1 /*
2  * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
3  * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License
7  * as published by the Free Software Foundation; either version 2
8  * of the License, or (at your option) any later version.
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
17  * MA 02110-1301, USA.
18  */
19 
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/mtd/mtd.h>
25 #include <linux/mtd/nand.h>
26 #include <linux/mtd/partitions.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/platform_device.h>
30 #include <linux/clk.h>
31 #include <linux/err.h>
32 #include <linux/io.h>
33 #include <linux/irq.h>
34 #include <linux/completion.h>
35 
36 #include <asm/mach/flash.h>
37 #include <mach/mxc_nand.h>
38 #include <mach/hardware.h>
39 
40 #define DRIVER_NAME "mxc_nand"
41 
42 #define nfc_is_v21()		(cpu_is_mx25() || cpu_is_mx35())
43 #define nfc_is_v1()		(cpu_is_mx31() || cpu_is_mx27() || cpu_is_mx21())
44 #define nfc_is_v3_2()		(cpu_is_mx51() || cpu_is_mx53())
45 #define nfc_is_v3()		nfc_is_v3_2()
46 
47 /* Addresses for NFC registers */
48 #define NFC_V1_V2_BUF_SIZE		(host->regs + 0x00)
49 #define NFC_V1_V2_BUF_ADDR		(host->regs + 0x04)
50 #define NFC_V1_V2_FLASH_ADDR		(host->regs + 0x06)
51 #define NFC_V1_V2_FLASH_CMD		(host->regs + 0x08)
52 #define NFC_V1_V2_CONFIG		(host->regs + 0x0a)
53 #define NFC_V1_V2_ECC_STATUS_RESULT	(host->regs + 0x0c)
54 #define NFC_V1_V2_RSLTMAIN_AREA		(host->regs + 0x0e)
55 #define NFC_V1_V2_RSLTSPARE_AREA	(host->regs + 0x10)
56 #define NFC_V1_V2_WRPROT		(host->regs + 0x12)
57 #define NFC_V1_UNLOCKSTART_BLKADDR	(host->regs + 0x14)
58 #define NFC_V1_UNLOCKEND_BLKADDR	(host->regs + 0x16)
59 #define NFC_V21_UNLOCKSTART_BLKADDR0	(host->regs + 0x20)
60 #define NFC_V21_UNLOCKSTART_BLKADDR1	(host->regs + 0x24)
61 #define NFC_V21_UNLOCKSTART_BLKADDR2	(host->regs + 0x28)
62 #define NFC_V21_UNLOCKSTART_BLKADDR3	(host->regs + 0x2c)
63 #define NFC_V21_UNLOCKEND_BLKADDR0	(host->regs + 0x22)
64 #define NFC_V21_UNLOCKEND_BLKADDR1	(host->regs + 0x26)
65 #define NFC_V21_UNLOCKEND_BLKADDR2	(host->regs + 0x2a)
66 #define NFC_V21_UNLOCKEND_BLKADDR3	(host->regs + 0x2e)
67 #define NFC_V1_V2_NF_WRPRST		(host->regs + 0x18)
68 #define NFC_V1_V2_CONFIG1		(host->regs + 0x1a)
69 #define NFC_V1_V2_CONFIG2		(host->regs + 0x1c)
70 
71 #define NFC_V2_CONFIG1_ECC_MODE_4	(1 << 0)
72 #define NFC_V1_V2_CONFIG1_SP_EN		(1 << 2)
73 #define NFC_V1_V2_CONFIG1_ECC_EN	(1 << 3)
74 #define NFC_V1_V2_CONFIG1_INT_MSK	(1 << 4)
75 #define NFC_V1_V2_CONFIG1_BIG		(1 << 5)
76 #define NFC_V1_V2_CONFIG1_RST		(1 << 6)
77 #define NFC_V1_V2_CONFIG1_CE		(1 << 7)
78 #define NFC_V2_CONFIG1_ONE_CYCLE	(1 << 8)
79 #define NFC_V2_CONFIG1_PPB(x)		(((x) & 0x3) << 9)
80 #define NFC_V2_CONFIG1_FP_INT		(1 << 11)
81 
82 #define NFC_V1_V2_CONFIG2_INT		(1 << 15)
83 
84 /*
85  * Operation modes for the NFC. Valid for v1, v2 and v3
86  * type controllers.
87  */
88 #define NFC_CMD				(1 << 0)
89 #define NFC_ADDR			(1 << 1)
90 #define NFC_INPUT			(1 << 2)
91 #define NFC_OUTPUT			(1 << 3)
92 #define NFC_ID				(1 << 4)
93 #define NFC_STATUS			(1 << 5)
94 
95 #define NFC_V3_FLASH_CMD		(host->regs_axi + 0x00)
96 #define NFC_V3_FLASH_ADDR0		(host->regs_axi + 0x04)
97 
98 #define NFC_V3_CONFIG1			(host->regs_axi + 0x34)
99 #define NFC_V3_CONFIG1_SP_EN		(1 << 0)
100 #define NFC_V3_CONFIG1_RBA(x)		(((x) & 0x7 ) << 4)
101 
102 #define NFC_V3_ECC_STATUS_RESULT	(host->regs_axi + 0x38)
103 
104 #define NFC_V3_LAUNCH			(host->regs_axi + 0x40)
105 
106 #define NFC_V3_WRPROT			(host->regs_ip + 0x0)
107 #define NFC_V3_WRPROT_LOCK_TIGHT	(1 << 0)
108 #define NFC_V3_WRPROT_LOCK		(1 << 1)
109 #define NFC_V3_WRPROT_UNLOCK		(1 << 2)
110 #define NFC_V3_WRPROT_BLS_UNLOCK	(2 << 6)
111 
112 #define NFC_V3_WRPROT_UNLOCK_BLK_ADD0   (host->regs_ip + 0x04)
113 
114 #define NFC_V3_CONFIG2			(host->regs_ip + 0x24)
115 #define NFC_V3_CONFIG2_PS_512			(0 << 0)
116 #define NFC_V3_CONFIG2_PS_2048			(1 << 0)
117 #define NFC_V3_CONFIG2_PS_4096			(2 << 0)
118 #define NFC_V3_CONFIG2_ONE_CYCLE		(1 << 2)
119 #define NFC_V3_CONFIG2_ECC_EN			(1 << 3)
120 #define NFC_V3_CONFIG2_2CMD_PHASES		(1 << 4)
121 #define NFC_V3_CONFIG2_NUM_ADDR_PHASE0		(1 << 5)
122 #define NFC_V3_CONFIG2_ECC_MODE_8		(1 << 6)
123 #define NFC_V3_CONFIG2_PPB(x)			(((x) & 0x3) << 7)
124 #define NFC_V3_CONFIG2_NUM_ADDR_PHASE1(x)	(((x) & 0x3) << 12)
125 #define NFC_V3_CONFIG2_INT_MSK			(1 << 15)
126 #define NFC_V3_CONFIG2_ST_CMD(x)		(((x) & 0xff) << 24)
127 #define NFC_V3_CONFIG2_SPAS(x)			(((x) & 0xff) << 16)
128 
129 #define NFC_V3_CONFIG3				(host->regs_ip + 0x28)
130 #define NFC_V3_CONFIG3_ADD_OP(x)		(((x) & 0x3) << 0)
131 #define NFC_V3_CONFIG3_FW8			(1 << 3)
132 #define NFC_V3_CONFIG3_SBB(x)			(((x) & 0x7) << 8)
133 #define NFC_V3_CONFIG3_NUM_OF_DEVICES(x)	(((x) & 0x7) << 12)
134 #define NFC_V3_CONFIG3_RBB_MODE			(1 << 15)
135 #define NFC_V3_CONFIG3_NO_SDMA			(1 << 20)
136 
137 #define NFC_V3_IPC			(host->regs_ip + 0x2C)
138 #define NFC_V3_IPC_CREQ			(1 << 0)
139 #define NFC_V3_IPC_INT			(1 << 31)
140 
141 #define NFC_V3_DELAY_LINE		(host->regs_ip + 0x34)
142 
143 struct mxc_nand_host {
144 	struct mtd_info		mtd;
145 	struct nand_chip	nand;
146 	struct device		*dev;
147 
148 	void			*spare0;
149 	void			*main_area0;
150 
151 	void __iomem		*base;
152 	void __iomem		*regs;
153 	void __iomem		*regs_axi;
154 	void __iomem		*regs_ip;
155 	int			status_request;
156 	struct clk		*clk;
157 	int			clk_act;
158 	int			irq;
159 	int			eccsize;
160 	int			active_cs;
161 
162 	struct completion	op_completion;
163 
164 	uint8_t			*data_buf;
165 	unsigned int		buf_start;
166 	int			spare_len;
167 
168 	void			(*preset)(struct mtd_info *);
169 	void			(*send_cmd)(struct mxc_nand_host *, uint16_t, int);
170 	void			(*send_addr)(struct mxc_nand_host *, uint16_t, int);
171 	void			(*send_page)(struct mtd_info *, unsigned int);
172 	void			(*send_read_id)(struct mxc_nand_host *);
173 	uint16_t		(*get_dev_status)(struct mxc_nand_host *);
174 	int			(*check_int)(struct mxc_nand_host *);
175 	void			(*irq_control)(struct mxc_nand_host *, int);
176 };
177 
178 /* OOB placement block for use with hardware ecc generation */
179 static struct nand_ecclayout nandv1_hw_eccoob_smallpage = {
180 	.eccbytes = 5,
181 	.eccpos = {6, 7, 8, 9, 10},
182 	.oobfree = {{0, 5}, {12, 4}, }
183 };
184 
185 static struct nand_ecclayout nandv1_hw_eccoob_largepage = {
186 	.eccbytes = 20,
187 	.eccpos = {6, 7, 8, 9, 10, 22, 23, 24, 25, 26,
188 		   38, 39, 40, 41, 42, 54, 55, 56, 57, 58},
189 	.oobfree = {{2, 4}, {11, 10}, {27, 10}, {43, 10}, {59, 5}, }
190 };
191 
192 /* OOB description for 512 byte pages with 16 byte OOB */
193 static struct nand_ecclayout nandv2_hw_eccoob_smallpage = {
194 	.eccbytes = 1 * 9,
195 	.eccpos = {
196 		 7,  8,  9, 10, 11, 12, 13, 14, 15
197 	},
198 	.oobfree = {
199 		{.offset = 0, .length = 5}
200 	}
201 };
202 
203 /* OOB description for 2048 byte pages with 64 byte OOB */
204 static struct nand_ecclayout nandv2_hw_eccoob_largepage = {
205 	.eccbytes = 4 * 9,
206 	.eccpos = {
207 		 7,  8,  9, 10, 11, 12, 13, 14, 15,
208 		23, 24, 25, 26, 27, 28, 29, 30, 31,
209 		39, 40, 41, 42, 43, 44, 45, 46, 47,
210 		55, 56, 57, 58, 59, 60, 61, 62, 63
211 	},
212 	.oobfree = {
213 		{.offset = 2, .length = 4},
214 		{.offset = 16, .length = 7},
215 		{.offset = 32, .length = 7},
216 		{.offset = 48, .length = 7}
217 	}
218 };
219 
220 /* OOB description for 4096 byte pages with 128 byte OOB */
221 static struct nand_ecclayout nandv2_hw_eccoob_4k = {
222 	.eccbytes = 8 * 9,
223 	.eccpos = {
224 		7,  8,  9, 10, 11, 12, 13, 14, 15,
225 		23, 24, 25, 26, 27, 28, 29, 30, 31,
226 		39, 40, 41, 42, 43, 44, 45, 46, 47,
227 		55, 56, 57, 58, 59, 60, 61, 62, 63,
228 		71, 72, 73, 74, 75, 76, 77, 78, 79,
229 		87, 88, 89, 90, 91, 92, 93, 94, 95,
230 		103, 104, 105, 106, 107, 108, 109, 110, 111,
231 		119, 120, 121, 122, 123, 124, 125, 126, 127,
232 	},
233 	.oobfree = {
234 		{.offset = 2, .length = 4},
235 		{.offset = 16, .length = 7},
236 		{.offset = 32, .length = 7},
237 		{.offset = 48, .length = 7},
238 		{.offset = 64, .length = 7},
239 		{.offset = 80, .length = 7},
240 		{.offset = 96, .length = 7},
241 		{.offset = 112, .length = 7},
242 	}
243 };
244 
245 static const char *part_probes[] = { "RedBoot", "cmdlinepart", NULL };
246 
mxc_nfc_irq(int irq,void * dev_id)247 static irqreturn_t mxc_nfc_irq(int irq, void *dev_id)
248 {
249 	struct mxc_nand_host *host = dev_id;
250 
251 	if (!host->check_int(host))
252 		return IRQ_NONE;
253 
254 	host->irq_control(host, 0);
255 
256 	complete(&host->op_completion);
257 
258 	return IRQ_HANDLED;
259 }
260 
check_int_v3(struct mxc_nand_host * host)261 static int check_int_v3(struct mxc_nand_host *host)
262 {
263 	uint32_t tmp;
264 
265 	tmp = readl(NFC_V3_IPC);
266 	if (!(tmp & NFC_V3_IPC_INT))
267 		return 0;
268 
269 	tmp &= ~NFC_V3_IPC_INT;
270 	writel(tmp, NFC_V3_IPC);
271 
272 	return 1;
273 }
274 
check_int_v1_v2(struct mxc_nand_host * host)275 static int check_int_v1_v2(struct mxc_nand_host *host)
276 {
277 	uint32_t tmp;
278 
279 	tmp = readw(NFC_V1_V2_CONFIG2);
280 	if (!(tmp & NFC_V1_V2_CONFIG2_INT))
281 		return 0;
282 
283 	if (!cpu_is_mx21())
284 		writew(tmp & ~NFC_V1_V2_CONFIG2_INT, NFC_V1_V2_CONFIG2);
285 
286 	return 1;
287 }
288 
289 /*
290  * It has been observed that the i.MX21 cannot read the CONFIG2:INT bit
291  * if interrupts are masked (CONFIG1:INT_MSK is set). To handle this, the
292  * driver can enable/disable the irq line rather than simply masking the
293  * interrupts.
294  */
irq_control_mx21(struct mxc_nand_host * host,int activate)295 static void irq_control_mx21(struct mxc_nand_host *host, int activate)
296 {
297 	if (activate)
298 		enable_irq(host->irq);
299 	else
300 		disable_irq_nosync(host->irq);
301 }
302 
irq_control_v1_v2(struct mxc_nand_host * host,int activate)303 static void irq_control_v1_v2(struct mxc_nand_host *host, int activate)
304 {
305 	uint16_t tmp;
306 
307 	tmp = readw(NFC_V1_V2_CONFIG1);
308 
309 	if (activate)
310 		tmp &= ~NFC_V1_V2_CONFIG1_INT_MSK;
311 	else
312 		tmp |= NFC_V1_V2_CONFIG1_INT_MSK;
313 
314 	writew(tmp, NFC_V1_V2_CONFIG1);
315 }
316 
irq_control_v3(struct mxc_nand_host * host,int activate)317 static void irq_control_v3(struct mxc_nand_host *host, int activate)
318 {
319 	uint32_t tmp;
320 
321 	tmp = readl(NFC_V3_CONFIG2);
322 
323 	if (activate)
324 		tmp &= ~NFC_V3_CONFIG2_INT_MSK;
325 	else
326 		tmp |= NFC_V3_CONFIG2_INT_MSK;
327 
328 	writel(tmp, NFC_V3_CONFIG2);
329 }
330 
331 /* This function polls the NANDFC to wait for the basic operation to
332  * complete by checking the INT bit of config2 register.
333  */
wait_op_done(struct mxc_nand_host * host,int useirq)334 static void wait_op_done(struct mxc_nand_host *host, int useirq)
335 {
336 	int max_retries = 8000;
337 
338 	if (useirq) {
339 		if (!host->check_int(host)) {
340 			INIT_COMPLETION(host->op_completion);
341 			host->irq_control(host, 1);
342 			wait_for_completion(&host->op_completion);
343 		}
344 	} else {
345 		while (max_retries-- > 0) {
346 			if (host->check_int(host))
347 				break;
348 
349 			udelay(1);
350 		}
351 		if (max_retries < 0)
352 			pr_debug("%s: INT not set\n", __func__);
353 	}
354 }
355 
send_cmd_v3(struct mxc_nand_host * host,uint16_t cmd,int useirq)356 static void send_cmd_v3(struct mxc_nand_host *host, uint16_t cmd, int useirq)
357 {
358 	/* fill command */
359 	writel(cmd, NFC_V3_FLASH_CMD);
360 
361 	/* send out command */
362 	writel(NFC_CMD, NFC_V3_LAUNCH);
363 
364 	/* Wait for operation to complete */
365 	wait_op_done(host, useirq);
366 }
367 
368 /* This function issues the specified command to the NAND device and
369  * waits for completion. */
send_cmd_v1_v2(struct mxc_nand_host * host,uint16_t cmd,int useirq)370 static void send_cmd_v1_v2(struct mxc_nand_host *host, uint16_t cmd, int useirq)
371 {
372 	pr_debug("send_cmd(host, 0x%x, %d)\n", cmd, useirq);
373 
374 	writew(cmd, NFC_V1_V2_FLASH_CMD);
375 	writew(NFC_CMD, NFC_V1_V2_CONFIG2);
376 
377 	if (cpu_is_mx21() && (cmd == NAND_CMD_RESET)) {
378 		int max_retries = 100;
379 		/* Reset completion is indicated by NFC_CONFIG2 */
380 		/* being set to 0 */
381 		while (max_retries-- > 0) {
382 			if (readw(NFC_V1_V2_CONFIG2) == 0) {
383 				break;
384 			}
385 			udelay(1);
386 		}
387 		if (max_retries < 0)
388 			pr_debug("%s: RESET failed\n", __func__);
389 	} else {
390 		/* Wait for operation to complete */
391 		wait_op_done(host, useirq);
392 	}
393 }
394 
send_addr_v3(struct mxc_nand_host * host,uint16_t addr,int islast)395 static void send_addr_v3(struct mxc_nand_host *host, uint16_t addr, int islast)
396 {
397 	/* fill address */
398 	writel(addr, NFC_V3_FLASH_ADDR0);
399 
400 	/* send out address */
401 	writel(NFC_ADDR, NFC_V3_LAUNCH);
402 
403 	wait_op_done(host, 0);
404 }
405 
406 /* This function sends an address (or partial address) to the
407  * NAND device. The address is used to select the source/destination for
408  * a NAND command. */
send_addr_v1_v2(struct mxc_nand_host * host,uint16_t addr,int islast)409 static void send_addr_v1_v2(struct mxc_nand_host *host, uint16_t addr, int islast)
410 {
411 	pr_debug("send_addr(host, 0x%x %d)\n", addr, islast);
412 
413 	writew(addr, NFC_V1_V2_FLASH_ADDR);
414 	writew(NFC_ADDR, NFC_V1_V2_CONFIG2);
415 
416 	/* Wait for operation to complete */
417 	wait_op_done(host, islast);
418 }
419 
send_page_v3(struct mtd_info * mtd,unsigned int ops)420 static void send_page_v3(struct mtd_info *mtd, unsigned int ops)
421 {
422 	struct nand_chip *nand_chip = mtd->priv;
423 	struct mxc_nand_host *host = nand_chip->priv;
424 	uint32_t tmp;
425 
426 	tmp = readl(NFC_V3_CONFIG1);
427 	tmp &= ~(7 << 4);
428 	writel(tmp, NFC_V3_CONFIG1);
429 
430 	/* transfer data from NFC ram to nand */
431 	writel(ops, NFC_V3_LAUNCH);
432 
433 	wait_op_done(host, false);
434 }
435 
send_page_v1_v2(struct mtd_info * mtd,unsigned int ops)436 static void send_page_v1_v2(struct mtd_info *mtd, unsigned int ops)
437 {
438 	struct nand_chip *nand_chip = mtd->priv;
439 	struct mxc_nand_host *host = nand_chip->priv;
440 	int bufs, i;
441 
442 	if (nfc_is_v1() && mtd->writesize > 512)
443 		bufs = 4;
444 	else
445 		bufs = 1;
446 
447 	for (i = 0; i < bufs; i++) {
448 
449 		/* NANDFC buffer 0 is used for page read/write */
450 		writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
451 
452 		writew(ops, NFC_V1_V2_CONFIG2);
453 
454 		/* Wait for operation to complete */
455 		wait_op_done(host, true);
456 	}
457 }
458 
send_read_id_v3(struct mxc_nand_host * host)459 static void send_read_id_v3(struct mxc_nand_host *host)
460 {
461 	/* Read ID into main buffer */
462 	writel(NFC_ID, NFC_V3_LAUNCH);
463 
464 	wait_op_done(host, true);
465 
466 	memcpy(host->data_buf, host->main_area0, 16);
467 }
468 
469 /* Request the NANDFC to perform a read of the NAND device ID. */
send_read_id_v1_v2(struct mxc_nand_host * host)470 static void send_read_id_v1_v2(struct mxc_nand_host *host)
471 {
472 	struct nand_chip *this = &host->nand;
473 
474 	/* NANDFC buffer 0 is used for device ID output */
475 	writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
476 
477 	writew(NFC_ID, NFC_V1_V2_CONFIG2);
478 
479 	/* Wait for operation to complete */
480 	wait_op_done(host, true);
481 
482 	memcpy(host->data_buf, host->main_area0, 16);
483 
484 	if (this->options & NAND_BUSWIDTH_16) {
485 		/* compress the ID info */
486 		host->data_buf[1] = host->data_buf[2];
487 		host->data_buf[2] = host->data_buf[4];
488 		host->data_buf[3] = host->data_buf[6];
489 		host->data_buf[4] = host->data_buf[8];
490 		host->data_buf[5] = host->data_buf[10];
491 	}
492 }
493 
get_dev_status_v3(struct mxc_nand_host * host)494 static uint16_t get_dev_status_v3(struct mxc_nand_host *host)
495 {
496 	writew(NFC_STATUS, NFC_V3_LAUNCH);
497 	wait_op_done(host, true);
498 
499 	return readl(NFC_V3_CONFIG1) >> 16;
500 }
501 
502 /* This function requests the NANDFC to perform a read of the
503  * NAND device status and returns the current status. */
get_dev_status_v1_v2(struct mxc_nand_host * host)504 static uint16_t get_dev_status_v1_v2(struct mxc_nand_host *host)
505 {
506 	void __iomem *main_buf = host->main_area0;
507 	uint32_t store;
508 	uint16_t ret;
509 
510 	writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
511 
512 	/*
513 	 * The device status is stored in main_area0. To
514 	 * prevent corruption of the buffer save the value
515 	 * and restore it afterwards.
516 	 */
517 	store = readl(main_buf);
518 
519 	writew(NFC_STATUS, NFC_V1_V2_CONFIG2);
520 	wait_op_done(host, true);
521 
522 	ret = readw(main_buf);
523 
524 	writel(store, main_buf);
525 
526 	return ret;
527 }
528 
529 /* This functions is used by upper layer to checks if device is ready */
mxc_nand_dev_ready(struct mtd_info * mtd)530 static int mxc_nand_dev_ready(struct mtd_info *mtd)
531 {
532 	/*
533 	 * NFC handles R/B internally. Therefore, this function
534 	 * always returns status as ready.
535 	 */
536 	return 1;
537 }
538 
mxc_nand_enable_hwecc(struct mtd_info * mtd,int mode)539 static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
540 {
541 	/*
542 	 * If HW ECC is enabled, we turn it on during init. There is
543 	 * no need to enable again here.
544 	 */
545 }
546 
mxc_nand_correct_data_v1(struct mtd_info * mtd,u_char * dat,u_char * read_ecc,u_char * calc_ecc)547 static int mxc_nand_correct_data_v1(struct mtd_info *mtd, u_char *dat,
548 				 u_char *read_ecc, u_char *calc_ecc)
549 {
550 	struct nand_chip *nand_chip = mtd->priv;
551 	struct mxc_nand_host *host = nand_chip->priv;
552 
553 	/*
554 	 * 1-Bit errors are automatically corrected in HW.  No need for
555 	 * additional correction.  2-Bit errors cannot be corrected by
556 	 * HW ECC, so we need to return failure
557 	 */
558 	uint16_t ecc_status = readw(NFC_V1_V2_ECC_STATUS_RESULT);
559 
560 	if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
561 		pr_debug("MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
562 		return -1;
563 	}
564 
565 	return 0;
566 }
567 
mxc_nand_correct_data_v2_v3(struct mtd_info * mtd,u_char * dat,u_char * read_ecc,u_char * calc_ecc)568 static int mxc_nand_correct_data_v2_v3(struct mtd_info *mtd, u_char *dat,
569 				 u_char *read_ecc, u_char *calc_ecc)
570 {
571 	struct nand_chip *nand_chip = mtd->priv;
572 	struct mxc_nand_host *host = nand_chip->priv;
573 	u32 ecc_stat, err;
574 	int no_subpages = 1;
575 	int ret = 0;
576 	u8 ecc_bit_mask, err_limit;
577 
578 	ecc_bit_mask = (host->eccsize == 4) ? 0x7 : 0xf;
579 	err_limit = (host->eccsize == 4) ? 0x4 : 0x8;
580 
581 	no_subpages = mtd->writesize >> 9;
582 
583 	if (nfc_is_v21())
584 		ecc_stat = readl(NFC_V1_V2_ECC_STATUS_RESULT);
585 	else
586 		ecc_stat = readl(NFC_V3_ECC_STATUS_RESULT);
587 
588 	do {
589 		err = ecc_stat & ecc_bit_mask;
590 		if (err > err_limit) {
591 			printk(KERN_WARNING "UnCorrectable RS-ECC Error\n");
592 			return -1;
593 		} else {
594 			ret += err;
595 		}
596 		ecc_stat >>= 4;
597 	} while (--no_subpages);
598 
599 	mtd->ecc_stats.corrected += ret;
600 	pr_debug("%d Symbol Correctable RS-ECC Error\n", ret);
601 
602 	return ret;
603 }
604 
mxc_nand_calculate_ecc(struct mtd_info * mtd,const u_char * dat,u_char * ecc_code)605 static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
606 				  u_char *ecc_code)
607 {
608 	return 0;
609 }
610 
mxc_nand_read_byte(struct mtd_info * mtd)611 static u_char mxc_nand_read_byte(struct mtd_info *mtd)
612 {
613 	struct nand_chip *nand_chip = mtd->priv;
614 	struct mxc_nand_host *host = nand_chip->priv;
615 	uint8_t ret;
616 
617 	/* Check for status request */
618 	if (host->status_request)
619 		return host->get_dev_status(host) & 0xFF;
620 
621 	ret = *(uint8_t *)(host->data_buf + host->buf_start);
622 	host->buf_start++;
623 
624 	return ret;
625 }
626 
mxc_nand_read_word(struct mtd_info * mtd)627 static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
628 {
629 	struct nand_chip *nand_chip = mtd->priv;
630 	struct mxc_nand_host *host = nand_chip->priv;
631 	uint16_t ret;
632 
633 	ret = *(uint16_t *)(host->data_buf + host->buf_start);
634 	host->buf_start += 2;
635 
636 	return ret;
637 }
638 
639 /* Write data of length len to buffer buf. The data to be
640  * written on NAND Flash is first copied to RAMbuffer. After the Data Input
641  * Operation by the NFC, the data is written to NAND Flash */
mxc_nand_write_buf(struct mtd_info * mtd,const u_char * buf,int len)642 static void mxc_nand_write_buf(struct mtd_info *mtd,
643 				const u_char *buf, int len)
644 {
645 	struct nand_chip *nand_chip = mtd->priv;
646 	struct mxc_nand_host *host = nand_chip->priv;
647 	u16 col = host->buf_start;
648 	int n = mtd->oobsize + mtd->writesize - col;
649 
650 	n = min(n, len);
651 
652 	memcpy(host->data_buf + col, buf, n);
653 
654 	host->buf_start += n;
655 }
656 
657 /* Read the data buffer from the NAND Flash. To read the data from NAND
658  * Flash first the data output cycle is initiated by the NFC, which copies
659  * the data to RAMbuffer. This data of length len is then copied to buffer buf.
660  */
mxc_nand_read_buf(struct mtd_info * mtd,u_char * buf,int len)661 static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
662 {
663 	struct nand_chip *nand_chip = mtd->priv;
664 	struct mxc_nand_host *host = nand_chip->priv;
665 	u16 col = host->buf_start;
666 	int n = mtd->oobsize + mtd->writesize - col;
667 
668 	n = min(n, len);
669 
670 	memcpy(buf, host->data_buf + col, n);
671 
672 	host->buf_start += n;
673 }
674 
675 /* Used by the upper layer to verify the data in NAND Flash
676  * with the data in the buf. */
mxc_nand_verify_buf(struct mtd_info * mtd,const u_char * buf,int len)677 static int mxc_nand_verify_buf(struct mtd_info *mtd,
678 				const u_char *buf, int len)
679 {
680 	return -EFAULT;
681 }
682 
683 /* This function is used by upper layer for select and
684  * deselect of the NAND chip */
mxc_nand_select_chip(struct mtd_info * mtd,int chip)685 static void mxc_nand_select_chip(struct mtd_info *mtd, int chip)
686 {
687 	struct nand_chip *nand_chip = mtd->priv;
688 	struct mxc_nand_host *host = nand_chip->priv;
689 
690 	if (chip == -1) {
691 		/* Disable the NFC clock */
692 		if (host->clk_act) {
693 			clk_disable(host->clk);
694 			host->clk_act = 0;
695 		}
696 		return;
697 	}
698 
699 	if (!host->clk_act) {
700 		/* Enable the NFC clock */
701 		clk_enable(host->clk);
702 		host->clk_act = 1;
703 	}
704 
705 	if (nfc_is_v21()) {
706 		host->active_cs = chip;
707 		writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
708 	}
709 }
710 
711 /*
712  * Function to transfer data to/from spare area.
713  */
copy_spare(struct mtd_info * mtd,bool bfrom)714 static void copy_spare(struct mtd_info *mtd, bool bfrom)
715 {
716 	struct nand_chip *this = mtd->priv;
717 	struct mxc_nand_host *host = this->priv;
718 	u16 i, j;
719 	u16 n = mtd->writesize >> 9;
720 	u8 *d = host->data_buf + mtd->writesize;
721 	u8 *s = host->spare0;
722 	u16 t = host->spare_len;
723 
724 	j = (mtd->oobsize / n >> 1) << 1;
725 
726 	if (bfrom) {
727 		for (i = 0; i < n - 1; i++)
728 			memcpy(d + i * j, s + i * t, j);
729 
730 		/* the last section */
731 		memcpy(d + i * j, s + i * t, mtd->oobsize - i * j);
732 	} else {
733 		for (i = 0; i < n - 1; i++)
734 			memcpy(&s[i * t], &d[i * j], j);
735 
736 		/* the last section */
737 		memcpy(&s[i * t], &d[i * j], mtd->oobsize - i * j);
738 	}
739 }
740 
mxc_do_addr_cycle(struct mtd_info * mtd,int column,int page_addr)741 static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr)
742 {
743 	struct nand_chip *nand_chip = mtd->priv;
744 	struct mxc_nand_host *host = nand_chip->priv;
745 
746 	/* Write out column address, if necessary */
747 	if (column != -1) {
748 		/*
749 		 * MXC NANDFC can only perform full page+spare or
750 		 * spare-only read/write.  When the upper layers
751 		 * perform a read/write buf operation, the saved column
752 		  * address is used to index into the full page.
753 		 */
754 		host->send_addr(host, 0, page_addr == -1);
755 		if (mtd->writesize > 512)
756 			/* another col addr cycle for 2k page */
757 			host->send_addr(host, 0, false);
758 	}
759 
760 	/* Write out page address, if necessary */
761 	if (page_addr != -1) {
762 		/* paddr_0 - p_addr_7 */
763 		host->send_addr(host, (page_addr & 0xff), false);
764 
765 		if (mtd->writesize > 512) {
766 			if (mtd->size >= 0x10000000) {
767 				/* paddr_8 - paddr_15 */
768 				host->send_addr(host, (page_addr >> 8) & 0xff, false);
769 				host->send_addr(host, (page_addr >> 16) & 0xff, true);
770 			} else
771 				/* paddr_8 - paddr_15 */
772 				host->send_addr(host, (page_addr >> 8) & 0xff, true);
773 		} else {
774 			/* One more address cycle for higher density devices */
775 			if (mtd->size >= 0x4000000) {
776 				/* paddr_8 - paddr_15 */
777 				host->send_addr(host, (page_addr >> 8) & 0xff, false);
778 				host->send_addr(host, (page_addr >> 16) & 0xff, true);
779 			} else
780 				/* paddr_8 - paddr_15 */
781 				host->send_addr(host, (page_addr >> 8) & 0xff, true);
782 		}
783 	}
784 }
785 
786 /*
787  * v2 and v3 type controllers can do 4bit or 8bit ecc depending
788  * on how much oob the nand chip has. For 8bit ecc we need at least
789  * 26 bytes of oob data per 512 byte block.
790  */
get_eccsize(struct mtd_info * mtd)791 static int get_eccsize(struct mtd_info *mtd)
792 {
793 	int oobbytes_per_512 = 0;
794 
795 	oobbytes_per_512 = mtd->oobsize * 512 / mtd->writesize;
796 
797 	if (oobbytes_per_512 < 26)
798 		return 4;
799 	else
800 		return 8;
801 }
802 
preset_v1_v2(struct mtd_info * mtd)803 static void preset_v1_v2(struct mtd_info *mtd)
804 {
805 	struct nand_chip *nand_chip = mtd->priv;
806 	struct mxc_nand_host *host = nand_chip->priv;
807 	uint16_t config1 = 0;
808 
809 	if (nand_chip->ecc.mode == NAND_ECC_HW)
810 		config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
811 
812 	if (nfc_is_v21())
813 		config1 |= NFC_V2_CONFIG1_FP_INT;
814 
815 	if (!cpu_is_mx21())
816 		config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
817 
818 	if (nfc_is_v21() && mtd->writesize) {
819 		uint16_t pages_per_block = mtd->erasesize / mtd->writesize;
820 
821 		host->eccsize = get_eccsize(mtd);
822 		if (host->eccsize == 4)
823 			config1 |= NFC_V2_CONFIG1_ECC_MODE_4;
824 
825 		config1 |= NFC_V2_CONFIG1_PPB(ffs(pages_per_block) - 6);
826 	} else {
827 		host->eccsize = 1;
828 	}
829 
830 	writew(config1, NFC_V1_V2_CONFIG1);
831 	/* preset operation */
832 
833 	/* Unlock the internal RAM Buffer */
834 	writew(0x2, NFC_V1_V2_CONFIG);
835 
836 	/* Blocks to be unlocked */
837 	if (nfc_is_v21()) {
838 		writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR0);
839 		writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR1);
840 		writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR2);
841 		writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR3);
842 		writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR0);
843 		writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR1);
844 		writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR2);
845 		writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR3);
846 	} else if (nfc_is_v1()) {
847 		writew(0x0, NFC_V1_UNLOCKSTART_BLKADDR);
848 		writew(0xffff, NFC_V1_UNLOCKEND_BLKADDR);
849 	} else
850 		BUG();
851 
852 	/* Unlock Block Command for given address range */
853 	writew(0x4, NFC_V1_V2_WRPROT);
854 }
855 
preset_v3(struct mtd_info * mtd)856 static void preset_v3(struct mtd_info *mtd)
857 {
858 	struct nand_chip *chip = mtd->priv;
859 	struct mxc_nand_host *host = chip->priv;
860 	uint32_t config2, config3;
861 	int i, addr_phases;
862 
863 	writel(NFC_V3_CONFIG1_RBA(0), NFC_V3_CONFIG1);
864 	writel(NFC_V3_IPC_CREQ, NFC_V3_IPC);
865 
866 	/* Unlock the internal RAM Buffer */
867 	writel(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK,
868 			NFC_V3_WRPROT);
869 
870 	/* Blocks to be unlocked */
871 	for (i = 0; i < NAND_MAX_CHIPS; i++)
872 		writel(0x0 |	(0xffff << 16),
873 				NFC_V3_WRPROT_UNLOCK_BLK_ADD0 + (i << 2));
874 
875 	writel(0, NFC_V3_IPC);
876 
877 	config2 = NFC_V3_CONFIG2_ONE_CYCLE |
878 		NFC_V3_CONFIG2_2CMD_PHASES |
879 		NFC_V3_CONFIG2_SPAS(mtd->oobsize >> 1) |
880 		NFC_V3_CONFIG2_ST_CMD(0x70) |
881 		NFC_V3_CONFIG2_INT_MSK |
882 		NFC_V3_CONFIG2_NUM_ADDR_PHASE0;
883 
884 	if (chip->ecc.mode == NAND_ECC_HW)
885 		config2 |= NFC_V3_CONFIG2_ECC_EN;
886 
887 	addr_phases = fls(chip->pagemask) >> 3;
888 
889 	if (mtd->writesize == 2048) {
890 		config2 |= NFC_V3_CONFIG2_PS_2048;
891 		config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
892 	} else if (mtd->writesize == 4096) {
893 		config2 |= NFC_V3_CONFIG2_PS_4096;
894 		config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
895 	} else {
896 		config2 |= NFC_V3_CONFIG2_PS_512;
897 		config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases - 1);
898 	}
899 
900 	if (mtd->writesize) {
901 		config2 |= NFC_V3_CONFIG2_PPB(ffs(mtd->erasesize / mtd->writesize) - 6);
902 		host->eccsize = get_eccsize(mtd);
903 		if (host->eccsize == 8)
904 			config2 |= NFC_V3_CONFIG2_ECC_MODE_8;
905 	}
906 
907 	writel(config2, NFC_V3_CONFIG2);
908 
909 	config3 = NFC_V3_CONFIG3_NUM_OF_DEVICES(0) |
910 			NFC_V3_CONFIG3_NO_SDMA |
911 			NFC_V3_CONFIG3_RBB_MODE |
912 			NFC_V3_CONFIG3_SBB(6) | /* Reset default */
913 			NFC_V3_CONFIG3_ADD_OP(0);
914 
915 	if (!(chip->options & NAND_BUSWIDTH_16))
916 		config3 |= NFC_V3_CONFIG3_FW8;
917 
918 	writel(config3, NFC_V3_CONFIG3);
919 
920 	writel(0, NFC_V3_DELAY_LINE);
921 }
922 
923 /* Used by the upper layer to write command to NAND Flash for
924  * different operations to be carried out on NAND Flash */
mxc_nand_command(struct mtd_info * mtd,unsigned command,int column,int page_addr)925 static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
926 				int column, int page_addr)
927 {
928 	struct nand_chip *nand_chip = mtd->priv;
929 	struct mxc_nand_host *host = nand_chip->priv;
930 
931 	pr_debug("mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
932 	      command, column, page_addr);
933 
934 	/* Reset command state information */
935 	host->status_request = false;
936 
937 	/* Command pre-processing step */
938 	switch (command) {
939 	case NAND_CMD_RESET:
940 		host->preset(mtd);
941 		host->send_cmd(host, command, false);
942 		break;
943 
944 	case NAND_CMD_STATUS:
945 		host->buf_start = 0;
946 		host->status_request = true;
947 
948 		host->send_cmd(host, command, true);
949 		mxc_do_addr_cycle(mtd, column, page_addr);
950 		break;
951 
952 	case NAND_CMD_READ0:
953 	case NAND_CMD_READOOB:
954 		if (command == NAND_CMD_READ0)
955 			host->buf_start = column;
956 		else
957 			host->buf_start = column + mtd->writesize;
958 
959 		command = NAND_CMD_READ0; /* only READ0 is valid */
960 
961 		host->send_cmd(host, command, false);
962 		mxc_do_addr_cycle(mtd, column, page_addr);
963 
964 		if (mtd->writesize > 512)
965 			host->send_cmd(host, NAND_CMD_READSTART, true);
966 
967 		host->send_page(mtd, NFC_OUTPUT);
968 
969 		memcpy(host->data_buf, host->main_area0, mtd->writesize);
970 		copy_spare(mtd, true);
971 		break;
972 
973 	case NAND_CMD_SEQIN:
974 		if (column >= mtd->writesize)
975 			/* call ourself to read a page */
976 			mxc_nand_command(mtd, NAND_CMD_READ0, 0, page_addr);
977 
978 		host->buf_start = column;
979 
980 		host->send_cmd(host, command, false);
981 		mxc_do_addr_cycle(mtd, column, page_addr);
982 		break;
983 
984 	case NAND_CMD_PAGEPROG:
985 		memcpy(host->main_area0, host->data_buf, mtd->writesize);
986 		copy_spare(mtd, false);
987 		host->send_page(mtd, NFC_INPUT);
988 		host->send_cmd(host, command, true);
989 		mxc_do_addr_cycle(mtd, column, page_addr);
990 		break;
991 
992 	case NAND_CMD_READID:
993 		host->send_cmd(host, command, true);
994 		mxc_do_addr_cycle(mtd, column, page_addr);
995 		host->send_read_id(host);
996 		host->buf_start = column;
997 		break;
998 
999 	case NAND_CMD_ERASE1:
1000 	case NAND_CMD_ERASE2:
1001 		host->send_cmd(host, command, false);
1002 		mxc_do_addr_cycle(mtd, column, page_addr);
1003 
1004 		break;
1005 	}
1006 }
1007 
1008 /*
1009  * The generic flash bbt decriptors overlap with our ecc
1010  * hardware, so define some i.MX specific ones.
1011  */
1012 static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
1013 static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
1014 
1015 static struct nand_bbt_descr bbt_main_descr = {
1016 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1017 	    | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1018 	.offs = 0,
1019 	.len = 4,
1020 	.veroffs = 4,
1021 	.maxblocks = 4,
1022 	.pattern = bbt_pattern,
1023 };
1024 
1025 static struct nand_bbt_descr bbt_mirror_descr = {
1026 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1027 	    | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1028 	.offs = 0,
1029 	.len = 4,
1030 	.veroffs = 4,
1031 	.maxblocks = 4,
1032 	.pattern = mirror_pattern,
1033 };
1034 
mxcnd_probe(struct platform_device * pdev)1035 static int __init mxcnd_probe(struct platform_device *pdev)
1036 {
1037 	struct nand_chip *this;
1038 	struct mtd_info *mtd;
1039 	struct mxc_nand_platform_data *pdata = pdev->dev.platform_data;
1040 	struct mxc_nand_host *host;
1041 	struct resource *res;
1042 	int err = 0;
1043 	struct nand_ecclayout *oob_smallpage, *oob_largepage;
1044 
1045 	/* Allocate memory for MTD device structure and private data */
1046 	host = kzalloc(sizeof(struct mxc_nand_host) + NAND_MAX_PAGESIZE +
1047 			NAND_MAX_OOBSIZE, GFP_KERNEL);
1048 	if (!host)
1049 		return -ENOMEM;
1050 
1051 	host->data_buf = (uint8_t *)(host + 1);
1052 
1053 	host->dev = &pdev->dev;
1054 	/* structures must be linked */
1055 	this = &host->nand;
1056 	mtd = &host->mtd;
1057 	mtd->priv = this;
1058 	mtd->owner = THIS_MODULE;
1059 	mtd->dev.parent = &pdev->dev;
1060 	mtd->name = DRIVER_NAME;
1061 
1062 	/* 50 us command delay time */
1063 	this->chip_delay = 5;
1064 
1065 	this->priv = host;
1066 	this->dev_ready = mxc_nand_dev_ready;
1067 	this->cmdfunc = mxc_nand_command;
1068 	this->select_chip = mxc_nand_select_chip;
1069 	this->read_byte = mxc_nand_read_byte;
1070 	this->read_word = mxc_nand_read_word;
1071 	this->write_buf = mxc_nand_write_buf;
1072 	this->read_buf = mxc_nand_read_buf;
1073 	this->verify_buf = mxc_nand_verify_buf;
1074 
1075 	host->clk = clk_get(&pdev->dev, "nfc");
1076 	if (IS_ERR(host->clk)) {
1077 		err = PTR_ERR(host->clk);
1078 		goto eclk;
1079 	}
1080 
1081 	clk_enable(host->clk);
1082 	host->clk_act = 1;
1083 
1084 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1085 	if (!res) {
1086 		err = -ENODEV;
1087 		goto eres;
1088 	}
1089 
1090 	host->base = ioremap(res->start, resource_size(res));
1091 	if (!host->base) {
1092 		err = -ENOMEM;
1093 		goto eres;
1094 	}
1095 
1096 	host->main_area0 = host->base;
1097 
1098 	if (nfc_is_v1() || nfc_is_v21()) {
1099 		host->preset = preset_v1_v2;
1100 		host->send_cmd = send_cmd_v1_v2;
1101 		host->send_addr = send_addr_v1_v2;
1102 		host->send_page = send_page_v1_v2;
1103 		host->send_read_id = send_read_id_v1_v2;
1104 		host->get_dev_status = get_dev_status_v1_v2;
1105 		host->check_int = check_int_v1_v2;
1106 		if (cpu_is_mx21())
1107 			host->irq_control = irq_control_mx21;
1108 		else
1109 			host->irq_control = irq_control_v1_v2;
1110 	}
1111 
1112 	if (nfc_is_v21()) {
1113 		host->regs = host->base + 0x1e00;
1114 		host->spare0 = host->base + 0x1000;
1115 		host->spare_len = 64;
1116 		oob_smallpage = &nandv2_hw_eccoob_smallpage;
1117 		oob_largepage = &nandv2_hw_eccoob_largepage;
1118 		this->ecc.bytes = 9;
1119 	} else if (nfc_is_v1()) {
1120 		host->regs = host->base + 0xe00;
1121 		host->spare0 = host->base + 0x800;
1122 		host->spare_len = 16;
1123 		oob_smallpage = &nandv1_hw_eccoob_smallpage;
1124 		oob_largepage = &nandv1_hw_eccoob_largepage;
1125 		this->ecc.bytes = 3;
1126 		host->eccsize = 1;
1127 	} else if (nfc_is_v3_2()) {
1128 		res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1129 		if (!res) {
1130 			err = -ENODEV;
1131 			goto eirq;
1132 		}
1133 		host->regs_ip = ioremap(res->start, resource_size(res));
1134 		if (!host->regs_ip) {
1135 			err = -ENOMEM;
1136 			goto eirq;
1137 		}
1138 		host->regs_axi = host->base + 0x1e00;
1139 		host->spare0 = host->base + 0x1000;
1140 		host->spare_len = 64;
1141 		host->preset = preset_v3;
1142 		host->send_cmd = send_cmd_v3;
1143 		host->send_addr = send_addr_v3;
1144 		host->send_page = send_page_v3;
1145 		host->send_read_id = send_read_id_v3;
1146 		host->check_int = check_int_v3;
1147 		host->get_dev_status = get_dev_status_v3;
1148 		host->irq_control = irq_control_v3;
1149 		oob_smallpage = &nandv2_hw_eccoob_smallpage;
1150 		oob_largepage = &nandv2_hw_eccoob_largepage;
1151 	} else
1152 		BUG();
1153 
1154 	this->ecc.size = 512;
1155 	this->ecc.layout = oob_smallpage;
1156 
1157 	if (pdata->hw_ecc) {
1158 		this->ecc.calculate = mxc_nand_calculate_ecc;
1159 		this->ecc.hwctl = mxc_nand_enable_hwecc;
1160 		if (nfc_is_v1())
1161 			this->ecc.correct = mxc_nand_correct_data_v1;
1162 		else
1163 			this->ecc.correct = mxc_nand_correct_data_v2_v3;
1164 		this->ecc.mode = NAND_ECC_HW;
1165 	} else {
1166 		this->ecc.mode = NAND_ECC_SOFT;
1167 	}
1168 
1169 	/* NAND bus width determines access funtions used by upper layer */
1170 	if (pdata->width == 2)
1171 		this->options |= NAND_BUSWIDTH_16;
1172 
1173 	if (pdata->flash_bbt) {
1174 		this->bbt_td = &bbt_main_descr;
1175 		this->bbt_md = &bbt_mirror_descr;
1176 		/* update flash based bbt */
1177 		this->bbt_options |= NAND_BBT_USE_FLASH;
1178 	}
1179 
1180 	init_completion(&host->op_completion);
1181 
1182 	host->irq = platform_get_irq(pdev, 0);
1183 
1184 	/*
1185 	 * mask the interrupt. For i.MX21 explicitely call
1186 	 * irq_control_v1_v2 to use the mask bit. We can't call
1187 	 * disable_irq_nosync() for an interrupt we do not own yet.
1188 	 */
1189 	if (cpu_is_mx21())
1190 		irq_control_v1_v2(host, 0);
1191 	else
1192 		host->irq_control(host, 0);
1193 
1194 	err = request_irq(host->irq, mxc_nfc_irq, IRQF_DISABLED, DRIVER_NAME, host);
1195 	if (err)
1196 		goto eirq;
1197 
1198 	host->irq_control(host, 0);
1199 
1200 	/*
1201 	 * Now that the interrupt is disabled make sure the interrupt
1202 	 * mask bit is cleared on i.MX21. Otherwise we can't read
1203 	 * the interrupt status bit on this machine.
1204 	 */
1205 	if (cpu_is_mx21())
1206 		irq_control_v1_v2(host, 1);
1207 
1208 	/* first scan to find the device and get the page size */
1209 	if (nand_scan_ident(mtd, nfc_is_v21() ? 4 : 1, NULL)) {
1210 		err = -ENXIO;
1211 		goto escan;
1212 	}
1213 
1214 	/* Call preset again, with correct writesize this time */
1215 	host->preset(mtd);
1216 
1217 	if (mtd->writesize == 2048)
1218 		this->ecc.layout = oob_largepage;
1219 	if (nfc_is_v21() && mtd->writesize == 4096)
1220 		this->ecc.layout = &nandv2_hw_eccoob_4k;
1221 
1222 	/* second phase scan */
1223 	if (nand_scan_tail(mtd)) {
1224 		err = -ENXIO;
1225 		goto escan;
1226 	}
1227 
1228 	/* Register the partitions */
1229 	mtd_device_parse_register(mtd, part_probes, 0,
1230 			pdata->parts, pdata->nr_parts);
1231 
1232 	platform_set_drvdata(pdev, host);
1233 
1234 	return 0;
1235 
1236 escan:
1237 	free_irq(host->irq, host);
1238 eirq:
1239 	if (host->regs_ip)
1240 		iounmap(host->regs_ip);
1241 	iounmap(host->base);
1242 eres:
1243 	clk_put(host->clk);
1244 eclk:
1245 	kfree(host);
1246 
1247 	return err;
1248 }
1249 
mxcnd_remove(struct platform_device * pdev)1250 static int __devexit mxcnd_remove(struct platform_device *pdev)
1251 {
1252 	struct mxc_nand_host *host = platform_get_drvdata(pdev);
1253 
1254 	clk_put(host->clk);
1255 
1256 	platform_set_drvdata(pdev, NULL);
1257 
1258 	nand_release(&host->mtd);
1259 	free_irq(host->irq, host);
1260 	if (host->regs_ip)
1261 		iounmap(host->regs_ip);
1262 	iounmap(host->base);
1263 	kfree(host);
1264 
1265 	return 0;
1266 }
1267 
1268 static struct platform_driver mxcnd_driver = {
1269 	.driver = {
1270 		   .name = DRIVER_NAME,
1271 	},
1272 	.remove = __devexit_p(mxcnd_remove),
1273 };
1274 
mxc_nd_init(void)1275 static int __init mxc_nd_init(void)
1276 {
1277 	return platform_driver_probe(&mxcnd_driver, mxcnd_probe);
1278 }
1279 
mxc_nd_cleanup(void)1280 static void __exit mxc_nd_cleanup(void)
1281 {
1282 	/* Unregister the device structure */
1283 	platform_driver_unregister(&mxcnd_driver);
1284 }
1285 
1286 module_init(mxc_nd_init);
1287 module_exit(mxc_nd_cleanup);
1288 
1289 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1290 MODULE_DESCRIPTION("MXC NAND MTD driver");
1291 MODULE_LICENSE("GPL");
1292