1 /*
2  * Dynamic DMA mapping support.
3  *
4  * This implementation is a fallback for platforms that do not support
5  * I/O TLBs (aka DMA address translation hardware).
6  * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7  * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8  * Copyright (C) 2000, 2003 Hewlett-Packard Co
9  *	David Mosberger-Tang <davidm@hpl.hp.com>
10  *
11  * 03/05/07 davidm	Switch from PCI-DMA to generic device DMA API.
12  * 00/12/13 davidm	Rename to swiotlb.c and add mark_clean() to avoid
13  *			unnecessary i-cache flushing.
14  * 04/07/.. ak		Better overflow handling. Assorted fixes.
15  * 05/09/10 linville	Add support for syncing ranges, support syncing for
16  *			DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
17  * 08/12/11 beckyb	Add highmem support
18  */
19 
20 #include <linux/cache.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/mm.h>
23 #include <linux/module.h>
24 #include <linux/spinlock.h>
25 #include <linux/string.h>
26 #include <linux/swiotlb.h>
27 #include <linux/pfn.h>
28 #include <linux/types.h>
29 #include <linux/ctype.h>
30 #include <linux/highmem.h>
31 #include <linux/gfp.h>
32 
33 #include <asm/io.h>
34 #include <asm/dma.h>
35 #include <asm/scatterlist.h>
36 
37 #include <linux/init.h>
38 #include <linux/bootmem.h>
39 #include <linux/iommu-helper.h>
40 
41 #define OFFSET(val,align) ((unsigned long)	\
42 	                   ( (val) & ( (align) - 1)))
43 
44 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
45 
46 /*
47  * Minimum IO TLB size to bother booting with.  Systems with mainly
48  * 64bit capable cards will only lightly use the swiotlb.  If we can't
49  * allocate a contiguous 1MB, we're probably in trouble anyway.
50  */
51 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
52 
53 int swiotlb_force;
54 
55 /*
56  * Used to do a quick range check in swiotlb_tbl_unmap_single and
57  * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
58  * API.
59  */
60 static char *io_tlb_start, *io_tlb_end;
61 
62 /*
63  * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
64  * io_tlb_end.  This is command line adjustable via setup_io_tlb_npages.
65  */
66 static unsigned long io_tlb_nslabs;
67 
68 /*
69  * When the IOMMU overflows we return a fallback buffer. This sets the size.
70  */
71 static unsigned long io_tlb_overflow = 32*1024;
72 
73 static void *io_tlb_overflow_buffer;
74 
75 /*
76  * This is a free list describing the number of free entries available from
77  * each index
78  */
79 static unsigned int *io_tlb_list;
80 static unsigned int io_tlb_index;
81 
82 /*
83  * We need to save away the original address corresponding to a mapped entry
84  * for the sync operations.
85  */
86 static phys_addr_t *io_tlb_orig_addr;
87 
88 /*
89  * Protect the above data structures in the map and unmap calls
90  */
91 static DEFINE_SPINLOCK(io_tlb_lock);
92 
93 static int late_alloc;
94 
95 static int __init
setup_io_tlb_npages(char * str)96 setup_io_tlb_npages(char *str)
97 {
98 	if (isdigit(*str)) {
99 		io_tlb_nslabs = simple_strtoul(str, &str, 0);
100 		/* avoid tail segment of size < IO_TLB_SEGSIZE */
101 		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
102 	}
103 	if (*str == ',')
104 		++str;
105 	if (!strcmp(str, "force"))
106 		swiotlb_force = 1;
107 
108 	return 1;
109 }
110 __setup("swiotlb=", setup_io_tlb_npages);
111 /* make io_tlb_overflow tunable too? */
112 
swiotlb_nr_tbl(void)113 unsigned long swiotlb_nr_tbl(void)
114 {
115 	return io_tlb_nslabs;
116 }
117 EXPORT_SYMBOL_GPL(swiotlb_nr_tbl);
118 /* Note that this doesn't work with highmem page */
swiotlb_virt_to_bus(struct device * hwdev,volatile void * address)119 static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
120 				      volatile void *address)
121 {
122 	return phys_to_dma(hwdev, virt_to_phys(address));
123 }
124 
swiotlb_print_info(void)125 void swiotlb_print_info(void)
126 {
127 	unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
128 	phys_addr_t pstart, pend;
129 
130 	pstart = virt_to_phys(io_tlb_start);
131 	pend = virt_to_phys(io_tlb_end);
132 
133 	printk(KERN_INFO "Placing %luMB software IO TLB between %p - %p\n",
134 	       bytes >> 20, io_tlb_start, io_tlb_end);
135 	printk(KERN_INFO "software IO TLB at phys %#llx - %#llx\n",
136 	       (unsigned long long)pstart,
137 	       (unsigned long long)pend);
138 }
139 
swiotlb_init_with_tbl(char * tlb,unsigned long nslabs,int verbose)140 void __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
141 {
142 	unsigned long i, bytes;
143 
144 	bytes = nslabs << IO_TLB_SHIFT;
145 
146 	io_tlb_nslabs = nslabs;
147 	io_tlb_start = tlb;
148 	io_tlb_end = io_tlb_start + bytes;
149 
150 	/*
151 	 * Allocate and initialize the free list array.  This array is used
152 	 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
153 	 * between io_tlb_start and io_tlb_end.
154 	 */
155 	io_tlb_list = alloc_bootmem_pages(PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
156 	for (i = 0; i < io_tlb_nslabs; i++)
157  		io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
158 	io_tlb_index = 0;
159 	io_tlb_orig_addr = alloc_bootmem_pages(PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
160 
161 	/*
162 	 * Get the overflow emergency buffer
163 	 */
164 	io_tlb_overflow_buffer = alloc_bootmem_low_pages(PAGE_ALIGN(io_tlb_overflow));
165 	if (!io_tlb_overflow_buffer)
166 		panic("Cannot allocate SWIOTLB overflow buffer!\n");
167 	if (verbose)
168 		swiotlb_print_info();
169 }
170 
171 /*
172  * Statically reserve bounce buffer space and initialize bounce buffer data
173  * structures for the software IO TLB used to implement the DMA API.
174  */
175 void __init
swiotlb_init_with_default_size(size_t default_size,int verbose)176 swiotlb_init_with_default_size(size_t default_size, int verbose)
177 {
178 	unsigned long bytes;
179 
180 	if (!io_tlb_nslabs) {
181 		io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
182 		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
183 	}
184 
185 	bytes = io_tlb_nslabs << IO_TLB_SHIFT;
186 
187 	/*
188 	 * Get IO TLB memory from the low pages
189 	 */
190 	io_tlb_start = alloc_bootmem_low_pages(PAGE_ALIGN(bytes));
191 	if (!io_tlb_start)
192 		panic("Cannot allocate SWIOTLB buffer");
193 
194 	swiotlb_init_with_tbl(io_tlb_start, io_tlb_nslabs, verbose);
195 }
196 
197 void __init
swiotlb_init(int verbose)198 swiotlb_init(int verbose)
199 {
200 	swiotlb_init_with_default_size(64 * (1<<20), verbose);	/* default to 64MB */
201 }
202 
203 /*
204  * Systems with larger DMA zones (those that don't support ISA) can
205  * initialize the swiotlb later using the slab allocator if needed.
206  * This should be just like above, but with some error catching.
207  */
208 int
swiotlb_late_init_with_default_size(size_t default_size)209 swiotlb_late_init_with_default_size(size_t default_size)
210 {
211 	unsigned long i, bytes, req_nslabs = io_tlb_nslabs;
212 	unsigned int order;
213 
214 	if (!io_tlb_nslabs) {
215 		io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
216 		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
217 	}
218 
219 	/*
220 	 * Get IO TLB memory from the low pages
221 	 */
222 	order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
223 	io_tlb_nslabs = SLABS_PER_PAGE << order;
224 	bytes = io_tlb_nslabs << IO_TLB_SHIFT;
225 
226 	while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
227 		io_tlb_start = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
228 							order);
229 		if (io_tlb_start)
230 			break;
231 		order--;
232 	}
233 
234 	if (!io_tlb_start)
235 		goto cleanup1;
236 
237 	if (order != get_order(bytes)) {
238 		printk(KERN_WARNING "Warning: only able to allocate %ld MB "
239 		       "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
240 		io_tlb_nslabs = SLABS_PER_PAGE << order;
241 		bytes = io_tlb_nslabs << IO_TLB_SHIFT;
242 	}
243 	io_tlb_end = io_tlb_start + bytes;
244 	memset(io_tlb_start, 0, bytes);
245 
246 	/*
247 	 * Allocate and initialize the free list array.  This array is used
248 	 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
249 	 * between io_tlb_start and io_tlb_end.
250 	 */
251 	io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
252 	                              get_order(io_tlb_nslabs * sizeof(int)));
253 	if (!io_tlb_list)
254 		goto cleanup2;
255 
256 	for (i = 0; i < io_tlb_nslabs; i++)
257  		io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
258 	io_tlb_index = 0;
259 
260 	io_tlb_orig_addr = (phys_addr_t *)
261 		__get_free_pages(GFP_KERNEL,
262 				 get_order(io_tlb_nslabs *
263 					   sizeof(phys_addr_t)));
264 	if (!io_tlb_orig_addr)
265 		goto cleanup3;
266 
267 	memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(phys_addr_t));
268 
269 	/*
270 	 * Get the overflow emergency buffer
271 	 */
272 	io_tlb_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
273 	                                          get_order(io_tlb_overflow));
274 	if (!io_tlb_overflow_buffer)
275 		goto cleanup4;
276 
277 	swiotlb_print_info();
278 
279 	late_alloc = 1;
280 
281 	return 0;
282 
283 cleanup4:
284 	free_pages((unsigned long)io_tlb_orig_addr,
285 		   get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
286 	io_tlb_orig_addr = NULL;
287 cleanup3:
288 	free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
289 	                                                 sizeof(int)));
290 	io_tlb_list = NULL;
291 cleanup2:
292 	io_tlb_end = NULL;
293 	free_pages((unsigned long)io_tlb_start, order);
294 	io_tlb_start = NULL;
295 cleanup1:
296 	io_tlb_nslabs = req_nslabs;
297 	return -ENOMEM;
298 }
299 
swiotlb_free(void)300 void __init swiotlb_free(void)
301 {
302 	if (!io_tlb_overflow_buffer)
303 		return;
304 
305 	if (late_alloc) {
306 		free_pages((unsigned long)io_tlb_overflow_buffer,
307 			   get_order(io_tlb_overflow));
308 		free_pages((unsigned long)io_tlb_orig_addr,
309 			   get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
310 		free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
311 								 sizeof(int)));
312 		free_pages((unsigned long)io_tlb_start,
313 			   get_order(io_tlb_nslabs << IO_TLB_SHIFT));
314 	} else {
315 		free_bootmem_late(__pa(io_tlb_overflow_buffer),
316 				  PAGE_ALIGN(io_tlb_overflow));
317 		free_bootmem_late(__pa(io_tlb_orig_addr),
318 				  PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
319 		free_bootmem_late(__pa(io_tlb_list),
320 				  PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
321 		free_bootmem_late(__pa(io_tlb_start),
322 				  PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
323 	}
324 	io_tlb_nslabs = 0;
325 }
326 
is_swiotlb_buffer(phys_addr_t paddr)327 static int is_swiotlb_buffer(phys_addr_t paddr)
328 {
329 	return paddr >= virt_to_phys(io_tlb_start) &&
330 		paddr < virt_to_phys(io_tlb_end);
331 }
332 
333 /*
334  * Bounce: copy the swiotlb buffer back to the original dma location
335  */
swiotlb_bounce(phys_addr_t phys,char * dma_addr,size_t size,enum dma_data_direction dir)336 void swiotlb_bounce(phys_addr_t phys, char *dma_addr, size_t size,
337 		    enum dma_data_direction dir)
338 {
339 	unsigned long pfn = PFN_DOWN(phys);
340 
341 	if (PageHighMem(pfn_to_page(pfn))) {
342 		/* The buffer does not have a mapping.  Map it in and copy */
343 		unsigned int offset = phys & ~PAGE_MASK;
344 		char *buffer;
345 		unsigned int sz = 0;
346 		unsigned long flags;
347 
348 		while (size) {
349 			sz = min_t(size_t, PAGE_SIZE - offset, size);
350 
351 			local_irq_save(flags);
352 			buffer = kmap_atomic(pfn_to_page(pfn),
353 					     KM_BOUNCE_READ);
354 			if (dir == DMA_TO_DEVICE)
355 				memcpy(dma_addr, buffer + offset, sz);
356 			else
357 				memcpy(buffer + offset, dma_addr, sz);
358 			kunmap_atomic(buffer, KM_BOUNCE_READ);
359 			local_irq_restore(flags);
360 
361 			size -= sz;
362 			pfn++;
363 			dma_addr += sz;
364 			offset = 0;
365 		}
366 	} else {
367 		if (dir == DMA_TO_DEVICE)
368 			memcpy(dma_addr, phys_to_virt(phys), size);
369 		else
370 			memcpy(phys_to_virt(phys), dma_addr, size);
371 	}
372 }
373 EXPORT_SYMBOL_GPL(swiotlb_bounce);
374 
swiotlb_tbl_map_single(struct device * hwdev,dma_addr_t tbl_dma_addr,phys_addr_t phys,size_t size,enum dma_data_direction dir)375 void *swiotlb_tbl_map_single(struct device *hwdev, dma_addr_t tbl_dma_addr,
376 			     phys_addr_t phys, size_t size,
377 			     enum dma_data_direction dir)
378 {
379 	unsigned long flags;
380 	char *dma_addr;
381 	unsigned int nslots, stride, index, wrap;
382 	int i;
383 	unsigned long mask;
384 	unsigned long offset_slots;
385 	unsigned long max_slots;
386 
387 	mask = dma_get_seg_boundary(hwdev);
388 
389 	tbl_dma_addr &= mask;
390 
391 	offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
392 
393 	/*
394  	 * Carefully handle integer overflow which can occur when mask == ~0UL.
395  	 */
396 	max_slots = mask + 1
397 		    ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
398 		    : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
399 
400 	/*
401 	 * For mappings greater than a page, we limit the stride (and
402 	 * hence alignment) to a page size.
403 	 */
404 	nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
405 	if (size > PAGE_SIZE)
406 		stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
407 	else
408 		stride = 1;
409 
410 	BUG_ON(!nslots);
411 
412 	/*
413 	 * Find suitable number of IO TLB entries size that will fit this
414 	 * request and allocate a buffer from that IO TLB pool.
415 	 */
416 	spin_lock_irqsave(&io_tlb_lock, flags);
417 	index = ALIGN(io_tlb_index, stride);
418 	if (index >= io_tlb_nslabs)
419 		index = 0;
420 	wrap = index;
421 
422 	do {
423 		while (iommu_is_span_boundary(index, nslots, offset_slots,
424 					      max_slots)) {
425 			index += stride;
426 			if (index >= io_tlb_nslabs)
427 				index = 0;
428 			if (index == wrap)
429 				goto not_found;
430 		}
431 
432 		/*
433 		 * If we find a slot that indicates we have 'nslots' number of
434 		 * contiguous buffers, we allocate the buffers from that slot
435 		 * and mark the entries as '0' indicating unavailable.
436 		 */
437 		if (io_tlb_list[index] >= nslots) {
438 			int count = 0;
439 
440 			for (i = index; i < (int) (index + nslots); i++)
441 				io_tlb_list[i] = 0;
442 			for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
443 				io_tlb_list[i] = ++count;
444 			dma_addr = io_tlb_start + (index << IO_TLB_SHIFT);
445 
446 			/*
447 			 * Update the indices to avoid searching in the next
448 			 * round.
449 			 */
450 			io_tlb_index = ((index + nslots) < io_tlb_nslabs
451 					? (index + nslots) : 0);
452 
453 			goto found;
454 		}
455 		index += stride;
456 		if (index >= io_tlb_nslabs)
457 			index = 0;
458 	} while (index != wrap);
459 
460 not_found:
461 	spin_unlock_irqrestore(&io_tlb_lock, flags);
462 	return NULL;
463 found:
464 	spin_unlock_irqrestore(&io_tlb_lock, flags);
465 
466 	/*
467 	 * Save away the mapping from the original address to the DMA address.
468 	 * This is needed when we sync the memory.  Then we sync the buffer if
469 	 * needed.
470 	 */
471 	for (i = 0; i < nslots; i++)
472 		io_tlb_orig_addr[index+i] = phys + (i << IO_TLB_SHIFT);
473 	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
474 		swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
475 
476 	return dma_addr;
477 }
478 EXPORT_SYMBOL_GPL(swiotlb_tbl_map_single);
479 
480 /*
481  * Allocates bounce buffer and returns its kernel virtual address.
482  */
483 
484 static void *
map_single(struct device * hwdev,phys_addr_t phys,size_t size,enum dma_data_direction dir)485 map_single(struct device *hwdev, phys_addr_t phys, size_t size,
486 	   enum dma_data_direction dir)
487 {
488 	dma_addr_t start_dma_addr = swiotlb_virt_to_bus(hwdev, io_tlb_start);
489 
490 	return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size, dir);
491 }
492 
493 /*
494  * dma_addr is the kernel virtual address of the bounce buffer to unmap.
495  */
496 void
swiotlb_tbl_unmap_single(struct device * hwdev,char * dma_addr,size_t size,enum dma_data_direction dir)497 swiotlb_tbl_unmap_single(struct device *hwdev, char *dma_addr, size_t size,
498 			enum dma_data_direction dir)
499 {
500 	unsigned long flags;
501 	int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
502 	int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
503 	phys_addr_t phys = io_tlb_orig_addr[index];
504 
505 	/*
506 	 * First, sync the memory before unmapping the entry
507 	 */
508 	if (phys && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
509 		swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
510 
511 	/*
512 	 * Return the buffer to the free list by setting the corresponding
513 	 * entries to indicate the number of contiguous entries available.
514 	 * While returning the entries to the free list, we merge the entries
515 	 * with slots below and above the pool being returned.
516 	 */
517 	spin_lock_irqsave(&io_tlb_lock, flags);
518 	{
519 		count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
520 			 io_tlb_list[index + nslots] : 0);
521 		/*
522 		 * Step 1: return the slots to the free list, merging the
523 		 * slots with superceeding slots
524 		 */
525 		for (i = index + nslots - 1; i >= index; i--)
526 			io_tlb_list[i] = ++count;
527 		/*
528 		 * Step 2: merge the returned slots with the preceding slots,
529 		 * if available (non zero)
530 		 */
531 		for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
532 			io_tlb_list[i] = ++count;
533 	}
534 	spin_unlock_irqrestore(&io_tlb_lock, flags);
535 }
536 EXPORT_SYMBOL_GPL(swiotlb_tbl_unmap_single);
537 
538 void
swiotlb_tbl_sync_single(struct device * hwdev,char * dma_addr,size_t size,enum dma_data_direction dir,enum dma_sync_target target)539 swiotlb_tbl_sync_single(struct device *hwdev, char *dma_addr, size_t size,
540 			enum dma_data_direction dir,
541 			enum dma_sync_target target)
542 {
543 	int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
544 	phys_addr_t phys = io_tlb_orig_addr[index];
545 
546 	phys += ((unsigned long)dma_addr & ((1 << IO_TLB_SHIFT) - 1));
547 
548 	switch (target) {
549 	case SYNC_FOR_CPU:
550 		if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
551 			swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
552 		else
553 			BUG_ON(dir != DMA_TO_DEVICE);
554 		break;
555 	case SYNC_FOR_DEVICE:
556 		if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
557 			swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
558 		else
559 			BUG_ON(dir != DMA_FROM_DEVICE);
560 		break;
561 	default:
562 		BUG();
563 	}
564 }
565 EXPORT_SYMBOL_GPL(swiotlb_tbl_sync_single);
566 
567 void *
swiotlb_alloc_coherent(struct device * hwdev,size_t size,dma_addr_t * dma_handle,gfp_t flags)568 swiotlb_alloc_coherent(struct device *hwdev, size_t size,
569 		       dma_addr_t *dma_handle, gfp_t flags)
570 {
571 	dma_addr_t dev_addr;
572 	void *ret;
573 	int order = get_order(size);
574 	u64 dma_mask = DMA_BIT_MASK(32);
575 
576 	if (hwdev && hwdev->coherent_dma_mask)
577 		dma_mask = hwdev->coherent_dma_mask;
578 
579 	ret = (void *)__get_free_pages(flags, order);
580 	if (ret && swiotlb_virt_to_bus(hwdev, ret) + size - 1 > dma_mask) {
581 		/*
582 		 * The allocated memory isn't reachable by the device.
583 		 */
584 		free_pages((unsigned long) ret, order);
585 		ret = NULL;
586 	}
587 	if (!ret) {
588 		/*
589 		 * We are either out of memory or the device can't DMA to
590 		 * GFP_DMA memory; fall back on map_single(), which
591 		 * will grab memory from the lowest available address range.
592 		 */
593 		ret = map_single(hwdev, 0, size, DMA_FROM_DEVICE);
594 		if (!ret)
595 			return NULL;
596 	}
597 
598 	memset(ret, 0, size);
599 	dev_addr = swiotlb_virt_to_bus(hwdev, ret);
600 
601 	/* Confirm address can be DMA'd by device */
602 	if (dev_addr + size - 1 > dma_mask) {
603 		printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
604 		       (unsigned long long)dma_mask,
605 		       (unsigned long long)dev_addr);
606 
607 		/* DMA_TO_DEVICE to avoid memcpy in unmap_single */
608 		swiotlb_tbl_unmap_single(hwdev, ret, size, DMA_TO_DEVICE);
609 		return NULL;
610 	}
611 	*dma_handle = dev_addr;
612 	return ret;
613 }
614 EXPORT_SYMBOL(swiotlb_alloc_coherent);
615 
616 void
swiotlb_free_coherent(struct device * hwdev,size_t size,void * vaddr,dma_addr_t dev_addr)617 swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
618 		      dma_addr_t dev_addr)
619 {
620 	phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
621 
622 	WARN_ON(irqs_disabled());
623 	if (!is_swiotlb_buffer(paddr))
624 		free_pages((unsigned long)vaddr, get_order(size));
625 	else
626 		/* DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single */
627 		swiotlb_tbl_unmap_single(hwdev, vaddr, size, DMA_TO_DEVICE);
628 }
629 EXPORT_SYMBOL(swiotlb_free_coherent);
630 
631 static void
swiotlb_full(struct device * dev,size_t size,enum dma_data_direction dir,int do_panic)632 swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir,
633 	     int do_panic)
634 {
635 	/*
636 	 * Ran out of IOMMU space for this operation. This is very bad.
637 	 * Unfortunately the drivers cannot handle this operation properly.
638 	 * unless they check for dma_mapping_error (most don't)
639 	 * When the mapping is small enough return a static buffer to limit
640 	 * the damage, or panic when the transfer is too big.
641 	 */
642 	printk(KERN_ERR "DMA: Out of SW-IOMMU space for %zu bytes at "
643 	       "device %s\n", size, dev ? dev_name(dev) : "?");
644 
645 	if (size <= io_tlb_overflow || !do_panic)
646 		return;
647 
648 	if (dir == DMA_BIDIRECTIONAL)
649 		panic("DMA: Random memory could be DMA accessed\n");
650 	if (dir == DMA_FROM_DEVICE)
651 		panic("DMA: Random memory could be DMA written\n");
652 	if (dir == DMA_TO_DEVICE)
653 		panic("DMA: Random memory could be DMA read\n");
654 }
655 
656 /*
657  * Map a single buffer of the indicated size for DMA in streaming mode.  The
658  * physical address to use is returned.
659  *
660  * Once the device is given the dma address, the device owns this memory until
661  * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
662  */
swiotlb_map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir,struct dma_attrs * attrs)663 dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
664 			    unsigned long offset, size_t size,
665 			    enum dma_data_direction dir,
666 			    struct dma_attrs *attrs)
667 {
668 	phys_addr_t phys = page_to_phys(page) + offset;
669 	dma_addr_t dev_addr = phys_to_dma(dev, phys);
670 	void *map;
671 
672 	BUG_ON(dir == DMA_NONE);
673 	/*
674 	 * If the address happens to be in the device's DMA window,
675 	 * we can safely return the device addr and not worry about bounce
676 	 * buffering it.
677 	 */
678 	if (dma_capable(dev, dev_addr, size) && !swiotlb_force)
679 		return dev_addr;
680 
681 	/*
682 	 * Oh well, have to allocate and map a bounce buffer.
683 	 */
684 	map = map_single(dev, phys, size, dir);
685 	if (!map) {
686 		swiotlb_full(dev, size, dir, 1);
687 		map = io_tlb_overflow_buffer;
688 	}
689 
690 	dev_addr = swiotlb_virt_to_bus(dev, map);
691 
692 	/*
693 	 * Ensure that the address returned is DMA'ble
694 	 */
695 	if (!dma_capable(dev, dev_addr, size)) {
696 		swiotlb_tbl_unmap_single(dev, map, size, dir);
697 		dev_addr = swiotlb_virt_to_bus(dev, io_tlb_overflow_buffer);
698 	}
699 
700 	return dev_addr;
701 }
702 EXPORT_SYMBOL_GPL(swiotlb_map_page);
703 
704 /*
705  * Unmap a single streaming mode DMA translation.  The dma_addr and size must
706  * match what was provided for in a previous swiotlb_map_page call.  All
707  * other usages are undefined.
708  *
709  * After this call, reads by the cpu to the buffer are guaranteed to see
710  * whatever the device wrote there.
711  */
unmap_single(struct device * hwdev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir)712 static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
713 			 size_t size, enum dma_data_direction dir)
714 {
715 	phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
716 
717 	BUG_ON(dir == DMA_NONE);
718 
719 	if (is_swiotlb_buffer(paddr)) {
720 		swiotlb_tbl_unmap_single(hwdev, phys_to_virt(paddr), size, dir);
721 		return;
722 	}
723 
724 	if (dir != DMA_FROM_DEVICE)
725 		return;
726 
727 	/*
728 	 * phys_to_virt doesn't work with hihgmem page but we could
729 	 * call dma_mark_clean() with hihgmem page here. However, we
730 	 * are fine since dma_mark_clean() is null on POWERPC. We can
731 	 * make dma_mark_clean() take a physical address if necessary.
732 	 */
733 	dma_mark_clean(phys_to_virt(paddr), size);
734 }
735 
swiotlb_unmap_page(struct device * hwdev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir,struct dma_attrs * attrs)736 void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
737 			size_t size, enum dma_data_direction dir,
738 			struct dma_attrs *attrs)
739 {
740 	unmap_single(hwdev, dev_addr, size, dir);
741 }
742 EXPORT_SYMBOL_GPL(swiotlb_unmap_page);
743 
744 /*
745  * Make physical memory consistent for a single streaming mode DMA translation
746  * after a transfer.
747  *
748  * If you perform a swiotlb_map_page() but wish to interrogate the buffer
749  * using the cpu, yet do not wish to teardown the dma mapping, you must
750  * call this function before doing so.  At the next point you give the dma
751  * address back to the card, you must first perform a
752  * swiotlb_dma_sync_for_device, and then the device again owns the buffer
753  */
754 static void
swiotlb_sync_single(struct device * hwdev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir,enum dma_sync_target target)755 swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
756 		    size_t size, enum dma_data_direction dir,
757 		    enum dma_sync_target target)
758 {
759 	phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
760 
761 	BUG_ON(dir == DMA_NONE);
762 
763 	if (is_swiotlb_buffer(paddr)) {
764 		swiotlb_tbl_sync_single(hwdev, phys_to_virt(paddr), size, dir,
765 				       target);
766 		return;
767 	}
768 
769 	if (dir != DMA_FROM_DEVICE)
770 		return;
771 
772 	dma_mark_clean(phys_to_virt(paddr), size);
773 }
774 
775 void
swiotlb_sync_single_for_cpu(struct device * hwdev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir)776 swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
777 			    size_t size, enum dma_data_direction dir)
778 {
779 	swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
780 }
781 EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
782 
783 void
swiotlb_sync_single_for_device(struct device * hwdev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir)784 swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
785 			       size_t size, enum dma_data_direction dir)
786 {
787 	swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
788 }
789 EXPORT_SYMBOL(swiotlb_sync_single_for_device);
790 
791 /*
792  * Map a set of buffers described by scatterlist in streaming mode for DMA.
793  * This is the scatter-gather version of the above swiotlb_map_page
794  * interface.  Here the scatter gather list elements are each tagged with the
795  * appropriate dma address and length.  They are obtained via
796  * sg_dma_{address,length}(SG).
797  *
798  * NOTE: An implementation may be able to use a smaller number of
799  *       DMA address/length pairs than there are SG table elements.
800  *       (for example via virtual mapping capabilities)
801  *       The routine returns the number of addr/length pairs actually
802  *       used, at most nents.
803  *
804  * Device ownership issues as mentioned above for swiotlb_map_page are the
805  * same here.
806  */
807 int
swiotlb_map_sg_attrs(struct device * hwdev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir,struct dma_attrs * attrs)808 swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
809 		     enum dma_data_direction dir, struct dma_attrs *attrs)
810 {
811 	struct scatterlist *sg;
812 	int i;
813 
814 	BUG_ON(dir == DMA_NONE);
815 
816 	for_each_sg(sgl, sg, nelems, i) {
817 		phys_addr_t paddr = sg_phys(sg);
818 		dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
819 
820 		if (swiotlb_force ||
821 		    !dma_capable(hwdev, dev_addr, sg->length)) {
822 			void *map = map_single(hwdev, sg_phys(sg),
823 					       sg->length, dir);
824 			if (!map) {
825 				/* Don't panic here, we expect map_sg users
826 				   to do proper error handling. */
827 				swiotlb_full(hwdev, sg->length, dir, 0);
828 				swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
829 						       attrs);
830 				sgl[0].dma_length = 0;
831 				return 0;
832 			}
833 			sg->dma_address = swiotlb_virt_to_bus(hwdev, map);
834 		} else
835 			sg->dma_address = dev_addr;
836 		sg->dma_length = sg->length;
837 	}
838 	return nelems;
839 }
840 EXPORT_SYMBOL(swiotlb_map_sg_attrs);
841 
842 int
swiotlb_map_sg(struct device * hwdev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir)843 swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
844 	       enum dma_data_direction dir)
845 {
846 	return swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL);
847 }
848 EXPORT_SYMBOL(swiotlb_map_sg);
849 
850 /*
851  * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
852  * concerning calls here are the same as for swiotlb_unmap_page() above.
853  */
854 void
swiotlb_unmap_sg_attrs(struct device * hwdev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir,struct dma_attrs * attrs)855 swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
856 		       int nelems, enum dma_data_direction dir, struct dma_attrs *attrs)
857 {
858 	struct scatterlist *sg;
859 	int i;
860 
861 	BUG_ON(dir == DMA_NONE);
862 
863 	for_each_sg(sgl, sg, nelems, i)
864 		unmap_single(hwdev, sg->dma_address, sg->dma_length, dir);
865 
866 }
867 EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
868 
869 void
swiotlb_unmap_sg(struct device * hwdev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir)870 swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
871 		 enum dma_data_direction dir)
872 {
873 	return swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL);
874 }
875 EXPORT_SYMBOL(swiotlb_unmap_sg);
876 
877 /*
878  * Make physical memory consistent for a set of streaming mode DMA translations
879  * after a transfer.
880  *
881  * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
882  * and usage.
883  */
884 static void
swiotlb_sync_sg(struct device * hwdev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir,enum dma_sync_target target)885 swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
886 		int nelems, enum dma_data_direction dir,
887 		enum dma_sync_target target)
888 {
889 	struct scatterlist *sg;
890 	int i;
891 
892 	for_each_sg(sgl, sg, nelems, i)
893 		swiotlb_sync_single(hwdev, sg->dma_address,
894 				    sg->dma_length, dir, target);
895 }
896 
897 void
swiotlb_sync_sg_for_cpu(struct device * hwdev,struct scatterlist * sg,int nelems,enum dma_data_direction dir)898 swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
899 			int nelems, enum dma_data_direction dir)
900 {
901 	swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
902 }
903 EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
904 
905 void
swiotlb_sync_sg_for_device(struct device * hwdev,struct scatterlist * sg,int nelems,enum dma_data_direction dir)906 swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
907 			   int nelems, enum dma_data_direction dir)
908 {
909 	swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
910 }
911 EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
912 
913 int
swiotlb_dma_mapping_error(struct device * hwdev,dma_addr_t dma_addr)914 swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
915 {
916 	return (dma_addr == swiotlb_virt_to_bus(hwdev, io_tlb_overflow_buffer));
917 }
918 EXPORT_SYMBOL(swiotlb_dma_mapping_error);
919 
920 /*
921  * Return whether the given device DMA address mask can be supported
922  * properly.  For example, if your device can only drive the low 24-bits
923  * during bus mastering, then you would pass 0x00ffffff as the mask to
924  * this function.
925  */
926 int
swiotlb_dma_supported(struct device * hwdev,u64 mask)927 swiotlb_dma_supported(struct device *hwdev, u64 mask)
928 {
929 	return swiotlb_virt_to_bus(hwdev, io_tlb_end - 1) <= mask;
930 }
931 EXPORT_SYMBOL(swiotlb_dma_supported);
932