1 /*  linux/include/linux/clockchips.h
2  *
3  *  This file contains the structure definitions for clockchips.
4  *
5  *  If you are not a clockchip, or the time of day code, you should
6  *  not be including this file!
7  */
8 #ifndef _LINUX_CLOCKCHIPS_H
9 #define _LINUX_CLOCKCHIPS_H
10 
11 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BUILD
12 
13 #include <linux/clocksource.h>
14 #include <linux/cpumask.h>
15 #include <linux/ktime.h>
16 #include <linux/notifier.h>
17 
18 struct clock_event_device;
19 
20 /* Clock event mode commands */
21 enum clock_event_mode {
22 	CLOCK_EVT_MODE_UNUSED = 0,
23 	CLOCK_EVT_MODE_SHUTDOWN,
24 	CLOCK_EVT_MODE_PERIODIC,
25 	CLOCK_EVT_MODE_ONESHOT,
26 	CLOCK_EVT_MODE_RESUME,
27 };
28 
29 /* Clock event notification values */
30 enum clock_event_nofitiers {
31 	CLOCK_EVT_NOTIFY_ADD,
32 	CLOCK_EVT_NOTIFY_BROADCAST_ON,
33 	CLOCK_EVT_NOTIFY_BROADCAST_OFF,
34 	CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
35 	CLOCK_EVT_NOTIFY_BROADCAST_ENTER,
36 	CLOCK_EVT_NOTIFY_BROADCAST_EXIT,
37 	CLOCK_EVT_NOTIFY_SUSPEND,
38 	CLOCK_EVT_NOTIFY_RESUME,
39 	CLOCK_EVT_NOTIFY_CPU_DYING,
40 	CLOCK_EVT_NOTIFY_CPU_DEAD,
41 };
42 
43 /*
44  * Clock event features
45  */
46 #define CLOCK_EVT_FEAT_PERIODIC		0x000001
47 #define CLOCK_EVT_FEAT_ONESHOT		0x000002
48 #define CLOCK_EVT_FEAT_KTIME		0x000004
49 /*
50  * x86(64) specific misfeatures:
51  *
52  * - Clockevent source stops in C3 State and needs broadcast support.
53  * - Local APIC timer is used as a dummy device.
54  */
55 #define CLOCK_EVT_FEAT_C3STOP		0x000008
56 #define CLOCK_EVT_FEAT_DUMMY		0x000010
57 
58 /**
59  * struct clock_event_device - clock event device descriptor
60  * @event_handler:	Assigned by the framework to be called by the low
61  *			level handler of the event source
62  * @set_next_event:	set next event function using a clocksource delta
63  * @set_next_ktime:	set next event function using a direct ktime value
64  * @next_event:		local storage for the next event in oneshot mode
65  * @max_delta_ns:	maximum delta value in ns
66  * @min_delta_ns:	minimum delta value in ns
67  * @mult:		nanosecond to cycles multiplier
68  * @shift:		nanoseconds to cycles divisor (power of two)
69  * @mode:		operating mode assigned by the management code
70  * @features:		features
71  * @retries:		number of forced programming retries
72  * @set_mode:		set mode function
73  * @broadcast:		function to broadcast events
74  * @min_delta_ticks:	minimum delta value in ticks stored for reconfiguration
75  * @max_delta_ticks:	maximum delta value in ticks stored for reconfiguration
76  * @name:		ptr to clock event name
77  * @rating:		variable to rate clock event devices
78  * @irq:		IRQ number (only for non CPU local devices)
79  * @cpumask:		cpumask to indicate for which CPUs this device works
80  * @list:		list head for the management code
81  */
82 struct clock_event_device {
83 	void			(*event_handler)(struct clock_event_device *);
84 	int			(*set_next_event)(unsigned long evt,
85 						  struct clock_event_device *);
86 	int			(*set_next_ktime)(ktime_t expires,
87 						  struct clock_event_device *);
88 	ktime_t			next_event;
89 	u64			max_delta_ns;
90 	u64			min_delta_ns;
91 	u32			mult;
92 	u32			shift;
93 	enum clock_event_mode	mode;
94 	unsigned int		features;
95 	unsigned long		retries;
96 
97 	void			(*broadcast)(const struct cpumask *mask);
98 	void			(*set_mode)(enum clock_event_mode mode,
99 					    struct clock_event_device *);
100 	unsigned long		min_delta_ticks;
101 	unsigned long		max_delta_ticks;
102 
103 	const char		*name;
104 	int			rating;
105 	int			irq;
106 	const struct cpumask	*cpumask;
107 	struct list_head	list;
108 } ____cacheline_aligned;
109 
110 /*
111  * Calculate a multiplication factor for scaled math, which is used to convert
112  * nanoseconds based values to clock ticks:
113  *
114  * clock_ticks = (nanoseconds * factor) >> shift.
115  *
116  * div_sc is the rearranged equation to calculate a factor from a given clock
117  * ticks / nanoseconds ratio:
118  *
119  * factor = (clock_ticks << shift) / nanoseconds
120  */
div_sc(unsigned long ticks,unsigned long nsec,int shift)121 static inline unsigned long div_sc(unsigned long ticks, unsigned long nsec,
122 				   int shift)
123 {
124 	uint64_t tmp = ((uint64_t)ticks) << shift;
125 
126 	do_div(tmp, nsec);
127 	return (unsigned long) tmp;
128 }
129 
130 /* Clock event layer functions */
131 extern u64 clockevent_delta2ns(unsigned long latch,
132 			       struct clock_event_device *evt);
133 extern void clockevents_register_device(struct clock_event_device *dev);
134 
135 extern void clockevents_config_and_register(struct clock_event_device *dev,
136 					    u32 freq, unsigned long min_delta,
137 					    unsigned long max_delta);
138 
139 extern int clockevents_update_freq(struct clock_event_device *ce, u32 freq);
140 
141 extern void clockevents_exchange_device(struct clock_event_device *old,
142 					struct clock_event_device *new);
143 extern void clockevents_set_mode(struct clock_event_device *dev,
144 				 enum clock_event_mode mode);
145 extern int clockevents_register_notifier(struct notifier_block *nb);
146 extern int clockevents_program_event(struct clock_event_device *dev,
147 				     ktime_t expires, bool force);
148 
149 extern void clockevents_handle_noop(struct clock_event_device *dev);
150 
151 static inline void
clockevents_calc_mult_shift(struct clock_event_device * ce,u32 freq,u32 minsec)152 clockevents_calc_mult_shift(struct clock_event_device *ce, u32 freq, u32 minsec)
153 {
154 	return clocks_calc_mult_shift(&ce->mult, &ce->shift, NSEC_PER_SEC,
155 				      freq, minsec);
156 }
157 
158 #ifdef CONFIG_GENERIC_CLOCKEVENTS
159 extern void clockevents_notify(unsigned long reason, void *arg);
160 #else
161 # define clockevents_notify(reason, arg) do { } while (0)
162 #endif
163 
164 #else /* CONFIG_GENERIC_CLOCKEVENTS_BUILD */
165 
166 #define clockevents_notify(reason, arg) do { } while (0)
167 
168 #endif
169 
170 #endif
171