mvneta_rx_desc *rx_desc,
2229 struct mvneta_rx_queue *rxq,
2230 struct xdp_buff *xdp, int *size,
2231 struct page *page)
2232 {
2233 unsigned char *data = page_address(page);
2234 int data_len = -MVNETA_MH_SIZE, len;
2235 struct net_device *dev = pp->dev;
2236 enum dma_data_direction dma_dir;
2237 struct skb_shared_info *sinfo;
2238
2239 if (*size > MVNETA_MAX_RX_BUF_SIZE) {
2240 len = MVNETA_MAX_RX_BUF_SIZE;
2241 data_len += len;
2242 } else {
2243 len = *size;
2244 data_len += len - ETH_FCS_LEN;
2245 }
2246 *size = *size - len;
2247
2248 dma_dir = page_pool_get_dma_dir(rxq->page_pool);
2249 dma_sync_single_for_cpu(dev->dev.parent,
2250 rx_desc->buf_phys_addr,
2251 len, dma_dir);
2252
2253 rx_desc->buf_phys_addr = 0;
2254
2255 /* Prefetch header */
2256 prefetch(data);
2257
2258 xdp->data_hard_start = data;
2259 xdp->data = data + pp->rx_offset_correction + MVNETA_MH_SIZE;
2260 xdp->data_end = xdp->data + data_len;
2261 xdp_set_data_meta_invalid(xdp);
2262
2263 sinfo = xdp_get_shared_info_from_buff(xdp);
2264 sinfo->nr_frags = 0;
2265 }
2266
2267 static void
mvneta_swbm_add_rx_fragment(struct mvneta_port * pp,struct mvneta_rx_desc * rx_desc,struct mvneta_rx_queue * rxq,struct xdp_buff * xdp,int * size,struct page * page)2268 mvneta_swbm_add_rx_fragment(struct mvneta_port *pp,
2269 struct mvneta_rx_desc *rx_desc,
2270 struct mvneta_rx_queue *rxq,
2271 struct xdp_buff *xdp, int *size,
2272 struct page *page)
2273 {
2274 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2275 struct net_device *dev = pp->dev;
2276 enum dma_data_direction dma_dir;
2277 int data_len, len;
2278
2279 if (*size > MVNETA_MAX_RX_BUF_SIZE) {
2280 len = MVNETA_MAX_RX_BUF_SIZE;
2281 data_len = len;
2282 } else {
2283 len = *size;
2284 data_len = len - ETH_FCS_LEN;
2285 }
2286 dma_dir = page_pool_get_dma_dir(rxq->page_pool);
2287 dma_sync_single_for_cpu(dev->dev.parent,
2288 rx_desc->buf_phys_addr,
2289 len, dma_dir);
2290 rx_desc->buf_phys_addr = 0;
2291
2292 if (data_len > 0 && sinfo->nr_frags < MAX_SKB_FRAGS) {
2293 skb_frag_t *frag = &sinfo->frags[sinfo->nr_frags];
2294
2295 skb_frag_off_set(frag, pp->rx_offset_correction);
2296 skb_frag_size_set(frag, data_len);
2297 __skb_frag_set_page(frag, page);
2298 sinfo->nr_frags++;
2299 } else {
2300 page_pool_put_full_page(rxq->page_pool, page, true);
2301 }
2302 *size -= len;
2303 }
2304
2305 static struct sk_buff *
mvneta_swbm_build_skb(struct mvneta_port * pp,struct mvneta_rx_queue * rxq,struct xdp_buff * xdp,u32 desc_status)2306 mvneta_swbm_build_skb(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2307 struct xdp_buff *xdp, u32 desc_status)
2308 {
2309 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2310 int i, num_frags = sinfo->nr_frags;
2311 struct sk_buff *skb;
2312
2313 skb = build_skb(xdp->data_hard_start, PAGE_SIZE);
2314 if (!skb)
2315 return ERR_PTR(-ENOMEM);
2316
2317 page_pool_release_page(rxq->page_pool, virt_to_page(xdp->data));
2318
2319 skb_reserve(skb, xdp->data - xdp->data_hard_start);
2320 skb_put(skb, xdp->data_end - xdp->data);
2321 mvneta_rx_csum(pp, desc_status, skb);
2322
2323 for (i = 0; i < num_frags; i++) {
2324 skb_frag_t *frag = &sinfo->frags[i];
2325
2326 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
2327 skb_frag_page(frag), skb_frag_off(frag),
2328 skb_frag_size(frag), PAGE_SIZE);
2329 page_pool_release_page(rxq->page_pool, skb_frag_page(frag));
2330 }
2331
2332 return skb;
2333 }
2334
2335 /* Main rx processing when using software buffer management */
mvneta_rx_swbm(struct napi_struct * napi,struct mvneta_port * pp,int budget,struct mvneta_rx_queue * rxq)2336 static int mvneta_rx_swbm(struct napi_struct *napi,
2337 struct mvneta_port *pp, int budget,
2338 struct mvneta_rx_queue *rxq)
2339 {
2340 int rx_proc = 0, rx_todo, refill, size = 0;
2341 struct net_device *dev = pp->dev;
2342 struct xdp_buff xdp_buf = {
2343 .frame_sz = PAGE_SIZE,
2344 .rxq = &rxq->xdp_rxq,
2345 };
2346 struct mvneta_stats ps = {};
2347 struct bpf_prog *xdp_prog;
2348 u32 desc_status, frame_sz;
2349
2350 /* Get number of received packets */
2351 rx_todo = mvneta_rxq_busy_desc_num_get(pp, rxq);
2352
2353 rcu_read_lock();
2354 xdp_prog = READ_ONCE(pp->xdp_prog);
2355
2356 /* Fairness NAPI loop */
2357 while (rx_proc < budget && rx_proc < rx_todo) {
2358 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2359 u32 rx_status, index;
2360 struct sk_buff *skb;
2361 struct page *page;
2362
2363 index = rx_desc - rxq->descs;
2364 page = (struct page *)rxq->buf_virt_addr[index];
2365
2366 rx_status = rx_desc->status;
2367 rx_proc++;
2368 rxq->refill_num++;
2369
2370 if (rx_status & MVNETA_RXD_FIRST_DESC) {
2371 /* Check errors only for FIRST descriptor */
2372 if (rx_status & MVNETA_RXD_ERR_SUMMARY) {
2373 mvneta_rx_error(pp, rx_desc);
2374 goto next;
2375 }
2376
2377 size = rx_desc->data_size;
2378 frame_sz = size - ETH_FCS_LEN;
2379 desc_status = rx_status;
2380
2381 mvneta_swbm_rx_frame(pp, rx_desc, rxq, &xdp_buf,
2382 &size, page);
2383 } else {
2384 if (unlikely(!xdp_buf.data_hard_start)) {
2385 rx_desc->buf_phys_addr = 0;
2386 page_pool_put_full_page(rxq->page_pool, page,
2387 true);
2388 continue;
2389 }
2390
2391 mvneta_swbm_add_rx_fragment(pp, rx_desc, rxq, &xdp_buf,
2392 &size, page);
2393 } /* Middle or Last descriptor */
2394
2395 if (!(rx_status & MVNETA_RXD_LAST_DESC))
2396 /* no last descriptor this time */
2397 continue;
2398
2399 if (size) {
2400 mvneta_xdp_put_buff(pp, rxq, &xdp_buf, -1, true);
2401 goto next;
2402 }
2403
2404 if (xdp_prog &&
2405 mvneta_run_xdp(pp, rxq, xdp_prog, &xdp_buf, frame_sz, &ps))
2406 goto next;
2407
2408 skb = mvneta_swbm_build_skb(pp, rxq, &xdp_buf, desc_status);
2409 if (IS_ERR(skb)) {
2410 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2411
2412 mvneta_xdp_put_buff(pp, rxq, &xdp_buf, -1, true);
2413
2414 u64_stats_update_begin(&stats->syncp);
2415 stats->es.skb_alloc_error++;
2416 stats->rx_dropped++;
2417 u64_stats_update_end(&stats->syncp);
2418
2419 goto next;
2420 }
2421
2422 ps.rx_bytes += skb->len;
2423 ps.rx_packets++;
2424
2425 skb->protocol = eth_type_trans(skb, dev);
2426 napi_gro_receive(napi, skb);
2427 next:
2428 xdp_buf.data_hard_start = NULL;
2429 }
2430 rcu_read_unlock();
2431
2432 if (xdp_buf.data_hard_start)
2433 mvneta_xdp_put_buff(pp, rxq, &xdp_buf, -1, true);
2434
2435 if (ps.xdp_redirect)
2436 xdp_do_flush_map();
2437
2438 if (ps.rx_packets)
2439 mvneta_update_stats(pp, &ps);
2440
2441 /* return some buffers to hardware queue, one at a time is too slow */
2442 refill = mvneta_rx_refill_queue(pp, rxq);
2443
2444 /* Update rxq management counters */
2445 mvneta_rxq_desc_num_update(pp, rxq, rx_proc, refill);
2446
2447 return ps.rx_packets;
2448 }
2449
2450 /* Main rx processing when using hardware buffer management */
mvneta_rx_hwbm(struct napi_struct * napi,struct mvneta_port * pp,int rx_todo,struct mvneta_rx_queue * rxq)2451 static int mvneta_rx_hwbm(struct napi_struct *napi,
2452 struct mvneta_port *pp, int rx_todo,
2453 struct mvneta_rx_queue *rxq)
2454 {
2455 struct net_device *dev = pp->dev;
2456 int rx_done;
2457 u32 rcvd_pkts = 0;
2458 u32 rcvd_bytes = 0;
2459
2460 /* Get number of received packets */
2461 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
2462
2463 if (rx_todo > rx_done)
2464 rx_todo = rx_done;
2465
2466 rx_done = 0;
2467
2468 /* Fairness NAPI loop */
2469 while (rx_done < rx_todo) {
2470 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2471 struct mvneta_bm_pool *bm_pool = NULL;
2472 struct sk_buff *skb;
2473 unsigned char *data;
2474 dma_addr_t phys_addr;
2475 u32 rx_status, frag_size;
2476 int rx_bytes, err;
2477 u8 pool_id;
2478
2479 rx_done++;
2480 rx_status = rx_desc->status;
2481 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
2482 data = (u8 *)(uintptr_t)rx_desc->buf_cookie;
2483 phys_addr = rx_desc->buf_phys_addr;
2484 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
2485 bm_pool = &pp->bm_priv->bm_pools[pool_id];
2486
2487 if (!mvneta_rxq_desc_is_first_last(rx_status) ||
2488 (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
2489 err_drop_frame_ret_pool:
2490 /* Return the buffer to the pool */
2491 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2492 rx_desc->buf_phys_addr);
2493 err_drop_frame:
2494 mvneta_rx_error(pp, rx_desc);
2495 /* leave the descriptor untouched */
2496 continue;
2497 }
2498
2499 if (rx_bytes <= rx_copybreak) {
2500 /* better copy a small frame and not unmap the DMA region */
2501 skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
2502 if (unlikely(!skb))
2503 goto err_drop_frame_ret_pool;
2504
2505 dma_sync_single_range_for_cpu(&pp->bm_priv->pdev->dev,
2506 rx_desc->buf_phys_addr,
2507 MVNETA_MH_SIZE + NET_SKB_PAD,
2508 rx_bytes,
2509 DMA_FROM_DEVICE);
2510 skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD,
2511 rx_bytes);
2512
2513 skb->protocol = eth_type_trans(skb, dev);
2514 mvneta_rx_csum(pp, rx_status, skb);
2515 napi_gro_receive(napi, skb);
2516
2517 rcvd_pkts++;
2518 rcvd_bytes += rx_bytes;
2519
2520 /* Return the buffer to the pool */
2521 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2522 rx_desc->buf_phys_addr);
2523
2524 /* leave the descriptor and buffer untouched */
2525 continue;
2526 }
2527
2528 /* Refill processing */
2529 err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC);
2530 if (err) {
2531 struct mvneta_pcpu_stats *stats;
2532
2533 netdev_err(dev, "Linux processing - Can't refill\n");
2534
2535 stats = this_cpu_ptr(pp->stats);
2536 u64_stats_update_begin(&stats->syncp);
2537 stats->es.refill_error++;
2538 u64_stats_update_end(&stats->syncp);
2539
2540 goto err_drop_frame_ret_pool;
2541 }
2542
2543 frag_size = bm_pool->hwbm_pool.frag_size;
2544
2545 skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
2546
2547 /* After refill old buffer has to be unmapped regardless
2548 * the skb is successfully built or not.
2549 */
2550 dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr,
2551 bm_pool->buf_size, DMA_FROM_DEVICE);
2552 if (!skb)
2553 goto err_drop_frame;
2554
2555 rcvd_pkts++;
2556 rcvd_bytes += rx_bytes;
2557
2558 /* Linux processing */
2559 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
2560 skb_put(skb, rx_bytes);
2561
2562 skb->protocol = eth_type_trans(skb, dev);
2563
2564 mvneta_rx_csum(pp, rx_status, skb);
2565
2566 napi_gro_receive(napi, skb);
2567 }
2568
2569 if (rcvd_pkts) {
2570 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2571
2572 u64_stats_update_begin(&stats->syncp);
2573 stats->es.ps.rx_packets += rcvd_pkts;
2574 stats->es.ps.rx_bytes += rcvd_bytes;
2575 u64_stats_update_end(&stats->syncp);
2576 }
2577
2578 /* Update rxq management counters */
2579 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
2580
2581 return rx_done;
2582 }
2583
2584 static inline void
mvneta_tso_put_hdr(struct sk_buff * skb,struct mvneta_port * pp,struct mvneta_tx_queue * txq)2585 mvneta_tso_put_hdr(struct sk_buff *skb,
2586 struct mvneta_port *pp, struct mvneta_tx_queue *txq)
2587 {
2588 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2589 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2590 struct mvneta_tx_desc *tx_desc;
2591
2592 tx_desc = mvneta_txq_next_desc_get(txq);
2593 tx_desc->data_size = hdr_len;
2594 tx_desc->command = mvneta_skb_tx_csum(pp, skb);
2595 tx_desc->command |= MVNETA_TXD_F_DESC;
2596 tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
2597 txq->txq_put_index * TSO_HEADER_SIZE;
2598 buf->type = MVNETA_TYPE_SKB;
2599 buf->skb = NULL;
2600
2601 mvneta_txq_inc_put(txq);
2602 }
2603
2604 static inline int
mvneta_tso_put_data(struct net_device * dev,struct mvneta_tx_queue * txq,struct sk_buff * skb,char * data,int size,bool last_tcp,bool is_last)2605 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
2606 struct sk_buff *skb, char *data, int size,
2607 bool last_tcp, bool is_last)
2608 {
2609 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2610 struct mvneta_tx_desc *tx_desc;
2611
2612 tx_desc = mvneta_txq_next_desc_get(txq);
2613 tx_desc->data_size = size;
2614 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
2615 size, DMA_TO_DEVICE);
2616 if (unlikely(dma_mapping_error(dev->dev.parent,
2617 tx_desc->buf_phys_addr))) {
2618 mvneta_txq_desc_put(txq);
2619 return -ENOMEM;
2620 }
2621
2622 tx_desc->command = 0;
2623 buf->type = MVNETA_TYPE_SKB;
2624 buf->skb = NULL;
2625
2626 if (last_tcp) {
2627 /* last descriptor in the TCP packet */
2628 tx_desc->command = MVNETA_TXD_L_DESC;
2629
2630 /* last descriptor in SKB */
2631 if (is_last)
2632 buf->skb = skb;
2633 }
2634 mvneta_txq_inc_put(txq);
2635 return 0;
2636 }
2637
mvneta_tx_tso(struct sk_buff * skb,struct net_device * dev,struct mvneta_tx_queue * txq)2638 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
2639 struct mvneta_tx_queue *txq)
2640 {
2641 int hdr_len, total_len, data_left;
2642 int desc_count = 0;
2643 struct mvneta_port *pp = netdev_priv(dev);
2644 struct tso_t tso;
2645 int i;
2646
2647 /* Count needed descriptors */
2648 if ((txq->count + tso_count_descs(skb)) >= txq->size)
2649 return 0;
2650
2651 if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) {
2652 pr_info("*** Is this even possible???!?!?\n");
2653 return 0;
2654 }
2655
2656 /* Initialize the TSO handler, and prepare the first payload */
2657 hdr_len = tso_start(skb, &tso);
2658
2659 total_len = skb->len - hdr_len;
2660 while (total_len > 0) {
2661 char *hdr;
2662
2663 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
2664 total_len -= data_left;
2665 desc_count++;
2666
2667 /* prepare packet headers: MAC + IP + TCP */
2668 hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
2669 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
2670
2671 mvneta_tso_put_hdr(skb, pp, txq);
2672
2673 while (data_left > 0) {
2674 int size;
2675 desc_count++;
2676
2677 size = min_t(int, tso.size, data_left);
2678
2679 if (mvneta_tso_put_data(dev, txq, skb,
2680 tso.data, size,
2681 size == data_left,
2682 total_len == 0))
2683 goto err_release;
2684 data_left -= size;
2685
2686 tso_build_data(skb, &tso, size);
2687 }
2688 }
2689
2690 return desc_count;
2691
2692 err_release:
2693 /* Release all used data descriptors; header descriptors must not
2694 * be DMA-unmapped.
2695 */
2696 for (i = desc_count - 1; i >= 0; i--) {
2697 struct mvneta_tx_desc *tx_desc = txq->descs + i;
2698 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
2699 dma_unmap_single(pp->dev->dev.parent,
2700 tx_desc->buf_phys_addr,
2701 tx_desc->data_size,
2702 DMA_TO_DEVICE);
2703 mvneta_txq_desc_put(txq);
2704 }
2705 return 0;
2706 }
2707
2708 /* Handle tx fragmentation processing */
mvneta_tx_frag_process(struct mvneta_port * pp,struct sk_buff * skb,struct mvneta_tx_queue * txq)2709 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
2710 struct mvneta_tx_queue *txq)
2711 {
2712 struct mvneta_tx_desc *tx_desc;
2713 int i, nr_frags = skb_shinfo(skb)->nr_frags;
2714
2715 for (i = 0; i < nr_frags; i++) {
2716 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2717 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2718 void *addr = skb_frag_address(frag);
2719
2720 tx_desc = mvneta_txq_next_desc_get(txq);
2721 tx_desc->data_size = skb_frag_size(frag);
2722
2723 tx_desc->buf_phys_addr =
2724 dma_map_single(pp->dev->dev.parent, addr,
2725 tx_desc->data_size, DMA_TO_DEVICE);
2726
2727 if (dma_mapping_error(pp->dev->dev.parent,
2728 tx_desc->buf_phys_addr)) {
2729 mvneta_txq_desc_put(txq);
2730 goto error;
2731 }
2732
2733 if (i == nr_frags - 1) {
2734 /* Last descriptor */
2735 tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
2736 buf->skb = skb;
2737 } else {
2738 /* Descriptor in the middle: Not First, Not Last */
2739 tx_desc->command = 0;
2740 buf->skb = NULL;
2741 }
2742 buf->type = MVNETA_TYPE_SKB;
2743 mvneta_txq_inc_put(txq);
2744 }
2745
2746 return 0;
2747
2748 error:
2749 /* Release all descriptors that were used to map fragments of
2750 * this packet, as well as the corresponding DMA mappings
2751 */
2752 for (i = i - 1; i >= 0; i--) {
2753 tx_desc = txq->descs + i;
2754 dma_unmap_single(pp->dev->dev.parent,
2755 tx_desc->buf_phys_addr,
2756 tx_desc->data_size,
2757 DMA_TO_DEVICE);
2758 mvneta_txq_desc_put(txq);
2759 }
2760
2761 return -ENOMEM;
2762 }
2763
2764 /* Main tx processing */
mvneta_tx(struct sk_buff * skb,struct net_device * dev)2765 static netdev_tx_t mvneta_tx(struct sk_buff *skb, struct net_device *dev)
2766 {
2767 struct mvneta_port *pp = netdev_priv(dev);
2768 u16 txq_id = skb_get_queue_mapping(skb);
2769 struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
2770 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2771 struct mvneta_tx_desc *tx_desc;
2772 int len = skb->len;
2773 int frags = 0;
2774 u32 tx_cmd;
2775
2776 if (!netif_running(dev))
2777 goto out;
2778
2779 if (skb_is_gso(skb)) {
2780 frags = mvneta_tx_tso(skb, dev, txq);
2781 goto out;
2782 }
2783
2784 frags = skb_shinfo(skb)->nr_frags + 1;
2785
2786 /* Get a descriptor for the first part of the packet */
2787 tx_desc = mvneta_txq_next_desc_get(txq);
2788
2789 tx_cmd = mvneta_skb_tx_csum(pp, skb);
2790
2791 tx_desc->data_size = skb_headlen(skb);
2792
2793 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
2794 tx_desc->data_size,
2795 DMA_TO_DEVICE);
2796 if (unlikely(dma_mapping_error(dev->dev.parent,
2797 tx_desc->buf_phys_addr))) {
2798 mvneta_txq_desc_put(txq);
2799 frags = 0;
2800 goto out;
2801 }
2802
2803 buf->type = MVNETA_TYPE_SKB;
2804 if (frags == 1) {
2805 /* First and Last descriptor */
2806 tx_cmd |= MVNETA_TXD_FLZ_DESC;
2807 tx_desc->command = tx_cmd;
2808 buf->skb = skb;
2809 mvneta_txq_inc_put(txq);
2810 } else {
2811 /* First but not Last */
2812 tx_cmd |= MVNETA_TXD_F_DESC;
2813 buf->skb = NULL;
2814 mvneta_txq_inc_put(txq);
2815 tx_desc->command = tx_cmd;
2816 /* Continue with other skb fragments */
2817 if (mvneta_tx_frag_process(pp, skb, txq)) {
2818 dma_unmap_single(dev->dev.parent,
2819 tx_desc->buf_phys_addr,
2820 tx_desc->data_size,
2821 DMA_TO_DEVICE);
2822 mvneta_txq_desc_put(txq);
2823 frags = 0;
2824 goto out;
2825 }
2826 }
2827
2828 out:
2829 if (frags > 0) {
2830 struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
2831 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2832
2833 netdev_tx_sent_queue(nq, len);
2834
2835 txq->count += frags;
2836 if (txq->count >= txq->tx_stop_threshold)
2837 netif_tx_stop_queue(nq);
2838
2839 if (!netdev_xmit_more() || netif_xmit_stopped(nq) ||
2840 txq->pending + frags > MVNETA_TXQ_DEC_SENT_MASK)
2841 mvneta_txq_pend_desc_add(pp, txq, frags);
2842 else
2843 txq->pending += frags;
2844
2845 u64_stats_update_begin(&stats->syncp);
2846 stats->es.ps.tx_bytes += len;
2847 stats->es.ps.tx_packets++;
2848 u64_stats_update_end(&stats->syncp);
2849 } else {
2850 dev->stats.tx_dropped++;
2851 dev_kfree_skb_any(skb);
2852 }
2853
2854 return NETDEV_TX_OK;
2855 }
2856
2857
2858 /* Free tx resources, when resetting a port */
mvneta_txq_done_force(struct mvneta_port * pp,struct mvneta_tx_queue * txq)2859 static void mvneta_txq_done_force(struct mvneta_port *pp,
2860 struct mvneta_tx_queue *txq)
2861
2862 {
2863 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
2864 int tx_done = txq->count;
2865
2866 mvneta_txq_bufs_free(pp, txq, tx_done, nq, false);
2867
2868 /* reset txq */
2869 txq->count = 0;
2870 txq->txq_put_index = 0;
2871 txq->txq_get_index = 0;
2872 }
2873
2874 /* Handle tx done - called in softirq context. The <cause_tx_done> argument
2875 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
2876 */
mvneta_tx_done_gbe(struct mvneta_port * pp,u32 cause_tx_done)2877 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
2878 {
2879 struct mvneta_tx_queue *txq;
2880 struct netdev_queue *nq;
2881 int cpu = smp_processor_id();
2882
2883 while (cause_tx_done) {
2884 txq = mvneta_tx_done_policy(pp, cause_tx_done);
2885
2886 nq = netdev_get_tx_queue(pp->dev, txq->id);
2887 __netif_tx_lock(nq, cpu);
2888
2889 if (txq->count)
2890 mvneta_txq_done(pp, txq);
2891
2892 __netif_tx_unlock(nq);
2893 cause_tx_done &= ~((1 << txq->id));
2894 }
2895 }
2896
2897 /* Compute crc8 of the specified address, using a unique algorithm ,
2898 * according to hw spec, different than generic crc8 algorithm
2899 */
mvneta_addr_crc(unsigned char * addr)2900 static int mvneta_addr_crc(unsigned char *addr)
2901 {
2902 int crc = 0;
2903 int i;
2904
2905 for (i = 0; i < ETH_ALEN; i++) {
2906 int j;
2907
2908 crc = (crc ^ addr[i]) << 8;
2909 for (j = 7; j >= 0; j--) {
2910 if (crc & (0x100 << j))
2911 crc ^= 0x107 << j;
2912 }
2913 }
2914
2915 return crc;
2916 }
2917
2918 /* This method controls the net device special MAC multicast support.
2919 * The Special Multicast Table for MAC addresses supports MAC of the form
2920 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2921 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2922 * Table entries in the DA-Filter table. This method set the Special
2923 * Multicast Table appropriate entry.
2924 */
mvneta_set_special_mcast_addr(struct mvneta_port * pp,unsigned char last_byte,int queue)2925 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
2926 unsigned char last_byte,
2927 int queue)
2928 {
2929 unsigned int smc_table_reg;
2930 unsigned int tbl_offset;
2931 unsigned int reg_offset;
2932
2933 /* Register offset from SMC table base */
2934 tbl_offset = (last_byte / 4);
2935 /* Entry offset within the above reg */
2936 reg_offset = last_byte % 4;
2937
2938 smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
2939 + tbl_offset * 4));
2940
2941 if (queue == -1)
2942 smc_table_reg &= ~(0xff << (8 * reg_offset));
2943 else {
2944 smc_table_reg &= ~(0xff << (8 * reg_offset));
2945 smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2946 }
2947
2948 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
2949 smc_table_reg);
2950 }
2951
2952 /* This method controls the network device Other MAC multicast support.
2953 * The Other Multicast Table is used for multicast of another type.
2954 * A CRC-8 is used as an index to the Other Multicast Table entries
2955 * in the DA-Filter table.
2956 * The method gets the CRC-8 value from the calling routine and
2957 * sets the Other Multicast Table appropriate entry according to the
2958 * specified CRC-8 .
2959 */
mvneta_set_other_mcast_addr(struct mvneta_port * pp,unsigned char crc8,int queue)2960 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
2961 unsigned char crc8,
2962 int queue)
2963 {
2964 unsigned int omc_table_reg;
2965 unsigned int tbl_offset;
2966 unsigned int reg_offset;
2967
2968 tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
2969 reg_offset = crc8 % 4; /* Entry offset within the above reg */
2970
2971 omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
2972
2973 if (queue == -1) {
2974 /* Clear accepts frame bit at specified Other DA table entry */
2975 omc_table_reg &= ~(0xff << (8 * reg_offset));
2976 } else {
2977 omc_table_reg &= ~(0xff << (8 * reg_offset));
2978 omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2979 }
2980
2981 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
2982 }
2983
2984 /* The network device supports multicast using two tables:
2985 * 1) Special Multicast Table for MAC addresses of the form
2986 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2987 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2988 * Table entries in the DA-Filter table.
2989 * 2) Other Multicast Table for multicast of another type. A CRC-8 value
2990 * is used as an index to the Other Multicast Table entries in the
2991 * DA-Filter table.
2992 */
mvneta_mcast_addr_set(struct mvneta_port * pp,unsigned char * p_addr,int queue)2993 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
2994 int queue)
2995 {
2996 unsigned char crc_result = 0;
2997
2998 if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
2999 mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
3000 return 0;
3001 }
3002
3003 crc_result = mvneta_addr_crc(p_addr);
3004 if (queue == -1) {
3005 if (pp->mcast_count[crc_result] == 0) {
3006 netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
3007 crc_result);
3008 return -EINVAL;
3009 }
3010
3011 pp->mcast_count[crc_result]--;
3012 if (pp->mcast_count[crc_result] != 0) {
3013 netdev_info(pp->dev,
3014 "After delete there are %d valid Mcast for crc8=0x%02x\n",
3015 pp->mcast_count[crc_result], crc_result);
3016 return -EINVAL;
3017 }
3018 } else
3019 pp->mcast_count[crc_result]++;
3020
3021 mvneta_set_other_mcast_addr(pp, crc_result, queue);
3022
3023 return 0;
3024 }
3025
3026 /* Configure Fitering mode of Ethernet port */
mvneta_rx_unicast_promisc_set(struct mvneta_port * pp,int is_promisc)3027 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
3028 int is_promisc)
3029 {
3030 u32 port_cfg_reg, val;
3031
3032 port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
3033
3034 val = mvreg_read(pp, MVNETA_TYPE_PRIO);
3035
3036 /* Set / Clear UPM bit in port configuration register */
3037 if (is_promisc) {
3038 /* Accept all Unicast addresses */
3039 port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
3040 val |= MVNETA_FORCE_UNI;
3041 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
3042 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
3043 } else {
3044 /* Reject all Unicast addresses */
3045 port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
3046 val &= ~MVNETA_FORCE_UNI;
3047 }
3048
3049 mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
3050 mvreg_write(pp, MVNETA_TYPE_PRIO, val);
3051 }
3052
3053 /* register unicast and multicast addresses */
mvneta_set_rx_mode(struct net_device * dev)3054 static void mvneta_set_rx_mode(struct net_device *dev)
3055 {
3056 struct mvneta_port *pp = netdev_priv(dev);
3057 struct netdev_hw_addr *ha;
3058
3059 if (dev->flags & IFF_PROMISC) {
3060 /* Accept all: Multicast + Unicast */
3061 mvneta_rx_unicast_promisc_set(pp, 1);
3062 mvneta_set_ucast_table(pp, pp->rxq_def);
3063 mvneta_set_special_mcast_table(pp, pp->rxq_def);
3064 mvneta_set_other_mcast_table(pp, pp->rxq_def);
3065 } else {
3066 /* Accept single Unicast */
3067 mvneta_rx_unicast_promisc_set(pp, 0);
3068 mvneta_set_ucast_table(pp, -1);
3069 mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def);
3070
3071 if (dev->flags & IFF_ALLMULTI) {
3072 /* Accept all multicast */
3073 mvneta_set_special_mcast_table(pp, pp->rxq_def);
3074 mvneta_set_other_mcast_table(pp, pp->rxq_def);
3075 } else {
3076 /* Accept only initialized multicast */
3077 mvneta_set_special_mcast_table(pp, -1);
3078 mvneta_set_other_mcast_table(pp, -1);
3079
3080 if (!netdev_mc_empty(dev)) {
3081 netdev_for_each_mc_addr(ha, dev) {
3082 mvneta_mcast_addr_set(pp, ha->addr,
3083 pp->rxq_def);
3084 }
3085 }
3086 }
3087 }
3088 }
3089
3090 /* Interrupt handling - the callback for request_irq() */
mvneta_isr(int irq,void * dev_id)3091 static irqreturn_t mvneta_isr(int irq, void *dev_id)
3092 {
3093 struct mvneta_port *pp = (struct mvneta_port *)dev_id;
3094
3095 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
3096 napi_schedule(&pp->napi);
3097
3098 return IRQ_HANDLED;
3099 }
3100
3101 /* Interrupt handling - the callback for request_percpu_irq() */
mvneta_percpu_isr(int irq,void * dev_id)3102 static irqreturn_t mvneta_percpu_isr(int irq, void *dev_id)
3103 {
3104 struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id;
3105
3106 disable_percpu_irq(port->pp->dev->irq);
3107 napi_schedule(&port->napi);
3108
3109 return IRQ_HANDLED;
3110 }
3111
mvneta_link_change(struct mvneta_port * pp)3112 static void mvneta_link_change(struct mvneta_port *pp)
3113 {
3114 u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
3115
3116 phylink_mac_change(pp->phylink, !!(gmac_stat & MVNETA_GMAC_LINK_UP));
3117 }
3118
3119 /* NAPI handler
3120 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
3121 * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
3122 * Bits 8 -15 of the cause Rx Tx register indicate that are received
3123 * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
3124 * Each CPU has its own causeRxTx register
3125 */
mvneta_poll(struct napi_struct * napi,int budget)3126 static int mvneta_poll(struct napi_struct *napi, int budget)
3127 {
3128 int rx_done = 0;
3129 u32 cause_rx_tx;
3130 int rx_queue;
3131 struct mvneta_port *pp = netdev_priv(napi->dev);
3132 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
3133
3134 if (!netif_running(pp->dev)) {
3135 napi_complete(napi);
3136 return rx_done;
3137 }
3138
3139 /* Read cause register */
3140 cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE);
3141 if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) {
3142 u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE);
3143
3144 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
3145
3146 if (cause_misc & (MVNETA_CAUSE_PHY_STATUS_CHANGE |
3147 MVNETA_CAUSE_LINK_CHANGE))
3148 mvneta_link_change(pp);
3149 }
3150
3151 /* Release Tx descriptors */
3152 if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
3153 mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
3154 cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
3155 }
3156
3157 /* For the case where the last mvneta_poll did not process all
3158 * RX packets
3159 */
3160 cause_rx_tx |= pp->neta_armada3700 ? pp->cause_rx_tx :
3161 port->cause_rx_tx;
3162
3163 rx_queue = fls(((cause_rx_tx >> 8) & 0xff));
3164 if (rx_queue) {
3165 rx_queue = rx_queue - 1;
3166 if (pp->bm_priv)
3167 rx_done = mvneta_rx_hwbm(napi, pp, budget,
3168 &pp->rxqs[rx_queue]);
3169 else
3170 rx_done = mvneta_rx_swbm(napi, pp, budget,
3171 &pp->rxqs[rx_queue]);
3172 }
3173
3174 if (rx_done < budget) {
3175 cause_rx_tx = 0;
3176 napi_complete_done(napi, rx_done);
3177
3178 if (pp->neta_armada3700) {
3179 unsigned long flags;
3180
3181 local_irq_save(flags);
3182 mvreg_write(pp, MVNETA_INTR_NEW_MASK,
3183 MVNETA_RX_INTR_MASK(rxq_number) |
3184 MVNETA_TX_INTR_MASK(txq_number) |
3185 MVNETA_MISCINTR_INTR_MASK);
3186 local_irq_restore(flags);
3187 } else {
3188 enable_percpu_irq(pp->dev->irq, 0);
3189 }
3190 }
3191
3192 if (pp->neta_armada3700)
3193 pp->cause_rx_tx = cause_rx_tx;
3194 else
3195 port->cause_rx_tx = cause_rx_tx;
3196
3197 return rx_done;
3198 }
3199
mvneta_create_page_pool(struct mvneta_port * pp,struct mvneta_rx_queue * rxq,int size)3200 static int mvneta_create_page_pool(struct mvneta_port *pp,
3201 struct mvneta_rx_queue *rxq, int size)
3202 {
3203 struct bpf_prog *xdp_prog = READ_ONCE(pp->xdp_prog);
3204 struct page_pool_params pp_params = {
3205 .order = 0,
3206 .flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
3207 .pool_size = size,
3208 .nid = NUMA_NO_NODE,
3209 .dev = pp->dev->dev.parent,
3210 .dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE,
3211 .offset = pp->rx_offset_correction,
3212 .max_len = MVNETA_MAX_RX_BUF_SIZE,
3213 };
3214 int err;
3215
3216 rxq->page_pool = page_pool_create(&pp_params);
3217 if (IS_ERR(rxq->page_pool)) {
3218 err = PTR_ERR(rxq->page_pool);
3219 rxq->page_pool = NULL;
3220 return err;
3221 }
3222
3223 err = xdp_rxq_info_reg(&rxq->xdp_rxq, pp->dev, rxq->id);
3224 if (err < 0)
3225 goto err_free_pp;
3226
3227 err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL,
3228 rxq->page_pool);
3229 if (err)
3230 goto err_unregister_rxq;
3231
3232 return 0;
3233
3234 err_unregister_rxq:
3235 xdp_rxq_info_unreg(&rxq->xdp_rxq);
3236 err_free_pp:
3237 page_pool_destroy(rxq->page_pool);
3238 rxq->page_pool = NULL;
3239 return err;
3240 }
3241
3242 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
mvneta_rxq_fill(struct mvneta_port * pp,struct mvneta_rx_queue * rxq,int num)3243 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
3244 int num)
3245 {
3246 int i, err;
3247
3248 err = mvneta_create_page_pool(pp, rxq, num);
3249 if (err < 0)
3250 return err;
3251
3252 for (i = 0; i < num; i++) {
3253 memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
3254 if (mvneta_rx_refill(pp, rxq->descs + i, rxq,
3255 GFP_KERNEL) != 0) {
3256 netdev_err(pp->dev,
3257 "%s:rxq %d, %d of %d buffs filled\n",
3258 __func__, rxq->id, i, num);
3259 break;
3260 }
3261 }
3262
3263 /* Add this number of RX descriptors as non occupied (ready to
3264 * get packets)
3265 */
3266 mvneta_rxq_non_occup_desc_add(pp, rxq, i);
3267
3268 return i;
3269 }
3270
3271 /* Free all packets pending transmit from all TXQs and reset TX port */
mvneta_tx_reset(struct mvneta_port * pp)3272 static void mvneta_tx_reset(struct mvneta_port *pp)
3273 {
3274 int queue;
3275
3276 /* free the skb's in the tx ring */
3277 for (queue = 0; queue < txq_number; queue++)
3278 mvneta_txq_done_force(pp, &pp->txqs[queue]);
3279
3280 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
3281 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
3282 }
3283
mvneta_rx_reset(struct mvneta_port * pp)3284 static void mvneta_rx_reset(struct mvneta_port *pp)
3285 {
3286 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
3287 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
3288 }
3289
3290 /* Rx/Tx queue initialization/cleanup methods */
3291
mvneta_rxq_sw_init(struct mvneta_port * pp,struct mvneta_rx_queue * rxq)3292 static int mvneta_rxq_sw_init(struct mvneta_port *pp,
3293 struct mvneta_rx_queue *rxq)
3294 {
3295 rxq->size = pp->rx_ring_size;
3296
3297 /* Allocate memory for RX descriptors */
3298 rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
3299 rxq->size * MVNETA_DESC_ALIGNED_SIZE,
3300 &rxq->descs_phys, GFP_KERNEL);
3301 if (!rxq->descs)
3302 return -ENOMEM;
3303
3304 rxq->last_desc = rxq->size - 1;
3305
3306 return 0;
3307 }
3308
mvneta_rxq_hw_init(struct mvneta_port * pp,struct mvneta_rx_queue * rxq)3309 static void mvneta_rxq_hw_init(struct mvneta_port *pp,
3310 struct mvneta_rx_queue *rxq)
3311 {
3312 /* Set Rx descriptors queue starting address */
3313 mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
3314 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
3315
3316 /* Set coalescing pkts and time */
3317 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
3318 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
3319
3320 if (!pp->bm_priv) {
3321 /* Set Offset */
3322 mvneta_rxq_offset_set(pp, rxq, 0);
3323 mvneta_rxq_buf_size_set(pp, rxq, PAGE_SIZE < SZ_64K ?
3324 MVNETA_MAX_RX_BUF_SIZE :
3325 MVNETA_RX_BUF_SIZE(pp->pkt_size));
3326 mvneta_rxq_bm_disable(pp, rxq);
3327 mvneta_rxq_fill(pp, rxq, rxq->size);
3328 } else {
3329 /* Set Offset */
3330 mvneta_rxq_offset_set(pp, rxq,
3331 NET_SKB_PAD - pp->rx_offset_correction);
3332
3333 mvneta_rxq_bm_enable(pp, rxq);
3334 /* Fill RXQ with buffers from RX pool */
3335 mvneta_rxq_long_pool_set(pp, rxq);
3336 mvneta_rxq_short_pool_set(pp, rxq);
3337 mvneta_rxq_non_occup_desc_add(pp, rxq, rxq->size);
3338 }
3339 }
3340
3341 /* Create a specified RX queue */
mvneta_rxq_init(struct mvneta_port * pp,struct mvneta_rx_queue * rxq)3342 static int mvneta_rxq_init(struct mvneta_port *pp,
3343 struct mvneta_rx_queue *rxq)
3344
3345 {
3346 int ret;
3347
3348 ret = mvneta_rxq_sw_init(pp, rxq);
3349 if (ret < 0)
3350 return ret;
3351
3352 mvneta_rxq_hw_init(pp, rxq);
3353
3354 return 0;
3355 }
3356
3357 /* Cleanup Rx queue */
mvneta_rxq_deinit(struct mvneta_port * pp,struct mvneta_rx_queue * rxq)3358 static void mvneta_rxq_deinit(struct mvneta_port *pp,
3359 struct mvneta_rx_queue *rxq)
3360 {
3361 mvneta_rxq_drop_pkts(pp, rxq);
3362
3363 if (rxq->descs)
3364 dma_free_coherent(pp->dev->dev.parent,
3365 rxq->size * MVNETA_DESC_ALIGNED_SIZE,
3366 rxq->descs,
3367 rxq->descs_phys);
3368
3369 rxq->descs = NULL;
3370 rxq->last_desc = 0;
3371 rxq->next_desc_to_proc = 0;
3372 rxq->descs_phys = 0;
3373 rxq->first_to_refill = 0;
3374 rxq->refill_num = 0;
3375 }
3376
mvneta_txq_sw_init(struct mvneta_port * pp,struct mvneta_tx_queue * txq)3377 static int mvneta_txq_sw_init(struct mvneta_port *pp,
3378 struct mvneta_tx_queue *txq)
3379 {
3380 int cpu;
3381
3382 txq->size = pp->tx_ring_size;
3383
3384 /* A queue must always have room for at least one skb.
3385 * Therefore, stop the queue when the free entries reaches
3386 * the maximum number of descriptors per skb.
3387 */
3388 txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
3389 txq->tx_wake_threshold = txq->tx_stop_threshold / 2;
3390
3391 /* Allocate memory for TX descriptors */
3392 txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
3393 txq->size * MVNETA_DESC_ALIGNED_SIZE,
3394 &txq->descs_phys, GFP_KERNEL);
3395 if (!txq->descs)
3396 return -ENOMEM;
3397
3398 txq->last_desc = txq->size - 1;
3399
3400 txq->buf = kmalloc_array(txq->size, sizeof(*txq->buf), GFP_KERNEL);
3401 if (!txq->buf)
3402 return -ENOMEM;
3403
3404 /* Allocate DMA buffers for TSO MAC/IP/TCP headers */
3405 txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent,
3406 txq->size * TSO_HEADER_SIZE,
3407 &txq->tso_hdrs_phys, GFP_KERNEL);
3408 if (!txq->tso_hdrs)
3409 return -ENOMEM;
3410
3411 /* Setup XPS mapping */
3412 if (txq_number > 1)
3413 cpu = txq->id % num_present_cpus();
3414 else
3415 cpu = pp->rxq_def % num_present_cpus();
3416 cpumask_set_cpu(cpu, &txq->affinity_mask);
3417 netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id);
3418
3419 return 0;
3420 }
3421
mvneta_txq_hw_init(struct mvneta_port * pp,struct mvneta_tx_queue * txq)3422 static void mvneta_txq_hw_init(struct mvneta_port *pp,
3423 struct mvneta_tx_queue *txq)
3424 {
3425 /* Set maximum bandwidth for enabled TXQs */
3426 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
3427 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
3428
3429 /* Set Tx descriptors queue starting address */
3430 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
3431 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
3432
3433 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
3434 }
3435
3436 /* Create and initialize a tx queue */
mvneta_txq_init(struct mvneta_port * pp,struct mvneta_tx_queue * txq)3437 static int mvneta_txq_init(struct mvneta_port *pp,
3438 struct mvneta_tx_queue *txq)
3439 {
3440 int ret;
3441
3442 ret = mvneta_txq_sw_init(pp, txq);
3443 if (ret < 0)
3444 return ret;
3445
3446 mvneta_txq_hw_init(pp, txq);
3447
3448 return 0;
3449 }
3450
3451 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
mvneta_txq_sw_deinit(struct mvneta_port * pp,struct mvneta_tx_queue * txq)3452 static void mvneta_txq_sw_deinit(struct mvneta_port *pp,
3453 struct mvneta_tx_queue *txq)
3454 {
3455 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
3456
3457 kfree(txq->buf);
3458
3459 if (txq->tso_hdrs)
3460 dma_free_coherent(pp->dev->dev.parent,
3461 txq->size * TSO_HEADER_SIZE,
3462 txq->tso_hdrs, txq->tso_hdrs_phys);
3463 if (txq->descs)
3464 dma_free_coherent(pp->dev->dev.parent,
3465 txq->size * MVNETA_DESC_ALIGNED_SIZE,
3466 txq->descs, txq->descs_phys);
3467
3468 netdev_tx_reset_queue(nq);
3469
3470 txq->descs = NULL;
3471 txq->last_desc = 0;
3472 txq->next_desc_to_proc = 0;
3473 txq->descs_phys = 0;
3474 }
3475
mvneta_txq_hw_deinit(struct mvneta_port * pp,struct mvneta_tx_queue * txq)3476 static void mvneta_txq_hw_deinit(struct mvneta_port *pp,
3477 struct mvneta_tx_queue *txq)
3478 {
3479 /* Set minimum bandwidth for disabled TXQs */
3480 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
3481 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
3482
3483 /* Set Tx descriptors queue starting address and size */
3484 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
3485 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
3486 }
3487
mvneta_txq_deinit(struct mvneta_port * pp,struct mvneta_tx_queue * txq)3488 static void mvneta_txq_deinit(struct mvneta_port *pp,
3489 struct mvneta_tx_queue *txq)
3490 {
3491 mvneta_txq_sw_deinit(pp, txq);
3492 mvneta_txq_hw_deinit(pp, txq);
3493 }
3494
3495 /* Cleanup all Tx queues */
mvneta_cleanup_txqs(struct mvneta_port * pp)3496 static void mvneta_cleanup_txqs(struct mvneta_port *pp)
3497 {
3498 int queue;
3499
3500 for (queue = 0; queue < txq_number; queue++)
3501 mvneta_txq_deinit(pp, &pp->txqs[queue]);
3502 }
3503
3504 /* Cleanup all Rx queues */
mvneta_cleanup_rxqs(struct mvneta_port * pp)3505 static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
3506 {
3507 int queue;
3508
3509 for (queue = 0; queue < rxq_number; queue++)
3510 mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
3511 }
3512
3513
3514 /* Init all Rx queues */
mvneta_setup_rxqs(struct mvneta_port * pp)3515 static int mvneta_setup_rxqs(struct mvneta_port *pp)
3516 {
3517 int queue;
3518
3519 for (queue = 0; queue < rxq_number; queue++) {
3520 int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
3521
3522 if (err) {
3523 netdev_err(pp->dev, "%s: can't create rxq=%d\n",
3524 __func__, queue);
3525 mvneta_cleanup_rxqs(pp);
3526 return err;
3527 }
3528 }
3529
3530 return 0;
3531 }
3532
3533 /* Init all tx queues */
mvneta_setup_txqs(struct mvneta_port * pp)3534 static int mvneta_setup_txqs(struct mvneta_port *pp)
3535 {
3536 int queue;
3537
3538 for (queue = 0; queue < txq_number; queue++) {
3539 int err = mvneta_txq_init(pp, &pp->txqs[queue]);
3540 if (err) {
3541 netdev_err(pp->dev, "%s: can't create txq=%d\n",
3542 __func__, queue);
3543 mvneta_cleanup_txqs(pp);
3544 return err;
3545 }
3546 }
3547
3548 return 0;
3549 }
3550
mvneta_comphy_init(struct mvneta_port * pp,phy_interface_t interface)3551 static int mvneta_comphy_init(struct mvneta_port *pp, phy_interface_t interface)
3552 {
3553 int ret;
3554
3555 ret = phy_set_mode_ext(pp->comphy, PHY_MODE_ETHERNET, interface);
3556 if (ret)
3557 return ret;
3558
3559 return phy_power_on(pp->comphy);
3560 }
3561
mvneta_config_interface(struct mvneta_port * pp,phy_interface_t interface)3562 static int mvneta_config_interface(struct mvneta_port *pp,
3563 phy_interface_t interface)
3564 {
3565 int ret = 0;
3566
3567 if (pp->comphy) {
3568 if (interface == PHY_INTERFACE_MODE_SGMII ||
3569 interface == PHY_INTERFACE_MODE_1000BASEX ||
3570 interface == PHY_INTERFACE_MODE_2500BASEX) {
3571 ret = mvneta_comphy_init(pp, interface);
3572 }
3573 } else {
3574 switch (interface) {
3575 case PHY_INTERFACE_MODE_QSGMII:
3576 mvreg_write(pp, MVNETA_SERDES_CFG,
3577 MVNETA_QSGMII_SERDES_PROTO);
3578 break;
3579
3580 case PHY_INTERFACE_MODE_SGMII:
3581 case PHY_INTERFACE_MODE_1000BASEX:
3582 mvreg_write(pp, MVNETA_SERDES_CFG,
3583 MVNETA_SGMII_SERDES_PROTO);
3584 break;
3585
3586 case PHY_INTERFACE_MODE_2500BASEX:
3587 mvreg_write(pp, MVNETA_SERDES_CFG,
3588 MVNETA_HSGMII_SERDES_PROTO);
3589 break;
3590 default:
3591 break;
3592 }
3593 }
3594
3595 pp->phy_interface = interface;
3596
3597 return ret;
3598 }
3599
mvneta_start_dev(struct mvneta_port * pp)3600 static void mvneta_start_dev(struct mvneta_port *pp)
3601 {
3602 int cpu;
3603
3604 WARN_ON(mvneta_config_interface(pp, pp->phy_interface));
3605
3606 mvneta_max_rx_size_set(pp, pp->pkt_size);
3607 mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
3608
3609 /* start the Rx/Tx activity */
3610 mvneta_port_enable(pp);
3611
3612 if (!pp->neta_armada3700) {
3613 /* Enable polling on the port */
3614 for_each_online_cpu(cpu) {
3615 struct mvneta_pcpu_port *port =
3616 per_cpu_ptr(pp->ports, cpu);
3617
3618 napi_enable(&port->napi);
3619 }
3620 } else {
3621 napi_enable(&pp->napi);
3622 }
3623
3624 /* Unmask interrupts. It has to be done from each CPU */
3625 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3626
3627 mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3628 MVNETA_CAUSE_PHY_STATUS_CHANGE |
3629 MVNETA_CAUSE_LINK_CHANGE);
3630
3631 phylink_start(pp->phylink);
3632
3633 /* We may have called phylink_speed_down before */
3634 phylink_speed_up(pp->phylink);
3635
3636 netif_tx_start_all_queues(pp->dev);
3637
3638 clear_bit(__MVNETA_DOWN, &pp->state);
3639 }
3640
mvneta_stop_dev(struct mvneta_port * pp)3641 static void mvneta_stop_dev(struct mvneta_port *pp)
3642 {
3643 unsigned int cpu;
3644
3645 set_bit(__MVNETA_DOWN, &pp->state);
3646
3647 if (device_may_wakeup(&pp->dev->dev))
3648 phylink_speed_down(pp->phylink, false);
3649
3650 phylink_stop(pp->phylink);
3651
3652 if (!pp->neta_armada3700) {
3653 for_each_online_cpu(cpu) {
3654 struct mvneta_pcpu_port *port =
3655 per_cpu_ptr(pp->ports, cpu);
3656
3657 napi_disable(&port->napi);
3658 }
3659 } else {
3660 napi_disable(&pp->napi);
3661 }
3662
3663 netif_carrier_off(pp->dev);
3664
3665 mvneta_port_down(pp);
3666 netif_tx_stop_all_queues(pp->dev);
3667
3668 /* Stop the port activity */
3669 mvneta_port_disable(pp);
3670
3671 /* Clear all ethernet port interrupts */
3672 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
3673
3674 /* Mask all ethernet port interrupts */
3675 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3676
3677 mvneta_tx_reset(pp);
3678 mvneta_rx_reset(pp);
3679
3680 WARN_ON(phy_power_off(pp->comphy));
3681 }
3682
mvneta_percpu_enable(void * arg)3683 static void mvneta_percpu_enable(void *arg)
3684 {
3685 struct mvneta_port *pp = arg;
3686
3687 enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE);
3688 }
3689
mvneta_percpu_disable(void * arg)3690 static void mvneta_percpu_disable(void *arg)
3691 {
3692 struct mvneta_port *pp = arg;
3693
3694 disable_percpu_irq(pp->dev->irq);
3695 }
3696
3697 /* Change the device mtu */
mvneta_change_mtu(struct net_device * dev,int mtu)3698 static int mvneta_change_mtu(struct net_device *dev, int mtu)
3699 {
3700 struct mvneta_port *pp = netdev_priv(dev);
3701 int ret;
3702
3703 if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
3704 netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
3705 mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
3706 mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
3707 }
3708
3709 if (pp->xdp_prog && mtu > MVNETA_MAX_RX_BUF_SIZE) {
3710 netdev_info(dev, "Illegal MTU value %d for XDP mode\n", mtu);
3711 return -EINVAL;
3712 }
3713
3714 dev->mtu = mtu;
3715
3716 if (!netif_running(dev)) {
3717 if (pp->bm_priv)
3718 mvneta_bm_update_mtu(pp, mtu);
3719
3720 netdev_update_features(dev);
3721 return 0;
3722 }
3723
3724 /* The interface is running, so we have to force a
3725 * reallocation of the queues
3726 */
3727 mvneta_stop_dev(pp);
3728 on_each_cpu(mvneta_percpu_disable, pp, true);
3729
3730 mvneta_cleanup_txqs(pp);
3731 mvneta_cleanup_rxqs(pp);
3732
3733 if (pp->bm_priv)
3734 mvneta_bm_update_mtu(pp, mtu);
3735
3736 pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
3737
3738 ret = mvneta_setup_rxqs(pp);
3739 if (ret) {
3740 netdev_err(dev, "unable to setup rxqs after MTU change\n");
3741 return ret;
3742 }
3743
3744 ret = mvneta_setup_txqs(pp);
3745 if (ret) {
3746 netdev_err(dev, "unable to setup txqs after MTU change\n");
3747 return ret;
3748 }
3749
3750 on_each_cpu(mvneta_percpu_enable, pp, true);
3751 mvneta_start_dev(pp);
3752
3753 netdev_update_features(dev);
3754
3755 return 0;
3756 }
3757
mvneta_fix_features(struct net_device * dev,netdev_features_t features)3758 static netdev_features_t mvneta_fix_features(struct net_device *dev,
3759 netdev_features_t features)
3760 {
3761 struct mvneta_port *pp = netdev_priv(dev);
3762
3763 if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) {
3764 features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO);
3765 netdev_info(dev,
3766 "Disable IP checksum for MTU greater than %dB\n",
3767 pp->tx_csum_limit);
3768 }
3769
3770 return features;
3771 }
3772
3773 /* Get mac address */
mvneta_get_mac_addr(struct mvneta_port * pp,unsigned char * addr)3774 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
3775 {
3776 u32 mac_addr_l, mac_addr_h;
3777
3778 mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
3779 mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
3780 addr[0] = (mac_addr_h >> 24) & 0xFF;
3781 addr[1] = (mac_addr_h >> 16) & 0xFF;
3782 addr[2] = (mac_addr_h >> 8) & 0xFF;
3783 addr[3] = mac_addr_h & 0xFF;
3784 addr[4] = (mac_addr_l >> 8) & 0xFF;
3785 addr[5] = mac_addr_l & 0xFF;
3786 }
3787
3788 /* Handle setting mac address */
mvneta_set_mac_addr(struct net_device * dev,void * addr)3789 static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
3790 {
3791 struct mvneta_port *pp = netdev_priv(dev);
3792 struct sockaddr *sockaddr = addr;
3793 int ret;
3794
3795 ret = eth_prepare_mac_addr_change(dev, addr);
3796 if (ret < 0)
3797 return ret;
3798 /* Remove previous address table entry */
3799 mvneta_mac_addr_set(pp, dev->dev_addr, -1);
3800
3801 /* Set new addr in hw */
3802 mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def);
3803
3804 eth_commit_mac_addr_change(dev, addr);
3805 return 0;
3806 }
3807
mvneta_validate(struct phylink_config * config,unsigned long * supported,struct phylink_link_state * state)3808 static void mvneta_validate(struct phylink_config *config,
3809 unsigned long *supported,
3810 struct phylink_link_state *state)
3811 {
3812 struct net_device *ndev = to_net_dev(config->dev);
3813 struct mvneta_port *pp = netdev_priv(ndev);
3814 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
3815
3816 /* We only support QSGMII, SGMII, 802.3z and RGMII modes */
3817 if (state->interface != PHY_INTERFACE_MODE_NA &&
3818 state->interface != PHY_INTERFACE_MODE_QSGMII &&
3819 state->interface != PHY_INTERFACE_MODE_SGMII &&
3820 !phy_interface_mode_is_8023z(state->interface) &&
3821 !phy_interface_mode_is_rgmii(state->interface)) {
3822 bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
3823 return;
3824 }
3825
3826 /* Allow all the expected bits */
3827 phylink_set(mask, Autoneg);
3828 phylink_set_port_modes(mask);
3829
3830 /* Asymmetric pause is unsupported */
3831 phylink_set(mask, Pause);
3832
3833 /* Half-duplex at speeds higher than 100Mbit is unsupported */
3834 if (pp->comphy || state->interface != PHY_INTERFACE_MODE_2500BASEX) {
3835 phylink_set(mask, 1000baseT_Full);
3836 phylink_set(mask, 1000baseX_Full);
3837 }
3838 if (pp->comphy || state->interface == PHY_INTERFACE_MODE_2500BASEX) {
3839 phylink_set(mask, 2500baseT_Full);
3840 phylink_set(mask, 2500baseX_Full);
3841 }
3842
3843 if (!phy_interface_mode_is_8023z(state->interface)) {
3844 /* 10M and 100M are only supported in non-802.3z mode */
3845 phylink_set(mask, 10baseT_Half);
3846 phylink_set(mask, 10baseT_Full);
3847 phylink_set(mask, 100baseT_Half);
3848 phylink_set(mask, 100baseT_Full);
3849 }
3850
3851 bitmap_and(supported, supported, mask,
3852 __ETHTOOL_LINK_MODE_MASK_NBITS);
3853 bitmap_and(state->advertising, state->advertising, mask,
3854 __ETHTOOL_LINK_MODE_MASK_NBITS);
3855
3856 /* We can only operate at 2500BaseX or 1000BaseX. If requested
3857 * to advertise both, only report advertising at 2500BaseX.
3858 */
3859 phylink_helper_basex_speed(state);
3860 }
3861
mvneta_mac_pcs_get_state(struct phylink_config * config,struct phylink_link_state * state)3862 static void mvneta_mac_pcs_get_state(struct phylink_config *config,
3863 struct phylink_link_state *state)
3864 {
3865 struct net_device *ndev = to_net_dev(config->dev);
3866 struct mvneta_port *pp = netdev_priv(ndev);
3867 u32 gmac_stat;
3868
3869 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
3870
3871 if (gmac_stat & MVNETA_GMAC_SPEED_1000)
3872 state->speed =
3873 state->interface == PHY_INTERFACE_MODE_2500BASEX ?
3874 SPEED_2500 : SPEED_1000;
3875 else if (gmac_stat & MVNETA_GMAC_SPEED_100)
3876 state->speed = SPEED_100;
3877 else
3878 state->speed = SPEED_10;
3879
3880 state->an_complete = !!(gmac_stat & MVNETA_GMAC_AN_COMPLETE);
3881 state->link = !!(gmac_stat & MVNETA_GMAC_LINK_UP);
3882 state->duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX);
3883
3884 state->pause = 0;
3885 if (gmac_stat & MVNETA_GMAC_RX_FLOW_CTRL_ENABLE)
3886 state->pause |= MLO_PAUSE_RX;
3887 if (gmac_stat & MVNETA_GMAC_TX_FLOW_CTRL_ENABLE)
3888 state->pause |= MLO_PAUSE_TX;
3889 }
3890
mvneta_mac_an_restart(struct phylink_config * config)3891 static void mvneta_mac_an_restart(struct phylink_config *config)
3892 {
3893 struct net_device *ndev = to_net_dev(config->dev);
3894 struct mvneta_port *pp = netdev_priv(ndev);
3895 u32 gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3896
3897 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3898 gmac_an | MVNETA_GMAC_INBAND_RESTART_AN);
3899 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3900 gmac_an & ~MVNETA_GMAC_INBAND_RESTART_AN);
3901 }
3902
mvneta_mac_config(struct phylink_config * config,unsigned int mode,const struct phylink_link_state * state)3903 static void mvneta_mac_config(struct phylink_config *config, unsigned int mode,
3904 const struct phylink_link_state *state)
3905 {
3906 struct net_device *ndev = to_net_dev(config->dev);
3907 struct mvneta_port *pp = netdev_priv(ndev);
3908 u32 new_ctrl0, gmac_ctrl0 = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
3909 u32 new_ctrl2, gmac_ctrl2 = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
3910 u32 new_ctrl4, gmac_ctrl4 = mvreg_read(pp, MVNETA_GMAC_CTRL_4);
3911 u32 new_clk, gmac_clk = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
3912 u32 new_an, gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3913
3914 new_ctrl0 = gmac_ctrl0 & ~MVNETA_GMAC0_PORT_1000BASE_X;
3915 new_ctrl2 = gmac_ctrl2 & ~(MVNETA_GMAC2_INBAND_AN_ENABLE |
3916 MVNETA_GMAC2_PORT_RESET);
3917 new_ctrl4 = gmac_ctrl4 & ~(MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE);
3918 new_clk = gmac_clk & ~MVNETA_GMAC_1MS_CLOCK_ENABLE;
3919 new_an = gmac_an & ~(MVNETA_GMAC_INBAND_AN_ENABLE |
3920 MVNETA_GMAC_INBAND_RESTART_AN |
3921 MVNETA_GMAC_AN_SPEED_EN |
3922 MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL |
3923 MVNETA_GMAC_AN_FLOW_CTRL_EN |
3924 MVNETA_GMAC_AN_DUPLEX_EN);
3925
3926 /* Even though it might look weird, when we're configured in
3927 * SGMII or QSGMII mode, the RGMII bit needs to be set.
3928 */
3929 new_ctrl2 |= MVNETA_GMAC2_PORT_RGMII;
3930
3931 if (state->interface == PHY_INTERFACE_MODE_QSGMII ||
3932 state->interface == PHY_INTERFACE_MODE_SGMII ||
3933 phy_interface_mode_is_8023z(state->interface))
3934 new_ctrl2 |= MVNETA_GMAC2_PCS_ENABLE;
3935
3936 if (phylink_test(state->advertising, Pause))
3937 new_an |= MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL;
3938
3939 if (!phylink_autoneg_inband(mode)) {
3940 /* Phy or fixed speed - nothing to do, leave the
3941 * configured speed, duplex and flow control as-is.
3942 */
3943 } else if (state->interface == PHY_INTERFACE_MODE_SGMII) {
3944 /* SGMII mode receives the state from the PHY */
3945 new_ctrl2 |= MVNETA_GMAC2_INBAND_AN_ENABLE;
3946 new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
3947 new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN |
3948 MVNETA_GMAC_FORCE_LINK_PASS |
3949 MVNETA_GMAC_CONFIG_MII_SPEED |
3950 MVNETA_GMAC_CONFIG_GMII_SPEED |
3951 MVNETA_GMAC_CONFIG_FULL_DUPLEX)) |
3952 MVNETA_GMAC_INBAND_AN_ENABLE |
3953 MVNETA_GMAC_AN_SPEED_EN |
3954 MVNETA_GMAC_AN_DUPLEX_EN;
3955 } else {
3956 /* 802.3z negotiation - only 1000base-X */
3957 new_ctrl0 |= MVNETA_GMAC0_PORT_1000BASE_X;
3958 new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
3959 new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN |
3960 MVNETA_GMAC_FORCE_LINK_PASS |
3961 MVNETA_GMAC_CONFIG_MII_SPEED)) |
3962 MVNETA_GMAC_INBAND_AN_ENABLE |
3963 MVNETA_GMAC_CONFIG_GMII_SPEED |
3964 /* The MAC only supports FD mode */
3965 MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3966
3967 if (state->pause & MLO_PAUSE_AN && state->an_enabled)
3968 new_an |= MVNETA_GMAC_AN_FLOW_CTRL_EN;
3969 }
3970
3971 /* Armada 370 documentation says we can only change the port mode
3972 * and in-band enable when the link is down, so force it down
3973 * while making these changes. We also do this for GMAC_CTRL2 */
3974 if ((new_ctrl0 ^ gmac_ctrl0) & MVNETA_GMAC0_PORT_1000BASE_X ||
3975 (new_ctrl2 ^ gmac_ctrl2) & MVNETA_GMAC2_INBAND_AN_ENABLE ||
3976 (new_an ^ gmac_an) & MVNETA_GMAC_INBAND_AN_ENABLE) {
3977 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3978 (gmac_an & ~MVNETA_GMAC_FORCE_LINK_PASS) |
3979 MVNETA_GMAC_FORCE_LINK_DOWN);
3980 }
3981
3982
3983 /* When at 2.5G, the link partner can send frames with shortened
3984 * preambles.
3985 */
3986 if (state->interface == PHY_INTERFACE_MODE_2500BASEX)
3987 new_ctrl4 |= MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE;
3988
3989 if (pp->phy_interface != state->interface) {
3990 if (pp->comphy)
3991 WARN_ON(phy_power_off(pp->comphy));
3992 WARN_ON(mvneta_config_interface(pp, state->interface));
3993 }
3994
3995 if (new_ctrl0 != gmac_ctrl0)
3996 mvreg_write(pp, MVNETA_GMAC_CTRL_0, new_ctrl0);
3997 if (new_ctrl2 != gmac_ctrl2)
3998 mvreg_write(pp, MVNETA_GMAC_CTRL_2, new_ctrl2);
3999 if (new_ctrl4 != gmac_ctrl4)
4000 mvreg_write(pp, MVNETA_GMAC_CTRL_4, new_ctrl4);
4001 if (new_clk != gmac_clk)
4002 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, new_clk);
4003 if (new_an != gmac_an)
4004 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, new_an);
4005
4006 if (gmac_ctrl2 & MVNETA_GMAC2_PORT_RESET) {
4007 while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
4008 MVNETA_GMAC2_PORT_RESET) != 0)
4009 continue;
4010 }
4011 }
4012
mvneta_set_eee(struct mvneta_port * pp,bool enable)4013 static void mvneta_set_eee(struct mvneta_port *pp, bool enable)
4014 {
4015 u32 lpi_ctl1;
4016
4017 lpi_ctl1 = mvreg_read(pp, MVNETA_LPI_CTRL_1);
4018 if (enable)
4019 lpi_ctl1 |= MVNETA_LPI_REQUEST_ENABLE;
4020 else
4021 lpi_ctl1 &= ~MVNETA_LPI_REQUEST_ENABLE;
4022 mvreg_write(pp, MVNETA_LPI_CTRL_1, lpi_ctl1);
4023 }
4024
mvneta_mac_link_down(struct phylink_config * config,unsigned int mode,phy_interface_t interface)4025 static void mvneta_mac_link_down(struct phylink_config *config,
4026 unsigned int mode, phy_interface_t interface)
4027 {
4028 struct net_device *ndev = to_net_dev(config->dev);
4029 struct mvneta_port *pp = netdev_priv(ndev);
4030 u32 val;
4031
4032 mvneta_port_down(pp);
4033
4034 if (!phylink_autoneg_inband(mode)) {
4035 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4036 val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
4037 val |= MVNETA_GMAC_FORCE_LINK_DOWN;
4038 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
4039 }
4040
4041 pp->eee_active = false;
4042 mvneta_set_eee(pp, false);
4043 }
4044
mvneta_mac_link_up(struct phylink_config * config,struct phy_device * phy,unsigned int mode,phy_interface_t interface,int speed,int duplex,bool tx_pause,bool rx_pause)4045 static void mvneta_mac_link_up(struct phylink_config *config,
4046 struct phy_device *phy,
4047 unsigned int mode, phy_interface_t interface,
4048 int speed, int duplex,
4049 bool tx_pause, bool rx_pause)
4050 {
4051 struct net_device *ndev = to_net_dev(config->dev);
4052 struct mvneta_port *pp = netdev_priv(ndev);
4053 u32 val;
4054
4055 if (!phylink_autoneg_inband(mode)) {
4056 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4057 val &= ~(MVNETA_GMAC_FORCE_LINK_DOWN |
4058 MVNETA_GMAC_CONFIG_MII_SPEED |
4059 MVNETA_GMAC_CONFIG_GMII_SPEED |
4060 MVNETA_GMAC_CONFIG_FLOW_CTRL |
4061 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
4062 val |= MVNETA_GMAC_FORCE_LINK_PASS;
4063
4064 if (speed == SPEED_1000 || speed == SPEED_2500)
4065 val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
4066 else if (speed == SPEED_100)
4067 val |= MVNETA_GMAC_CONFIG_MII_SPEED;
4068
4069 if (duplex == DUPLEX_FULL)
4070 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
4071
4072 if (tx_pause || rx_pause)
4073 val |= MVNETA_GMAC_CONFIG_FLOW_CTRL;
4074
4075 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
4076 } else {
4077 /* When inband doesn't cover flow control or flow control is
4078 * disabled, we need to manually configure it. This bit will
4079 * only have effect if MVNETA_GMAC_AN_FLOW_CTRL_EN is unset.
4080 */
4081 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4082 val &= ~MVNETA_GMAC_CONFIG_FLOW_CTRL;
4083
4084 if (tx_pause || rx_pause)
4085 val |= MVNETA_GMAC_CONFIG_FLOW_CTRL;
4086
4087 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
4088 }
4089
4090 mvneta_port_up(pp);
4091
4092 if (phy && pp->eee_enabled) {
4093 pp->eee_active = phy_init_eee(phy, 0) >= 0;
4094 mvneta_set_eee(pp, pp->eee_active && pp->tx_lpi_enabled);
4095 }
4096 }
4097
4098 static const struct phylink_mac_ops mvneta_phylink_ops = {
4099 .validate = mvneta_validate,
4100 .mac_pcs_get_state = mvneta_mac_pcs_get_state,
4101 .mac_an_restart = mvneta_mac_an_restart,
4102 .mac_config = mvneta_mac_config,
4103 .mac_link_down = mvneta_mac_link_down,
4104 .mac_link_up = mvneta_mac_link_up,
4105 };
4106
mvneta_mdio_probe(struct mvneta_port * pp)4107 static int mvneta_mdio_probe(struct mvneta_port *pp)
4108 {
4109 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
4110 int err = phylink_of_phy_connect(pp->phylink, pp->dn, 0);
4111
4112 if (err)
4113 netdev_err(pp->dev, "could not attach PHY: %d\n", err);
4114
4115 phylink_ethtool_get_wol(pp->phylink, &wol);
4116 device_set_wakeup_capable(&pp->dev->dev, !!wol.supported);
4117
4118 /* PHY WoL may be enabled but device wakeup disabled */
4119 if (wol.supported)
4120 device_set_wakeup_enable(&pp->dev->dev, !!wol.wolopts);
4121
4122 return err;
4123 }
4124
mvneta_mdio_remove(struct mvneta_port * pp)4125 static void mvneta_mdio_remove(struct mvneta_port *pp)
4126 {
4127 phylink_disconnect_phy(pp->phylink);
4128 }
4129
4130 /* Electing a CPU must be done in an atomic way: it should be done
4131 * after or before the removal/insertion of a CPU and this function is
4132 * not reentrant.
4133 */
mvneta_percpu_elect(struct mvneta_port * pp)4134 static void mvneta_percpu_elect(struct mvneta_port *pp)
4135 {
4136 int elected_cpu = 0, max_cpu, cpu, i = 0;
4137
4138 /* Use the cpu associated to the rxq when it is online, in all
4139 * the other cases, use the cpu 0 which can't be offline.
4140 */
4141 if (cpu_online(pp->rxq_def))
4142 elected_cpu = pp->rxq_def;
4143
4144 max_cpu = num_present_cpus();
4145
4146 for_each_online_cpu(cpu) {
4147 int rxq_map = 0, txq_map = 0;
4148 int rxq;
4149
4150 for (rxq = 0; rxq < rxq_number; rxq++)
4151 if ((rxq % max_cpu) == cpu)
4152 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
4153
4154 if (cpu == elected_cpu)
4155 /* Map the default receive queue queue to the
4156 * elected CPU
4157 */
4158 rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def);
4159
4160 /* We update the TX queue map only if we have one
4161 * queue. In this case we associate the TX queue to
4162 * the CPU bound to the default RX queue
4163 */
4164 if (txq_number == 1)
4165 txq_map = (cpu == elected_cpu) ?
4166 MVNETA_CPU_TXQ_ACCESS(1) : 0;
4167 else
4168 txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) &
4169 MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
4170
4171 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
4172
4173 /* Update the interrupt mask on each CPU according the
4174 * new mapping
4175 */
4176 smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt,
4177 pp, true);
4178 i++;
4179
4180 }
4181 };
4182
mvneta_cpu_online(unsigned int cpu,struct hlist_node * node)4183 static int mvneta_cpu_online(unsigned int cpu, struct hlist_node *node)
4184 {
4185 int other_cpu;
4186 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
4187 node_online);
4188 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
4189
4190
4191 spin_lock(&pp->lock);
4192 /*
4193 * Configuring the driver for a new CPU while the driver is
4194 * stopping is racy, so just avoid it.
4195 */
4196 if (pp->is_stopped) {
4197 spin_unlock(&pp->lock);
4198 return 0;
4199 }
4200 netif_tx_stop_all_queues(pp->dev);
4201
4202 /*
4203 * We have to synchronise on tha napi of each CPU except the one
4204 * just being woken up
4205 */
4206 for_each_online_cpu(other_cpu) {
4207 if (other_cpu != cpu) {
4208 struct mvneta_pcpu_port *other_port =
4209 per_cpu_ptr(pp->ports, other_cpu);
4210
4211 napi_synchronize(&other_port->napi);
4212 }
4213 }
4214
4215 /* Mask all ethernet port interrupts */
4216 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4217 napi_enable(&port->napi);
4218
4219 /*
4220 * Enable per-CPU interrupts on the CPU that is
4221 * brought up.
4222 */
4223 mvneta_percpu_enable(pp);
4224
4225 /*
4226 * Enable per-CPU interrupt on the one CPU we care
4227 * about.
4228 */
4229 mvneta_percpu_elect(pp);
4230
4231 /* Unmask all ethernet port interrupts */
4232 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
4233 mvreg_write(pp, MVNETA_INTR_MISC_MASK,
4234 MVNETA_CAUSE_PHY_STATUS_CHANGE |
4235 MVNETA_CAUSE_LINK_CHANGE);
4236 netif_tx_start_all_queues(pp->dev);
4237 spin_unlock(&pp->lock);
4238 return 0;
4239 }
4240
mvneta_cpu_down_prepare(unsigned int cpu,struct hlist_node * node)4241 static int mvneta_cpu_down_prepare(unsigned int cpu, struct hlist_node *node)
4242 {
4243 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
4244 node_online);
4245 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
4246
4247 /*
4248 * Thanks to this lock we are sure that any pending cpu election is
4249 * done.
4250 */
4251 spin_lock(&pp->lock);
4252 /* Mask all ethernet port interrupts */
4253 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4254 spin_unlock(&pp->lock);
4255
4256 napi_synchronize(&port->napi);
4257 napi_disable(&port->napi);
4258 /* Disable per-CPU interrupts on the CPU that is brought down. */
4259 mvneta_percpu_disable(pp);
4260 return 0;
4261 }
4262
mvneta_cpu_dead(unsigned int cpu,struct hlist_node * node)4263 static int mvneta_cpu_dead(unsigned int cpu, struct hlist_node *node)
4264 {
4265 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
4266 node_dead);
4267
4268 /* Check if a new CPU must be elected now this on is down */
4269 spin_lock(&pp->lock);
4270 mvneta_percpu_elect(pp);
4271 spin_unlock(&pp->lock);
4272 /* Unmask all ethernet port interrupts */
4273 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
4274 mvreg_write(pp, MVNETA_INTR_MISC_MASK,
4275 MVNETA_CAUSE_PHY_STATUS_CHANGE |
4276 MVNETA_CAUSE_LINK_CHANGE);
4277 netif_tx_start_all_queues(pp->dev);
4278 return 0;
4279 }
4280
mvneta_open(struct net_device * dev)4281 static int mvneta_open(struct net_device *dev)
4282 {
4283 struct mvneta_port *pp = netdev_priv(dev);
4284 int ret;
4285
4286 pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
4287
4288 ret = mvneta_setup_rxqs(pp);
4289 if (ret)
4290 return ret;
4291
4292 ret = mvneta_setup_txqs(pp);
4293 if (ret)
4294 goto err_cleanup_rxqs;
4295
4296 /* Connect to port interrupt line */
4297 if (pp->neta_armada3700)
4298 ret = request_irq(pp->dev->irq, mvneta_isr, 0,
4299 dev->name, pp);
4300 else
4301 ret = request_percpu_irq(pp->dev->irq, mvneta_percpu_isr,
4302 dev->name, pp->ports);
4303 if (ret) {
4304 netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
4305 goto err_cleanup_txqs;
4306 }
4307
4308 if (!pp->neta_armada3700) {
4309 /* Enable per-CPU interrupt on all the CPU to handle our RX
4310 * queue interrupts
4311 */
4312 on_each_cpu(mvneta_percpu_enable, pp, true);
4313
4314 pp->is_stopped = false;
4315 /* Register a CPU notifier to handle the case where our CPU
4316 * might be taken offline.
4317 */
4318 ret = cpuhp_state_add_instance_nocalls(online_hpstate,
4319 &pp->node_online);
4320 if (ret)
4321 goto err_free_irq;
4322
4323 ret = cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4324 &pp->node_dead);
4325 if (ret)
4326 goto err_free_online_hp;
4327 }
4328
4329 ret = mvneta_mdio_probe(pp);
4330 if (ret < 0) {
4331 netdev_err(dev, "cannot probe MDIO bus\n");
4332 goto err_free_dead_hp;
4333 }
4334
4335 mvneta_start_dev(pp);
4336
4337 return 0;
4338
4339 err_free_dead_hp:
4340 if (!pp->neta_armada3700)
4341 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4342 &pp->node_dead);
4343 err_free_online_hp:
4344 if (!pp->neta_armada3700)
4345 cpuhp_state_remove_instance_nocalls(online_hpstate,
4346 &pp->node_online);
4347 err_free_irq:
4348 if (pp->neta_armada3700) {
4349 free_irq(pp->dev->irq, pp);
4350 } else {
4351 on_each_cpu(mvneta_percpu_disable, pp, true);
4352 free_percpu_irq(pp->dev->irq, pp->ports);
4353 }
4354 err_cleanup_txqs:
4355 mvneta_cleanup_txqs(pp);
4356 err_cleanup_rxqs:
4357 mvneta_cleanup_rxqs(pp);
4358 return ret;
4359 }
4360
4361 /* Stop the port, free port interrupt line */
mvneta_stop(struct net_device * dev)4362 static int mvneta_stop(struct net_device *dev)
4363 {
4364 struct mvneta_port *pp = netdev_priv(dev);
4365
4366 if (!pp->neta_armada3700) {
4367 /* Inform that we are stopping so we don't want to setup the
4368 * driver for new CPUs in the notifiers. The code of the
4369 * notifier for CPU online is protected by the same spinlock,
4370 * so when we get the lock, the notifer work is done.
4371 */
4372 spin_lock(&pp->lock);
4373 pp->is_stopped = true;
4374 spin_unlock(&pp->lock);
4375
4376 mvneta_stop_dev(pp);
4377 mvneta_mdio_remove(pp);
4378
4379 cpuhp_state_remove_instance_nocalls(online_hpstate,
4380 &pp->node_online);
4381 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4382 &pp->node_dead);
4383 on_each_cpu(mvneta_percpu_disable, pp, true);
4384 free_percpu_irq(dev->irq, pp->ports);
4385 } else {
4386 mvneta_stop_dev(pp);
4387 mvneta_mdio_remove(pp);
4388 free_irq(dev->irq, pp);
4389 }
4390
4391 mvneta_cleanup_rxqs(pp);
4392 mvneta_cleanup_txqs(pp);
4393
4394 return 0;
4395 }
4396
mvneta_ioctl(struct net_device * dev,struct ifreq * ifr,int cmd)4397 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4398 {
4399 struct mvneta_port *pp = netdev_priv(dev);
4400
4401 return phylink_mii_ioctl(pp->phylink, ifr, cmd);
4402 }
4403
mvneta_xdp_setup(struct net_device * dev,struct bpf_prog * prog,struct netlink_ext_ack * extack)4404 static int mvneta_xdp_setup(struct net_device *dev, struct bpf_prog *prog,
4405 struct netlink_ext_ack *extack)
4406 {
4407 bool need_update, running = netif_running(dev);
4408 struct mvneta_port *pp = netdev_priv(dev);
4409 struct bpf_prog *old_prog;
4410
4411 if (prog && dev->mtu > MVNETA_MAX_RX_BUF_SIZE) {
4412 NL_SET_ERR_MSG_MOD(extack, "Jumbo frames not supported on XDP");
4413 return -EOPNOTSUPP;
4414 }
4415
4416 if (pp->bm_priv) {
4417 NL_SET_ERR_MSG_MOD(extack,
4418 "Hardware Buffer Management not supported on XDP");
4419 return -EOPNOTSUPP;
4420 }
4421
4422 need_update = !!pp->xdp_prog != !!prog;
4423 if (running && need_update)
4424 mvneta_stop(dev);
4425
4426 old_prog = xchg(&pp->xdp_prog, prog);
4427 if (old_prog)
4428 bpf_prog_put(old_prog);
4429
4430 if (running && need_update)
4431 return mvneta_open(dev);
4432
4433 return 0;
4434 }
4435
mvneta_xdp(struct net_device * dev,struct netdev_bpf * xdp)4436 static int mvneta_xdp(struct net_device *dev, struct netdev_bpf *xdp)
4437 {
4438 switch (xdp->command) {
4439 case XDP_SETUP_PROG:
4440 return mvneta_xdp_setup(dev, xdp->prog, xdp->extack);
4441 default:
4442 return -EINVAL;
4443 }
4444 }
4445
4446 /* Ethtool methods */
4447
4448 /* Set link ksettings (phy address, speed) for ethtools */
4449 static int
mvneta_ethtool_set_link_ksettings(struct net_device * ndev,const struct ethtool_link_ksettings * cmd)4450 mvneta_ethtool_set_link_ksettings(struct net_device *ndev,
4451 const struct ethtool_link_ksettings *cmd)
4452 {
4453 struct mvneta_port *pp = netdev_priv(ndev);
4454
4455 return phylink_ethtool_ksettings_set(pp->phylink, cmd);
4456 }
4457
4458 /* Get link ksettings for ethtools */
4459 static int
mvneta_ethtool_get_link_ksettings(struct net_device * ndev,struct ethtool_link_ksettings * cmd)4460 mvneta_ethtool_get_link_ksettings(struct net_device *ndev,
4461 struct ethtool_link_ksettings *cmd)
4462 {
4463 struct mvneta_port *pp = netdev_priv(ndev);
4464
4465 return phylink_ethtool_ksettings_get(pp->phylink, cmd);
4466 }
4467
mvneta_ethtool_nway_reset(struct net_device * dev)4468 static int mvneta_ethtool_nway_reset(struct net_device *dev)
4469 {
4470 struct mvneta_port *pp = netdev_priv(dev);
4471
4472 return phylink_ethtool_nway_reset(pp->phylink);
4473 }
4474
4475 /* Set interrupt coalescing for ethtools */
mvneta_ethtool_set_coalesce(struct net_device * dev,struct ethtool_coalesce * c)4476 static int mvneta_ethtool_set_coalesce(struct net_device *dev,
4477 struct ethtool_coalesce *c)
4478 {
4479 struct mvneta_port *pp = netdev_priv(dev);
4480 int queue;
4481
4482 for (queue = 0; queue < rxq_number; queue++) {
4483 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
4484 rxq->time_coal = c->rx_coalesce_usecs;
4485 rxq->pkts_coal = c->rx_max_coalesced_frames;
4486 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
4487 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
4488 }
4489
4490 for (queue = 0; queue < txq_number; queue++) {
4491 struct mvneta_tx_queue *txq = &pp->txqs[queue];
4492 txq->done_pkts_coal = c->tx_max_coalesced_frames;
4493 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
4494 }
4495
4496 return 0;
4497 }
4498
4499 /* get coalescing for ethtools */
mvneta_ethtool_get_coalesce(struct net_device * dev,struct ethtool_coalesce * c)4500 static int mvneta_ethtool_get_coalesce(struct net_device *dev,
4501 struct ethtool_coalesce *c)
4502 {
4503 struct mvneta_port *pp = netdev_priv(dev);
4504
4505 c->rx_coalesce_usecs = pp->rxqs[0].time_coal;
4506 c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal;
4507
4508 c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal;
4509 return 0;
4510 }
4511
4512
mvneta_ethtool_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * drvinfo)4513 static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
4514 struct ethtool_drvinfo *drvinfo)
4515 {
4516 strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
4517 sizeof(drvinfo->driver));
4518 strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
4519 sizeof(drvinfo->version));
4520 strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
4521 sizeof(drvinfo->bus_info));
4522 }
4523
4524
mvneta_ethtool_get_ringparam(struct net_device * netdev,struct ethtool_ringparam * ring)4525 static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
4526 struct ethtool_ringparam *ring)
4527 {
4528 struct mvneta_port *pp = netdev_priv(netdev);
4529
4530 ring->rx_max_pending = MVNETA_MAX_RXD;
4531 ring->tx_max_pending = MVNETA_MAX_TXD;
4532 ring->rx_pending = pp->rx_ring_size;
4533 ring->tx_pending = pp->tx_ring_size;
4534 }
4535
mvneta_ethtool_set_ringparam(struct net_device * dev,struct ethtool_ringparam * ring)4536 static int mvneta_ethtool_set_ringparam(struct net_device *dev,
4537 struct ethtool_ringparam *ring)
4538 {
4539 struct mvneta_port *pp = netdev_priv(dev);
4540
4541 if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
4542 return -EINVAL;
4543 pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
4544 ring->rx_pending : MVNETA_MAX_RXD;
4545
4546 pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
4547 MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
4548 if (pp->tx_ring_size != ring->tx_pending)
4549 netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
4550 pp->tx_ring_size, ring->tx_pending);
4551
4552 if (netif_running(dev)) {
4553 mvneta_stop(dev);
4554 if (mvneta_open(dev)) {
4555 netdev_err(dev,
4556 "error on opening device after ring param change\n");
4557 return -ENOMEM;
4558 }
4559 }
4560
4561 return 0;
4562 }
4563
mvneta_ethtool_get_pauseparam(struct net_device * dev,struct ethtool_pauseparam * pause)4564 static void mvneta_ethtool_get_pauseparam(struct net_device *dev,
4565 struct ethtool_pauseparam *pause)
4566 {
4567 struct mvneta_port *pp = netdev_priv(dev);
4568
4569 phylink_ethtool_get_pauseparam(pp->phylink, pause);
4570 }
4571
mvneta_ethtool_set_pauseparam(struct net_device * dev,struct ethtool_pauseparam * pause)4572 static int mvneta_ethtool_set_pauseparam(struct net_device *dev,
4573 struct ethtool_pauseparam *pause)
4574 {
4575 struct mvneta_port *pp = netdev_priv(dev);
4576
4577 return phylink_ethtool_set_pauseparam(pp->phylink, pause);
4578 }
4579
mvneta_ethtool_get_strings(struct net_device * netdev,u32 sset,u8 * data)4580 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset,
4581 u8 *data)
4582 {
4583 if (sset == ETH_SS_STATS) {
4584 int i;
4585
4586 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
4587 memcpy(data + i * ETH_GSTRING_LEN,
4588 mvneta_statistics[i].name, ETH_GSTRING_LEN);
4589 }
4590 }
4591
4592 static void
mvneta_ethtool_update_pcpu_stats(struct mvneta_port * pp,struct mvneta_ethtool_stats * es)4593 mvneta_ethtool_update_pcpu_stats(struct mvneta_port *pp,
4594 struct mvneta_ethtool_stats *es)
4595 {
4596 unsigned int start;
4597 int cpu;
4598
4599 for_each_possible_cpu(cpu) {
4600 struct mvneta_pcpu_stats *stats;
4601 u64 skb_alloc_error;
4602 u64 refill_error;
4603 u64 xdp_redirect;
4604 u64 xdp_xmit_err;
4605 u64 xdp_tx_err;
4606 u64 xdp_pass;
4607 u64 xdp_drop;
4608 u64 xdp_xmit;
4609 u64 xdp_tx;
4610
4611 stats = per_cpu_ptr(pp->stats, cpu);
4612 do {
4613 start = u64_stats_fetch_begin_irq(&stats->syncp);
4614 skb_alloc_error = stats->es.skb_alloc_error;
4615 refill_error = stats->es.refill_error;
4616 xdp_redirect = stats->es.ps.xdp_redirect;
4617 xdp_pass = stats->es.ps.xdp_pass;
4618 xdp_drop = stats->es.ps.xdp_drop;
4619 xdp_xmit = stats->es.ps.xdp_xmit;
4620 xdp_xmit_err = stats->es.ps.xdp_xmit_err;
4621 xdp_tx = stats->es.ps.xdp_tx;
4622 xdp_tx_err = stats->es.ps.xdp_tx_err;
4623 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
4624
4625 es->skb_alloc_error += skb_alloc_error;
4626 es->refill_error += refill_error;
4627 es->ps.xdp_redirect += xdp_redirect;
4628 es->ps.xdp_pass += xdp_pass;
4629 es->ps.xdp_drop += xdp_drop;
4630 es->ps.xdp_xmit += xdp_xmit;
4631 es->ps.xdp_xmit_err += xdp_xmit_err;
4632 es->ps.xdp_tx += xdp_tx;
4633 es->ps.xdp_tx_err += xdp_tx_err;
4634 }
4635 }
4636
mvneta_ethtool_update_stats(struct mvneta_port * pp)4637 static void mvneta_ethtool_update_stats(struct mvneta_port *pp)
4638 {
4639 struct mvneta_ethtool_stats stats = {};
4640 const struct mvneta_statistic *s;
4641 void __iomem *base = pp->base;
4642 u32 high, low;
4643 u64 val;
4644 int i;
4645
4646 mvneta_ethtool_update_pcpu_stats(pp, &stats);
4647 for (i = 0, s = mvneta_statistics;
4648 s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics);
4649 s++, i++) {
4650 switch (s->type) {
4651 case T_REG_32:
4652 val = readl_relaxed(base + s->offset);
4653 pp->ethtool_stats[i] += val;
4654 break;
4655 case T_REG_64:
4656 /* Docs say to read low 32-bit then high */
4657 low = readl_relaxed(base + s->offset);
4658 high = readl_relaxed(base + s->offset + 4);
4659 val = (u64)high << 32 | low;
4660 pp->ethtool_stats[i] += val;
4661 break;
4662 case T_SW:
4663 switch (s->offset) {
4664 case ETHTOOL_STAT_EEE_WAKEUP:
4665 val = phylink_get_eee_err(pp->phylink);
4666 pp->ethtool_stats[i] += val;
4667 break;
4668 case ETHTOOL_STAT_SKB_ALLOC_ERR:
4669 pp->ethtool_stats[i] = stats.skb_alloc_error;
4670 break;
4671 case ETHTOOL_STAT_REFILL_ERR:
4672 pp->ethtool_stats[i] = stats.refill_error;
4673 break;
4674 case ETHTOOL_XDP_REDIRECT:
4675 pp->ethtool_stats[i] = stats.ps.xdp_redirect;
4676 break;
4677 case ETHTOOL_XDP_PASS:
4678 pp->ethtool_stats[i] = stats.ps.xdp_pass;
4679 break;
4680 case ETHTOOL_XDP_DROP:
4681 pp->ethtool_stats[i] = stats.ps.xdp_drop;
4682 break;
4683 case ETHTOOL_XDP_TX:
4684 pp->ethtool_stats[i] = stats.ps.xdp_tx;
4685 break;
4686 case ETHTOOL_XDP_TX_ERR:
4687 pp->ethtool_stats[i] = stats.ps.xdp_tx_err;
4688 break;
4689 case ETHTOOL_XDP_XMIT:
4690 pp->ethtool_stats[i] = stats.ps.xdp_xmit;
4691 break;
4692 case ETHTOOL_XDP_XMIT_ERR:
4693 pp->ethtool_stats[i] = stats.ps.xdp_xmit_err;
4694 break;
4695 }
4696 break;
4697 }
4698 }
4699 }
4700
mvneta_ethtool_get_stats(struct net_device * dev,struct ethtool_stats * stats,u64 * data)4701 static void mvneta_ethtool_get_stats(struct net_device *dev,
4702 struct ethtool_stats *stats, u64 *data)
4703 {
4704 struct mvneta_port *pp = netdev_priv(dev);
4705 int i;
4706
4707 mvneta_ethtool_update_stats(pp);
4708
4709 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
4710 *data++ = pp->ethtool_stats[i];
4711 }
4712
mvneta_ethtool_get_sset_count(struct net_device * dev,int sset)4713 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset)
4714 {
4715 if (sset == ETH_SS_STATS)
4716 return ARRAY_SIZE(mvneta_statistics);
4717 return -EOPNOTSUPP;
4718 }
4719
mvneta_ethtool_get_rxfh_indir_size(struct net_device * dev)4720 static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev)
4721 {
4722 return MVNETA_RSS_LU_TABLE_SIZE;
4723 }
4724
mvneta_ethtool_get_rxnfc(struct net_device * dev,struct ethtool_rxnfc * info,u32 * rules __always_unused)4725 static int mvneta_ethtool_get_rxnfc(struct net_device *dev,
4726 struct ethtool_rxnfc *info,
4727 u32 *rules __always_unused)
4728 {
4729 switch (info->cmd) {
4730 case ETHTOOL_GRXRINGS:
4731 info->data = rxq_number;
4732 return 0;
4733 case ETHTOOL_GRXFH:
4734 return -EOPNOTSUPP;
4735 default:
4736 return -EOPNOTSUPP;
4737 }
4738 }
4739
mvneta_config_rss(struct mvneta_port * pp)4740 static int mvneta_config_rss(struct mvneta_port *pp)
4741 {
4742 int cpu;
4743 u32 val;
4744
4745 netif_tx_stop_all_queues(pp->dev);
4746
4747 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4748
4749 if (!pp->neta_armada3700) {
4750 /* We have to synchronise on the napi of each CPU */
4751 for_each_online_cpu(cpu) {
4752 struct mvneta_pcpu_port *pcpu_port =
4753 per_cpu_ptr(pp->ports, cpu);
4754
4755 napi_synchronize(&pcpu_port->napi);
4756 napi_disable(&pcpu_port->napi);
4757 }
4758 } else {
4759 napi_synchronize(&pp->napi);
4760 napi_disable(&pp->napi);
4761 }
4762
4763 pp->rxq_def = pp->indir[0];
4764
4765 /* Update unicast mapping */
4766 mvneta_set_rx_mode(pp->dev);
4767
4768 /* Update val of portCfg register accordingly with all RxQueue types */
4769 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
4770 mvreg_write(pp, MVNETA_PORT_CONFIG, val);
4771
4772 /* Update the elected CPU matching the new rxq_def */
4773 spin_lock(&pp->lock);
4774 mvneta_percpu_elect(pp);
4775 spin_unlock(&pp->lock);
4776
4777 if (!pp->neta_armada3700) {
4778 /* We have to synchronise on the napi of each CPU */
4779 for_each_online_cpu(cpu) {
4780 struct mvneta_pcpu_port *pcpu_port =
4781 per_cpu_ptr(pp->ports, cpu);
4782
4783 napi_enable(&pcpu_port->napi);
4784 }
4785 } else {
4786 napi_enable(&pp->napi);
4787 }
4788
4789 netif_tx_start_all_queues(pp->dev);
4790
4791 return 0;
4792 }
4793
mvneta_ethtool_set_rxfh(struct net_device * dev,const u32 * indir,const u8 * key,const u8 hfunc)4794 static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir,
4795 const u8 *key, const u8 hfunc)
4796 {
4797 struct mvneta_port *pp = netdev_priv(dev);
4798
4799 /* Current code for Armada 3700 doesn't support RSS features yet */
4800 if (pp->neta_armada3700)
4801 return -EOPNOTSUPP;
4802
4803 /* We require at least one supported parameter to be changed
4804 * and no change in any of the unsupported parameters
4805 */
4806 if (key ||
4807 (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
4808 return -EOPNOTSUPP;
4809
4810 if (!indir)
4811 return 0;
4812
4813 memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE);
4814
4815 return mvneta_config_rss(pp);
4816 }
4817
mvneta_ethtool_get_rxfh(struct net_device * dev,u32 * indir,u8 * key,u8 * hfunc)4818 static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
4819 u8 *hfunc)
4820 {
4821 struct mvneta_port *pp = netdev_priv(dev);
4822
4823 /* Current code for Armada 3700 doesn't support RSS features yet */
4824 if (pp->neta_armada3700)
4825 return -EOPNOTSUPP;
4826
4827 if (hfunc)
4828 *hfunc = ETH_RSS_HASH_TOP;
4829
4830 if (!indir)
4831 return 0;
4832
4833 memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE);
4834
4835 return 0;
4836 }
4837
mvneta_ethtool_get_wol(struct net_device * dev,struct ethtool_wolinfo * wol)4838 static void mvneta_ethtool_get_wol(struct net_device *dev,
4839 struct ethtool_wolinfo *wol)
4840 {
4841 struct mvneta_port *pp = netdev_priv(dev);
4842
4843 phylink_ethtool_get_wol(pp->phylink, wol);
4844 }
4845
mvneta_ethtool_set_wol(struct net_device * dev,struct ethtool_wolinfo * wol)4846 static int mvneta_ethtool_set_wol(struct net_device *dev,
4847 struct ethtool_wolinfo *wol)
4848 {
4849 struct mvneta_port *pp = netdev_priv(dev);
4850 int ret;
4851
4852 ret = phylink_ethtool_set_wol(pp->phylink, wol);
4853 if (!ret)
4854 device_set_wakeup_enable(&dev->dev, !!wol->wolopts);
4855
4856 return ret;
4857 }
4858
mvneta_ethtool_get_eee(struct net_device * dev,struct ethtool_eee * eee)4859 static int mvneta_ethtool_get_eee(struct net_device *dev,
4860 struct ethtool_eee *eee)
4861 {
4862 struct mvneta_port *pp = netdev_priv(dev);
4863 u32 lpi_ctl0;
4864
4865 lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0);
4866
4867 eee->eee_enabled = pp->eee_enabled;
4868 eee->eee_active = pp->eee_active;
4869 eee->tx_lpi_enabled = pp->tx_lpi_enabled;
4870 eee->tx_lpi_timer = (lpi_ctl0) >> 8; // * scale;
4871
4872 return phylink_ethtool_get_eee(pp->phylink, eee);
4873 }
4874
mvneta_ethtool_set_eee(struct net_device * dev,struct ethtool_eee * eee)4875 static int mvneta_ethtool_set_eee(struct net_device *dev,
4876 struct ethtool_eee *eee)
4877 {
4878 struct mvneta_port *pp = netdev_priv(dev);
4879 u32 lpi_ctl0;
4880
4881 /* The Armada 37x documents do not give limits for this other than
4882 * it being an 8-bit register. */
4883 if (eee->tx_lpi_enabled && eee->tx_lpi_timer > 255)
4884 return -EINVAL;
4885
4886 lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0);
4887 lpi_ctl0 &= ~(0xff << 8);
4888 lpi_ctl0 |= eee->tx_lpi_timer << 8;
4889 mvreg_write(pp, MVNETA_LPI_CTRL_0, lpi_ctl0);
4890
4891 pp->eee_enabled = eee->eee_enabled;
4892 pp->tx_lpi_enabled = eee->tx_lpi_enabled;
4893
4894 mvneta_set_eee(pp, eee->tx_lpi_enabled && eee->eee_enabled);
4895
4896 return phylink_ethtool_set_eee(pp->phylink, eee);
4897 }
4898
4899 static const struct net_device_ops mvneta_netdev_ops = {
4900 .ndo_open = mvneta_open,
4901 .ndo_stop = mvneta_stop,
4902 .ndo_start_xmit = mvneta_tx,
4903 .ndo_set_rx_mode = mvneta_set_rx_mode,
4904 .ndo_set_mac_address = mvneta_set_mac_addr,
4905 .ndo_change_mtu = mvneta_change_mtu,
4906 .ndo_fix_features = mvneta_fix_features,
4907 .ndo_get_stats64 = mvneta_get_stats64,
4908 .ndo_do_ioctl = mvneta_ioctl,
4909 .ndo_bpf = mvneta_xdp,
4910 .ndo_xdp_xmit = mvneta_xdp_xmit,
4911 };
4912
4913 static const struct ethtool_ops mvneta_eth_tool_ops = {
4914 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS |
4915 ETHTOOL_COALESCE_MAX_FRAMES,
4916 .nway_reset = mvneta_ethtool_nway_reset,
4917 .get_link = ethtool_op_get_link,
4918 .set_coalesce = mvneta_ethtool_set_coalesce,
4919 .get_coalesce = mvneta_ethtool_get_coalesce,
4920 .get_drvinfo = mvneta_ethtool_get_drvinfo,
4921 .get_ringparam = mvneta_ethtool_get_ringparam,
4922 .set_ringparam = mvneta_ethtool_set_ringparam,
4923 .get_pauseparam = mvneta_ethtool_get_pauseparam,
4924 .set_pauseparam = mvneta_ethtool_set_pauseparam,
4925 .get_strings = mvneta_ethtool_get_strings,
4926 .get_ethtool_stats = mvneta_ethtool_get_stats,
4927 .get_sset_count = mvneta_ethtool_get_sset_count,
4928 .get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size,
4929 .get_rxnfc = mvneta_ethtool_get_rxnfc,
4930 .get_rxfh = mvneta_ethtool_get_rxfh,
4931 .set_rxfh = mvneta_ethtool_set_rxfh,
4932 .get_link_ksettings = mvneta_ethtool_get_link_ksettings,
4933 .set_link_ksettings = mvneta_ethtool_set_link_ksettings,
4934 .get_wol = mvneta_ethtool_get_wol,
4935 .set_wol = mvneta_ethtool_set_wol,
4936 .get_eee = mvneta_ethtool_get_eee,
4937 .set_eee = mvneta_ethtool_set_eee,
4938 };
4939
4940 /* Initialize hw */
mvneta_init(struct device * dev,struct mvneta_port * pp)4941 static int mvneta_init(struct device *dev, struct mvneta_port *pp)
4942 {
4943 int queue;
4944
4945 /* Disable port */
4946 mvneta_port_disable(pp);
4947
4948 /* Set port default values */
4949 mvneta_defaults_set(pp);
4950
4951 pp->txqs = devm_kcalloc(dev, txq_number, sizeof(*pp->txqs), GFP_KERNEL);
4952 if (!pp->txqs)
4953 return -ENOMEM;
4954
4955 /* Initialize TX descriptor rings */
4956 for (queue = 0; queue < txq_number; queue++) {
4957 struct mvneta_tx_queue *txq = &pp->txqs[queue];
4958 txq->id = queue;
4959 txq->size = pp->tx_ring_size;
4960 txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
4961 }
4962
4963 pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*pp->rxqs), GFP_KERNEL);
4964 if (!pp->rxqs)
4965 return -ENOMEM;
4966
4967 /* Create Rx descriptor rings */
4968 for (queue = 0; queue < rxq_number; queue++) {
4969 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
4970 rxq->id = queue;
4971 rxq->size = pp->rx_ring_size;
4972 rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
4973 rxq->time_coal = MVNETA_RX_COAL_USEC;
4974 rxq->buf_virt_addr
4975 = devm_kmalloc_array(pp->dev->dev.parent,
4976 rxq->size,
4977 sizeof(*rxq->buf_virt_addr),
4978 GFP_KERNEL);
4979 if (!rxq->buf_virt_addr)
4980 return -ENOMEM;
4981 }
4982
4983 return 0;
4984 }
4985
4986 /* platform glue : initialize decoding windows */
mvneta_conf_mbus_windows(struct mvneta_port * pp,const struct mbus_dram_target_info * dram)4987 static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
4988 const struct mbus_dram_target_info *dram)
4989 {
4990 u32 win_enable;
4991 u32 win_protect;
4992 int i;
4993
4994 for (i = 0; i < 6; i++) {
4995 mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
4996 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
4997
4998 if (i < 4)
4999 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
5000 }
5001
5002 win_enable = 0x3f;
5003 win_protect = 0;
5004
5005 if (dram) {
5006 for (i = 0; i < dram->num_cs; i++) {
5007 const struct mbus_dram_window *cs = dram->cs + i;
5008
5009 mvreg_write(pp, MVNETA_WIN_BASE(i),
5010 (cs->base & 0xffff0000) |
5011 (cs->mbus_attr << 8) |
5012 dram->mbus_dram_target_id);
5013
5014 mvreg_write(pp, MVNETA_WIN_SIZE(i),
5015 (cs->size - 1) & 0xffff0000);
5016
5017 win_enable &= ~(1 << i);
5018 win_protect |= 3 << (2 * i);
5019 }
5020 } else {
5021 /* For Armada3700 open default 4GB Mbus window, leaving
5022 * arbitration of target/attribute to a different layer
5023 * of configuration.
5024 */
5025 mvreg_write(pp, MVNETA_WIN_SIZE(0), 0xffff0000);
5026 win_enable &= ~BIT(0);
5027 win_protect = 3;
5028 }
5029
5030 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
5031 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
5032 }
5033
5034 /* Power up the port */
mvneta_port_power_up(struct mvneta_port * pp,int phy_mode)5035 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
5036 {
5037 /* MAC Cause register should be cleared */
5038 mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
5039
5040 if (phy_mode != PHY_INTERFACE_MODE_QSGMII &&
5041 phy_mode != PHY_INTERFACE_MODE_SGMII &&
5042 !phy_interface_mode_is_8023z(phy_mode) &&
5043 !phy_interface_mode_is_rgmii(phy_mode))
5044 return -EINVAL;
5045
5046 return 0;
5047 }
5048
5049 /* Device initialization routine */
mvneta_probe(struct platform_device * pdev)5050 static int mvneta_probe(struct platform_device *pdev)
5051 {
5052 struct device_node *dn = pdev->dev.of_node;
5053 struct device_node *bm_node;
5054 struct mvneta_port *pp;
5055 struct net_device *dev;
5056 struct phylink *phylink;
5057 struct phy *comphy;
5058 const char *dt_mac_addr;
5059 char hw_mac_addr[ETH_ALEN];
5060 phy_interface_t phy_mode;
5061 const char *mac_from;
5062 int tx_csum_limit;
5063 int err;
5064 int cpu;
5065
5066 dev = devm_alloc_etherdev_mqs(&pdev->dev, sizeof(struct mvneta_port),
5067 txq_number, rxq_number);
5068 if (!dev)
5069 return -ENOMEM;
5070
5071 dev->irq = irq_of_parse_and_map(dn, 0);
5072 if (dev->irq == 0)
5073 return -EINVAL;
5074
5075 err = of_get_phy_mode(dn, &phy_mode);
5076 if (err) {
5077 dev_err(&pdev->dev, "incorrect phy-mode\n");
5078 goto err_free_irq;
5079 }
5080
5081 comphy = devm_of_phy_get(&pdev->dev, dn, NULL);
5082 if (comphy == ERR_PTR(-EPROBE_DEFER)) {
5083 err = -EPROBE_DEFER;
5084 goto err_free_irq;
5085 } else if (IS_ERR(comphy)) {
5086 comphy = NULL;
5087 }
5088
5089 pp = netdev_priv(dev);
5090 spin_lock_init(&pp->lock);
5091
5092 pp->phylink_config.dev = &dev->dev;
5093 pp->phylink_config.type = PHYLINK_NETDEV;
5094
5095 phylink = phylink_create(&pp->phylink_config, pdev->dev.fwnode,
5096 phy_mode, &mvneta_phylink_ops);
5097 if (IS_ERR(phylink)) {
5098 err = PTR_ERR(phylink);
5099 goto err_free_irq;
5100 }
5101
5102 dev->tx_queue_len = MVNETA_MAX_TXD;
5103 dev->watchdog_timeo = 5 * HZ;
5104 dev->netdev_ops = &mvneta_netdev_ops;
5105
5106 dev->ethtool_ops = &mvneta_eth_tool_ops;
5107
5108 pp->phylink = phylink;
5109 pp->comphy = comphy;
5110 pp->phy_interface = phy_mode;
5111 pp->dn = dn;
5112
5113 pp->rxq_def = rxq_def;
5114 pp->indir[0] = rxq_def;
5115
5116 /* Get special SoC configurations */
5117 if (of_device_is_compatible(dn, "marvell,armada-3700-neta"))
5118 pp->neta_armada3700 = true;
5119
5120 pp->clk = devm_clk_get(&pdev->dev, "core");
5121 if (IS_ERR(pp->clk))
5122 pp->clk = devm_clk_get(&pdev->dev, NULL);
5123 if (IS_ERR(pp->clk)) {
5124 err = PTR_ERR(pp->clk);
5125 goto err_free_phylink;
5126 }
5127
5128 clk_prepare_enable(pp->clk);
5129
5130 pp->clk_bus = devm_clk_get(&pdev->dev, "bus");
5131 if (!IS_ERR(pp->clk_bus))
5132 clk_prepare_enable(pp->clk_bus);
5133
5134 pp->base = devm_platform_ioremap_resource(pdev, 0);
5135 if (IS_ERR(pp->base)) {
5136 err = PTR_ERR(pp->base);
5137 goto err_clk;
5138 }
5139
5140 /* Alloc per-cpu port structure */
5141 pp->ports = alloc_percpu(struct mvneta_pcpu_port);
5142 if (!pp->ports) {
5143 err = -ENOMEM;
5144 goto err_clk;
5145 }
5146
5147 /* Alloc per-cpu stats */
5148 pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
5149 if (!pp->stats) {
5150 err = -ENOMEM;
5151 goto err_free_ports;
5152 }
5153
5154 dt_mac_addr = of_get_mac_address(dn);
5155 if (!IS_ERR(dt_mac_addr)) {
5156 mac_from = "device tree";
5157 ether_addr_copy(dev->dev_addr, dt_mac_addr);
5158 } else {
5159 mvneta_get_mac_addr(pp, hw_mac_addr);
5160 if (is_valid_ether_addr(hw_mac_addr)) {
5161 mac_from = "hardware";
5162 memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
5163 } else {
5164 mac_from = "random";
5165 eth_hw_addr_random(dev);
5166 }
5167 }
5168
5169 if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) {
5170 if (tx_csum_limit < 0 ||
5171 tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) {
5172 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
5173 dev_info(&pdev->dev,
5174 "Wrong TX csum limit in DT, set to %dB\n",
5175 MVNETA_TX_CSUM_DEF_SIZE);
5176 }
5177 } else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) {
5178 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
5179 } else {
5180 tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE;
5181 }
5182
5183 pp->tx_csum_limit = tx_csum_limit;
5184
5185 pp->dram_target_info = mv_mbus_dram_info();
5186 /* Armada3700 requires setting default configuration of Mbus
5187 * windows, however without using filled mbus_dram_target_info
5188 * structure.
5189 */
5190 if (pp->dram_target_info || pp->neta_armada3700)
5191 mvneta_conf_mbus_windows(pp, pp->dram_target_info);
5192
5193 pp->tx_ring_size = MVNETA_MAX_TXD;
5194 pp->rx_ring_size = MVNETA_MAX_RXD;
5195
5196 pp->dev = dev;
5197 SET_NETDEV_DEV(dev, &pdev->dev);
5198
5199 pp->id = global_port_id++;
5200
5201 /* Obtain access to BM resources if enabled and already initialized */
5202 bm_node = of_parse_phandle(dn, "buffer-manager", 0);
5203 if (bm_node) {
5204 pp->bm_priv = mvneta_bm_get(bm_node);
5205 if (pp->bm_priv) {
5206 err = mvneta_bm_port_init(pdev, pp);
5207 if (err < 0) {
5208 dev_info(&pdev->dev,
5209 "use SW buffer management\n");
5210 mvneta_bm_put(pp->bm_priv);
5211 pp->bm_priv = NULL;
5212 }
5213 }
5214 /* Set RX packet offset correction for platforms, whose
5215 * NET_SKB_PAD, exceeds 64B. It should be 64B for 64-bit
5216 * platforms and 0B for 32-bit ones.
5217 */
5218 pp->rx_offset_correction = max(0,
5219 NET_SKB_PAD -
5220 MVNETA_RX_PKT_OFFSET_CORRECTION);
5221 }
5222 of_node_put(bm_node);
5223
5224 /* sw buffer management */
5225 if (!pp->bm_priv)
5226 pp->rx_offset_correction = MVNETA_SKB_HEADROOM;
5227
5228 err = mvneta_init(&pdev->dev, pp);
5229 if (err < 0)
5230 goto err_netdev;
5231
5232 err = mvneta_port_power_up(pp, pp->phy_interface);
5233 if (err < 0) {
5234 dev_err(&pdev->dev, "can't power up port\n");
5235 return err;
5236 }
5237
5238 /* Armada3700 network controller does not support per-cpu
5239 * operation, so only single NAPI should be initialized.
5240 */
5241 if (pp->neta_armada3700) {
5242 netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT);
5243 } else {
5244 for_each_present_cpu(cpu) {
5245 struct mvneta_pcpu_port *port =
5246 per_cpu_ptr(pp->ports, cpu);
5247
5248 netif_napi_add(dev, &port->napi, mvneta_poll,
5249 NAPI_POLL_WEIGHT);
5250 port->pp = pp;
5251 }
5252 }
5253
5254 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
5255 NETIF_F_TSO | NETIF_F_RXCSUM;
5256 dev->hw_features |= dev->features;
5257 dev->vlan_features |= dev->features;
5258 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
5259 dev->gso_max_segs = MVNETA_MAX_TSO_SEGS;
5260
5261 /* MTU range: 68 - 9676 */
5262 dev->min_mtu = ETH_MIN_MTU;
5263 /* 9676 == 9700 - 20 and rounding to 8 */
5264 dev->max_mtu = 9676;
5265
5266 err = register_netdev(dev);
5267 if (err < 0) {
5268 dev_err(&pdev->dev, "failed to register\n");
5269 goto err_netdev;
5270 }
5271
5272 netdev_info(dev, "Using %s mac address %pM\n", mac_from,
5273 dev->dev_addr);
5274
5275 platform_set_drvdata(pdev, pp->dev);
5276
5277 return 0;
5278
5279 err_netdev:
5280 if (pp->bm_priv) {
5281 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
5282 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
5283 1 << pp->id);
5284 mvneta_bm_put(pp->bm_priv);
5285 }
5286 free_percpu(pp->stats);
5287 err_free_ports:
5288 free_percpu(pp->ports);
5289 err_clk:
5290 clk_disable_unprepare(pp->clk_bus);
5291 clk_disable_unprepare(pp->clk);
5292 err_free_phylink:
5293 if (pp->phylink)
5294 phylink_destroy(pp->phylink);
5295 err_free_irq:
5296 irq_dispose_mapping(dev->irq);
5297 return err;
5298 }
5299
5300 /* Device removal routine */
mvneta_remove(struct platform_device * pdev)5301 static int mvneta_remove(struct platform_device *pdev)
5302 {
5303 struct net_device *dev = platform_get_drvdata(pdev);
5304 struct mvneta_port *pp = netdev_priv(dev);
5305
5306 unregister_netdev(dev);
5307 clk_disable_unprepare(pp->clk_bus);
5308 clk_disable_unprepare(pp->clk);
5309 free_percpu(pp->ports);
5310 free_percpu(pp->stats);
5311 irq_dispose_mapping(dev->irq);
5312 phylink_destroy(pp->phylink);
5313
5314 if (pp->bm_priv) {
5315 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
5316 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
5317 1 << pp->id);
5318 mvneta_bm_put(pp->bm_priv);
5319 }
5320
5321 return 0;
5322 }
5323
5324 #ifdef CONFIG_PM_SLEEP
mvneta_suspend(struct device * device)5325 static int mvneta_suspend(struct device *device)
5326 {
5327 int queue;
5328 struct net_device *dev = dev_get_drvdata(device);
5329 struct mvneta_port *pp = netdev_priv(dev);
5330
5331 if (!netif_running(dev))
5332 goto clean_exit;
5333
5334 if (!pp->neta_armada3700) {
5335 spin_lock(&pp->lock);
5336 pp->is_stopped = true;
5337 spin_unlock(&pp->lock);
5338
5339 cpuhp_state_remove_instance_nocalls(online_hpstate,
5340 &pp->node_online);
5341 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
5342 &pp->node_dead);
5343 }
5344
5345 rtnl_lock();
5346 mvneta_stop_dev(pp);
5347 rtnl_unlock();
5348
5349 for (queue = 0; queue < rxq_number; queue++) {
5350 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
5351
5352 mvneta_rxq_drop_pkts(pp, rxq);
5353 }
5354
5355 for (queue = 0; queue < txq_number; queue++) {
5356 struct mvneta_tx_queue *txq = &pp->txqs[queue];
5357
5358 mvneta_txq_hw_deinit(pp, txq);
5359 }
5360
5361 clean_exit:
5362 netif_device_detach(dev);
5363 clk_disable_unprepare(pp->clk_bus);
5364 clk_disable_unprepare(pp->clk);
5365
5366 return 0;
5367 }
5368
mvneta_resume(struct device * device)5369 static int mvneta_resume(struct device *device)
5370 {
5371 struct platform_device *pdev = to_platform_device(device);
5372 struct net_device *dev = dev_get_drvdata(device);
5373 struct mvneta_port *pp = netdev_priv(dev);
5374 int err, queue;
5375
5376 clk_prepare_enable(pp->clk);
5377 if (!IS_ERR(pp->clk_bus))
5378 clk_prepare_enable(pp->clk_bus);
5379 if (pp->dram_target_info || pp->neta_armada3700)
5380 mvneta_conf_mbus_windows(pp, pp->dram_target_info);
5381 if (pp->bm_priv) {
5382 err = mvneta_bm_port_init(pdev, pp);
5383 if (err < 0) {
5384 dev_info(&pdev->dev, "use SW buffer management\n");
5385 pp->rx_offset_correction = MVNETA_SKB_HEADROOM;
5386 pp->bm_priv = NULL;
5387 }
5388 }
5389 mvneta_defaults_set(pp);
5390 err = mvneta_port_power_up(pp, pp->phy_interface);
5391 if (err < 0) {
5392 dev_err(device, "can't power up port\n");
5393 return err;
5394 }
5395
5396 netif_device_attach(dev);
5397
5398 if (!netif_running(dev))
5399 return 0;
5400
5401 for (queue = 0; queue < rxq_number; queue++) {
5402 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
5403
5404 rxq->next_desc_to_proc = 0;
5405 mvneta_rxq_hw_init(pp, rxq);
5406 }
5407
5408 for (queue = 0; queue < txq_number; queue++) {
5409 struct mvneta_tx_queue *txq = &pp->txqs[queue];
5410
5411 txq->next_desc_to_proc = 0;
5412 mvneta_txq_hw_init(pp, txq);
5413 }
5414
5415 if (!pp->neta_armada3700) {
5416 spin_lock(&pp->lock);
5417 pp->is_stopped = false;
5418 spin_unlock(&pp->lock);
5419 cpuhp_state_add_instance_nocalls(online_hpstate,
5420 &pp->node_online);
5421 cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
5422 &pp->node_dead);
5423 }
5424
5425 rtnl_lock();
5426 mvneta_start_dev(pp);
5427 rtnl_unlock();
5428 mvneta_set_rx_mode(dev);
5429
5430 return 0;
5431 }
5432 #endif
5433
5434 static SIMPLE_DEV_PM_OPS(mvneta_pm_ops, mvneta_suspend, mvneta_resume);
5435
5436 static const struct of_device_id mvneta_match[] = {
5437 { .compatible = "marvell,armada-370-neta" },
5438 { .compatible = "marvell,armada-xp-neta" },
5439 { .compatible = "marvell,armada-3700-neta" },
5440 { }
5441 };
5442 MODULE_DEVICE_TABLE(of, mvneta_match);
5443
5444 static struct platform_driver mvneta_driver = {
5445 .probe = mvneta_probe,
5446 .remove = mvneta_remove,
5447 .driver = {
5448 .name = MVNETA_DRIVER_NAME,
5449 .of_match_table = mvneta_match,
5450 .pm = &mvneta_pm_ops,
5451 },
5452 };
5453
mvneta_driver_init(void)5454 static int __init mvneta_driver_init(void)
5455 {
5456 int ret;
5457
5458 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/mvneta:online",
5459 mvneta_cpu_online,
5460 mvneta_cpu_down_prepare);
5461 if (ret < 0)
5462 goto out;
5463 online_hpstate = ret;
5464 ret = cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD, "net/mvneta:dead",
5465 NULL, mvneta_cpu_dead);
5466 if (ret)
5467 goto err_dead;
5468
5469 ret = platform_driver_register(&mvneta_driver);
5470 if (ret)
5471 goto err;
5472 return 0;
5473
5474 err:
5475 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
5476 err_dead:
5477 cpuhp_remove_multi_state(online_hpstate);
5478 out:
5479 return ret;
5480 }
5481 module_init(mvneta_driver_init);
5482
mvneta_driver_exit(void)5483 static void __exit mvneta_driver_exit(void)
5484 {
5485 platform_driver_unregister(&mvneta_driver);
5486 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
5487 cpuhp_remove_multi_state(online_hpstate);
5488 }
5489 module_exit(mvneta_driver_exit);
5490
5491 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
5492 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
5493 MODULE_LICENSE("GPL");
5494
5495 module_param(rxq_number, int, 0444);
5496 module_param(txq_number, int, 0444);
5497
5498 module_param(rxq_def, int, 0444);
5499 module_param(rx_copybreak, int, 0644);
5500