1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * This header is for implementations of dma_map_ops and related code.
4  * It should not be included in drivers just using the DMA API.
5  */
6 #ifndef _LINUX_DMA_MAP_OPS_H
7 #define _LINUX_DMA_MAP_OPS_H
8 
9 #include <linux/dma-mapping.h>
10 #include <linux/pgtable.h>
11 #include <linux/slab.h>
12 
13 struct cma;
14 struct iommu_ops;
15 
16 /*
17  * Values for struct dma_map_ops.flags:
18  *
19  * DMA_F_PCI_P2PDMA_SUPPORTED: Indicates the dma_map_ops implementation can
20  * handle PCI P2PDMA pages in the map_sg/unmap_sg operation.
21  */
22 #define DMA_F_PCI_P2PDMA_SUPPORTED     (1 << 0)
23 
24 struct dma_map_ops {
25 	unsigned int flags;
26 
27 	void *(*alloc)(struct device *dev, size_t size,
28 			dma_addr_t *dma_handle, gfp_t gfp,
29 			unsigned long attrs);
30 	void (*free)(struct device *dev, size_t size, void *vaddr,
31 			dma_addr_t dma_handle, unsigned long attrs);
32 	struct page *(*alloc_pages)(struct device *dev, size_t size,
33 			dma_addr_t *dma_handle, enum dma_data_direction dir,
34 			gfp_t gfp);
35 	void (*free_pages)(struct device *dev, size_t size, struct page *vaddr,
36 			dma_addr_t dma_handle, enum dma_data_direction dir);
37 	struct sg_table *(*alloc_noncontiguous)(struct device *dev, size_t size,
38 			enum dma_data_direction dir, gfp_t gfp,
39 			unsigned long attrs);
40 	void (*free_noncontiguous)(struct device *dev, size_t size,
41 			struct sg_table *sgt, enum dma_data_direction dir);
42 	int (*mmap)(struct device *, struct vm_area_struct *,
43 			void *, dma_addr_t, size_t, unsigned long attrs);
44 
45 	int (*get_sgtable)(struct device *dev, struct sg_table *sgt,
46 			void *cpu_addr, dma_addr_t dma_addr, size_t size,
47 			unsigned long attrs);
48 
49 	dma_addr_t (*map_page)(struct device *dev, struct page *page,
50 			unsigned long offset, size_t size,
51 			enum dma_data_direction dir, unsigned long attrs);
52 	void (*unmap_page)(struct device *dev, dma_addr_t dma_handle,
53 			size_t size, enum dma_data_direction dir,
54 			unsigned long attrs);
55 	/*
56 	 * map_sg should return a negative error code on error. See
57 	 * dma_map_sgtable() for a list of appropriate error codes
58 	 * and their meanings.
59 	 */
60 	int (*map_sg)(struct device *dev, struct scatterlist *sg, int nents,
61 			enum dma_data_direction dir, unsigned long attrs);
62 	void (*unmap_sg)(struct device *dev, struct scatterlist *sg, int nents,
63 			enum dma_data_direction dir, unsigned long attrs);
64 	dma_addr_t (*map_resource)(struct device *dev, phys_addr_t phys_addr,
65 			size_t size, enum dma_data_direction dir,
66 			unsigned long attrs);
67 	void (*unmap_resource)(struct device *dev, dma_addr_t dma_handle,
68 			size_t size, enum dma_data_direction dir,
69 			unsigned long attrs);
70 	void (*sync_single_for_cpu)(struct device *dev, dma_addr_t dma_handle,
71 			size_t size, enum dma_data_direction dir);
72 	void (*sync_single_for_device)(struct device *dev,
73 			dma_addr_t dma_handle, size_t size,
74 			enum dma_data_direction dir);
75 	void (*sync_sg_for_cpu)(struct device *dev, struct scatterlist *sg,
76 			int nents, enum dma_data_direction dir);
77 	void (*sync_sg_for_device)(struct device *dev, struct scatterlist *sg,
78 			int nents, enum dma_data_direction dir);
79 	void (*cache_sync)(struct device *dev, void *vaddr, size_t size,
80 			enum dma_data_direction direction);
81 	int (*dma_supported)(struct device *dev, u64 mask);
82 	u64 (*get_required_mask)(struct device *dev);
83 	size_t (*max_mapping_size)(struct device *dev);
84 	size_t (*opt_mapping_size)(void);
85 	unsigned long (*get_merge_boundary)(struct device *dev);
86 };
87 
88 #ifdef CONFIG_DMA_OPS
89 #include <asm/dma-mapping.h>
90 
get_dma_ops(struct device * dev)91 static inline const struct dma_map_ops *get_dma_ops(struct device *dev)
92 {
93 	if (dev->dma_ops)
94 		return dev->dma_ops;
95 	return get_arch_dma_ops();
96 }
97 
set_dma_ops(struct device * dev,const struct dma_map_ops * dma_ops)98 static inline void set_dma_ops(struct device *dev,
99 			       const struct dma_map_ops *dma_ops)
100 {
101 	dev->dma_ops = dma_ops;
102 }
103 #else /* CONFIG_DMA_OPS */
get_dma_ops(struct device * dev)104 static inline const struct dma_map_ops *get_dma_ops(struct device *dev)
105 {
106 	return NULL;
107 }
set_dma_ops(struct device * dev,const struct dma_map_ops * dma_ops)108 static inline void set_dma_ops(struct device *dev,
109 			       const struct dma_map_ops *dma_ops)
110 {
111 }
112 #endif /* CONFIG_DMA_OPS */
113 
114 #ifdef CONFIG_DMA_CMA
115 extern struct cma *dma_contiguous_default_area;
116 
dev_get_cma_area(struct device * dev)117 static inline struct cma *dev_get_cma_area(struct device *dev)
118 {
119 	if (dev && dev->cma_area)
120 		return dev->cma_area;
121 	return dma_contiguous_default_area;
122 }
123 
124 void dma_contiguous_reserve(phys_addr_t addr_limit);
125 int __init dma_contiguous_reserve_area(phys_addr_t size, phys_addr_t base,
126 		phys_addr_t limit, struct cma **res_cma, bool fixed);
127 
128 struct page *dma_alloc_from_contiguous(struct device *dev, size_t count,
129 				       unsigned int order, bool no_warn);
130 bool dma_release_from_contiguous(struct device *dev, struct page *pages,
131 				 int count);
132 struct page *dma_alloc_contiguous(struct device *dev, size_t size, gfp_t gfp);
133 void dma_free_contiguous(struct device *dev, struct page *page, size_t size);
134 
135 void dma_contiguous_early_fixup(phys_addr_t base, unsigned long size);
136 #else /* CONFIG_DMA_CMA */
dev_get_cma_area(struct device * dev)137 static inline struct cma *dev_get_cma_area(struct device *dev)
138 {
139 	return NULL;
140 }
dma_contiguous_reserve(phys_addr_t limit)141 static inline void dma_contiguous_reserve(phys_addr_t limit)
142 {
143 }
dma_contiguous_reserve_area(phys_addr_t size,phys_addr_t base,phys_addr_t limit,struct cma ** res_cma,bool fixed)144 static inline int dma_contiguous_reserve_area(phys_addr_t size,
145 		phys_addr_t base, phys_addr_t limit, struct cma **res_cma,
146 		bool fixed)
147 {
148 	return -ENOSYS;
149 }
dma_alloc_from_contiguous(struct device * dev,size_t count,unsigned int order,bool no_warn)150 static inline struct page *dma_alloc_from_contiguous(struct device *dev,
151 		size_t count, unsigned int order, bool no_warn)
152 {
153 	return NULL;
154 }
dma_release_from_contiguous(struct device * dev,struct page * pages,int count)155 static inline bool dma_release_from_contiguous(struct device *dev,
156 		struct page *pages, int count)
157 {
158 	return false;
159 }
160 /* Use fallback alloc() and free() when CONFIG_DMA_CMA=n */
dma_alloc_contiguous(struct device * dev,size_t size,gfp_t gfp)161 static inline struct page *dma_alloc_contiguous(struct device *dev, size_t size,
162 		gfp_t gfp)
163 {
164 	return NULL;
165 }
dma_free_contiguous(struct device * dev,struct page * page,size_t size)166 static inline void dma_free_contiguous(struct device *dev, struct page *page,
167 		size_t size)
168 {
169 	__free_pages(page, get_order(size));
170 }
171 #endif /* CONFIG_DMA_CMA*/
172 
173 #ifdef CONFIG_DMA_DECLARE_COHERENT
174 int dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr,
175 		dma_addr_t device_addr, size_t size);
176 void dma_release_coherent_memory(struct device *dev);
177 int dma_alloc_from_dev_coherent(struct device *dev, ssize_t size,
178 		dma_addr_t *dma_handle, void **ret);
179 int dma_release_from_dev_coherent(struct device *dev, int order, void *vaddr);
180 int dma_mmap_from_dev_coherent(struct device *dev, struct vm_area_struct *vma,
181 		void *cpu_addr, size_t size, int *ret);
182 #else
dma_declare_coherent_memory(struct device * dev,phys_addr_t phys_addr,dma_addr_t device_addr,size_t size)183 static inline int dma_declare_coherent_memory(struct device *dev,
184 		phys_addr_t phys_addr, dma_addr_t device_addr, size_t size)
185 {
186 	return -ENOSYS;
187 }
188 
189 #define dma_alloc_from_dev_coherent(dev, size, handle, ret) (0)
190 #define dma_release_from_dev_coherent(dev, order, vaddr) (0)
191 #define dma_mmap_from_dev_coherent(dev, vma, vaddr, order, ret) (0)
dma_release_coherent_memory(struct device * dev)192 static inline void dma_release_coherent_memory(struct device *dev) { }
193 #endif /* CONFIG_DMA_DECLARE_COHERENT */
194 
195 #ifdef CONFIG_DMA_GLOBAL_POOL
196 void *dma_alloc_from_global_coherent(struct device *dev, ssize_t size,
197 		dma_addr_t *dma_handle);
198 int dma_release_from_global_coherent(int order, void *vaddr);
199 int dma_mmap_from_global_coherent(struct vm_area_struct *vma, void *cpu_addr,
200 		size_t size, int *ret);
201 int dma_init_global_coherent(phys_addr_t phys_addr, size_t size);
202 #else
dma_alloc_from_global_coherent(struct device * dev,ssize_t size,dma_addr_t * dma_handle)203 static inline void *dma_alloc_from_global_coherent(struct device *dev,
204 		ssize_t size, dma_addr_t *dma_handle)
205 {
206 	return NULL;
207 }
dma_release_from_global_coherent(int order,void * vaddr)208 static inline int dma_release_from_global_coherent(int order, void *vaddr)
209 {
210 	return 0;
211 }
dma_mmap_from_global_coherent(struct vm_area_struct * vma,void * cpu_addr,size_t size,int * ret)212 static inline int dma_mmap_from_global_coherent(struct vm_area_struct *vma,
213 		void *cpu_addr, size_t size, int *ret)
214 {
215 	return 0;
216 }
217 #endif /* CONFIG_DMA_GLOBAL_POOL */
218 
219 /*
220  * This is the actual return value from the ->alloc_noncontiguous method.
221  * The users of the DMA API should only care about the sg_table, but to make
222  * the DMA-API internal vmaping and freeing easier we stash away the page
223  * array as well (except for the fallback case).  This can go away any time,
224  * e.g. when a vmap-variant that takes a scatterlist comes along.
225  */
226 struct dma_sgt_handle {
227 	struct sg_table sgt;
228 	struct page **pages;
229 };
230 #define sgt_handle(sgt) \
231 	container_of((sgt), struct dma_sgt_handle, sgt)
232 
233 int dma_common_get_sgtable(struct device *dev, struct sg_table *sgt,
234 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
235 		unsigned long attrs);
236 int dma_common_mmap(struct device *dev, struct vm_area_struct *vma,
237 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
238 		unsigned long attrs);
239 struct page *dma_common_alloc_pages(struct device *dev, size_t size,
240 		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp);
241 void dma_common_free_pages(struct device *dev, size_t size, struct page *vaddr,
242 		dma_addr_t dma_handle, enum dma_data_direction dir);
243 
244 struct page **dma_common_find_pages(void *cpu_addr);
245 void *dma_common_contiguous_remap(struct page *page, size_t size, pgprot_t prot,
246 		const void *caller);
247 void *dma_common_pages_remap(struct page **pages, size_t size, pgprot_t prot,
248 		const void *caller);
249 void dma_common_free_remap(void *cpu_addr, size_t size);
250 
251 struct page *dma_alloc_from_pool(struct device *dev, size_t size,
252 		void **cpu_addr, gfp_t flags,
253 		bool (*phys_addr_ok)(struct device *, phys_addr_t, size_t));
254 bool dma_free_from_pool(struct device *dev, void *start, size_t size);
255 
256 int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
257 		dma_addr_t dma_start, u64 size);
258 
259 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
260 	defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
261 	defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
262 extern bool dma_default_coherent;
dev_is_dma_coherent(struct device * dev)263 static inline bool dev_is_dma_coherent(struct device *dev)
264 {
265 	return dev->dma_coherent;
266 }
267 #else
268 #define dma_default_coherent true
269 
dev_is_dma_coherent(struct device * dev)270 static inline bool dev_is_dma_coherent(struct device *dev)
271 {
272 	return true;
273 }
274 #endif /* CONFIG_ARCH_HAS_DMA_COHERENCE_H */
275 
276 /*
277  * Check whether potential kmalloc() buffers are safe for non-coherent DMA.
278  */
dma_kmalloc_safe(struct device * dev,enum dma_data_direction dir)279 static inline bool dma_kmalloc_safe(struct device *dev,
280 				    enum dma_data_direction dir)
281 {
282 	/*
283 	 * If DMA bouncing of kmalloc() buffers is disabled, the kmalloc()
284 	 * caches have already been aligned to a DMA-safe size.
285 	 */
286 	if (!IS_ENABLED(CONFIG_DMA_BOUNCE_UNALIGNED_KMALLOC))
287 		return true;
288 
289 	/*
290 	 * kmalloc() buffers are DMA-safe irrespective of size if the device
291 	 * is coherent or the direction is DMA_TO_DEVICE (non-desctructive
292 	 * cache maintenance and benign cache line evictions).
293 	 */
294 	if (dev_is_dma_coherent(dev) || dir == DMA_TO_DEVICE)
295 		return true;
296 
297 	return false;
298 }
299 
300 /*
301  * Check whether the given size, assuming it is for a kmalloc()'ed buffer, is
302  * sufficiently aligned for non-coherent DMA.
303  */
dma_kmalloc_size_aligned(size_t size)304 static inline bool dma_kmalloc_size_aligned(size_t size)
305 {
306 	/*
307 	 * Larger kmalloc() sizes are guaranteed to be aligned to
308 	 * ARCH_DMA_MINALIGN.
309 	 */
310 	if (size >= 2 * ARCH_DMA_MINALIGN ||
311 	    IS_ALIGNED(kmalloc_size_roundup(size), dma_get_cache_alignment()))
312 		return true;
313 
314 	return false;
315 }
316 
317 /*
318  * Check whether the given object size may have originated from a kmalloc()
319  * buffer with a slab alignment below the DMA-safe alignment and needs
320  * bouncing for non-coherent DMA. The pointer alignment is not considered and
321  * in-structure DMA-safe offsets are the responsibility of the caller. Such
322  * code should use the static ARCH_DMA_MINALIGN for compiler annotations.
323  *
324  * The heuristics can have false positives, bouncing unnecessarily, though the
325  * buffers would be small. False negatives are theoretically possible if, for
326  * example, multiple small kmalloc() buffers are coalesced into a larger
327  * buffer that passes the alignment check. There are no such known constructs
328  * in the kernel.
329  */
dma_kmalloc_needs_bounce(struct device * dev,size_t size,enum dma_data_direction dir)330 static inline bool dma_kmalloc_needs_bounce(struct device *dev, size_t size,
331 					    enum dma_data_direction dir)
332 {
333 	return !dma_kmalloc_safe(dev, dir) && !dma_kmalloc_size_aligned(size);
334 }
335 
336 void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
337 		gfp_t gfp, unsigned long attrs);
338 void arch_dma_free(struct device *dev, size_t size, void *cpu_addr,
339 		dma_addr_t dma_addr, unsigned long attrs);
340 
341 #ifdef CONFIG_ARCH_HAS_DMA_SET_MASK
342 void arch_dma_set_mask(struct device *dev, u64 mask);
343 #else
344 #define arch_dma_set_mask(dev, mask)	do { } while (0)
345 #endif
346 
347 #ifdef CONFIG_MMU
348 /*
349  * Page protection so that devices that can't snoop CPU caches can use the
350  * memory coherently.  We default to pgprot_noncached which is usually used
351  * for ioremap as a safe bet, but architectures can override this with less
352  * strict semantics if possible.
353  */
354 #ifndef pgprot_dmacoherent
355 #define pgprot_dmacoherent(prot)	pgprot_noncached(prot)
356 #endif
357 
358 pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs);
359 #else
dma_pgprot(struct device * dev,pgprot_t prot,unsigned long attrs)360 static inline pgprot_t dma_pgprot(struct device *dev, pgprot_t prot,
361 		unsigned long attrs)
362 {
363 	return prot;	/* no protection bits supported without page tables */
364 }
365 #endif /* CONFIG_MMU */
366 
367 #ifdef CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE
368 void arch_sync_dma_for_device(phys_addr_t paddr, size_t size,
369 		enum dma_data_direction dir);
370 #else
arch_sync_dma_for_device(phys_addr_t paddr,size_t size,enum dma_data_direction dir)371 static inline void arch_sync_dma_for_device(phys_addr_t paddr, size_t size,
372 		enum dma_data_direction dir)
373 {
374 }
375 #endif /* ARCH_HAS_SYNC_DMA_FOR_DEVICE */
376 
377 #ifdef CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU
378 void arch_sync_dma_for_cpu(phys_addr_t paddr, size_t size,
379 		enum dma_data_direction dir);
380 #else
arch_sync_dma_for_cpu(phys_addr_t paddr,size_t size,enum dma_data_direction dir)381 static inline void arch_sync_dma_for_cpu(phys_addr_t paddr, size_t size,
382 		enum dma_data_direction dir)
383 {
384 }
385 #endif /* ARCH_HAS_SYNC_DMA_FOR_CPU */
386 
387 #ifdef CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL
388 void arch_sync_dma_for_cpu_all(void);
389 #else
arch_sync_dma_for_cpu_all(void)390 static inline void arch_sync_dma_for_cpu_all(void)
391 {
392 }
393 #endif /* CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL */
394 
395 #ifdef CONFIG_ARCH_HAS_DMA_PREP_COHERENT
396 void arch_dma_prep_coherent(struct page *page, size_t size);
397 #else
arch_dma_prep_coherent(struct page * page,size_t size)398 static inline void arch_dma_prep_coherent(struct page *page, size_t size)
399 {
400 }
401 #endif /* CONFIG_ARCH_HAS_DMA_PREP_COHERENT */
402 
403 #ifdef CONFIG_ARCH_HAS_DMA_MARK_CLEAN
404 void arch_dma_mark_clean(phys_addr_t paddr, size_t size);
405 #else
arch_dma_mark_clean(phys_addr_t paddr,size_t size)406 static inline void arch_dma_mark_clean(phys_addr_t paddr, size_t size)
407 {
408 }
409 #endif /* ARCH_HAS_DMA_MARK_CLEAN */
410 
411 void *arch_dma_set_uncached(void *addr, size_t size);
412 void arch_dma_clear_uncached(void *addr, size_t size);
413 
414 #ifdef CONFIG_ARCH_HAS_DMA_MAP_DIRECT
415 bool arch_dma_map_page_direct(struct device *dev, phys_addr_t addr);
416 bool arch_dma_unmap_page_direct(struct device *dev, dma_addr_t dma_handle);
417 bool arch_dma_map_sg_direct(struct device *dev, struct scatterlist *sg,
418 		int nents);
419 bool arch_dma_unmap_sg_direct(struct device *dev, struct scatterlist *sg,
420 		int nents);
421 #else
422 #define arch_dma_map_page_direct(d, a)		(false)
423 #define arch_dma_unmap_page_direct(d, a)	(false)
424 #define arch_dma_map_sg_direct(d, s, n)		(false)
425 #define arch_dma_unmap_sg_direct(d, s, n)	(false)
426 #endif
427 
428 #ifdef CONFIG_ARCH_HAS_SETUP_DMA_OPS
429 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
430 		bool coherent);
431 #else
arch_setup_dma_ops(struct device * dev,u64 dma_base,u64 size,bool coherent)432 static inline void arch_setup_dma_ops(struct device *dev, u64 dma_base,
433 		u64 size, bool coherent)
434 {
435 }
436 #endif /* CONFIG_ARCH_HAS_SETUP_DMA_OPS */
437 
438 #ifdef CONFIG_ARCH_HAS_TEARDOWN_DMA_OPS
439 void arch_teardown_dma_ops(struct device *dev);
440 #else
arch_teardown_dma_ops(struct device * dev)441 static inline void arch_teardown_dma_ops(struct device *dev)
442 {
443 }
444 #endif /* CONFIG_ARCH_HAS_TEARDOWN_DMA_OPS */
445 
446 #ifdef CONFIG_DMA_API_DEBUG
447 void dma_debug_add_bus(const struct bus_type *bus);
448 void debug_dma_dump_mappings(struct device *dev);
449 #else
dma_debug_add_bus(const struct bus_type * bus)450 static inline void dma_debug_add_bus(const struct bus_type *bus)
451 {
452 }
debug_dma_dump_mappings(struct device * dev)453 static inline void debug_dma_dump_mappings(struct device *dev)
454 {
455 }
456 #endif /* CONFIG_DMA_API_DEBUG */
457 
458 extern const struct dma_map_ops dma_dummy_ops;
459 
460 enum pci_p2pdma_map_type {
461 	/*
462 	 * PCI_P2PDMA_MAP_UNKNOWN: Used internally for indicating the mapping
463 	 * type hasn't been calculated yet. Functions that return this enum
464 	 * never return this value.
465 	 */
466 	PCI_P2PDMA_MAP_UNKNOWN = 0,
467 
468 	/*
469 	 * PCI_P2PDMA_MAP_NOT_SUPPORTED: Indicates the transaction will
470 	 * traverse the host bridge and the host bridge is not in the
471 	 * allowlist. DMA Mapping routines should return an error when
472 	 * this is returned.
473 	 */
474 	PCI_P2PDMA_MAP_NOT_SUPPORTED,
475 
476 	/*
477 	 * PCI_P2PDMA_BUS_ADDR: Indicates that two devices can talk to
478 	 * each other directly through a PCI switch and the transaction will
479 	 * not traverse the host bridge. Such a mapping should program
480 	 * the DMA engine with PCI bus addresses.
481 	 */
482 	PCI_P2PDMA_MAP_BUS_ADDR,
483 
484 	/*
485 	 * PCI_P2PDMA_MAP_THRU_HOST_BRIDGE: Indicates two devices can talk
486 	 * to each other, but the transaction traverses a host bridge on the
487 	 * allowlist. In this case, a normal mapping either with CPU physical
488 	 * addresses (in the case of dma-direct) or IOVA addresses (in the
489 	 * case of IOMMUs) should be used to program the DMA engine.
490 	 */
491 	PCI_P2PDMA_MAP_THRU_HOST_BRIDGE,
492 };
493 
494 struct pci_p2pdma_map_state {
495 	struct dev_pagemap *pgmap;
496 	int map;
497 	u64 bus_off;
498 };
499 
500 #ifdef CONFIG_PCI_P2PDMA
501 enum pci_p2pdma_map_type
502 pci_p2pdma_map_segment(struct pci_p2pdma_map_state *state, struct device *dev,
503 		       struct scatterlist *sg);
504 #else /* CONFIG_PCI_P2PDMA */
505 static inline enum pci_p2pdma_map_type
pci_p2pdma_map_segment(struct pci_p2pdma_map_state * state,struct device * dev,struct scatterlist * sg)506 pci_p2pdma_map_segment(struct pci_p2pdma_map_state *state, struct device *dev,
507 		       struct scatterlist *sg)
508 {
509 	return PCI_P2PDMA_MAP_NOT_SUPPORTED;
510 }
511 #endif /* CONFIG_PCI_P2PDMA */
512 
513 #endif /* _LINUX_DMA_MAP_OPS_H */
514