1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_STOP_MACHINE
3 #define _LINUX_STOP_MACHINE
4
5 #include <linux/cpu.h>
6 #include <linux/cpumask_types.h>
7 #include <linux/smp.h>
8 #include <linux/list.h>
9
10 /*
11 * stop_cpu[s]() is simplistic per-cpu maximum priority cpu
12 * monopolization mechanism. The caller can specify a non-sleeping
13 * function to be executed on a single or multiple cpus preempting all
14 * other processes and monopolizing those cpus until it finishes.
15 *
16 * Resources for this mechanism are preallocated when a cpu is brought
17 * up and requests are guaranteed to be served as long as the target
18 * cpus are online.
19 */
20 typedef int (*cpu_stop_fn_t)(void *arg);
21
22 #ifdef CONFIG_SMP
23
24 struct cpu_stop_work {
25 struct list_head list; /* cpu_stopper->works */
26 cpu_stop_fn_t fn;
27 unsigned long caller;
28 void *arg;
29 struct cpu_stop_done *done;
30 };
31
32 int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg);
33 int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *arg);
34 bool stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg,
35 struct cpu_stop_work *work_buf);
36 void stop_machine_park(int cpu);
37 void stop_machine_unpark(int cpu);
38 void stop_machine_yield(const struct cpumask *cpumask);
39
40 extern void print_stop_info(const char *log_lvl, struct task_struct *task);
41
42 #else /* CONFIG_SMP */
43
44 #include <linux/workqueue.h>
45
46 struct cpu_stop_work {
47 struct work_struct work;
48 cpu_stop_fn_t fn;
49 void *arg;
50 };
51
stop_one_cpu(unsigned int cpu,cpu_stop_fn_t fn,void * arg)52 static inline int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg)
53 {
54 int ret = -ENOENT;
55 preempt_disable();
56 if (cpu == smp_processor_id())
57 ret = fn(arg);
58 preempt_enable();
59 return ret;
60 }
61
stop_one_cpu_nowait_workfn(struct work_struct * work)62 static void stop_one_cpu_nowait_workfn(struct work_struct *work)
63 {
64 struct cpu_stop_work *stwork =
65 container_of(work, struct cpu_stop_work, work);
66 preempt_disable();
67 stwork->fn(stwork->arg);
68 preempt_enable();
69 }
70
stop_one_cpu_nowait(unsigned int cpu,cpu_stop_fn_t fn,void * arg,struct cpu_stop_work * work_buf)71 static inline bool stop_one_cpu_nowait(unsigned int cpu,
72 cpu_stop_fn_t fn, void *arg,
73 struct cpu_stop_work *work_buf)
74 {
75 if (cpu == smp_processor_id()) {
76 INIT_WORK(&work_buf->work, stop_one_cpu_nowait_workfn);
77 work_buf->fn = fn;
78 work_buf->arg = arg;
79 schedule_work(&work_buf->work);
80 return true;
81 }
82
83 return false;
84 }
85
print_stop_info(const char * log_lvl,struct task_struct * task)86 static inline void print_stop_info(const char *log_lvl, struct task_struct *task) { }
87
88 #endif /* CONFIG_SMP */
89
90 /*
91 * stop_machine "Bogolock": stop the entire machine, disable interrupts.
92 * This is a very heavy lock, which is equivalent to grabbing every raw
93 * spinlock (and more). So the "read" side to such a lock is anything
94 * which disables preemption.
95 */
96 #if defined(CONFIG_SMP) || defined(CONFIG_HOTPLUG_CPU)
97
98 /**
99 * stop_machine: freeze the machine on all CPUs and run this function
100 * @fn: the function to run
101 * @data: the data ptr to pass to @fn()
102 * @cpus: the cpus to run @fn() on (NULL = run on each online CPU)
103 *
104 * Description: This causes a thread to be scheduled on every CPU, which
105 * will run with interrupts disabled. Each CPU specified by @cpus will
106 * run @fn. While @fn is executing, there will no other CPUs holding
107 * a raw spinlock or running within any other type of preempt-disabled
108 * region of code.
109 *
110 * When @cpus specifies only a single CPU, this can be thought of as
111 * a reader-writer lock where readers disable preemption (for example,
112 * by holding a raw spinlock) and where the insanely heavy writers run
113 * @fn while also preventing any other CPU from doing any useful work.
114 * These writers can also be thought of as having implicitly grabbed every
115 * raw spinlock in the kernel.
116 *
117 * When @fn is a no-op, this can be thought of as an RCU implementation
118 * where readers again disable preemption and writers use stop_machine()
119 * in place of synchronize_rcu(), albeit with orders of magnitude more
120 * disruption than even that of synchronize_rcu_expedited().
121 *
122 * Although only one stop_machine() operation can proceed at a time,
123 * the possibility of blocking in cpus_read_lock() means that the caller
124 * cannot usefully rely on this serialization.
125 *
126 * Return: 0 if all invocations of @fn return zero. Otherwise, the
127 * value returned by an arbitrarily chosen member of the set of calls to
128 * @fn that returned non-zero.
129 */
130 int stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus);
131
132 /**
133 * stop_machine_cpuslocked: freeze the machine on all CPUs and run this function
134 * @fn: the function to run
135 * @data: the data ptr to pass to @fn()
136 * @cpus: the cpus to run @fn() on (NULL = run on each online CPU)
137 *
138 * Same as above. Avoids nested calls to cpus_read_lock().
139 *
140 * Context: Must be called from within a cpus_read_lock() protected region.
141 */
142 int stop_machine_cpuslocked(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus);
143
144 /**
145 * stop_core_cpuslocked: - stop all threads on just one core
146 * @cpu: any cpu in the targeted core
147 * @fn: the function to run on each CPU in the core containing @cpu
148 * @data: the data ptr to pass to @fn()
149 *
150 * Same as above, but instead of every CPU, only the logical CPUs of the
151 * single core containing @cpu are affected.
152 *
153 * Context: Must be called from within a cpus_read_lock() protected region.
154 *
155 * Return: 0 if all invocations of @fn return zero. Otherwise, the
156 * value returned by an arbitrarily chosen member of the set of calls to
157 * @fn that returned non-zero.
158 */
159 int stop_core_cpuslocked(unsigned int cpu, cpu_stop_fn_t fn, void *data);
160
161 int stop_machine_from_inactive_cpu(cpu_stop_fn_t fn, void *data,
162 const struct cpumask *cpus);
163 #else /* CONFIG_SMP || CONFIG_HOTPLUG_CPU */
164
stop_machine_cpuslocked(cpu_stop_fn_t fn,void * data,const struct cpumask * cpus)165 static __always_inline int stop_machine_cpuslocked(cpu_stop_fn_t fn, void *data,
166 const struct cpumask *cpus)
167 {
168 unsigned long flags;
169 int ret;
170 local_irq_save(flags);
171 ret = fn(data);
172 local_irq_restore(flags);
173 return ret;
174 }
175
176 static __always_inline int
stop_machine(cpu_stop_fn_t fn,void * data,const struct cpumask * cpus)177 stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus)
178 {
179 return stop_machine_cpuslocked(fn, data, cpus);
180 }
181
182 static __always_inline int
stop_machine_from_inactive_cpu(cpu_stop_fn_t fn,void * data,const struct cpumask * cpus)183 stop_machine_from_inactive_cpu(cpu_stop_fn_t fn, void *data,
184 const struct cpumask *cpus)
185 {
186 return stop_machine(fn, data, cpus);
187 }
188
189 #endif /* CONFIG_SMP || CONFIG_HOTPLUG_CPU */
190 #endif /* _LINUX_STOP_MACHINE */
191