1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * XArray implementation
4 * Copyright (c) 2017-2018 Microsoft Corporation
5 * Copyright (c) 2018-2020 Oracle
6 * Author: Matthew Wilcox <willy@infradead.org>
7 */
8
9 #include <linux/bitmap.h>
10 #include <linux/export.h>
11 #include <linux/list.h>
12 #include <linux/slab.h>
13 #include <linux/xarray.h>
14
15 #include "radix-tree.h"
16
17 /*
18 * Coding conventions in this file:
19 *
20 * @xa is used to refer to the entire xarray.
21 * @xas is the 'xarray operation state'. It may be either a pointer to
22 * an xa_state, or an xa_state stored on the stack. This is an unfortunate
23 * ambiguity.
24 * @index is the index of the entry being operated on
25 * @mark is an xa_mark_t; a small number indicating one of the mark bits.
26 * @node refers to an xa_node; usually the primary one being operated on by
27 * this function.
28 * @offset is the index into the slots array inside an xa_node.
29 * @parent refers to the @xa_node closer to the head than @node.
30 * @entry refers to something stored in a slot in the xarray
31 */
32
xa_lock_type(const struct xarray * xa)33 static inline unsigned int xa_lock_type(const struct xarray *xa)
34 {
35 return (__force unsigned int)xa->xa_flags & 3;
36 }
37
xas_lock_type(struct xa_state * xas,unsigned int lock_type)38 static inline void xas_lock_type(struct xa_state *xas, unsigned int lock_type)
39 {
40 if (lock_type == XA_LOCK_IRQ)
41 xas_lock_irq(xas);
42 else if (lock_type == XA_LOCK_BH)
43 xas_lock_bh(xas);
44 else
45 xas_lock(xas);
46 }
47
xas_unlock_type(struct xa_state * xas,unsigned int lock_type)48 static inline void xas_unlock_type(struct xa_state *xas, unsigned int lock_type)
49 {
50 if (lock_type == XA_LOCK_IRQ)
51 xas_unlock_irq(xas);
52 else if (lock_type == XA_LOCK_BH)
53 xas_unlock_bh(xas);
54 else
55 xas_unlock(xas);
56 }
57
xa_track_free(const struct xarray * xa)58 static inline bool xa_track_free(const struct xarray *xa)
59 {
60 return xa->xa_flags & XA_FLAGS_TRACK_FREE;
61 }
62
xa_zero_busy(const struct xarray * xa)63 static inline bool xa_zero_busy(const struct xarray *xa)
64 {
65 return xa->xa_flags & XA_FLAGS_ZERO_BUSY;
66 }
67
xa_mark_set(struct xarray * xa,xa_mark_t mark)68 static inline void xa_mark_set(struct xarray *xa, xa_mark_t mark)
69 {
70 if (!(xa->xa_flags & XA_FLAGS_MARK(mark)))
71 xa->xa_flags |= XA_FLAGS_MARK(mark);
72 }
73
xa_mark_clear(struct xarray * xa,xa_mark_t mark)74 static inline void xa_mark_clear(struct xarray *xa, xa_mark_t mark)
75 {
76 if (xa->xa_flags & XA_FLAGS_MARK(mark))
77 xa->xa_flags &= ~(XA_FLAGS_MARK(mark));
78 }
79
node_marks(struct xa_node * node,xa_mark_t mark)80 static inline unsigned long *node_marks(struct xa_node *node, xa_mark_t mark)
81 {
82 return node->marks[(__force unsigned)mark];
83 }
84
node_get_mark(struct xa_node * node,unsigned int offset,xa_mark_t mark)85 static inline bool node_get_mark(struct xa_node *node,
86 unsigned int offset, xa_mark_t mark)
87 {
88 return test_bit(offset, node_marks(node, mark));
89 }
90
91 /* returns true if the bit was set */
node_set_mark(struct xa_node * node,unsigned int offset,xa_mark_t mark)92 static inline bool node_set_mark(struct xa_node *node, unsigned int offset,
93 xa_mark_t mark)
94 {
95 return __test_and_set_bit(offset, node_marks(node, mark));
96 }
97
98 /* returns true if the bit was set */
node_clear_mark(struct xa_node * node,unsigned int offset,xa_mark_t mark)99 static inline bool node_clear_mark(struct xa_node *node, unsigned int offset,
100 xa_mark_t mark)
101 {
102 return __test_and_clear_bit(offset, node_marks(node, mark));
103 }
104
node_any_mark(struct xa_node * node,xa_mark_t mark)105 static inline bool node_any_mark(struct xa_node *node, xa_mark_t mark)
106 {
107 return !bitmap_empty(node_marks(node, mark), XA_CHUNK_SIZE);
108 }
109
node_mark_all(struct xa_node * node,xa_mark_t mark)110 static inline void node_mark_all(struct xa_node *node, xa_mark_t mark)
111 {
112 bitmap_fill(node_marks(node, mark), XA_CHUNK_SIZE);
113 }
114
115 #define mark_inc(mark) do { \
116 mark = (__force xa_mark_t)((__force unsigned)(mark) + 1); \
117 } while (0)
118
119 /*
120 * xas_squash_marks() - Merge all marks to the first entry
121 * @xas: Array operation state.
122 *
123 * Set a mark on the first entry if any entry has it set. Clear marks on
124 * all sibling entries.
125 */
xas_squash_marks(const struct xa_state * xas)126 static void xas_squash_marks(const struct xa_state *xas)
127 {
128 xa_mark_t mark = 0;
129 unsigned int limit = xas->xa_offset + xas->xa_sibs + 1;
130
131 for (;;) {
132 unsigned long *marks = node_marks(xas->xa_node, mark);
133
134 if (find_next_bit(marks, limit, xas->xa_offset + 1) != limit) {
135 __set_bit(xas->xa_offset, marks);
136 bitmap_clear(marks, xas->xa_offset + 1, xas->xa_sibs);
137 }
138 if (mark == XA_MARK_MAX)
139 break;
140 mark_inc(mark);
141 }
142 }
143
144 /* extracts the offset within this node from the index */
get_offset(unsigned long index,struct xa_node * node)145 static unsigned int get_offset(unsigned long index, struct xa_node *node)
146 {
147 return (index >> node->shift) & XA_CHUNK_MASK;
148 }
149
xas_set_offset(struct xa_state * xas)150 static void xas_set_offset(struct xa_state *xas)
151 {
152 xas->xa_offset = get_offset(xas->xa_index, xas->xa_node);
153 }
154
155 /* move the index either forwards (find) or backwards (sibling slot) */
xas_move_index(struct xa_state * xas,unsigned long offset)156 static void xas_move_index(struct xa_state *xas, unsigned long offset)
157 {
158 unsigned int shift = xas->xa_node->shift;
159 xas->xa_index &= ~XA_CHUNK_MASK << shift;
160 xas->xa_index += offset << shift;
161 }
162
xas_next_offset(struct xa_state * xas)163 static void xas_next_offset(struct xa_state *xas)
164 {
165 xas->xa_offset++;
166 xas_move_index(xas, xas->xa_offset);
167 }
168
set_bounds(struct xa_state * xas)169 static void *set_bounds(struct xa_state *xas)
170 {
171 xas->xa_node = XAS_BOUNDS;
172 return NULL;
173 }
174
175 /*
176 * Starts a walk. If the @xas is already valid, we assume that it's on
177 * the right path and just return where we've got to. If we're in an
178 * error state, return NULL. If the index is outside the current scope
179 * of the xarray, return NULL without changing @xas->xa_node. Otherwise
180 * set @xas->xa_node to NULL and return the current head of the array.
181 */
xas_start(struct xa_state * xas)182 static void *xas_start(struct xa_state *xas)
183 {
184 void *entry;
185
186 if (xas_valid(xas))
187 return xas_reload(xas);
188 if (xas_error(xas))
189 return NULL;
190
191 entry = xa_head(xas->xa);
192 if (!xa_is_node(entry)) {
193 if (xas->xa_index)
194 return set_bounds(xas);
195 } else {
196 if ((xas->xa_index >> xa_to_node(entry)->shift) > XA_CHUNK_MASK)
197 return set_bounds(xas);
198 }
199
200 xas->xa_node = NULL;
201 return entry;
202 }
203
xas_descend(struct xa_state * xas,struct xa_node * node)204 static __always_inline void *xas_descend(struct xa_state *xas,
205 struct xa_node *node)
206 {
207 unsigned int offset = get_offset(xas->xa_index, node);
208 void *entry = xa_entry(xas->xa, node, offset);
209
210 xas->xa_node = node;
211 while (xa_is_sibling(entry)) {
212 offset = xa_to_sibling(entry);
213 entry = xa_entry(xas->xa, node, offset);
214 if (node->shift && xa_is_node(entry))
215 entry = XA_RETRY_ENTRY;
216 }
217
218 xas->xa_offset = offset;
219 return entry;
220 }
221
222 /**
223 * xas_load() - Load an entry from the XArray (advanced).
224 * @xas: XArray operation state.
225 *
226 * Usually walks the @xas to the appropriate state to load the entry
227 * stored at xa_index. However, it will do nothing and return %NULL if
228 * @xas is in an error state. xas_load() will never expand the tree.
229 *
230 * If the xa_state is set up to operate on a multi-index entry, xas_load()
231 * may return %NULL or an internal entry, even if there are entries
232 * present within the range specified by @xas.
233 *
234 * Context: Any context. The caller should hold the xa_lock or the RCU lock.
235 * Return: Usually an entry in the XArray, but see description for exceptions.
236 */
xas_load(struct xa_state * xas)237 void *xas_load(struct xa_state *xas)
238 {
239 void *entry = xas_start(xas);
240
241 while (xa_is_node(entry)) {
242 struct xa_node *node = xa_to_node(entry);
243
244 if (xas->xa_shift > node->shift)
245 break;
246 entry = xas_descend(xas, node);
247 if (node->shift == 0)
248 break;
249 }
250 return entry;
251 }
252 EXPORT_SYMBOL_GPL(xas_load);
253
254 #define XA_RCU_FREE ((struct xarray *)1)
255
xa_node_free(struct xa_node * node)256 static void xa_node_free(struct xa_node *node)
257 {
258 XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
259 node->array = XA_RCU_FREE;
260 call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
261 }
262
263 /*
264 * xas_destroy() - Free any resources allocated during the XArray operation.
265 * @xas: XArray operation state.
266 *
267 * Most users will not need to call this function; it is called for you
268 * by xas_nomem().
269 */
xas_destroy(struct xa_state * xas)270 void xas_destroy(struct xa_state *xas)
271 {
272 struct xa_node *next, *node = xas->xa_alloc;
273
274 while (node) {
275 XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
276 next = rcu_dereference_raw(node->parent);
277 radix_tree_node_rcu_free(&node->rcu_head);
278 xas->xa_alloc = node = next;
279 }
280 }
281 EXPORT_SYMBOL_GPL(xas_destroy);
282
283 /**
284 * xas_nomem() - Allocate memory if needed.
285 * @xas: XArray operation state.
286 * @gfp: Memory allocation flags.
287 *
288 * If we need to add new nodes to the XArray, we try to allocate memory
289 * with GFP_NOWAIT while holding the lock, which will usually succeed.
290 * If it fails, @xas is flagged as needing memory to continue. The caller
291 * should drop the lock and call xas_nomem(). If xas_nomem() succeeds,
292 * the caller should retry the operation.
293 *
294 * Forward progress is guaranteed as one node is allocated here and
295 * stored in the xa_state where it will be found by xas_alloc(). More
296 * nodes will likely be found in the slab allocator, but we do not tie
297 * them up here.
298 *
299 * Return: true if memory was needed, and was successfully allocated.
300 */
xas_nomem(struct xa_state * xas,gfp_t gfp)301 bool xas_nomem(struct xa_state *xas, gfp_t gfp)
302 {
303 if (xas->xa_node != XA_ERROR(-ENOMEM)) {
304 xas_destroy(xas);
305 return false;
306 }
307 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
308 gfp |= __GFP_ACCOUNT;
309 xas->xa_alloc = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp);
310 if (!xas->xa_alloc)
311 return false;
312 xas->xa_alloc->parent = NULL;
313 XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list));
314 xas->xa_node = XAS_RESTART;
315 return true;
316 }
317 EXPORT_SYMBOL_GPL(xas_nomem);
318
319 /*
320 * __xas_nomem() - Drop locks and allocate memory if needed.
321 * @xas: XArray operation state.
322 * @gfp: Memory allocation flags.
323 *
324 * Internal variant of xas_nomem().
325 *
326 * Return: true if memory was needed, and was successfully allocated.
327 */
__xas_nomem(struct xa_state * xas,gfp_t gfp)328 static bool __xas_nomem(struct xa_state *xas, gfp_t gfp)
329 __must_hold(xas->xa->xa_lock)
330 {
331 unsigned int lock_type = xa_lock_type(xas->xa);
332
333 if (xas->xa_node != XA_ERROR(-ENOMEM)) {
334 xas_destroy(xas);
335 return false;
336 }
337 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
338 gfp |= __GFP_ACCOUNT;
339 if (gfpflags_allow_blocking(gfp)) {
340 xas_unlock_type(xas, lock_type);
341 xas->xa_alloc = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp);
342 xas_lock_type(xas, lock_type);
343 } else {
344 xas->xa_alloc = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp);
345 }
346 if (!xas->xa_alloc)
347 return false;
348 xas->xa_alloc->parent = NULL;
349 XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list));
350 xas->xa_node = XAS_RESTART;
351 return true;
352 }
353
xas_update(struct xa_state * xas,struct xa_node * node)354 static void xas_update(struct xa_state *xas, struct xa_node *node)
355 {
356 if (xas->xa_update)
357 xas->xa_update(node);
358 else
359 XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
360 }
361
xas_alloc(struct xa_state * xas,unsigned int shift)362 static void *xas_alloc(struct xa_state *xas, unsigned int shift)
363 {
364 struct xa_node *parent = xas->xa_node;
365 struct xa_node *node = xas->xa_alloc;
366
367 if (xas_invalid(xas))
368 return NULL;
369
370 if (node) {
371 xas->xa_alloc = NULL;
372 } else {
373 gfp_t gfp = GFP_NOWAIT | __GFP_NOWARN;
374
375 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
376 gfp |= __GFP_ACCOUNT;
377
378 node = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp);
379 if (!node) {
380 xas_set_err(xas, -ENOMEM);
381 return NULL;
382 }
383 }
384
385 if (parent) {
386 node->offset = xas->xa_offset;
387 parent->count++;
388 XA_NODE_BUG_ON(node, parent->count > XA_CHUNK_SIZE);
389 xas_update(xas, parent);
390 }
391 XA_NODE_BUG_ON(node, shift > BITS_PER_LONG);
392 XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
393 node->shift = shift;
394 node->count = 0;
395 node->nr_values = 0;
396 RCU_INIT_POINTER(node->parent, xas->xa_node);
397 node->array = xas->xa;
398
399 return node;
400 }
401
402 #ifdef CONFIG_XARRAY_MULTI
403 /* Returns the number of indices covered by a given xa_state */
xas_size(const struct xa_state * xas)404 static unsigned long xas_size(const struct xa_state *xas)
405 {
406 return (xas->xa_sibs + 1UL) << xas->xa_shift;
407 }
408 #endif
409
410 /*
411 * Use this to calculate the maximum index that will need to be created
412 * in order to add the entry described by @xas. Because we cannot store a
413 * multi-index entry at index 0, the calculation is a little more complex
414 * than you might expect.
415 */
xas_max(struct xa_state * xas)416 static unsigned long xas_max(struct xa_state *xas)
417 {
418 unsigned long max = xas->xa_index;
419
420 #ifdef CONFIG_XARRAY_MULTI
421 if (xas->xa_shift || xas->xa_sibs) {
422 unsigned long mask = xas_size(xas) - 1;
423 max |= mask;
424 if (mask == max)
425 max++;
426 }
427 #endif
428
429 return max;
430 }
431
432 /* The maximum index that can be contained in the array without expanding it */
max_index(void * entry)433 static unsigned long max_index(void *entry)
434 {
435 if (!xa_is_node(entry))
436 return 0;
437 return (XA_CHUNK_SIZE << xa_to_node(entry)->shift) - 1;
438 }
439
xa_zero_to_null(void * entry)440 static inline void *xa_zero_to_null(void *entry)
441 {
442 return xa_is_zero(entry) ? NULL : entry;
443 }
444
xas_shrink(struct xa_state * xas)445 static void xas_shrink(struct xa_state *xas)
446 {
447 struct xarray *xa = xas->xa;
448 struct xa_node *node = xas->xa_node;
449
450 for (;;) {
451 void *entry;
452
453 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
454 if (node->count != 1)
455 break;
456 entry = xa_entry_locked(xa, node, 0);
457 if (!entry)
458 break;
459 if (!xa_is_node(entry) && node->shift)
460 break;
461 if (xa_zero_busy(xa))
462 entry = xa_zero_to_null(entry);
463 xas->xa_node = XAS_BOUNDS;
464
465 RCU_INIT_POINTER(xa->xa_head, entry);
466 if (xa_track_free(xa) && !node_get_mark(node, 0, XA_FREE_MARK))
467 xa_mark_clear(xa, XA_FREE_MARK);
468
469 node->count = 0;
470 node->nr_values = 0;
471 if (!xa_is_node(entry))
472 RCU_INIT_POINTER(node->slots[0], XA_RETRY_ENTRY);
473 xas_update(xas, node);
474 xa_node_free(node);
475 if (!xa_is_node(entry))
476 break;
477 node = xa_to_node(entry);
478 node->parent = NULL;
479 }
480 }
481
482 /*
483 * xas_delete_node() - Attempt to delete an xa_node
484 * @xas: Array operation state.
485 *
486 * Attempts to delete the @xas->xa_node. This will fail if xa->node has
487 * a non-zero reference count.
488 */
xas_delete_node(struct xa_state * xas)489 static void xas_delete_node(struct xa_state *xas)
490 {
491 struct xa_node *node = xas->xa_node;
492
493 for (;;) {
494 struct xa_node *parent;
495
496 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
497 if (node->count)
498 break;
499
500 parent = xa_parent_locked(xas->xa, node);
501 xas->xa_node = parent;
502 xas->xa_offset = node->offset;
503 xa_node_free(node);
504
505 if (!parent) {
506 xas->xa->xa_head = NULL;
507 xas->xa_node = XAS_BOUNDS;
508 return;
509 }
510
511 parent->slots[xas->xa_offset] = NULL;
512 parent->count--;
513 XA_NODE_BUG_ON(parent, parent->count > XA_CHUNK_SIZE);
514 node = parent;
515 xas_update(xas, node);
516 }
517
518 if (!node->parent)
519 xas_shrink(xas);
520 }
521
522 /**
523 * xas_free_nodes() - Free this node and all nodes that it references
524 * @xas: Array operation state.
525 * @top: Node to free
526 *
527 * This node has been removed from the tree. We must now free it and all
528 * of its subnodes. There may be RCU walkers with references into the tree,
529 * so we must replace all entries with retry markers.
530 */
xas_free_nodes(struct xa_state * xas,struct xa_node * top)531 static void xas_free_nodes(struct xa_state *xas, struct xa_node *top)
532 {
533 unsigned int offset = 0;
534 struct xa_node *node = top;
535
536 for (;;) {
537 void *entry = xa_entry_locked(xas->xa, node, offset);
538
539 if (node->shift && xa_is_node(entry)) {
540 node = xa_to_node(entry);
541 offset = 0;
542 continue;
543 }
544 if (entry)
545 RCU_INIT_POINTER(node->slots[offset], XA_RETRY_ENTRY);
546 offset++;
547 while (offset == XA_CHUNK_SIZE) {
548 struct xa_node *parent;
549
550 parent = xa_parent_locked(xas->xa, node);
551 offset = node->offset + 1;
552 node->count = 0;
553 node->nr_values = 0;
554 xas_update(xas, node);
555 xa_node_free(node);
556 if (node == top)
557 return;
558 node = parent;
559 }
560 }
561 }
562
563 /*
564 * xas_expand adds nodes to the head of the tree until it has reached
565 * sufficient height to be able to contain @xas->xa_index
566 */
xas_expand(struct xa_state * xas,void * head)567 static int xas_expand(struct xa_state *xas, void *head)
568 {
569 struct xarray *xa = xas->xa;
570 struct xa_node *node = NULL;
571 unsigned int shift = 0;
572 unsigned long max = xas_max(xas);
573
574 if (!head) {
575 if (max == 0)
576 return 0;
577 while ((max >> shift) >= XA_CHUNK_SIZE)
578 shift += XA_CHUNK_SHIFT;
579 return shift + XA_CHUNK_SHIFT;
580 } else if (xa_is_node(head)) {
581 node = xa_to_node(head);
582 shift = node->shift + XA_CHUNK_SHIFT;
583 }
584 xas->xa_node = NULL;
585
586 while (max > max_index(head)) {
587 xa_mark_t mark = 0;
588
589 XA_NODE_BUG_ON(node, shift > BITS_PER_LONG);
590 node = xas_alloc(xas, shift);
591 if (!node)
592 return -ENOMEM;
593
594 node->count = 1;
595 if (xa_is_value(head))
596 node->nr_values = 1;
597 RCU_INIT_POINTER(node->slots[0], head);
598
599 /* Propagate the aggregated mark info to the new child */
600 for (;;) {
601 if (xa_track_free(xa) && mark == XA_FREE_MARK) {
602 node_mark_all(node, XA_FREE_MARK);
603 if (!xa_marked(xa, XA_FREE_MARK)) {
604 node_clear_mark(node, 0, XA_FREE_MARK);
605 xa_mark_set(xa, XA_FREE_MARK);
606 }
607 } else if (xa_marked(xa, mark)) {
608 node_set_mark(node, 0, mark);
609 }
610 if (mark == XA_MARK_MAX)
611 break;
612 mark_inc(mark);
613 }
614
615 /*
616 * Now that the new node is fully initialised, we can add
617 * it to the tree
618 */
619 if (xa_is_node(head)) {
620 xa_to_node(head)->offset = 0;
621 rcu_assign_pointer(xa_to_node(head)->parent, node);
622 }
623 head = xa_mk_node(node);
624 rcu_assign_pointer(xa->xa_head, head);
625 xas_update(xas, node);
626
627 shift += XA_CHUNK_SHIFT;
628 }
629
630 xas->xa_node = node;
631 return shift;
632 }
633
634 /*
635 * xas_create() - Create a slot to store an entry in.
636 * @xas: XArray operation state.
637 * @allow_root: %true if we can store the entry in the root directly
638 *
639 * Most users will not need to call this function directly, as it is called
640 * by xas_store(). It is useful for doing conditional store operations
641 * (see the xa_cmpxchg() implementation for an example).
642 *
643 * Return: If the slot already existed, returns the contents of this slot.
644 * If the slot was newly created, returns %NULL. If it failed to create the
645 * slot, returns %NULL and indicates the error in @xas.
646 */
xas_create(struct xa_state * xas,bool allow_root)647 static void *xas_create(struct xa_state *xas, bool allow_root)
648 {
649 struct xarray *xa = xas->xa;
650 void *entry;
651 void __rcu **slot;
652 struct xa_node *node = xas->xa_node;
653 int shift;
654 unsigned int order = xas->xa_shift;
655
656 if (xas_top(node)) {
657 entry = xa_head_locked(xa);
658 xas->xa_node = NULL;
659 if (!entry && xa_zero_busy(xa))
660 entry = XA_ZERO_ENTRY;
661 shift = xas_expand(xas, entry);
662 if (shift < 0)
663 return NULL;
664 if (!shift && !allow_root)
665 shift = XA_CHUNK_SHIFT;
666 entry = xa_head_locked(xa);
667 slot = &xa->xa_head;
668 } else if (xas_error(xas)) {
669 return NULL;
670 } else if (node) {
671 unsigned int offset = xas->xa_offset;
672
673 shift = node->shift;
674 entry = xa_entry_locked(xa, node, offset);
675 slot = &node->slots[offset];
676 } else {
677 shift = 0;
678 entry = xa_head_locked(xa);
679 slot = &xa->xa_head;
680 }
681
682 while (shift > order) {
683 shift -= XA_CHUNK_SHIFT;
684 if (!entry) {
685 node = xas_alloc(xas, shift);
686 if (!node)
687 break;
688 if (xa_track_free(xa))
689 node_mark_all(node, XA_FREE_MARK);
690 rcu_assign_pointer(*slot, xa_mk_node(node));
691 } else if (xa_is_node(entry)) {
692 node = xa_to_node(entry);
693 } else {
694 break;
695 }
696 entry = xas_descend(xas, node);
697 slot = &node->slots[xas->xa_offset];
698 }
699
700 return entry;
701 }
702
703 /**
704 * xas_create_range() - Ensure that stores to this range will succeed
705 * @xas: XArray operation state.
706 *
707 * Creates all of the slots in the range covered by @xas. Sets @xas to
708 * create single-index entries and positions it at the beginning of the
709 * range. This is for the benefit of users which have not yet been
710 * converted to use multi-index entries.
711 */
xas_create_range(struct xa_state * xas)712 void xas_create_range(struct xa_state *xas)
713 {
714 unsigned long index = xas->xa_index;
715 unsigned char shift = xas->xa_shift;
716 unsigned char sibs = xas->xa_sibs;
717
718 xas->xa_index |= ((sibs + 1UL) << shift) - 1;
719 if (xas_is_node(xas) && xas->xa_node->shift == xas->xa_shift)
720 xas->xa_offset |= sibs;
721 xas->xa_shift = 0;
722 xas->xa_sibs = 0;
723
724 for (;;) {
725 xas_create(xas, true);
726 if (xas_error(xas))
727 goto restore;
728 if (xas->xa_index <= (index | XA_CHUNK_MASK))
729 goto success;
730 xas->xa_index -= XA_CHUNK_SIZE;
731
732 for (;;) {
733 struct xa_node *node = xas->xa_node;
734 if (node->shift >= shift)
735 break;
736 xas->xa_node = xa_parent_locked(xas->xa, node);
737 xas->xa_offset = node->offset - 1;
738 if (node->offset != 0)
739 break;
740 }
741 }
742
743 restore:
744 xas->xa_shift = shift;
745 xas->xa_sibs = sibs;
746 xas->xa_index = index;
747 return;
748 success:
749 xas->xa_index = index;
750 if (xas->xa_node)
751 xas_set_offset(xas);
752 }
753 EXPORT_SYMBOL_GPL(xas_create_range);
754
update_node(struct xa_state * xas,struct xa_node * node,int count,int values)755 static void update_node(struct xa_state *xas, struct xa_node *node,
756 int count, int values)
757 {
758 if (!node || (!count && !values))
759 return;
760
761 node->count += count;
762 node->nr_values += values;
763 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
764 XA_NODE_BUG_ON(node, node->nr_values > XA_CHUNK_SIZE);
765 xas_update(xas, node);
766 if (count < 0)
767 xas_delete_node(xas);
768 }
769
770 /**
771 * xas_store() - Store this entry in the XArray.
772 * @xas: XArray operation state.
773 * @entry: New entry.
774 *
775 * If @xas is operating on a multi-index entry, the entry returned by this
776 * function is essentially meaningless (it may be an internal entry or it
777 * may be %NULL, even if there are non-NULL entries at some of the indices
778 * covered by the range). This is not a problem for any current users,
779 * and can be changed if needed.
780 *
781 * Return: The old entry at this index.
782 */
xas_store(struct xa_state * xas,void * entry)783 void *xas_store(struct xa_state *xas, void *entry)
784 {
785 struct xa_node *node;
786 void __rcu **slot = &xas->xa->xa_head;
787 unsigned int offset, max;
788 int count = 0;
789 int values = 0;
790 void *first, *next;
791 bool value = xa_is_value(entry);
792
793 if (entry) {
794 bool allow_root = !xa_is_node(entry) && !xa_is_zero(entry);
795 first = xas_create(xas, allow_root);
796 } else {
797 first = xas_load(xas);
798 }
799
800 if (xas_invalid(xas))
801 return first;
802 node = xas->xa_node;
803 if (node && (xas->xa_shift < node->shift))
804 xas->xa_sibs = 0;
805 if ((first == entry) && !xas->xa_sibs)
806 return first;
807
808 next = first;
809 offset = xas->xa_offset;
810 max = xas->xa_offset + xas->xa_sibs;
811 if (node) {
812 slot = &node->slots[offset];
813 if (xas->xa_sibs)
814 xas_squash_marks(xas);
815 }
816 if (!entry)
817 xas_init_marks(xas);
818
819 for (;;) {
820 /*
821 * Must clear the marks before setting the entry to NULL,
822 * otherwise xas_for_each_marked may find a NULL entry and
823 * stop early. rcu_assign_pointer contains a release barrier
824 * so the mark clearing will appear to happen before the
825 * entry is set to NULL.
826 */
827 rcu_assign_pointer(*slot, entry);
828 if (xa_is_node(next) && (!node || node->shift))
829 xas_free_nodes(xas, xa_to_node(next));
830 if (!node)
831 break;
832 count += !next - !entry;
833 values += !xa_is_value(first) - !value;
834 if (entry) {
835 if (offset == max)
836 break;
837 if (!xa_is_sibling(entry))
838 entry = xa_mk_sibling(xas->xa_offset);
839 } else {
840 if (offset == XA_CHUNK_MASK)
841 break;
842 }
843 next = xa_entry_locked(xas->xa, node, ++offset);
844 if (!xa_is_sibling(next)) {
845 if (!entry && (offset > max))
846 break;
847 first = next;
848 }
849 slot++;
850 }
851
852 update_node(xas, node, count, values);
853 return first;
854 }
855 EXPORT_SYMBOL_GPL(xas_store);
856
857 /**
858 * xas_get_mark() - Returns the state of this mark.
859 * @xas: XArray operation state.
860 * @mark: Mark number.
861 *
862 * Return: true if the mark is set, false if the mark is clear or @xas
863 * is in an error state.
864 */
xas_get_mark(const struct xa_state * xas,xa_mark_t mark)865 bool xas_get_mark(const struct xa_state *xas, xa_mark_t mark)
866 {
867 if (xas_invalid(xas))
868 return false;
869 if (!xas->xa_node)
870 return xa_marked(xas->xa, mark);
871 return node_get_mark(xas->xa_node, xas->xa_offset, mark);
872 }
873 EXPORT_SYMBOL_GPL(xas_get_mark);
874
875 /**
876 * xas_set_mark() - Sets the mark on this entry and its parents.
877 * @xas: XArray operation state.
878 * @mark: Mark number.
879 *
880 * Sets the specified mark on this entry, and walks up the tree setting it
881 * on all the ancestor entries. Does nothing if @xas has not been walked to
882 * an entry, or is in an error state.
883 */
xas_set_mark(const struct xa_state * xas,xa_mark_t mark)884 void xas_set_mark(const struct xa_state *xas, xa_mark_t mark)
885 {
886 struct xa_node *node = xas->xa_node;
887 unsigned int offset = xas->xa_offset;
888
889 if (xas_invalid(xas))
890 return;
891
892 while (node) {
893 if (node_set_mark(node, offset, mark))
894 return;
895 offset = node->offset;
896 node = xa_parent_locked(xas->xa, node);
897 }
898
899 if (!xa_marked(xas->xa, mark))
900 xa_mark_set(xas->xa, mark);
901 }
902 EXPORT_SYMBOL_GPL(xas_set_mark);
903
904 /**
905 * xas_clear_mark() - Clears the mark on this entry and its parents.
906 * @xas: XArray operation state.
907 * @mark: Mark number.
908 *
909 * Clears the specified mark on this entry, and walks back to the head
910 * attempting to clear it on all the ancestor entries. Does nothing if
911 * @xas has not been walked to an entry, or is in an error state.
912 */
xas_clear_mark(const struct xa_state * xas,xa_mark_t mark)913 void xas_clear_mark(const struct xa_state *xas, xa_mark_t mark)
914 {
915 struct xa_node *node = xas->xa_node;
916 unsigned int offset = xas->xa_offset;
917
918 if (xas_invalid(xas))
919 return;
920
921 while (node) {
922 if (!node_clear_mark(node, offset, mark))
923 return;
924 if (node_any_mark(node, mark))
925 return;
926
927 offset = node->offset;
928 node = xa_parent_locked(xas->xa, node);
929 }
930
931 if (xa_marked(xas->xa, mark))
932 xa_mark_clear(xas->xa, mark);
933 }
934 EXPORT_SYMBOL_GPL(xas_clear_mark);
935
936 /**
937 * xas_init_marks() - Initialise all marks for the entry
938 * @xas: Array operations state.
939 *
940 * Initialise all marks for the entry specified by @xas. If we're tracking
941 * free entries with a mark, we need to set it on all entries. All other
942 * marks are cleared.
943 *
944 * This implementation is not as efficient as it could be; we may walk
945 * up the tree multiple times.
946 */
xas_init_marks(const struct xa_state * xas)947 void xas_init_marks(const struct xa_state *xas)
948 {
949 xa_mark_t mark = 0;
950
951 for (;;) {
952 if (xa_track_free(xas->xa) && mark == XA_FREE_MARK)
953 xas_set_mark(xas, mark);
954 else
955 xas_clear_mark(xas, mark);
956 if (mark == XA_MARK_MAX)
957 break;
958 mark_inc(mark);
959 }
960 }
961 EXPORT_SYMBOL_GPL(xas_init_marks);
962
963 #ifdef CONFIG_XARRAY_MULTI
node_get_marks(struct xa_node * node,unsigned int offset)964 static unsigned int node_get_marks(struct xa_node *node, unsigned int offset)
965 {
966 unsigned int marks = 0;
967 xa_mark_t mark = XA_MARK_0;
968
969 for (;;) {
970 if (node_get_mark(node, offset, mark))
971 marks |= 1 << (__force unsigned int)mark;
972 if (mark == XA_MARK_MAX)
973 break;
974 mark_inc(mark);
975 }
976
977 return marks;
978 }
979
node_mark_slots(struct xa_node * node,unsigned int sibs,xa_mark_t mark)980 static inline void node_mark_slots(struct xa_node *node, unsigned int sibs,
981 xa_mark_t mark)
982 {
983 int i;
984
985 if (sibs == 0)
986 node_mark_all(node, mark);
987 else {
988 for (i = 0; i < XA_CHUNK_SIZE; i += sibs + 1)
989 node_set_mark(node, i, mark);
990 }
991 }
992
node_set_marks(struct xa_node * node,unsigned int offset,struct xa_node * child,unsigned int sibs,unsigned int marks)993 static void node_set_marks(struct xa_node *node, unsigned int offset,
994 struct xa_node *child, unsigned int sibs,
995 unsigned int marks)
996 {
997 xa_mark_t mark = XA_MARK_0;
998
999 for (;;) {
1000 if (marks & (1 << (__force unsigned int)mark)) {
1001 node_set_mark(node, offset, mark);
1002 if (child)
1003 node_mark_slots(child, sibs, mark);
1004 }
1005 if (mark == XA_MARK_MAX)
1006 break;
1007 mark_inc(mark);
1008 }
1009 }
1010
__xas_init_node_for_split(struct xa_state * xas,struct xa_node * node,void * entry)1011 static void __xas_init_node_for_split(struct xa_state *xas,
1012 struct xa_node *node, void *entry)
1013 {
1014 unsigned int i;
1015 void *sibling = NULL;
1016 unsigned int mask = xas->xa_sibs;
1017
1018 if (!node)
1019 return;
1020 node->array = xas->xa;
1021 for (i = 0; i < XA_CHUNK_SIZE; i++) {
1022 if ((i & mask) == 0) {
1023 RCU_INIT_POINTER(node->slots[i], entry);
1024 sibling = xa_mk_sibling(i);
1025 } else {
1026 RCU_INIT_POINTER(node->slots[i], sibling);
1027 }
1028 }
1029 }
1030
1031 /**
1032 * xas_split_alloc() - Allocate memory for splitting an entry.
1033 * @xas: XArray operation state.
1034 * @entry: New entry which will be stored in the array.
1035 * @order: Current entry order.
1036 * @gfp: Memory allocation flags.
1037 *
1038 * This function should be called before calling xas_split().
1039 * If necessary, it will allocate new nodes (and fill them with @entry)
1040 * to prepare for the upcoming split of an entry of @order size into
1041 * entries of the order stored in the @xas.
1042 *
1043 * Context: May sleep if @gfp flags permit.
1044 */
xas_split_alloc(struct xa_state * xas,void * entry,unsigned int order,gfp_t gfp)1045 void xas_split_alloc(struct xa_state *xas, void *entry, unsigned int order,
1046 gfp_t gfp)
1047 {
1048 unsigned int sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1;
1049
1050 /* XXX: no support for splitting really large entries yet */
1051 if (WARN_ON(xas->xa_shift + 2 * XA_CHUNK_SHIFT <= order))
1052 goto nomem;
1053 if (xas->xa_shift + XA_CHUNK_SHIFT > order)
1054 return;
1055
1056 do {
1057 struct xa_node *node;
1058
1059 node = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp);
1060 if (!node)
1061 goto nomem;
1062
1063 __xas_init_node_for_split(xas, node, entry);
1064 RCU_INIT_POINTER(node->parent, xas->xa_alloc);
1065 xas->xa_alloc = node;
1066 } while (sibs-- > 0);
1067
1068 return;
1069 nomem:
1070 xas_destroy(xas);
1071 xas_set_err(xas, -ENOMEM);
1072 }
1073 EXPORT_SYMBOL_GPL(xas_split_alloc);
1074
1075 /**
1076 * xas_split() - Split a multi-index entry into smaller entries.
1077 * @xas: XArray operation state.
1078 * @entry: New entry to store in the array.
1079 * @order: Current entry order.
1080 *
1081 * The size of the new entries is set in @xas. The value in @entry is
1082 * copied to all the replacement entries.
1083 *
1084 * Context: Any context. The caller should hold the xa_lock.
1085 */
xas_split(struct xa_state * xas,void * entry,unsigned int order)1086 void xas_split(struct xa_state *xas, void *entry, unsigned int order)
1087 {
1088 unsigned int sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1;
1089 unsigned int offset, marks;
1090 struct xa_node *node;
1091 void *curr = xas_load(xas);
1092 int values = 0;
1093
1094 node = xas->xa_node;
1095 if (xas_top(node))
1096 return;
1097
1098 marks = node_get_marks(node, xas->xa_offset);
1099
1100 offset = xas->xa_offset + sibs;
1101 do {
1102 if (xas->xa_shift < node->shift) {
1103 struct xa_node *child = xas->xa_alloc;
1104
1105 xas->xa_alloc = rcu_dereference_raw(child->parent);
1106 child->shift = node->shift - XA_CHUNK_SHIFT;
1107 child->offset = offset;
1108 child->count = XA_CHUNK_SIZE;
1109 child->nr_values = xa_is_value(entry) ?
1110 XA_CHUNK_SIZE : 0;
1111 RCU_INIT_POINTER(child->parent, node);
1112 node_set_marks(node, offset, child, xas->xa_sibs,
1113 marks);
1114 rcu_assign_pointer(node->slots[offset],
1115 xa_mk_node(child));
1116 if (xa_is_value(curr))
1117 values--;
1118 xas_update(xas, child);
1119 } else {
1120 unsigned int canon = offset - xas->xa_sibs;
1121
1122 node_set_marks(node, canon, NULL, 0, marks);
1123 rcu_assign_pointer(node->slots[canon], entry);
1124 while (offset > canon)
1125 rcu_assign_pointer(node->slots[offset--],
1126 xa_mk_sibling(canon));
1127 values += (xa_is_value(entry) - xa_is_value(curr)) *
1128 (xas->xa_sibs + 1);
1129 }
1130 } while (offset-- > xas->xa_offset);
1131
1132 node->nr_values += values;
1133 xas_update(xas, node);
1134 }
1135 EXPORT_SYMBOL_GPL(xas_split);
1136
1137 /**
1138 * xas_try_split_min_order() - Minimal split order xas_try_split() can accept
1139 * @order: Current entry order.
1140 *
1141 * xas_try_split() can split a multi-index entry to smaller than @order - 1 if
1142 * no new xa_node is needed. This function provides the minimal order
1143 * xas_try_split() supports.
1144 *
1145 * Return: the minimal order xas_try_split() supports
1146 *
1147 * Context: Any context.
1148 *
1149 */
xas_try_split_min_order(unsigned int order)1150 unsigned int xas_try_split_min_order(unsigned int order)
1151 {
1152 if (order % XA_CHUNK_SHIFT == 0)
1153 return order == 0 ? 0 : order - 1;
1154
1155 return order - (order % XA_CHUNK_SHIFT);
1156 }
1157 EXPORT_SYMBOL_GPL(xas_try_split_min_order);
1158
1159 /**
1160 * xas_try_split() - Try to split a multi-index entry.
1161 * @xas: XArray operation state.
1162 * @entry: New entry to store in the array.
1163 * @order: Current entry order.
1164 *
1165 * The size of the new entries is set in @xas. The value in @entry is
1166 * copied to all the replacement entries. If and only if one new xa_node is
1167 * needed, the function will use GFP_NOWAIT to get one if xas->xa_alloc is
1168 * NULL. If more new xa_node are needed, the function gives EINVAL error.
1169 *
1170 * NOTE: use xas_try_split_min_order() to get next split order instead of
1171 * @order - 1 if you want to minmize xas_try_split() calls.
1172 *
1173 * Context: Any context. The caller should hold the xa_lock.
1174 */
xas_try_split(struct xa_state * xas,void * entry,unsigned int order)1175 void xas_try_split(struct xa_state *xas, void *entry, unsigned int order)
1176 {
1177 unsigned int sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1;
1178 unsigned int offset, marks;
1179 struct xa_node *node;
1180 void *curr = xas_load(xas);
1181 int values = 0;
1182 gfp_t gfp = GFP_NOWAIT;
1183
1184 node = xas->xa_node;
1185 if (xas_top(node))
1186 return;
1187
1188 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
1189 gfp |= __GFP_ACCOUNT;
1190
1191 marks = node_get_marks(node, xas->xa_offset);
1192
1193 offset = xas->xa_offset + sibs;
1194
1195 if (xas->xa_shift < node->shift) {
1196 struct xa_node *child = xas->xa_alloc;
1197 unsigned int expected_sibs =
1198 (1 << ((order - 1) % XA_CHUNK_SHIFT)) - 1;
1199
1200 /*
1201 * No support for splitting sibling entries
1202 * (horizontally) or cascade split (vertically), which
1203 * requires two or more new xa_nodes.
1204 * Since if one xa_node allocation fails,
1205 * it is hard to free the prior allocations.
1206 */
1207 if (sibs || xas->xa_sibs != expected_sibs) {
1208 xas_destroy(xas);
1209 xas_set_err(xas, -EINVAL);
1210 return;
1211 }
1212
1213 if (!child) {
1214 child = kmem_cache_alloc_lru(radix_tree_node_cachep,
1215 xas->xa_lru, gfp);
1216 if (!child) {
1217 xas_destroy(xas);
1218 xas_set_err(xas, -ENOMEM);
1219 return;
1220 }
1221 RCU_INIT_POINTER(child->parent, xas->xa_alloc);
1222 }
1223 __xas_init_node_for_split(xas, child, entry);
1224
1225 xas->xa_alloc = rcu_dereference_raw(child->parent);
1226 child->shift = node->shift - XA_CHUNK_SHIFT;
1227 child->offset = offset;
1228 child->count = XA_CHUNK_SIZE;
1229 child->nr_values = xa_is_value(entry) ?
1230 XA_CHUNK_SIZE : 0;
1231 RCU_INIT_POINTER(child->parent, node);
1232 node_set_marks(node, offset, child, xas->xa_sibs,
1233 marks);
1234 rcu_assign_pointer(node->slots[offset],
1235 xa_mk_node(child));
1236 if (xa_is_value(curr))
1237 values--;
1238 xas_update(xas, child);
1239
1240 } else {
1241 do {
1242 unsigned int canon = offset - xas->xa_sibs;
1243
1244 node_set_marks(node, canon, NULL, 0, marks);
1245 rcu_assign_pointer(node->slots[canon], entry);
1246 while (offset > canon)
1247 rcu_assign_pointer(node->slots[offset--],
1248 xa_mk_sibling(canon));
1249 values += (xa_is_value(entry) - xa_is_value(curr)) *
1250 (xas->xa_sibs + 1);
1251 } while (offset-- > xas->xa_offset);
1252 }
1253
1254 node->nr_values += values;
1255 xas_update(xas, node);
1256 }
1257 EXPORT_SYMBOL_GPL(xas_try_split);
1258 #endif
1259
1260 /**
1261 * xas_pause() - Pause a walk to drop a lock.
1262 * @xas: XArray operation state.
1263 *
1264 * Some users need to pause a walk and drop the lock they're holding in
1265 * order to yield to a higher priority thread or carry out an operation
1266 * on an entry. Those users should call this function before they drop
1267 * the lock. It resets the @xas to be suitable for the next iteration
1268 * of the loop after the user has reacquired the lock. If most entries
1269 * found during a walk require you to call xas_pause(), the xa_for_each()
1270 * iterator may be more appropriate.
1271 *
1272 * Note that xas_pause() only works for forward iteration. If a user needs
1273 * to pause a reverse iteration, we will need a xas_pause_rev().
1274 */
xas_pause(struct xa_state * xas)1275 void xas_pause(struct xa_state *xas)
1276 {
1277 struct xa_node *node = xas->xa_node;
1278
1279 if (xas_invalid(xas))
1280 return;
1281
1282 xas->xa_node = XAS_RESTART;
1283 if (node) {
1284 unsigned long offset = xas->xa_offset;
1285 while (++offset < XA_CHUNK_SIZE) {
1286 if (!xa_is_sibling(xa_entry(xas->xa, node, offset)))
1287 break;
1288 }
1289 xas->xa_index &= ~0UL << node->shift;
1290 xas->xa_index += (offset - xas->xa_offset) << node->shift;
1291 if (xas->xa_index == 0)
1292 xas->xa_node = XAS_BOUNDS;
1293 } else {
1294 xas->xa_index++;
1295 }
1296 }
1297 EXPORT_SYMBOL_GPL(xas_pause);
1298
1299 /*
1300 * __xas_prev() - Find the previous entry in the XArray.
1301 * @xas: XArray operation state.
1302 *
1303 * Helper function for xas_prev() which handles all the complex cases
1304 * out of line.
1305 */
__xas_prev(struct xa_state * xas)1306 void *__xas_prev(struct xa_state *xas)
1307 {
1308 void *entry;
1309
1310 if (!xas_frozen(xas->xa_node))
1311 xas->xa_index--;
1312 if (!xas->xa_node)
1313 return set_bounds(xas);
1314 if (xas_not_node(xas->xa_node))
1315 return xas_load(xas);
1316
1317 if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node))
1318 xas->xa_offset--;
1319
1320 while (xas->xa_offset == 255) {
1321 xas->xa_offset = xas->xa_node->offset - 1;
1322 xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1323 if (!xas->xa_node)
1324 return set_bounds(xas);
1325 }
1326
1327 for (;;) {
1328 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1329 if (!xa_is_node(entry))
1330 return entry;
1331
1332 xas->xa_node = xa_to_node(entry);
1333 xas_set_offset(xas);
1334 }
1335 }
1336 EXPORT_SYMBOL_GPL(__xas_prev);
1337
1338 /*
1339 * __xas_next() - Find the next entry in the XArray.
1340 * @xas: XArray operation state.
1341 *
1342 * Helper function for xas_next() which handles all the complex cases
1343 * out of line.
1344 */
__xas_next(struct xa_state * xas)1345 void *__xas_next(struct xa_state *xas)
1346 {
1347 void *entry;
1348
1349 if (!xas_frozen(xas->xa_node))
1350 xas->xa_index++;
1351 if (!xas->xa_node)
1352 return set_bounds(xas);
1353 if (xas_not_node(xas->xa_node))
1354 return xas_load(xas);
1355
1356 if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node))
1357 xas->xa_offset++;
1358
1359 while (xas->xa_offset == XA_CHUNK_SIZE) {
1360 xas->xa_offset = xas->xa_node->offset + 1;
1361 xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1362 if (!xas->xa_node)
1363 return set_bounds(xas);
1364 }
1365
1366 for (;;) {
1367 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1368 if (!xa_is_node(entry))
1369 return entry;
1370
1371 xas->xa_node = xa_to_node(entry);
1372 xas_set_offset(xas);
1373 }
1374 }
1375 EXPORT_SYMBOL_GPL(__xas_next);
1376
1377 /**
1378 * xas_find() - Find the next present entry in the XArray.
1379 * @xas: XArray operation state.
1380 * @max: Highest index to return.
1381 *
1382 * If the @xas has not yet been walked to an entry, return the entry
1383 * which has an index >= xas.xa_index. If it has been walked, the entry
1384 * currently being pointed at has been processed, and so we move to the
1385 * next entry.
1386 *
1387 * If no entry is found and the array is smaller than @max, the iterator
1388 * is set to the smallest index not yet in the array. This allows @xas
1389 * to be immediately passed to xas_store().
1390 *
1391 * Return: The entry, if found, otherwise %NULL.
1392 */
xas_find(struct xa_state * xas,unsigned long max)1393 void *xas_find(struct xa_state *xas, unsigned long max)
1394 {
1395 void *entry;
1396
1397 if (xas_error(xas) || xas->xa_node == XAS_BOUNDS)
1398 return NULL;
1399 if (xas->xa_index > max)
1400 return set_bounds(xas);
1401
1402 if (!xas->xa_node) {
1403 xas->xa_index = 1;
1404 return set_bounds(xas);
1405 } else if (xas->xa_node == XAS_RESTART) {
1406 entry = xas_load(xas);
1407 if (entry || xas_not_node(xas->xa_node))
1408 return entry;
1409 } else if (!xas->xa_node->shift &&
1410 xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK)) {
1411 xas->xa_offset = ((xas->xa_index - 1) & XA_CHUNK_MASK) + 1;
1412 }
1413
1414 xas_next_offset(xas);
1415
1416 while (xas->xa_node && (xas->xa_index <= max)) {
1417 if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) {
1418 xas->xa_offset = xas->xa_node->offset + 1;
1419 xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1420 continue;
1421 }
1422
1423 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1424 if (xa_is_node(entry)) {
1425 xas->xa_node = xa_to_node(entry);
1426 xas->xa_offset = 0;
1427 continue;
1428 }
1429 if (entry && !xa_is_sibling(entry))
1430 return entry;
1431
1432 xas_next_offset(xas);
1433 }
1434
1435 if (!xas->xa_node)
1436 xas->xa_node = XAS_BOUNDS;
1437 return NULL;
1438 }
1439 EXPORT_SYMBOL_GPL(xas_find);
1440
1441 /**
1442 * xas_find_marked() - Find the next marked entry in the XArray.
1443 * @xas: XArray operation state.
1444 * @max: Highest index to return.
1445 * @mark: Mark number to search for.
1446 *
1447 * If the @xas has not yet been walked to an entry, return the marked entry
1448 * which has an index >= xas.xa_index. If it has been walked, the entry
1449 * currently being pointed at has been processed, and so we return the
1450 * first marked entry with an index > xas.xa_index.
1451 *
1452 * If no marked entry is found and the array is smaller than @max, @xas is
1453 * set to the bounds state and xas->xa_index is set to the smallest index
1454 * not yet in the array. This allows @xas to be immediately passed to
1455 * xas_store().
1456 *
1457 * If no entry is found before @max is reached, @xas is set to the restart
1458 * state.
1459 *
1460 * Return: The entry, if found, otherwise %NULL.
1461 */
xas_find_marked(struct xa_state * xas,unsigned long max,xa_mark_t mark)1462 void *xas_find_marked(struct xa_state *xas, unsigned long max, xa_mark_t mark)
1463 {
1464 bool advance = true;
1465 unsigned int offset;
1466 void *entry;
1467
1468 if (xas_error(xas))
1469 return NULL;
1470 if (xas->xa_index > max)
1471 goto max;
1472
1473 if (!xas->xa_node) {
1474 xas->xa_index = 1;
1475 goto out;
1476 } else if (xas_top(xas->xa_node)) {
1477 advance = false;
1478 entry = xa_head(xas->xa);
1479 xas->xa_node = NULL;
1480 if (xas->xa_index > max_index(entry))
1481 goto out;
1482 if (!xa_is_node(entry)) {
1483 if (xa_marked(xas->xa, mark))
1484 return entry;
1485 xas->xa_index = 1;
1486 goto out;
1487 }
1488 xas->xa_node = xa_to_node(entry);
1489 xas->xa_offset = xas->xa_index >> xas->xa_node->shift;
1490 }
1491
1492 while (xas->xa_index <= max) {
1493 if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) {
1494 xas->xa_offset = xas->xa_node->offset + 1;
1495 xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1496 if (!xas->xa_node)
1497 break;
1498 advance = false;
1499 continue;
1500 }
1501
1502 if (!advance) {
1503 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1504 if (xa_is_sibling(entry)) {
1505 xas->xa_offset = xa_to_sibling(entry);
1506 xas_move_index(xas, xas->xa_offset);
1507 }
1508 }
1509
1510 offset = xas_find_chunk(xas, advance, mark);
1511 if (offset > xas->xa_offset) {
1512 advance = false;
1513 xas_move_index(xas, offset);
1514 /* Mind the wrap */
1515 if ((xas->xa_index - 1) >= max)
1516 goto max;
1517 xas->xa_offset = offset;
1518 if (offset == XA_CHUNK_SIZE)
1519 continue;
1520 }
1521
1522 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1523 if (!entry && !(xa_track_free(xas->xa) && mark == XA_FREE_MARK))
1524 continue;
1525 if (xa_is_sibling(entry))
1526 continue;
1527 if (!xa_is_node(entry))
1528 return entry;
1529 xas->xa_node = xa_to_node(entry);
1530 xas_set_offset(xas);
1531 }
1532
1533 out:
1534 if (xas->xa_index > max)
1535 goto max;
1536 return set_bounds(xas);
1537 max:
1538 xas->xa_node = XAS_RESTART;
1539 return NULL;
1540 }
1541 EXPORT_SYMBOL_GPL(xas_find_marked);
1542
1543 /**
1544 * xas_find_conflict() - Find the next present entry in a range.
1545 * @xas: XArray operation state.
1546 *
1547 * The @xas describes both a range and a position within that range.
1548 *
1549 * Context: Any context. Expects xa_lock to be held.
1550 * Return: The next entry in the range covered by @xas or %NULL.
1551 */
xas_find_conflict(struct xa_state * xas)1552 void *xas_find_conflict(struct xa_state *xas)
1553 {
1554 void *curr;
1555
1556 if (xas_error(xas))
1557 return NULL;
1558
1559 if (!xas->xa_node)
1560 return NULL;
1561
1562 if (xas_top(xas->xa_node)) {
1563 curr = xas_start(xas);
1564 if (!curr)
1565 return NULL;
1566 while (xa_is_node(curr)) {
1567 struct xa_node *node = xa_to_node(curr);
1568 curr = xas_descend(xas, node);
1569 }
1570 if (curr)
1571 return curr;
1572 }
1573
1574 if (xas->xa_node->shift > xas->xa_shift)
1575 return NULL;
1576
1577 for (;;) {
1578 if (xas->xa_node->shift == xas->xa_shift) {
1579 if ((xas->xa_offset & xas->xa_sibs) == xas->xa_sibs)
1580 break;
1581 } else if (xas->xa_offset == XA_CHUNK_MASK) {
1582 xas->xa_offset = xas->xa_node->offset;
1583 xas->xa_node = xa_parent_locked(xas->xa, xas->xa_node);
1584 if (!xas->xa_node)
1585 break;
1586 continue;
1587 }
1588 curr = xa_entry_locked(xas->xa, xas->xa_node, ++xas->xa_offset);
1589 if (xa_is_sibling(curr))
1590 continue;
1591 while (xa_is_node(curr)) {
1592 xas->xa_node = xa_to_node(curr);
1593 xas->xa_offset = 0;
1594 curr = xa_entry_locked(xas->xa, xas->xa_node, 0);
1595 }
1596 if (curr)
1597 return curr;
1598 }
1599 xas->xa_offset -= xas->xa_sibs;
1600 return NULL;
1601 }
1602 EXPORT_SYMBOL_GPL(xas_find_conflict);
1603
1604 /**
1605 * xa_load() - Load an entry from an XArray.
1606 * @xa: XArray.
1607 * @index: index into array.
1608 *
1609 * Context: Any context. Takes and releases the RCU lock.
1610 * Return: The entry at @index in @xa.
1611 */
xa_load(struct xarray * xa,unsigned long index)1612 void *xa_load(struct xarray *xa, unsigned long index)
1613 {
1614 XA_STATE(xas, xa, index);
1615 void *entry;
1616
1617 rcu_read_lock();
1618 do {
1619 entry = xa_zero_to_null(xas_load(&xas));
1620 } while (xas_retry(&xas, entry));
1621 rcu_read_unlock();
1622
1623 return entry;
1624 }
1625 EXPORT_SYMBOL(xa_load);
1626
xas_result(struct xa_state * xas,void * curr)1627 static void *xas_result(struct xa_state *xas, void *curr)
1628 {
1629 if (xas_error(xas))
1630 curr = xas->xa_node;
1631 return curr;
1632 }
1633
1634 /**
1635 * __xa_erase() - Erase this entry from the XArray while locked.
1636 * @xa: XArray.
1637 * @index: Index into array.
1638 *
1639 * After this function returns, loading from @index will return %NULL.
1640 * If the index is part of a multi-index entry, all indices will be erased
1641 * and none of the entries will be part of a multi-index entry.
1642 *
1643 * Context: Any context. Expects xa_lock to be held on entry.
1644 * Return: The entry which used to be at this index.
1645 */
__xa_erase(struct xarray * xa,unsigned long index)1646 void *__xa_erase(struct xarray *xa, unsigned long index)
1647 {
1648 XA_STATE(xas, xa, index);
1649 return xas_result(&xas, xa_zero_to_null(xas_store(&xas, NULL)));
1650 }
1651 EXPORT_SYMBOL(__xa_erase);
1652
1653 /**
1654 * xa_erase() - Erase this entry from the XArray.
1655 * @xa: XArray.
1656 * @index: Index of entry.
1657 *
1658 * After this function returns, loading from @index will return %NULL.
1659 * If the index is part of a multi-index entry, all indices will be erased
1660 * and none of the entries will be part of a multi-index entry.
1661 *
1662 * Context: Any context. Takes and releases the xa_lock.
1663 * Return: The entry which used to be at this index.
1664 */
xa_erase(struct xarray * xa,unsigned long index)1665 void *xa_erase(struct xarray *xa, unsigned long index)
1666 {
1667 void *entry;
1668
1669 xa_lock(xa);
1670 entry = __xa_erase(xa, index);
1671 xa_unlock(xa);
1672
1673 return entry;
1674 }
1675 EXPORT_SYMBOL(xa_erase);
1676
1677 /**
1678 * __xa_store() - Store this entry in the XArray.
1679 * @xa: XArray.
1680 * @index: Index into array.
1681 * @entry: New entry.
1682 * @gfp: Memory allocation flags.
1683 *
1684 * You must already be holding the xa_lock when calling this function.
1685 * It will drop the lock if needed to allocate memory, and then reacquire
1686 * it afterwards.
1687 *
1688 * Context: Any context. Expects xa_lock to be held on entry. May
1689 * release and reacquire xa_lock if @gfp flags permit.
1690 * Return: The old entry at this index or xa_err() if an error happened.
1691 */
__xa_store(struct xarray * xa,unsigned long index,void * entry,gfp_t gfp)1692 void *__xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1693 {
1694 XA_STATE(xas, xa, index);
1695 void *curr;
1696
1697 if (WARN_ON_ONCE(xa_is_advanced(entry)))
1698 return XA_ERROR(-EINVAL);
1699 if (xa_track_free(xa) && !entry)
1700 entry = XA_ZERO_ENTRY;
1701
1702 do {
1703 curr = xas_store(&xas, entry);
1704 if (xa_track_free(xa))
1705 xas_clear_mark(&xas, XA_FREE_MARK);
1706 } while (__xas_nomem(&xas, gfp));
1707
1708 return xas_result(&xas, xa_zero_to_null(curr));
1709 }
1710 EXPORT_SYMBOL(__xa_store);
1711
1712 /**
1713 * xa_store() - Store this entry in the XArray.
1714 * @xa: XArray.
1715 * @index: Index into array.
1716 * @entry: New entry.
1717 * @gfp: Memory allocation flags.
1718 *
1719 * After this function returns, loads from this index will return @entry.
1720 * Storing into an existing multi-index entry updates the entry of every index.
1721 * The marks associated with @index are unaffected unless @entry is %NULL.
1722 *
1723 * Context: Any context. Takes and releases the xa_lock.
1724 * May sleep if the @gfp flags permit.
1725 * Return: The old entry at this index on success, xa_err(-EINVAL) if @entry
1726 * cannot be stored in an XArray, or xa_err(-ENOMEM) if memory allocation
1727 * failed.
1728 */
xa_store(struct xarray * xa,unsigned long index,void * entry,gfp_t gfp)1729 void *xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1730 {
1731 void *curr;
1732
1733 xa_lock(xa);
1734 curr = __xa_store(xa, index, entry, gfp);
1735 xa_unlock(xa);
1736
1737 return curr;
1738 }
1739 EXPORT_SYMBOL(xa_store);
1740
1741 static inline void *__xa_cmpxchg_raw(struct xarray *xa, unsigned long index,
1742 void *old, void *entry, gfp_t gfp);
1743
1744 /**
1745 * __xa_cmpxchg() - Store this entry in the XArray.
1746 * @xa: XArray.
1747 * @index: Index into array.
1748 * @old: Old value to test against.
1749 * @entry: New entry.
1750 * @gfp: Memory allocation flags.
1751 *
1752 * You must already be holding the xa_lock when calling this function.
1753 * It will drop the lock if needed to allocate memory, and then reacquire
1754 * it afterwards.
1755 *
1756 * Context: Any context. Expects xa_lock to be held on entry. May
1757 * release and reacquire xa_lock if @gfp flags permit.
1758 * Return: The old entry at this index or xa_err() if an error happened.
1759 */
__xa_cmpxchg(struct xarray * xa,unsigned long index,void * old,void * entry,gfp_t gfp)1760 void *__xa_cmpxchg(struct xarray *xa, unsigned long index,
1761 void *old, void *entry, gfp_t gfp)
1762 {
1763 return xa_zero_to_null(__xa_cmpxchg_raw(xa, index, old, entry, gfp));
1764 }
1765 EXPORT_SYMBOL(__xa_cmpxchg);
1766
__xa_cmpxchg_raw(struct xarray * xa,unsigned long index,void * old,void * entry,gfp_t gfp)1767 static inline void *__xa_cmpxchg_raw(struct xarray *xa, unsigned long index,
1768 void *old, void *entry, gfp_t gfp)
1769 {
1770 XA_STATE(xas, xa, index);
1771 void *curr;
1772
1773 if (WARN_ON_ONCE(xa_is_advanced(entry)))
1774 return XA_ERROR(-EINVAL);
1775
1776 do {
1777 curr = xas_load(&xas);
1778 if (curr == old) {
1779 xas_store(&xas, entry);
1780 if (xa_track_free(xa) && entry && !curr)
1781 xas_clear_mark(&xas, XA_FREE_MARK);
1782 }
1783 } while (__xas_nomem(&xas, gfp));
1784
1785 return xas_result(&xas, curr);
1786 }
1787
1788 /**
1789 * __xa_insert() - Store this entry in the XArray if no entry is present.
1790 * @xa: XArray.
1791 * @index: Index into array.
1792 * @entry: New entry.
1793 * @gfp: Memory allocation flags.
1794 *
1795 * Inserting a NULL entry will store a reserved entry (like xa_reserve())
1796 * if no entry is present. Inserting will fail if a reserved entry is
1797 * present, even though loading from this index will return NULL.
1798 *
1799 * Context: Any context. Expects xa_lock to be held on entry. May
1800 * release and reacquire xa_lock if @gfp flags permit.
1801 * Return: 0 if the store succeeded. -EBUSY if another entry was present.
1802 * -ENOMEM if memory could not be allocated.
1803 */
__xa_insert(struct xarray * xa,unsigned long index,void * entry,gfp_t gfp)1804 int __xa_insert(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1805 {
1806 void *curr;
1807 int errno;
1808
1809 if (!entry)
1810 entry = XA_ZERO_ENTRY;
1811 curr = __xa_cmpxchg_raw(xa, index, NULL, entry, gfp);
1812 errno = xa_err(curr);
1813 if (errno)
1814 return errno;
1815 return (curr != NULL) ? -EBUSY : 0;
1816 }
1817 EXPORT_SYMBOL(__xa_insert);
1818
1819 #ifdef CONFIG_XARRAY_MULTI
xas_set_range(struct xa_state * xas,unsigned long first,unsigned long last)1820 static void xas_set_range(struct xa_state *xas, unsigned long first,
1821 unsigned long last)
1822 {
1823 unsigned int shift = 0;
1824 unsigned long sibs = last - first;
1825 unsigned int offset = XA_CHUNK_MASK;
1826
1827 xas_set(xas, first);
1828
1829 while ((first & XA_CHUNK_MASK) == 0) {
1830 if (sibs < XA_CHUNK_MASK)
1831 break;
1832 if ((sibs == XA_CHUNK_MASK) && (offset < XA_CHUNK_MASK))
1833 break;
1834 shift += XA_CHUNK_SHIFT;
1835 if (offset == XA_CHUNK_MASK)
1836 offset = sibs & XA_CHUNK_MASK;
1837 sibs >>= XA_CHUNK_SHIFT;
1838 first >>= XA_CHUNK_SHIFT;
1839 }
1840
1841 offset = first & XA_CHUNK_MASK;
1842 if (offset + sibs > XA_CHUNK_MASK)
1843 sibs = XA_CHUNK_MASK - offset;
1844 if ((((first + sibs + 1) << shift) - 1) > last)
1845 sibs -= 1;
1846
1847 xas->xa_shift = shift;
1848 xas->xa_sibs = sibs;
1849 }
1850
1851 /**
1852 * xa_store_range() - Store this entry at a range of indices in the XArray.
1853 * @xa: XArray.
1854 * @first: First index to affect.
1855 * @last: Last index to affect.
1856 * @entry: New entry.
1857 * @gfp: Memory allocation flags.
1858 *
1859 * After this function returns, loads from any index between @first and @last,
1860 * inclusive will return @entry.
1861 * Storing into an existing multi-index entry updates the entry of every index.
1862 * The marks associated with @index are unaffected unless @entry is %NULL.
1863 *
1864 * Context: Process context. Takes and releases the xa_lock. May sleep
1865 * if the @gfp flags permit.
1866 * Return: %NULL on success, xa_err(-EINVAL) if @entry cannot be stored in
1867 * an XArray, or xa_err(-ENOMEM) if memory allocation failed.
1868 */
xa_store_range(struct xarray * xa,unsigned long first,unsigned long last,void * entry,gfp_t gfp)1869 void *xa_store_range(struct xarray *xa, unsigned long first,
1870 unsigned long last, void *entry, gfp_t gfp)
1871 {
1872 XA_STATE(xas, xa, 0);
1873
1874 if (WARN_ON_ONCE(xa_is_internal(entry)))
1875 return XA_ERROR(-EINVAL);
1876 if (last < first)
1877 return XA_ERROR(-EINVAL);
1878
1879 do {
1880 xas_lock(&xas);
1881 if (entry) {
1882 unsigned int order = BITS_PER_LONG;
1883 if (last + 1)
1884 order = __ffs(last + 1);
1885 xas_set_order(&xas, last, order);
1886 xas_create(&xas, true);
1887 if (xas_error(&xas))
1888 goto unlock;
1889 }
1890 do {
1891 xas_set_range(&xas, first, last);
1892 xas_store(&xas, entry);
1893 if (xas_error(&xas))
1894 goto unlock;
1895 first += xas_size(&xas);
1896 } while (first <= last);
1897 unlock:
1898 xas_unlock(&xas);
1899 } while (xas_nomem(&xas, gfp));
1900
1901 return xas_result(&xas, NULL);
1902 }
1903 EXPORT_SYMBOL(xa_store_range);
1904
1905 /**
1906 * xas_get_order() - Get the order of an entry.
1907 * @xas: XArray operation state.
1908 *
1909 * Called after xas_load, the xas should not be in an error state.
1910 *
1911 * Return: A number between 0 and 63 indicating the order of the entry.
1912 */
xas_get_order(struct xa_state * xas)1913 int xas_get_order(struct xa_state *xas)
1914 {
1915 int order = 0;
1916
1917 if (!xas->xa_node)
1918 return 0;
1919
1920 for (;;) {
1921 unsigned int slot = xas->xa_offset + (1 << order);
1922
1923 if (slot >= XA_CHUNK_SIZE)
1924 break;
1925 if (!xa_is_sibling(xa_entry(xas->xa, xas->xa_node, slot)))
1926 break;
1927 order++;
1928 }
1929
1930 order += xas->xa_node->shift;
1931 return order;
1932 }
1933 EXPORT_SYMBOL_GPL(xas_get_order);
1934
1935 /**
1936 * xa_get_order() - Get the order of an entry.
1937 * @xa: XArray.
1938 * @index: Index of the entry.
1939 *
1940 * Return: A number between 0 and 63 indicating the order of the entry.
1941 */
xa_get_order(struct xarray * xa,unsigned long index)1942 int xa_get_order(struct xarray *xa, unsigned long index)
1943 {
1944 XA_STATE(xas, xa, index);
1945 int order = 0;
1946 void *entry;
1947
1948 rcu_read_lock();
1949 entry = xas_load(&xas);
1950 if (entry)
1951 order = xas_get_order(&xas);
1952 rcu_read_unlock();
1953
1954 return order;
1955 }
1956 EXPORT_SYMBOL(xa_get_order);
1957 #endif /* CONFIG_XARRAY_MULTI */
1958
1959 /**
1960 * __xa_alloc() - Find somewhere to store this entry in the XArray.
1961 * @xa: XArray.
1962 * @id: Pointer to ID.
1963 * @limit: Range for allocated ID.
1964 * @entry: New entry.
1965 * @gfp: Memory allocation flags.
1966 *
1967 * Finds an empty entry in @xa between @limit.min and @limit.max,
1968 * stores the index into the @id pointer, then stores the entry at
1969 * that index. A concurrent lookup will not see an uninitialised @id.
1970 *
1971 * Must only be operated on an xarray initialized with flag XA_FLAGS_ALLOC set
1972 * in xa_init_flags().
1973 *
1974 * Context: Any context. Expects xa_lock to be held on entry. May
1975 * release and reacquire xa_lock if @gfp flags permit.
1976 * Return: 0 on success, -ENOMEM if memory could not be allocated or
1977 * -EBUSY if there are no free entries in @limit.
1978 */
__xa_alloc(struct xarray * xa,u32 * id,void * entry,struct xa_limit limit,gfp_t gfp)1979 int __xa_alloc(struct xarray *xa, u32 *id, void *entry,
1980 struct xa_limit limit, gfp_t gfp)
1981 {
1982 XA_STATE(xas, xa, 0);
1983
1984 if (WARN_ON_ONCE(xa_is_advanced(entry)))
1985 return -EINVAL;
1986 if (WARN_ON_ONCE(!xa_track_free(xa)))
1987 return -EINVAL;
1988
1989 if (!entry)
1990 entry = XA_ZERO_ENTRY;
1991
1992 do {
1993 xas.xa_index = limit.min;
1994 xas_find_marked(&xas, limit.max, XA_FREE_MARK);
1995 if (xas.xa_node == XAS_RESTART)
1996 xas_set_err(&xas, -EBUSY);
1997 else
1998 *id = xas.xa_index;
1999 xas_store(&xas, entry);
2000 xas_clear_mark(&xas, XA_FREE_MARK);
2001 } while (__xas_nomem(&xas, gfp));
2002
2003 return xas_error(&xas);
2004 }
2005 EXPORT_SYMBOL(__xa_alloc);
2006
2007 /**
2008 * __xa_alloc_cyclic() - Find somewhere to store this entry in the XArray.
2009 * @xa: XArray.
2010 * @id: Pointer to ID.
2011 * @entry: New entry.
2012 * @limit: Range of allocated ID.
2013 * @next: Pointer to next ID to allocate.
2014 * @gfp: Memory allocation flags.
2015 *
2016 * Finds an empty entry in @xa between @limit.min and @limit.max,
2017 * stores the index into the @id pointer, then stores the entry at
2018 * that index. A concurrent lookup will not see an uninitialised @id.
2019 * The search for an empty entry will start at @next and will wrap
2020 * around if necessary.
2021 *
2022 * Must only be operated on an xarray initialized with flag XA_FLAGS_ALLOC set
2023 * in xa_init_flags().
2024 *
2025 * Context: Any context. Expects xa_lock to be held on entry. May
2026 * release and reacquire xa_lock if @gfp flags permit.
2027 * Return: 0 if the allocation succeeded without wrapping. 1 if the
2028 * allocation succeeded after wrapping, -ENOMEM if memory could not be
2029 * allocated or -EBUSY if there are no free entries in @limit.
2030 */
__xa_alloc_cyclic(struct xarray * xa,u32 * id,void * entry,struct xa_limit limit,u32 * next,gfp_t gfp)2031 int __xa_alloc_cyclic(struct xarray *xa, u32 *id, void *entry,
2032 struct xa_limit limit, u32 *next, gfp_t gfp)
2033 {
2034 u32 min = limit.min;
2035 int ret;
2036
2037 limit.min = max(min, *next);
2038 ret = __xa_alloc(xa, id, entry, limit, gfp);
2039 if ((xa->xa_flags & XA_FLAGS_ALLOC_WRAPPED) && ret == 0) {
2040 xa->xa_flags &= ~XA_FLAGS_ALLOC_WRAPPED;
2041 ret = 1;
2042 }
2043
2044 if (ret < 0 && limit.min > min) {
2045 limit.min = min;
2046 ret = __xa_alloc(xa, id, entry, limit, gfp);
2047 if (ret == 0)
2048 ret = 1;
2049 }
2050
2051 if (ret >= 0) {
2052 *next = *id + 1;
2053 if (*next == 0)
2054 xa->xa_flags |= XA_FLAGS_ALLOC_WRAPPED;
2055 }
2056 return ret;
2057 }
2058 EXPORT_SYMBOL(__xa_alloc_cyclic);
2059
2060 /**
2061 * __xa_set_mark() - Set this mark on this entry while locked.
2062 * @xa: XArray.
2063 * @index: Index of entry.
2064 * @mark: Mark number.
2065 *
2066 * Attempting to set a mark on a %NULL entry does not succeed.
2067 *
2068 * Context: Any context. Expects xa_lock to be held on entry.
2069 */
__xa_set_mark(struct xarray * xa,unsigned long index,xa_mark_t mark)2070 void __xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
2071 {
2072 XA_STATE(xas, xa, index);
2073 void *entry = xas_load(&xas);
2074
2075 if (entry)
2076 xas_set_mark(&xas, mark);
2077 }
2078 EXPORT_SYMBOL(__xa_set_mark);
2079
2080 /**
2081 * __xa_clear_mark() - Clear this mark on this entry while locked.
2082 * @xa: XArray.
2083 * @index: Index of entry.
2084 * @mark: Mark number.
2085 *
2086 * Context: Any context. Expects xa_lock to be held on entry.
2087 */
__xa_clear_mark(struct xarray * xa,unsigned long index,xa_mark_t mark)2088 void __xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
2089 {
2090 XA_STATE(xas, xa, index);
2091 void *entry = xas_load(&xas);
2092
2093 if (entry)
2094 xas_clear_mark(&xas, mark);
2095 }
2096 EXPORT_SYMBOL(__xa_clear_mark);
2097
2098 /**
2099 * xa_get_mark() - Inquire whether this mark is set on this entry.
2100 * @xa: XArray.
2101 * @index: Index of entry.
2102 * @mark: Mark number.
2103 *
2104 * This function uses the RCU read lock, so the result may be out of date
2105 * by the time it returns. If you need the result to be stable, use a lock.
2106 *
2107 * Context: Any context. Takes and releases the RCU lock.
2108 * Return: True if the entry at @index has this mark set, false if it doesn't.
2109 */
xa_get_mark(struct xarray * xa,unsigned long index,xa_mark_t mark)2110 bool xa_get_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
2111 {
2112 XA_STATE(xas, xa, index);
2113 void *entry;
2114
2115 rcu_read_lock();
2116 entry = xas_start(&xas);
2117 while (xas_get_mark(&xas, mark)) {
2118 if (!xa_is_node(entry))
2119 goto found;
2120 entry = xas_descend(&xas, xa_to_node(entry));
2121 }
2122 rcu_read_unlock();
2123 return false;
2124 found:
2125 rcu_read_unlock();
2126 return true;
2127 }
2128 EXPORT_SYMBOL(xa_get_mark);
2129
2130 /**
2131 * xa_set_mark() - Set this mark on this entry.
2132 * @xa: XArray.
2133 * @index: Index of entry.
2134 * @mark: Mark number.
2135 *
2136 * Attempting to set a mark on a %NULL entry does not succeed.
2137 *
2138 * Context: Process context. Takes and releases the xa_lock.
2139 */
xa_set_mark(struct xarray * xa,unsigned long index,xa_mark_t mark)2140 void xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
2141 {
2142 xa_lock(xa);
2143 __xa_set_mark(xa, index, mark);
2144 xa_unlock(xa);
2145 }
2146 EXPORT_SYMBOL(xa_set_mark);
2147
2148 /**
2149 * xa_clear_mark() - Clear this mark on this entry.
2150 * @xa: XArray.
2151 * @index: Index of entry.
2152 * @mark: Mark number.
2153 *
2154 * Clearing a mark always succeeds.
2155 *
2156 * Context: Process context. Takes and releases the xa_lock.
2157 */
xa_clear_mark(struct xarray * xa,unsigned long index,xa_mark_t mark)2158 void xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
2159 {
2160 xa_lock(xa);
2161 __xa_clear_mark(xa, index, mark);
2162 xa_unlock(xa);
2163 }
2164 EXPORT_SYMBOL(xa_clear_mark);
2165
2166 /**
2167 * xa_find() - Search the XArray for an entry.
2168 * @xa: XArray.
2169 * @indexp: Pointer to an index.
2170 * @max: Maximum index to search to.
2171 * @filter: Selection criterion.
2172 *
2173 * Finds the entry in @xa which matches the @filter, and has the lowest
2174 * index that is at least @indexp and no more than @max.
2175 * If an entry is found, @indexp is updated to be the index of the entry.
2176 * This function is protected by the RCU read lock, so it may not find
2177 * entries which are being simultaneously added. It will not return an
2178 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find().
2179 *
2180 * Context: Any context. Takes and releases the RCU lock.
2181 * Return: The entry, if found, otherwise %NULL.
2182 */
xa_find(struct xarray * xa,unsigned long * indexp,unsigned long max,xa_mark_t filter)2183 void *xa_find(struct xarray *xa, unsigned long *indexp,
2184 unsigned long max, xa_mark_t filter)
2185 {
2186 XA_STATE(xas, xa, *indexp);
2187 void *entry;
2188
2189 rcu_read_lock();
2190 do {
2191 if ((__force unsigned int)filter < XA_MAX_MARKS)
2192 entry = xas_find_marked(&xas, max, filter);
2193 else
2194 entry = xas_find(&xas, max);
2195 } while (xas_retry(&xas, entry));
2196 rcu_read_unlock();
2197
2198 if (entry)
2199 *indexp = xas.xa_index;
2200 return entry;
2201 }
2202 EXPORT_SYMBOL(xa_find);
2203
xas_sibling(struct xa_state * xas)2204 static bool xas_sibling(struct xa_state *xas)
2205 {
2206 struct xa_node *node = xas->xa_node;
2207 unsigned long mask;
2208
2209 if (!IS_ENABLED(CONFIG_XARRAY_MULTI) || !node)
2210 return false;
2211 mask = (XA_CHUNK_SIZE << node->shift) - 1;
2212 return (xas->xa_index & mask) >
2213 ((unsigned long)xas->xa_offset << node->shift);
2214 }
2215
2216 /**
2217 * xa_find_after() - Search the XArray for a present entry.
2218 * @xa: XArray.
2219 * @indexp: Pointer to an index.
2220 * @max: Maximum index to search to.
2221 * @filter: Selection criterion.
2222 *
2223 * Finds the entry in @xa which matches the @filter and has the lowest
2224 * index that is above @indexp and no more than @max.
2225 * If an entry is found, @indexp is updated to be the index of the entry.
2226 * This function is protected by the RCU read lock, so it may miss entries
2227 * which are being simultaneously added. It will not return an
2228 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find().
2229 *
2230 * Context: Any context. Takes and releases the RCU lock.
2231 * Return: The pointer, if found, otherwise %NULL.
2232 */
xa_find_after(struct xarray * xa,unsigned long * indexp,unsigned long max,xa_mark_t filter)2233 void *xa_find_after(struct xarray *xa, unsigned long *indexp,
2234 unsigned long max, xa_mark_t filter)
2235 {
2236 XA_STATE(xas, xa, *indexp + 1);
2237 void *entry;
2238
2239 if (xas.xa_index == 0)
2240 return NULL;
2241
2242 rcu_read_lock();
2243 for (;;) {
2244 if ((__force unsigned int)filter < XA_MAX_MARKS)
2245 entry = xas_find_marked(&xas, max, filter);
2246 else
2247 entry = xas_find(&xas, max);
2248
2249 if (xas_invalid(&xas))
2250 break;
2251 if (xas_sibling(&xas))
2252 continue;
2253 if (!xas_retry(&xas, entry))
2254 break;
2255 }
2256 rcu_read_unlock();
2257
2258 if (entry)
2259 *indexp = xas.xa_index;
2260 return entry;
2261 }
2262 EXPORT_SYMBOL(xa_find_after);
2263
xas_extract_present(struct xa_state * xas,void ** dst,unsigned long max,unsigned int n)2264 static unsigned int xas_extract_present(struct xa_state *xas, void **dst,
2265 unsigned long max, unsigned int n)
2266 {
2267 void *entry;
2268 unsigned int i = 0;
2269
2270 rcu_read_lock();
2271 xas_for_each(xas, entry, max) {
2272 if (xas_retry(xas, entry))
2273 continue;
2274 dst[i++] = entry;
2275 if (i == n)
2276 break;
2277 }
2278 rcu_read_unlock();
2279
2280 return i;
2281 }
2282
xas_extract_marked(struct xa_state * xas,void ** dst,unsigned long max,unsigned int n,xa_mark_t mark)2283 static unsigned int xas_extract_marked(struct xa_state *xas, void **dst,
2284 unsigned long max, unsigned int n, xa_mark_t mark)
2285 {
2286 void *entry;
2287 unsigned int i = 0;
2288
2289 rcu_read_lock();
2290 xas_for_each_marked(xas, entry, max, mark) {
2291 if (xas_retry(xas, entry))
2292 continue;
2293 dst[i++] = entry;
2294 if (i == n)
2295 break;
2296 }
2297 rcu_read_unlock();
2298
2299 return i;
2300 }
2301
2302 /**
2303 * xa_extract() - Copy selected entries from the XArray into a normal array.
2304 * @xa: The source XArray to copy from.
2305 * @dst: The buffer to copy entries into.
2306 * @start: The first index in the XArray eligible to be selected.
2307 * @max: The last index in the XArray eligible to be selected.
2308 * @n: The maximum number of entries to copy.
2309 * @filter: Selection criterion.
2310 *
2311 * Copies up to @n entries that match @filter from the XArray. The
2312 * copied entries will have indices between @start and @max, inclusive.
2313 *
2314 * The @filter may be an XArray mark value, in which case entries which are
2315 * marked with that mark will be copied. It may also be %XA_PRESENT, in
2316 * which case all entries which are not %NULL will be copied.
2317 *
2318 * The entries returned may not represent a snapshot of the XArray at a
2319 * moment in time. For example, if another thread stores to index 5, then
2320 * index 10, calling xa_extract() may return the old contents of index 5
2321 * and the new contents of index 10. Indices not modified while this
2322 * function is running will not be skipped.
2323 *
2324 * If you need stronger guarantees, holding the xa_lock across calls to this
2325 * function will prevent concurrent modification.
2326 *
2327 * Context: Any context. Takes and releases the RCU lock.
2328 * Return: The number of entries copied.
2329 */
xa_extract(struct xarray * xa,void ** dst,unsigned long start,unsigned long max,unsigned int n,xa_mark_t filter)2330 unsigned int xa_extract(struct xarray *xa, void **dst, unsigned long start,
2331 unsigned long max, unsigned int n, xa_mark_t filter)
2332 {
2333 XA_STATE(xas, xa, start);
2334
2335 if (!n)
2336 return 0;
2337
2338 if ((__force unsigned int)filter < XA_MAX_MARKS)
2339 return xas_extract_marked(&xas, dst, max, n, filter);
2340 return xas_extract_present(&xas, dst, max, n);
2341 }
2342 EXPORT_SYMBOL(xa_extract);
2343
2344 /**
2345 * xa_delete_node() - Private interface for workingset code.
2346 * @node: Node to be removed from the tree.
2347 * @update: Function to call to update ancestor nodes.
2348 *
2349 * Context: xa_lock must be held on entry and will not be released.
2350 */
xa_delete_node(struct xa_node * node,xa_update_node_t update)2351 void xa_delete_node(struct xa_node *node, xa_update_node_t update)
2352 {
2353 struct xa_state xas = {
2354 .xa = node->array,
2355 .xa_index = (unsigned long)node->offset <<
2356 (node->shift + XA_CHUNK_SHIFT),
2357 .xa_shift = node->shift + XA_CHUNK_SHIFT,
2358 .xa_offset = node->offset,
2359 .xa_node = xa_parent_locked(node->array, node),
2360 .xa_update = update,
2361 };
2362
2363 xas_store(&xas, NULL);
2364 }
2365 EXPORT_SYMBOL_GPL(xa_delete_node); /* For the benefit of the test suite */
2366
2367 /**
2368 * xa_destroy() - Free all internal data structures.
2369 * @xa: XArray.
2370 *
2371 * After calling this function, the XArray is empty and has freed all memory
2372 * allocated for its internal data structures. You are responsible for
2373 * freeing the objects referenced by the XArray.
2374 *
2375 * Context: Any context. Takes and releases the xa_lock, interrupt-safe.
2376 */
xa_destroy(struct xarray * xa)2377 void xa_destroy(struct xarray *xa)
2378 {
2379 XA_STATE(xas, xa, 0);
2380 unsigned long flags;
2381 void *entry;
2382
2383 xas.xa_node = NULL;
2384 xas_lock_irqsave(&xas, flags);
2385 entry = xa_head_locked(xa);
2386 RCU_INIT_POINTER(xa->xa_head, NULL);
2387 xas_init_marks(&xas);
2388 if (xa_zero_busy(xa))
2389 xa_mark_clear(xa, XA_FREE_MARK);
2390 /* lockdep checks we're still holding the lock in xas_free_nodes() */
2391 if (xa_is_node(entry))
2392 xas_free_nodes(&xas, xa_to_node(entry));
2393 xas_unlock_irqrestore(&xas, flags);
2394 }
2395 EXPORT_SYMBOL(xa_destroy);
2396
2397 #ifdef XA_DEBUG
xa_dump_node(const struct xa_node * node)2398 void xa_dump_node(const struct xa_node *node)
2399 {
2400 unsigned i, j;
2401
2402 if (!node)
2403 return;
2404 if ((unsigned long)node & 3) {
2405 pr_cont("node %px\n", node);
2406 return;
2407 }
2408
2409 pr_cont("node %px %s %d parent %px shift %d count %d values %d "
2410 "array %px list %px %px marks",
2411 node, node->parent ? "offset" : "max", node->offset,
2412 node->parent, node->shift, node->count, node->nr_values,
2413 node->array, node->private_list.prev, node->private_list.next);
2414 for (i = 0; i < XA_MAX_MARKS; i++)
2415 for (j = 0; j < XA_MARK_LONGS; j++)
2416 pr_cont(" %lx", node->marks[i][j]);
2417 pr_cont("\n");
2418 }
2419
xa_dump_index(unsigned long index,unsigned int shift)2420 void xa_dump_index(unsigned long index, unsigned int shift)
2421 {
2422 if (!shift)
2423 pr_info("%lu: ", index);
2424 else if (shift >= BITS_PER_LONG)
2425 pr_info("0-%lu: ", ~0UL);
2426 else
2427 pr_info("%lu-%lu: ", index, index | ((1UL << shift) - 1));
2428 }
2429
xa_dump_entry(const void * entry,unsigned long index,unsigned long shift)2430 void xa_dump_entry(const void *entry, unsigned long index, unsigned long shift)
2431 {
2432 if (!entry)
2433 return;
2434
2435 xa_dump_index(index, shift);
2436
2437 if (xa_is_node(entry)) {
2438 if (shift == 0) {
2439 pr_cont("%px\n", entry);
2440 } else {
2441 unsigned long i;
2442 struct xa_node *node = xa_to_node(entry);
2443 xa_dump_node(node);
2444 for (i = 0; i < XA_CHUNK_SIZE; i++)
2445 xa_dump_entry(node->slots[i],
2446 index + (i << node->shift), node->shift);
2447 }
2448 } else if (xa_is_value(entry))
2449 pr_cont("value %ld (0x%lx) [%px]\n", xa_to_value(entry),
2450 xa_to_value(entry), entry);
2451 else if (!xa_is_internal(entry))
2452 pr_cont("%px\n", entry);
2453 else if (xa_is_retry(entry))
2454 pr_cont("retry (%ld)\n", xa_to_internal(entry));
2455 else if (xa_is_sibling(entry))
2456 pr_cont("sibling (slot %ld)\n", xa_to_sibling(entry));
2457 else if (xa_is_zero(entry))
2458 pr_cont("zero (%ld)\n", xa_to_internal(entry));
2459 else
2460 pr_cont("UNKNOWN ENTRY (%px)\n", entry);
2461 }
2462
xa_dump(const struct xarray * xa)2463 void xa_dump(const struct xarray *xa)
2464 {
2465 void *entry = xa->xa_head;
2466 unsigned int shift = 0;
2467
2468 pr_info("xarray: %px head %px flags %x marks %d %d %d\n", xa, entry,
2469 xa->xa_flags, xa_marked(xa, XA_MARK_0),
2470 xa_marked(xa, XA_MARK_1), xa_marked(xa, XA_MARK_2));
2471 if (xa_is_node(entry))
2472 shift = xa_to_node(entry)->shift + XA_CHUNK_SHIFT;
2473 xa_dump_entry(entry, 0, shift);
2474 }
2475 #endif
2476