1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  *  Universal power supply monitor class
4  *
5  *  Copyright © 2007  Anton Vorontsov <cbou@mail.ru>
6  *  Copyright © 2004  Szabolcs Gyurko
7  *  Copyright © 2003  Ian Molton <spyro@f2s.com>
8  *
9  *  Modified: 2004, Oct     Szabolcs Gyurko
10  */
11 
12 #ifndef __LINUX_POWER_SUPPLY_H__
13 #define __LINUX_POWER_SUPPLY_H__
14 
15 #include <linux/device.h>
16 #include <linux/workqueue.h>
17 #include <linux/leds.h>
18 #include <linux/rwsem.h>
19 #include <linux/list.h>
20 #include <linux/spinlock.h>
21 #include <linux/notifier.h>
22 
23 /*
24  * All voltages, currents, charges, energies, time and temperatures in uV,
25  * µA, µAh, µWh, seconds and tenths of degree Celsius unless otherwise
26  * stated. It's driver's job to convert its raw values to units in which
27  * this class operates.
28  */
29 
30 /*
31  * For systems where the charger determines the maximum battery capacity
32  * the min and max fields should be used to present these values to user
33  * space. Unused/unknown fields will not appear in sysfs.
34  */
35 
36 enum {
37 	POWER_SUPPLY_STATUS_UNKNOWN = 0,
38 	POWER_SUPPLY_STATUS_CHARGING,
39 	POWER_SUPPLY_STATUS_DISCHARGING,
40 	POWER_SUPPLY_STATUS_NOT_CHARGING,
41 	POWER_SUPPLY_STATUS_FULL,
42 };
43 
44 /* What algorithm is the charger using? */
45 enum power_supply_charge_type {
46 	POWER_SUPPLY_CHARGE_TYPE_UNKNOWN = 0,
47 	POWER_SUPPLY_CHARGE_TYPE_NONE,
48 	POWER_SUPPLY_CHARGE_TYPE_TRICKLE,	/* slow speed */
49 	POWER_SUPPLY_CHARGE_TYPE_FAST,		/* fast speed */
50 	POWER_SUPPLY_CHARGE_TYPE_STANDARD,	/* normal speed */
51 	POWER_SUPPLY_CHARGE_TYPE_ADAPTIVE,	/* dynamically adjusted speed */
52 	POWER_SUPPLY_CHARGE_TYPE_CUSTOM,	/* use CHARGE_CONTROL_* props */
53 	POWER_SUPPLY_CHARGE_TYPE_LONGLIFE,	/* slow speed, longer life */
54 	POWER_SUPPLY_CHARGE_TYPE_BYPASS,	/* bypassing the charger */
55 };
56 
57 enum {
58 	POWER_SUPPLY_HEALTH_UNKNOWN = 0,
59 	POWER_SUPPLY_HEALTH_GOOD,
60 	POWER_SUPPLY_HEALTH_OVERHEAT,
61 	POWER_SUPPLY_HEALTH_DEAD,
62 	POWER_SUPPLY_HEALTH_OVERVOLTAGE,
63 	POWER_SUPPLY_HEALTH_UNDERVOLTAGE,
64 	POWER_SUPPLY_HEALTH_UNSPEC_FAILURE,
65 	POWER_SUPPLY_HEALTH_COLD,
66 	POWER_SUPPLY_HEALTH_WATCHDOG_TIMER_EXPIRE,
67 	POWER_SUPPLY_HEALTH_SAFETY_TIMER_EXPIRE,
68 	POWER_SUPPLY_HEALTH_OVERCURRENT,
69 	POWER_SUPPLY_HEALTH_CALIBRATION_REQUIRED,
70 	POWER_SUPPLY_HEALTH_WARM,
71 	POWER_SUPPLY_HEALTH_COOL,
72 	POWER_SUPPLY_HEALTH_HOT,
73 	POWER_SUPPLY_HEALTH_NO_BATTERY,
74 };
75 
76 enum {
77 	POWER_SUPPLY_TECHNOLOGY_UNKNOWN = 0,
78 	POWER_SUPPLY_TECHNOLOGY_NiMH,
79 	POWER_SUPPLY_TECHNOLOGY_LION,
80 	POWER_SUPPLY_TECHNOLOGY_LIPO,
81 	POWER_SUPPLY_TECHNOLOGY_LiFe,
82 	POWER_SUPPLY_TECHNOLOGY_NiCd,
83 	POWER_SUPPLY_TECHNOLOGY_LiMn,
84 };
85 
86 enum {
87 	POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN = 0,
88 	POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL,
89 	POWER_SUPPLY_CAPACITY_LEVEL_LOW,
90 	POWER_SUPPLY_CAPACITY_LEVEL_NORMAL,
91 	POWER_SUPPLY_CAPACITY_LEVEL_HIGH,
92 	POWER_SUPPLY_CAPACITY_LEVEL_FULL,
93 };
94 
95 enum {
96 	POWER_SUPPLY_SCOPE_UNKNOWN = 0,
97 	POWER_SUPPLY_SCOPE_SYSTEM,
98 	POWER_SUPPLY_SCOPE_DEVICE,
99 };
100 
101 enum power_supply_property {
102 	/* Properties of type `int' */
103 	POWER_SUPPLY_PROP_STATUS = 0,
104 	POWER_SUPPLY_PROP_CHARGE_TYPE,
105 	POWER_SUPPLY_PROP_CHARGE_TYPES,
106 	POWER_SUPPLY_PROP_HEALTH,
107 	POWER_SUPPLY_PROP_PRESENT,
108 	POWER_SUPPLY_PROP_ONLINE,
109 	POWER_SUPPLY_PROP_AUTHENTIC,
110 	POWER_SUPPLY_PROP_TECHNOLOGY,
111 	POWER_SUPPLY_PROP_CYCLE_COUNT,
112 	POWER_SUPPLY_PROP_VOLTAGE_MAX,
113 	POWER_SUPPLY_PROP_VOLTAGE_MIN,
114 	POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN,
115 	POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN,
116 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
117 	POWER_SUPPLY_PROP_VOLTAGE_AVG,
118 	POWER_SUPPLY_PROP_VOLTAGE_OCV,
119 	POWER_SUPPLY_PROP_VOLTAGE_BOOT,
120 	POWER_SUPPLY_PROP_CURRENT_MAX,
121 	POWER_SUPPLY_PROP_CURRENT_NOW,
122 	POWER_SUPPLY_PROP_CURRENT_AVG,
123 	POWER_SUPPLY_PROP_CURRENT_BOOT,
124 	POWER_SUPPLY_PROP_POWER_NOW,
125 	POWER_SUPPLY_PROP_POWER_AVG,
126 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
127 	POWER_SUPPLY_PROP_CHARGE_EMPTY_DESIGN,
128 	POWER_SUPPLY_PROP_CHARGE_FULL,
129 	POWER_SUPPLY_PROP_CHARGE_EMPTY,
130 	POWER_SUPPLY_PROP_CHARGE_NOW,
131 	POWER_SUPPLY_PROP_CHARGE_AVG,
132 	POWER_SUPPLY_PROP_CHARGE_COUNTER,
133 	POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT,
134 	POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX,
135 	POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE,
136 	POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX,
137 	POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT,
138 	POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT_MAX,
139 	POWER_SUPPLY_PROP_CHARGE_CONTROL_START_THRESHOLD, /* in percents! */
140 	POWER_SUPPLY_PROP_CHARGE_CONTROL_END_THRESHOLD, /* in percents! */
141 	POWER_SUPPLY_PROP_CHARGE_BEHAVIOUR,
142 	POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT,
143 	POWER_SUPPLY_PROP_INPUT_VOLTAGE_LIMIT,
144 	POWER_SUPPLY_PROP_INPUT_POWER_LIMIT,
145 	POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
146 	POWER_SUPPLY_PROP_ENERGY_EMPTY_DESIGN,
147 	POWER_SUPPLY_PROP_ENERGY_FULL,
148 	POWER_SUPPLY_PROP_ENERGY_EMPTY,
149 	POWER_SUPPLY_PROP_ENERGY_NOW,
150 	POWER_SUPPLY_PROP_ENERGY_AVG,
151 	POWER_SUPPLY_PROP_CAPACITY, /* in percents! */
152 	POWER_SUPPLY_PROP_CAPACITY_ALERT_MIN, /* in percents! */
153 	POWER_SUPPLY_PROP_CAPACITY_ALERT_MAX, /* in percents! */
154 	POWER_SUPPLY_PROP_CAPACITY_ERROR_MARGIN, /* in percents! */
155 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
156 	POWER_SUPPLY_PROP_TEMP,
157 	POWER_SUPPLY_PROP_TEMP_MAX,
158 	POWER_SUPPLY_PROP_TEMP_MIN,
159 	POWER_SUPPLY_PROP_TEMP_ALERT_MIN,
160 	POWER_SUPPLY_PROP_TEMP_ALERT_MAX,
161 	POWER_SUPPLY_PROP_TEMP_AMBIENT,
162 	POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN,
163 	POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX,
164 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
165 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG,
166 	POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
167 	POWER_SUPPLY_PROP_TIME_TO_FULL_AVG,
168 	POWER_SUPPLY_PROP_TYPE, /* use power_supply.type instead */
169 	POWER_SUPPLY_PROP_USB_TYPE,
170 	POWER_SUPPLY_PROP_SCOPE,
171 	POWER_SUPPLY_PROP_PRECHARGE_CURRENT,
172 	POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT,
173 	POWER_SUPPLY_PROP_CALIBRATE,
174 	POWER_SUPPLY_PROP_MANUFACTURE_YEAR,
175 	POWER_SUPPLY_PROP_MANUFACTURE_MONTH,
176 	POWER_SUPPLY_PROP_MANUFACTURE_DAY,
177 	/* Properties of type `const char *' */
178 	POWER_SUPPLY_PROP_MODEL_NAME,
179 	POWER_SUPPLY_PROP_MANUFACTURER,
180 	POWER_SUPPLY_PROP_SERIAL_NUMBER,
181 };
182 
183 enum power_supply_type {
184 	POWER_SUPPLY_TYPE_UNKNOWN = 0,
185 	POWER_SUPPLY_TYPE_BATTERY,
186 	POWER_SUPPLY_TYPE_UPS,
187 	POWER_SUPPLY_TYPE_MAINS,
188 	POWER_SUPPLY_TYPE_USB,			/* Standard Downstream Port */
189 	POWER_SUPPLY_TYPE_USB_DCP,		/* Dedicated Charging Port */
190 	POWER_SUPPLY_TYPE_USB_CDP,		/* Charging Downstream Port */
191 	POWER_SUPPLY_TYPE_USB_ACA,		/* Accessory Charger Adapters */
192 	POWER_SUPPLY_TYPE_USB_TYPE_C,		/* Type C Port */
193 	POWER_SUPPLY_TYPE_USB_PD,		/* Power Delivery Port */
194 	POWER_SUPPLY_TYPE_USB_PD_DRP,		/* PD Dual Role Port */
195 	POWER_SUPPLY_TYPE_APPLE_BRICK_ID,	/* Apple Charging Method */
196 	POWER_SUPPLY_TYPE_WIRELESS,		/* Wireless */
197 };
198 
199 enum power_supply_usb_type {
200 	POWER_SUPPLY_USB_TYPE_UNKNOWN = 0,
201 	POWER_SUPPLY_USB_TYPE_SDP,		/* Standard Downstream Port */
202 	POWER_SUPPLY_USB_TYPE_DCP,		/* Dedicated Charging Port */
203 	POWER_SUPPLY_USB_TYPE_CDP,		/* Charging Downstream Port */
204 	POWER_SUPPLY_USB_TYPE_ACA,		/* Accessory Charger Adapters */
205 	POWER_SUPPLY_USB_TYPE_C,		/* Type C Port */
206 	POWER_SUPPLY_USB_TYPE_PD,		/* Power Delivery Port */
207 	POWER_SUPPLY_USB_TYPE_PD_DRP,		/* PD Dual Role Port */
208 	POWER_SUPPLY_USB_TYPE_PD_PPS,		/* PD Programmable Power Supply */
209 	POWER_SUPPLY_USB_TYPE_APPLE_BRICK_ID,	/* Apple Charging Method */
210 };
211 
212 enum power_supply_charge_behaviour {
213 	POWER_SUPPLY_CHARGE_BEHAVIOUR_AUTO = 0,
214 	POWER_SUPPLY_CHARGE_BEHAVIOUR_INHIBIT_CHARGE,
215 	POWER_SUPPLY_CHARGE_BEHAVIOUR_FORCE_DISCHARGE,
216 };
217 
218 enum power_supply_notifier_events {
219 	PSY_EVENT_PROP_CHANGED,
220 };
221 
222 union power_supply_propval {
223 	int intval;
224 	const char *strval;
225 };
226 
227 struct device_node;
228 struct power_supply;
229 
230 /* Run-time specific power supply configuration */
231 struct power_supply_config {
232 	struct device_node *of_node;
233 	struct fwnode_handle *fwnode;
234 
235 	/* Driver private data */
236 	void *drv_data;
237 
238 	/* Device specific sysfs attributes */
239 	const struct attribute_group **attr_grp;
240 
241 	char **supplied_to;
242 	size_t num_supplicants;
243 
244 	bool no_wakeup_source;
245 };
246 
247 /* Description of power supply */
248 struct power_supply_desc {
249 	const char *name;
250 	enum power_supply_type type;
251 	u8 charge_behaviours;
252 	u32 charge_types;
253 	u32 usb_types;
254 	const enum power_supply_property *properties;
255 	size_t num_properties;
256 
257 	/*
258 	 * Functions for drivers implementing power supply class.
259 	 * These shouldn't be called directly by other drivers for accessing
260 	 * this power supply. Instead use power_supply_*() functions (for
261 	 * example power_supply_get_property()).
262 	 */
263 	int (*get_property)(struct power_supply *psy,
264 			    enum power_supply_property psp,
265 			    union power_supply_propval *val);
266 	int (*set_property)(struct power_supply *psy,
267 			    enum power_supply_property psp,
268 			    const union power_supply_propval *val);
269 	/*
270 	 * property_is_writeable() will be called during registration
271 	 * of power supply. If this happens during device probe then it must
272 	 * not access internal data of device (because probe did not end).
273 	 */
274 	int (*property_is_writeable)(struct power_supply *psy,
275 				     enum power_supply_property psp);
276 	void (*external_power_changed)(struct power_supply *psy);
277 
278 	/*
279 	 * Set if thermal zone should not be created for this power supply.
280 	 * For example for virtual supplies forwarding calls to actual
281 	 * sensors or other supplies.
282 	 */
283 	bool no_thermal;
284 	/* For APM emulation, think legacy userspace. */
285 	int use_for_apm;
286 };
287 
288 struct power_supply_ext {
289 	const char *const name;
290 	u8 charge_behaviours;
291 	const enum power_supply_property *properties;
292 	size_t num_properties;
293 
294 	int (*get_property)(struct power_supply *psy,
295 			    const struct power_supply_ext *ext,
296 			    void *data,
297 			    enum power_supply_property psp,
298 			    union power_supply_propval *val);
299 	int (*set_property)(struct power_supply *psy,
300 			    const struct power_supply_ext *ext,
301 			    void *data,
302 			    enum power_supply_property psp,
303 			    const union power_supply_propval *val);
304 	int (*property_is_writeable)(struct power_supply *psy,
305 				     const struct power_supply_ext *ext,
306 				     void *data,
307 				     enum power_supply_property psp);
308 };
309 
310 struct power_supply {
311 	const struct power_supply_desc *desc;
312 
313 	char **supplied_to;
314 	size_t num_supplicants;
315 
316 	char **supplied_from;
317 	size_t num_supplies;
318 
319 	/* Driver private data */
320 	void *drv_data;
321 
322 	/* private */
323 	struct device dev;
324 	struct work_struct changed_work;
325 	struct delayed_work deferred_register_work;
326 	spinlock_t changed_lock;
327 	bool changed;
328 	bool update_groups;
329 	bool initialized;
330 	bool removing;
331 	atomic_t use_cnt;
332 	struct power_supply_battery_info *battery_info;
333 	struct rw_semaphore extensions_sem; /* protects "extensions" */
334 	struct list_head extensions;
335 #ifdef CONFIG_THERMAL
336 	struct thermal_zone_device *tzd;
337 	struct thermal_cooling_device *tcd;
338 #endif
339 
340 #ifdef CONFIG_LEDS_TRIGGERS
341 	struct led_trigger *trig;
342 	struct led_trigger *charging_trig;
343 	struct led_trigger *full_trig;
344 	struct led_trigger *charging_blink_full_solid_trig;
345 	struct led_trigger *charging_orange_full_green_trig;
346 #endif
347 };
348 
349 #define dev_to_psy(__dev)	container_of_const(__dev, struct power_supply, dev)
350 
351 /*
352  * This is recommended structure to specify static power supply parameters.
353  * Generic one, parametrizable for different power supplies. Power supply
354  * class itself does not use it, but that's what implementing most platform
355  * drivers, should try reuse for consistency.
356  */
357 
358 struct power_supply_info {
359 	const char *name;
360 	int technology;
361 	int voltage_max_design;
362 	int voltage_min_design;
363 	int charge_full_design;
364 	int charge_empty_design;
365 	int energy_full_design;
366 	int energy_empty_design;
367 	int use_for_apm;
368 };
369 
370 struct power_supply_battery_ocv_table {
371 	int ocv;	/* microVolts */
372 	int capacity;	/* percent */
373 };
374 
375 struct power_supply_resistance_temp_table {
376 	int temp;	/* celsius */
377 	int resistance;	/* internal resistance percent */
378 };
379 
380 struct power_supply_vbat_ri_table {
381 	int vbat_uv;	/* Battery voltage in microvolt */
382 	int ri_uohm;	/* Internal resistance in microohm */
383 };
384 
385 /**
386  * struct power_supply_maintenance_charge_table - setting for maintenace charging
387  * @charge_current_max_ua: maintenance charging current that is used to keep
388  *   the charge of the battery full as current is consumed after full charging.
389  *   The corresponding charge_voltage_max_uv is used as a safeguard: when we
390  *   reach this voltage the maintenance charging current is turned off. It is
391  *   turned back on if we fall below this voltage.
392  * @charge_voltage_max_uv: maintenance charging voltage that is usually a bit
393  *   lower than the constant_charge_voltage_max_uv. We can apply this settings
394  *   charge_current_max_ua until we get back up to this voltage.
395  * @safety_timer_minutes: maintenance charging safety timer, with an expiry
396  *   time in minutes. We will only use maintenance charging in this setting
397  *   for a certain amount of time, then we will first move to the next
398  *   maintenance charge current and voltage pair in respective array and wait
399  *   for the next safety timer timeout, or, if we reached the last maintencance
400  *   charging setting, disable charging until we reach
401  *   charge_restart_voltage_uv and restart ordinary CC/CV charging from there.
402  *   These timers should be chosen to align with the typical discharge curve
403  *   for the battery.
404  *
405  * Ordinary CC/CV charging will stop charging when the charge current goes
406  * below charge_term_current_ua, and then restart it (if the device is still
407  * plugged into the charger) at charge_restart_voltage_uv. This happens in most
408  * consumer products because the power usage while connected to a charger is
409  * not zero, and devices are not manufactured to draw power directly from the
410  * charger: instead they will at all times dissipate the battery a little, like
411  * the power used in standby mode. This will over time give a charge graph
412  * such as this:
413  *
414  * Energy
415  *  ^      ...        ...      ...      ...      ...      ...      ...
416  *  |    .   .       .  .     .  .     .  .     .  .     .  .     .
417  *  |  ..     .   ..     .  ..    .  ..    .  ..    .  ..    .  ..
418  *  |.          ..        ..       ..       ..       ..       ..
419  *  +-------------------------------------------------------------------> t
420  *
421  * Practically this means that the Li-ions are wandering back and forth in the
422  * battery and this causes degeneration of the battery anode and cathode.
423  * To prolong the life of the battery, maintenance charging is applied after
424  * reaching charge_term_current_ua to hold up the charge in the battery while
425  * consuming power, thus lowering the wear on the battery:
426  *
427  * Energy
428  *  ^      .......................................
429  *  |    .                                        ......................
430  *  |  ..
431  *  |.
432  *  +-------------------------------------------------------------------> t
433  *
434  * Maintenance charging uses the voltages from this table: a table of settings
435  * is traversed using a slightly lower current and voltage than what is used for
436  * CC/CV charging. The maintenance charging will for safety reasons not go on
437  * indefinately: we lower the current and voltage with successive maintenance
438  * settings, then disable charging completely after we reach the last one,
439  * and after that we do not restart charging until we reach
440  * charge_restart_voltage_uv (see struct power_supply_battery_info) and restart
441  * ordinary CC/CV charging from there.
442  *
443  * As an example, a Samsung EB425161LA Lithium-Ion battery is CC/CV charged
444  * at 900mA to 4340mV, then maintenance charged at 600mA and 4150mV for up to
445  * 60 hours, then maintenance charged at 600mA and 4100mV for up to 200 hours.
446  * After this the charge cycle is restarted waiting for
447  * charge_restart_voltage_uv.
448  *
449  * For most mobile electronics this type of maintenance charging is enough for
450  * the user to disconnect the device and make use of it before both maintenance
451  * charging cycles are complete, if the current and voltage has been chosen
452  * appropriately. These need to be determined from battery discharge curves
453  * and expected standby current.
454  *
455  * If the voltage anyway drops to charge_restart_voltage_uv during maintenance
456  * charging, ordinary CC/CV charging is restarted. This can happen if the
457  * device is e.g. actively used during charging, so more current is drawn than
458  * the expected stand-by current. Also overvoltage protection will be applied
459  * as usual.
460  */
461 struct power_supply_maintenance_charge_table {
462 	int charge_current_max_ua;
463 	int charge_voltage_max_uv;
464 	int charge_safety_timer_minutes;
465 };
466 
467 #define POWER_SUPPLY_OCV_TEMP_MAX 20
468 
469 /**
470  * struct power_supply_battery_info - information about batteries
471  * @technology: from the POWER_SUPPLY_TECHNOLOGY_* enum
472  * @energy_full_design_uwh: energy content when fully charged in microwatt
473  *   hours
474  * @charge_full_design_uah: charge content when fully charged in microampere
475  *   hours
476  * @voltage_min_design_uv: minimum voltage across the poles when the battery
477  *   is at minimum voltage level in microvolts. If the voltage drops below this
478  *   level the battery will need precharging when using CC/CV charging.
479  * @voltage_max_design_uv: voltage across the poles when the battery is fully
480  *   charged in microvolts. This is the "nominal voltage" i.e. the voltage
481  *   printed on the label of the battery.
482  * @tricklecharge_current_ua: the tricklecharge current used when trickle
483  *   charging the battery in microamperes. This is the charging phase when the
484  *   battery is completely empty and we need to carefully trickle in some
485  *   charge until we reach the precharging voltage.
486  * @precharge_current_ua: current to use in the precharge phase in microamperes,
487  *   the precharge rate is limited by limiting the current to this value.
488  * @precharge_voltage_max_uv: the maximum voltage allowed when precharging in
489  *   microvolts. When we pass this voltage we will nominally switch over to the
490  *   CC (constant current) charging phase defined by constant_charge_current_ua
491  *   and constant_charge_voltage_max_uv.
492  * @charge_term_current_ua: when the current in the CV (constant voltage)
493  *   charging phase drops below this value in microamperes the charging will
494  *   terminate completely and not restart until the voltage over the battery
495  *   poles reach charge_restart_voltage_uv unless we use maintenance charging.
496  * @charge_restart_voltage_uv: when the battery has been fully charged by
497  *   CC/CV charging and charging has been disabled, and the voltage subsequently
498  *   drops below this value in microvolts, the charging will be restarted
499  *   (typically using CV charging).
500  * @overvoltage_limit_uv: If the voltage exceeds the nominal voltage
501  *   voltage_max_design_uv and we reach this voltage level, all charging must
502  *   stop and emergency procedures take place, such as shutting down the system
503  *   in some cases.
504  * @constant_charge_current_max_ua: current in microamperes to use in the CC
505  *   (constant current) charging phase. The charging rate is limited
506  *   by this current. This is the main charging phase and as the current is
507  *   constant into the battery the voltage slowly ascends to
508  *   constant_charge_voltage_max_uv.
509  * @constant_charge_voltage_max_uv: voltage in microvolts signifying the end of
510  *   the CC (constant current) charging phase and the beginning of the CV
511  *   (constant voltage) charging phase.
512  * @maintenance_charge: an array of maintenance charging settings to be used
513  *   after the main CC/CV charging phase is complete.
514  * @maintenance_charge_size: the number of maintenance charging settings in
515  *   maintenance_charge.
516  * @alert_low_temp_charge_current_ua: The charging current to use if the battery
517  *   enters low alert temperature, i.e. if the internal temperature is between
518  *   temp_alert_min and temp_min. No matter the charging phase, this
519  *   and alert_high_temp_charge_voltage_uv will be applied.
520  * @alert_low_temp_charge_voltage_uv: Same as alert_low_temp_charge_current_ua,
521  *   but for the charging voltage.
522  * @alert_high_temp_charge_current_ua: The charging current to use if the
523  *   battery enters high alert temperature, i.e. if the internal temperature is
524  *   between temp_alert_max and temp_max. No matter the charging phase, this
525  *   and alert_high_temp_charge_voltage_uv will be applied, usually lowering
526  *   the charging current as an evasive manouver.
527  * @alert_high_temp_charge_voltage_uv: Same as
528  *   alert_high_temp_charge_current_ua, but for the charging voltage.
529  * @factory_internal_resistance_uohm: the internal resistance of the battery
530  *   at fabrication time, expressed in microohms. This resistance will vary
531  *   depending on the lifetime and charge of the battery, so this is just a
532  *   nominal ballpark figure. This internal resistance is given for the state
533  *   when the battery is discharging.
534  * @factory_internal_resistance_charging_uohm: the internal resistance of the
535  *   battery at fabrication time while charging, expressed in microohms.
536  *   The charging process will affect the internal resistance of the battery
537  *   so this value provides a better resistance under these circumstances.
538  *   This resistance will vary depending on the lifetime and charge of the
539  *   battery, so this is just a nominal ballpark figure.
540  * @ocv_temp: array indicating the open circuit voltage (OCV) capacity
541  *   temperature indices. This is an array of temperatures in degrees Celsius
542  *   indicating which capacity table to use for a certain temperature, since
543  *   the capacity for reasons of chemistry will be different at different
544  *   temperatures. Determining capacity is a multivariate problem and the
545  *   temperature is the first variable we determine.
546  * @temp_ambient_alert_min: the battery will go outside of operating conditions
547  *   when the ambient temperature goes below this temperature in degrees
548  *   Celsius.
549  * @temp_ambient_alert_max: the battery will go outside of operating conditions
550  *   when the ambient temperature goes above this temperature in degrees
551  *   Celsius.
552  * @temp_alert_min: the battery should issue an alert if the internal
553  *   temperature goes below this temperature in degrees Celsius.
554  * @temp_alert_max: the battery should issue an alert if the internal
555  *   temperature goes above this temperature in degrees Celsius.
556  * @temp_min: the battery will go outside of operating conditions when
557  *   the internal temperature goes below this temperature in degrees Celsius.
558  *   Normally this means the system should shut down.
559  * @temp_max: the battery will go outside of operating conditions when
560  *   the internal temperature goes above this temperature in degrees Celsius.
561  *   Normally this means the system should shut down.
562  * @ocv_table: for each entry in ocv_temp there is a corresponding entry in
563  *   ocv_table and a size for each entry in ocv_table_size. These arrays
564  *   determine the capacity in percent in relation to the voltage in microvolts
565  *   at the indexed temperature.
566  * @ocv_table_size: for each entry in ocv_temp this array is giving the size of
567  *   each entry in the array of capacity arrays in ocv_table.
568  * @resist_table: this is a table that correlates a battery temperature to the
569  *   expected internal resistance at this temperature. The resistance is given
570  *   as a percentage of factory_internal_resistance_uohm. Knowing the
571  *   resistance of the battery is usually necessary for calculating the open
572  *   circuit voltage (OCV) that is then used with the ocv_table to calculate
573  *   the capacity of the battery. The resist_table must be ordered descending
574  *   by temperature: highest temperature with lowest resistance first, lowest
575  *   temperature with highest resistance last.
576  * @resist_table_size: the number of items in the resist_table.
577  * @vbat2ri_discharging: this is a table that correlates Battery voltage (VBAT)
578  *   to internal resistance (Ri). The resistance is given in microohm for the
579  *   corresponding voltage in microvolts. The internal resistance is used to
580  *   determine the open circuit voltage so that we can determine the capacity
581  *   of the battery. These voltages to resistance tables apply when the battery
582  *   is discharging. The table must be ordered descending by voltage: highest
583  *   voltage first.
584  * @vbat2ri_discharging_size: the number of items in the vbat2ri_discharging
585  *   table.
586  * @vbat2ri_charging: same function as vbat2ri_discharging but for the state
587  *   when the battery is charging. Being under charge changes the battery's
588  *   internal resistance characteristics so a separate table is needed.*
589  *   The table must be ordered descending by voltage: highest voltage first.
590  * @vbat2ri_charging_size: the number of items in the vbat2ri_charging
591  *   table.
592  * @bti_resistance_ohm: The Battery Type Indicator (BIT) nominal resistance
593  *   in ohms for this battery, if an identification resistor is mounted
594  *   between a third battery terminal and ground. This scheme is used by a lot
595  *   of mobile device batteries.
596  * @bti_resistance_tolerance: The tolerance in percent of the BTI resistance,
597  *   for example 10 for +/- 10%, if the bti_resistance is set to 7000 and the
598  *   tolerance is 10% we will detect a proper battery if the BTI resistance
599  *   is between 6300 and 7700 Ohm.
600  *
601  * This is the recommended struct to manage static battery parameters,
602  * populated by power_supply_get_battery_info(). Most platform drivers should
603  * use these for consistency.
604  *
605  * Its field names must correspond to elements in enum power_supply_property.
606  * The default field value is -EINVAL or NULL for pointers.
607  *
608  * CC/CV CHARGING:
609  *
610  * The charging parameters here assume a CC/CV charging scheme. This method
611  * is most common with Lithium Ion batteries (other methods are possible) and
612  * looks as follows:
613  *
614  * ^ Battery voltage
615  * |                                               --- overvoltage_limit_uv
616  * |
617  * |                    ...................................................
618  * |                 .. constant_charge_voltage_max_uv
619  * |              ..
620  * |             .
621  * |            .
622  * |           .
623  * |          .
624  * |         .
625  * |     .. precharge_voltage_max_uv
626  * |  ..
627  * |. (trickle charging)
628  * +------------------------------------------------------------------> time
629  *
630  * ^ Current into the battery
631  * |
632  * |      ............. constant_charge_current_max_ua
633  * |      .            .
634  * |      .             .
635  * |      .              .
636  * |      .               .
637  * |      .                ..
638  * |      .                  ....
639  * |      .                       .....
640  * |    ... precharge_current_ua       .......  charge_term_current_ua
641  * |    .                                    .
642  * |    .                                    .
643  * |.... tricklecharge_current_ua            .
644  * |                                         .
645  * +-----------------------------------------------------------------> time
646  *
647  * These diagrams are synchronized on time and the voltage and current
648  * follow each other.
649  *
650  * With CC/CV charging commence over time like this for an empty battery:
651  *
652  * 1. When the battery is completely empty it may need to be charged with
653  *    an especially small current so that electrons just "trickle in",
654  *    this is the tricklecharge_current_ua.
655  *
656  * 2. Next a small initial pre-charge current (precharge_current_ua)
657  *    is applied if the voltage is below precharge_voltage_max_uv until we
658  *    reach precharge_voltage_max_uv. CAUTION: in some texts this is referred
659  *    to as "trickle charging" but the use in the Linux kernel is different
660  *    see below!
661  *
662  * 3. Then the main charging current is applied, which is called the constant
663  *    current (CC) phase. A current regulator is set up to allow
664  *    constant_charge_current_max_ua of current to flow into the battery.
665  *    The chemical reaction in the battery will make the voltage go up as
666  *    charge goes into the battery. This current is applied until we reach
667  *    the constant_charge_voltage_max_uv voltage.
668  *
669  * 4. At this voltage we switch over to the constant voltage (CV) phase. This
670  *    means we allow current to go into the battery, but we keep the voltage
671  *    fixed. This current will continue to charge the battery while keeping
672  *    the voltage the same. A chemical reaction in the battery goes on
673  *    storing energy without affecting the voltage. Over time the current
674  *    will slowly drop and when we reach charge_term_current_ua we will
675  *    end the constant voltage phase.
676  *
677  * After this the battery is fully charged, and if we do not support maintenance
678  * charging, the charging will not restart until power dissipation makes the
679  * voltage fall so that we reach charge_restart_voltage_uv and at this point
680  * we restart charging at the appropriate phase, usually this will be inside
681  * the CV phase.
682  *
683  * If we support maintenance charging the voltage is however kept high after
684  * the CV phase with a very low current. This is meant to let the same charge
685  * go in for usage while the charger is still connected, mainly for
686  * dissipation for the power consuming entity while connected to the
687  * charger.
688  *
689  * All charging MUST terminate if the overvoltage_limit_uv is ever reached.
690  * Overcharging Lithium Ion cells can be DANGEROUS and lead to fire or
691  * explosions.
692  *
693  * DETERMINING BATTERY CAPACITY:
694  *
695  * Several members of the struct deal with trying to determine the remaining
696  * capacity in the battery, usually as a percentage of charge. In practice
697  * many chargers uses a so-called fuel gauge or coloumb counter that measure
698  * how much charge goes into the battery and how much goes out (+/- leak
699  * consumption). This does not help if we do not know how much capacity the
700  * battery has to begin with, such as when it is first used or was taken out
701  * and charged in a separate charger. Therefore many capacity algorithms use
702  * the open circuit voltage with a look-up table to determine the rough
703  * capacity of the battery. The open circuit voltage can be conceptualized
704  * with an ideal voltage source (V) in series with an internal resistance (Ri)
705  * like this:
706  *
707  *      +-------> IBAT >----------------+
708  *      |                    ^          |
709  *     [ ] Ri                |          |
710  *      |                    | VBAT     |
711  *      o <----------        |          |
712  *     +|           ^        |         [ ] Rload
713  *    .---.         |        |          |
714  *    | V |         | OCV    |          |
715  *    '---'         |        |          |
716  *      |           |        |          |
717  *  GND +-------------------------------+
718  *
719  * If we disconnect the load (here simplified as a fixed resistance Rload)
720  * and measure VBAT with a infinite impedance voltage meter we will get
721  * VBAT = OCV and this assumption is sometimes made even under load, assuming
722  * Rload is insignificant. However this will be of dubious quality because the
723  * load is rarely that small and Ri is strongly nonlinear depending on
724  * temperature and how much capacity is left in the battery due to the
725  * chemistry involved.
726  *
727  * In many practical applications we cannot just disconnect the battery from
728  * the load, so instead we often try to measure the instantaneous IBAT (the
729  * current out from the battery), estimate the Ri and thus calculate the
730  * voltage drop over Ri and compensate like this:
731  *
732  *   OCV = VBAT - (IBAT * Ri)
733  *
734  * The tables vbat2ri_discharging and vbat2ri_charging are used to determine
735  * (by interpolation) the Ri from the VBAT under load. These curves are highly
736  * nonlinear and may need many datapoints but can be found in datasheets for
737  * some batteries. This gives the compensated open circuit voltage (OCV) for
738  * the battery even under load. Using this method will also compensate for
739  * temperature changes in the environment: this will also make the internal
740  * resistance change, and it will affect the VBAT under load, so correlating
741  * VBAT to Ri takes both remaining capacity and temperature into consideration.
742  *
743  * Alternatively a manufacturer can specify how the capacity of the battery
744  * is dependent on the battery temperature which is the main factor affecting
745  * Ri. As we know all checmical reactions are faster when it is warm and slower
746  * when it is cold. You can put in 1500mAh and only get 800mAh out before the
747  * voltage drops too low for example. This effect is also highly nonlinear and
748  * the purpose of the table resist_table: this will take a temperature and
749  * tell us how big percentage of Ri the specified temperature correlates to.
750  * Usually we have 100% of the factory_internal_resistance_uohm at 25 degrees
751  * Celsius.
752  *
753  * The power supply class itself doesn't use this struct as of now.
754  */
755 
756 struct power_supply_battery_info {
757 	unsigned int technology;
758 	int energy_full_design_uwh;
759 	int charge_full_design_uah;
760 	int voltage_min_design_uv;
761 	int voltage_max_design_uv;
762 	int tricklecharge_current_ua;
763 	int precharge_current_ua;
764 	int precharge_voltage_max_uv;
765 	int charge_term_current_ua;
766 	int charge_restart_voltage_uv;
767 	int overvoltage_limit_uv;
768 	int constant_charge_current_max_ua;
769 	int constant_charge_voltage_max_uv;
770 	const struct power_supply_maintenance_charge_table *maintenance_charge;
771 	int maintenance_charge_size;
772 	int alert_low_temp_charge_current_ua;
773 	int alert_low_temp_charge_voltage_uv;
774 	int alert_high_temp_charge_current_ua;
775 	int alert_high_temp_charge_voltage_uv;
776 	int factory_internal_resistance_uohm;
777 	int factory_internal_resistance_charging_uohm;
778 	int ocv_temp[POWER_SUPPLY_OCV_TEMP_MAX];
779 	int temp_ambient_alert_min;
780 	int temp_ambient_alert_max;
781 	int temp_alert_min;
782 	int temp_alert_max;
783 	int temp_min;
784 	int temp_max;
785 	const struct power_supply_battery_ocv_table *ocv_table[POWER_SUPPLY_OCV_TEMP_MAX];
786 	int ocv_table_size[POWER_SUPPLY_OCV_TEMP_MAX];
787 	const struct power_supply_resistance_temp_table *resist_table;
788 	int resist_table_size;
789 	const struct power_supply_vbat_ri_table *vbat2ri_discharging;
790 	int vbat2ri_discharging_size;
791 	const struct power_supply_vbat_ri_table *vbat2ri_charging;
792 	int vbat2ri_charging_size;
793 	int bti_resistance_ohm;
794 	int bti_resistance_tolerance;
795 };
796 
797 extern int power_supply_reg_notifier(struct notifier_block *nb);
798 extern void power_supply_unreg_notifier(struct notifier_block *nb);
799 #if IS_ENABLED(CONFIG_POWER_SUPPLY)
800 extern struct power_supply *power_supply_get_by_name(const char *name);
801 extern void power_supply_put(struct power_supply *psy);
802 #else
power_supply_put(struct power_supply * psy)803 static inline void power_supply_put(struct power_supply *psy) {}
power_supply_get_by_name(const char * name)804 static inline struct power_supply *power_supply_get_by_name(const char *name)
805 { return NULL; }
806 #endif
807 #ifdef CONFIG_OF
808 extern struct power_supply *power_supply_get_by_phandle(struct device_node *np,
809 							const char *property);
810 extern struct power_supply *devm_power_supply_get_by_phandle(
811 				    struct device *dev, const char *property);
812 #else /* !CONFIG_OF */
813 static inline struct power_supply *
power_supply_get_by_phandle(struct device_node * np,const char * property)814 power_supply_get_by_phandle(struct device_node *np, const char *property)
815 { return NULL; }
816 static inline struct power_supply *
devm_power_supply_get_by_phandle(struct device * dev,const char * property)817 devm_power_supply_get_by_phandle(struct device *dev, const char *property)
818 { return NULL; }
819 #endif /* CONFIG_OF */
820 
821 extern const enum power_supply_property power_supply_battery_info_properties[];
822 extern const size_t power_supply_battery_info_properties_size;
823 extern int power_supply_get_battery_info(struct power_supply *psy,
824 					 struct power_supply_battery_info **info_out);
825 extern void power_supply_put_battery_info(struct power_supply *psy,
826 					  struct power_supply_battery_info *info);
827 extern bool power_supply_battery_info_has_prop(struct power_supply_battery_info *info,
828 					       enum power_supply_property psp);
829 extern int power_supply_battery_info_get_prop(struct power_supply_battery_info *info,
830 					      enum power_supply_property psp,
831 					      union power_supply_propval *val);
832 extern int power_supply_ocv2cap_simple(const struct power_supply_battery_ocv_table *table,
833 				       int table_len, int ocv);
834 extern const struct power_supply_battery_ocv_table *
835 power_supply_find_ocv2cap_table(struct power_supply_battery_info *info,
836 				int temp, int *table_len);
837 extern int power_supply_batinfo_ocv2cap(struct power_supply_battery_info *info,
838 					int ocv, int temp);
839 extern int
840 power_supply_temp2resist_simple(const struct power_supply_resistance_temp_table *table,
841 				int table_len, int temp);
842 extern int power_supply_vbat2ri(struct power_supply_battery_info *info,
843 				int vbat_uv, bool charging);
844 extern const struct power_supply_maintenance_charge_table *
845 power_supply_get_maintenance_charging_setting(struct power_supply_battery_info *info, int index);
846 extern bool power_supply_battery_bti_in_range(struct power_supply_battery_info *info,
847 					      int resistance);
848 extern void power_supply_changed(struct power_supply *psy);
849 extern int power_supply_am_i_supplied(struct power_supply *psy);
850 int power_supply_get_property_from_supplier(struct power_supply *psy,
851 					    enum power_supply_property psp,
852 					    union power_supply_propval *val);
853 
854 static inline bool
power_supply_supports_maintenance_charging(struct power_supply_battery_info * info)855 power_supply_supports_maintenance_charging(struct power_supply_battery_info *info)
856 {
857 	const struct power_supply_maintenance_charge_table *mt;
858 
859 	mt = power_supply_get_maintenance_charging_setting(info, 0);
860 
861 	return (mt != NULL);
862 }
863 
864 static inline bool
power_supply_supports_vbat2ri(struct power_supply_battery_info * info)865 power_supply_supports_vbat2ri(struct power_supply_battery_info *info)
866 {
867 	return ((info->vbat2ri_discharging != NULL) &&
868 		info->vbat2ri_discharging_size > 0);
869 }
870 
871 static inline bool
power_supply_supports_temp2ri(struct power_supply_battery_info * info)872 power_supply_supports_temp2ri(struct power_supply_battery_info *info)
873 {
874 	return ((info->resist_table != NULL) &&
875 		info->resist_table_size > 0);
876 }
877 
878 #ifdef CONFIG_POWER_SUPPLY
879 extern int power_supply_is_system_supplied(void);
880 #else
power_supply_is_system_supplied(void)881 static inline int power_supply_is_system_supplied(void) { return -ENOSYS; }
882 #endif
883 
884 extern int power_supply_get_property(struct power_supply *psy,
885 			    enum power_supply_property psp,
886 			    union power_supply_propval *val);
887 #if IS_ENABLED(CONFIG_POWER_SUPPLY)
888 extern int power_supply_set_property(struct power_supply *psy,
889 			    enum power_supply_property psp,
890 			    const union power_supply_propval *val);
891 #else
power_supply_set_property(struct power_supply * psy,enum power_supply_property psp,const union power_supply_propval * val)892 static inline int power_supply_set_property(struct power_supply *psy,
893 			    enum power_supply_property psp,
894 			    const union power_supply_propval *val)
895 { return 0; }
896 #endif
897 extern void power_supply_external_power_changed(struct power_supply *psy);
898 
899 extern struct power_supply *__must_check
900 power_supply_register(struct device *parent,
901 				 const struct power_supply_desc *desc,
902 				 const struct power_supply_config *cfg);
903 extern struct power_supply *__must_check
904 devm_power_supply_register(struct device *parent,
905 				 const struct power_supply_desc *desc,
906 				 const struct power_supply_config *cfg);
907 extern void power_supply_unregister(struct power_supply *psy);
908 extern int power_supply_powers(struct power_supply *psy, struct device *dev);
909 
910 extern int __must_check
911 power_supply_register_extension(struct power_supply *psy,
912 				const struct power_supply_ext *ext,
913 				struct device *dev,
914 				void *data);
915 extern void power_supply_unregister_extension(struct power_supply *psy,
916 					      const struct power_supply_ext *ext);
917 
918 #define to_power_supply(device) container_of(device, struct power_supply, dev)
919 
920 extern void *power_supply_get_drvdata(struct power_supply *psy);
921 extern int power_supply_for_each_psy(void *data, int (*fn)(struct power_supply *psy, void *data));
922 
power_supply_is_amp_property(enum power_supply_property psp)923 static inline bool power_supply_is_amp_property(enum power_supply_property psp)
924 {
925 	switch (psp) {
926 	case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
927 	case POWER_SUPPLY_PROP_CHARGE_EMPTY_DESIGN:
928 	case POWER_SUPPLY_PROP_CHARGE_FULL:
929 	case POWER_SUPPLY_PROP_CHARGE_EMPTY:
930 	case POWER_SUPPLY_PROP_CHARGE_NOW:
931 	case POWER_SUPPLY_PROP_CHARGE_AVG:
932 	case POWER_SUPPLY_PROP_CHARGE_COUNTER:
933 	case POWER_SUPPLY_PROP_PRECHARGE_CURRENT:
934 	case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT:
935 	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT:
936 	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX:
937 	case POWER_SUPPLY_PROP_CURRENT_MAX:
938 	case POWER_SUPPLY_PROP_CURRENT_NOW:
939 	case POWER_SUPPLY_PROP_CURRENT_AVG:
940 	case POWER_SUPPLY_PROP_CURRENT_BOOT:
941 		return true;
942 	default:
943 		break;
944 	}
945 
946 	return false;
947 }
948 
power_supply_is_watt_property(enum power_supply_property psp)949 static inline bool power_supply_is_watt_property(enum power_supply_property psp)
950 {
951 	switch (psp) {
952 	case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
953 	case POWER_SUPPLY_PROP_ENERGY_EMPTY_DESIGN:
954 	case POWER_SUPPLY_PROP_ENERGY_FULL:
955 	case POWER_SUPPLY_PROP_ENERGY_EMPTY:
956 	case POWER_SUPPLY_PROP_ENERGY_NOW:
957 	case POWER_SUPPLY_PROP_ENERGY_AVG:
958 	case POWER_SUPPLY_PROP_VOLTAGE_MAX:
959 	case POWER_SUPPLY_PROP_VOLTAGE_MIN:
960 	case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
961 	case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
962 	case POWER_SUPPLY_PROP_VOLTAGE_NOW:
963 	case POWER_SUPPLY_PROP_VOLTAGE_AVG:
964 	case POWER_SUPPLY_PROP_VOLTAGE_OCV:
965 	case POWER_SUPPLY_PROP_VOLTAGE_BOOT:
966 	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
967 	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX:
968 	case POWER_SUPPLY_PROP_POWER_NOW:
969 		return true;
970 	default:
971 		break;
972 	}
973 
974 	return false;
975 }
976 
977 #ifdef CONFIG_SYSFS
978 ssize_t power_supply_charge_behaviour_show(struct device *dev,
979 					   unsigned int available_behaviours,
980 					   enum power_supply_charge_behaviour behaviour,
981 					   char *buf);
982 
983 int power_supply_charge_behaviour_parse(unsigned int available_behaviours, const char *buf);
984 ssize_t power_supply_charge_types_show(struct device *dev,
985 				       unsigned int available_types,
986 				       enum power_supply_charge_type current_type,
987 				       char *buf);
988 int power_supply_charge_types_parse(unsigned int available_types, const char *buf);
989 #else
990 static inline
power_supply_charge_behaviour_show(struct device * dev,unsigned int available_behaviours,enum power_supply_charge_behaviour behaviour,char * buf)991 ssize_t power_supply_charge_behaviour_show(struct device *dev,
992 					   unsigned int available_behaviours,
993 					   enum power_supply_charge_behaviour behaviour,
994 					   char *buf)
995 {
996 	return -EOPNOTSUPP;
997 }
998 
power_supply_charge_behaviour_parse(unsigned int available_behaviours,const char * buf)999 static inline int power_supply_charge_behaviour_parse(unsigned int available_behaviours,
1000 						      const char *buf)
1001 {
1002 	return -EOPNOTSUPP;
1003 }
1004 
1005 static inline
power_supply_charge_types_show(struct device * dev,unsigned int available_types,enum power_supply_charge_type current_type,char * buf)1006 ssize_t power_supply_charge_types_show(struct device *dev,
1007 				       unsigned int available_types,
1008 				       enum power_supply_charge_type current_type,
1009 				       char *buf)
1010 {
1011 	return -EOPNOTSUPP;
1012 }
1013 
power_supply_charge_types_parse(unsigned int available_types,const char * buf)1014 static inline int power_supply_charge_types_parse(unsigned int available_types, const char *buf)
1015 {
1016 	return -EOPNOTSUPP;
1017 }
1018 #endif
1019 
1020 #endif /* __LINUX_POWER_SUPPLY_H__ */
1021