1 /*
2  * Copyright (C) 2001 Momchil Velikov
3  * Portions Copyright (C) 2001 Christoph Hellwig
4  * Copyright (C) 2005 SGI, Christoph Lameter
5  * Copyright (C) 2006 Nick Piggin
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License as
9  * published by the Free Software Foundation; either version 2, or (at
10  * your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful, but
13  * WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20  */
21 
22 #include <linux/errno.h>
23 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/radix-tree.h>
27 #include <linux/percpu.h>
28 #include <linux/slab.h>
29 #include <linux/notifier.h>
30 #include <linux/cpu.h>
31 #include <linux/string.h>
32 #include <linux/bitops.h>
33 #include <linux/rcupdate.h>
34 
35 
36 #ifdef __KERNEL__
37 #define RADIX_TREE_MAP_SHIFT	(CONFIG_BASE_SMALL ? 4 : 6)
38 #else
39 #define RADIX_TREE_MAP_SHIFT	3	/* For more stressful testing */
40 #endif
41 
42 #define RADIX_TREE_MAP_SIZE	(1UL << RADIX_TREE_MAP_SHIFT)
43 #define RADIX_TREE_MAP_MASK	(RADIX_TREE_MAP_SIZE-1)
44 
45 #define RADIX_TREE_TAG_LONGS	\
46 	((RADIX_TREE_MAP_SIZE + BITS_PER_LONG - 1) / BITS_PER_LONG)
47 
48 struct radix_tree_node {
49 	unsigned int	height;		/* Height from the bottom */
50 	unsigned int	count;
51 	union {
52 		struct radix_tree_node *parent;	/* Used when ascending tree */
53 		struct rcu_head	rcu_head;	/* Used when freeing node */
54 	};
55 	void __rcu	*slots[RADIX_TREE_MAP_SIZE];
56 	unsigned long	tags[RADIX_TREE_MAX_TAGS][RADIX_TREE_TAG_LONGS];
57 };
58 
59 #define RADIX_TREE_INDEX_BITS  (8 /* CHAR_BIT */ * sizeof(unsigned long))
60 #define RADIX_TREE_MAX_PATH (DIV_ROUND_UP(RADIX_TREE_INDEX_BITS, \
61 					  RADIX_TREE_MAP_SHIFT))
62 
63 /*
64  * The height_to_maxindex array needs to be one deeper than the maximum
65  * path as height 0 holds only 1 entry.
66  */
67 static unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1] __read_mostly;
68 
69 /*
70  * Radix tree node cache.
71  */
72 static struct kmem_cache *radix_tree_node_cachep;
73 
74 /*
75  * Per-cpu pool of preloaded nodes
76  */
77 struct radix_tree_preload {
78 	int nr;
79 	struct radix_tree_node *nodes[RADIX_TREE_MAX_PATH];
80 };
81 static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
82 
ptr_to_indirect(void * ptr)83 static inline void *ptr_to_indirect(void *ptr)
84 {
85 	return (void *)((unsigned long)ptr | RADIX_TREE_INDIRECT_PTR);
86 }
87 
indirect_to_ptr(void * ptr)88 static inline void *indirect_to_ptr(void *ptr)
89 {
90 	return (void *)((unsigned long)ptr & ~RADIX_TREE_INDIRECT_PTR);
91 }
92 
root_gfp_mask(struct radix_tree_root * root)93 static inline gfp_t root_gfp_mask(struct radix_tree_root *root)
94 {
95 	return root->gfp_mask & __GFP_BITS_MASK;
96 }
97 
tag_set(struct radix_tree_node * node,unsigned int tag,int offset)98 static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
99 		int offset)
100 {
101 	__set_bit(offset, node->tags[tag]);
102 }
103 
tag_clear(struct radix_tree_node * node,unsigned int tag,int offset)104 static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
105 		int offset)
106 {
107 	__clear_bit(offset, node->tags[tag]);
108 }
109 
tag_get(struct radix_tree_node * node,unsigned int tag,int offset)110 static inline int tag_get(struct radix_tree_node *node, unsigned int tag,
111 		int offset)
112 {
113 	return test_bit(offset, node->tags[tag]);
114 }
115 
root_tag_set(struct radix_tree_root * root,unsigned int tag)116 static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag)
117 {
118 	root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT));
119 }
120 
root_tag_clear(struct radix_tree_root * root,unsigned int tag)121 static inline void root_tag_clear(struct radix_tree_root *root, unsigned int tag)
122 {
123 	root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT));
124 }
125 
root_tag_clear_all(struct radix_tree_root * root)126 static inline void root_tag_clear_all(struct radix_tree_root *root)
127 {
128 	root->gfp_mask &= __GFP_BITS_MASK;
129 }
130 
root_tag_get(struct radix_tree_root * root,unsigned int tag)131 static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag)
132 {
133 	return (__force unsigned)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT));
134 }
135 
136 /*
137  * Returns 1 if any slot in the node has this tag set.
138  * Otherwise returns 0.
139  */
any_tag_set(struct radix_tree_node * node,unsigned int tag)140 static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag)
141 {
142 	int idx;
143 	for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
144 		if (node->tags[tag][idx])
145 			return 1;
146 	}
147 	return 0;
148 }
149 /*
150  * This assumes that the caller has performed appropriate preallocation, and
151  * that the caller has pinned this thread of control to the current CPU.
152  */
153 static struct radix_tree_node *
radix_tree_node_alloc(struct radix_tree_root * root)154 radix_tree_node_alloc(struct radix_tree_root *root)
155 {
156 	struct radix_tree_node *ret = NULL;
157 	gfp_t gfp_mask = root_gfp_mask(root);
158 
159 	if (!(gfp_mask & __GFP_WAIT)) {
160 		struct radix_tree_preload *rtp;
161 
162 		/*
163 		 * Provided the caller has preloaded here, we will always
164 		 * succeed in getting a node here (and never reach
165 		 * kmem_cache_alloc)
166 		 */
167 		rtp = &__get_cpu_var(radix_tree_preloads);
168 		if (rtp->nr) {
169 			ret = rtp->nodes[rtp->nr - 1];
170 			rtp->nodes[rtp->nr - 1] = NULL;
171 			rtp->nr--;
172 		}
173 	}
174 	if (ret == NULL)
175 		ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
176 
177 	BUG_ON(radix_tree_is_indirect_ptr(ret));
178 	return ret;
179 }
180 
radix_tree_node_rcu_free(struct rcu_head * head)181 static void radix_tree_node_rcu_free(struct rcu_head *head)
182 {
183 	struct radix_tree_node *node =
184 			container_of(head, struct radix_tree_node, rcu_head);
185 	int i;
186 
187 	/*
188 	 * must only free zeroed nodes into the slab. radix_tree_shrink
189 	 * can leave us with a non-NULL entry in the first slot, so clear
190 	 * that here to make sure.
191 	 */
192 	for (i = 0; i < RADIX_TREE_MAX_TAGS; i++)
193 		tag_clear(node, i, 0);
194 
195 	node->slots[0] = NULL;
196 	node->count = 0;
197 
198 	kmem_cache_free(radix_tree_node_cachep, node);
199 }
200 
201 static inline void
radix_tree_node_free(struct radix_tree_node * node)202 radix_tree_node_free(struct radix_tree_node *node)
203 {
204 	call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
205 }
206 
207 /*
208  * Load up this CPU's radix_tree_node buffer with sufficient objects to
209  * ensure that the addition of a single element in the tree cannot fail.  On
210  * success, return zero, with preemption disabled.  On error, return -ENOMEM
211  * with preemption not disabled.
212  *
213  * To make use of this facility, the radix tree must be initialised without
214  * __GFP_WAIT being passed to INIT_RADIX_TREE().
215  */
radix_tree_preload(gfp_t gfp_mask)216 int radix_tree_preload(gfp_t gfp_mask)
217 {
218 	struct radix_tree_preload *rtp;
219 	struct radix_tree_node *node;
220 	int ret = -ENOMEM;
221 
222 	preempt_disable();
223 	rtp = &__get_cpu_var(radix_tree_preloads);
224 	while (rtp->nr < ARRAY_SIZE(rtp->nodes)) {
225 		preempt_enable();
226 		node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
227 		if (node == NULL)
228 			goto out;
229 		preempt_disable();
230 		rtp = &__get_cpu_var(radix_tree_preloads);
231 		if (rtp->nr < ARRAY_SIZE(rtp->nodes))
232 			rtp->nodes[rtp->nr++] = node;
233 		else
234 			kmem_cache_free(radix_tree_node_cachep, node);
235 	}
236 	ret = 0;
237 out:
238 	return ret;
239 }
240 EXPORT_SYMBOL(radix_tree_preload);
241 
242 /*
243  *	Return the maximum key which can be store into a
244  *	radix tree with height HEIGHT.
245  */
radix_tree_maxindex(unsigned int height)246 static inline unsigned long radix_tree_maxindex(unsigned int height)
247 {
248 	return height_to_maxindex[height];
249 }
250 
251 /*
252  *	Extend a radix tree so it can store key @index.
253  */
radix_tree_extend(struct radix_tree_root * root,unsigned long index)254 static int radix_tree_extend(struct radix_tree_root *root, unsigned long index)
255 {
256 	struct radix_tree_node *node;
257 	struct radix_tree_node *slot;
258 	unsigned int height;
259 	int tag;
260 
261 	/* Figure out what the height should be.  */
262 	height = root->height + 1;
263 	while (index > radix_tree_maxindex(height))
264 		height++;
265 
266 	if (root->rnode == NULL) {
267 		root->height = height;
268 		goto out;
269 	}
270 
271 	do {
272 		unsigned int newheight;
273 		if (!(node = radix_tree_node_alloc(root)))
274 			return -ENOMEM;
275 
276 		/* Propagate the aggregated tag info into the new root */
277 		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
278 			if (root_tag_get(root, tag))
279 				tag_set(node, tag, 0);
280 		}
281 
282 		/* Increase the height.  */
283 		newheight = root->height+1;
284 		node->height = newheight;
285 		node->count = 1;
286 		node->parent = NULL;
287 		slot = root->rnode;
288 		if (newheight > 1) {
289 			slot = indirect_to_ptr(slot);
290 			slot->parent = node;
291 		}
292 		node->slots[0] = slot;
293 		node = ptr_to_indirect(node);
294 		rcu_assign_pointer(root->rnode, node);
295 		root->height = newheight;
296 	} while (height > root->height);
297 out:
298 	return 0;
299 }
300 
301 /**
302  *	radix_tree_insert    -    insert into a radix tree
303  *	@root:		radix tree root
304  *	@index:		index key
305  *	@item:		item to insert
306  *
307  *	Insert an item into the radix tree at position @index.
308  */
radix_tree_insert(struct radix_tree_root * root,unsigned long index,void * item)309 int radix_tree_insert(struct radix_tree_root *root,
310 			unsigned long index, void *item)
311 {
312 	struct radix_tree_node *node = NULL, *slot;
313 	unsigned int height, shift;
314 	int offset;
315 	int error;
316 
317 	BUG_ON(radix_tree_is_indirect_ptr(item));
318 
319 	/* Make sure the tree is high enough.  */
320 	if (index > radix_tree_maxindex(root->height)) {
321 		error = radix_tree_extend(root, index);
322 		if (error)
323 			return error;
324 	}
325 
326 	slot = indirect_to_ptr(root->rnode);
327 
328 	height = root->height;
329 	shift = (height-1) * RADIX_TREE_MAP_SHIFT;
330 
331 	offset = 0;			/* uninitialised var warning */
332 	while (height > 0) {
333 		if (slot == NULL) {
334 			/* Have to add a child node.  */
335 			if (!(slot = radix_tree_node_alloc(root)))
336 				return -ENOMEM;
337 			slot->height = height;
338 			slot->parent = node;
339 			if (node) {
340 				rcu_assign_pointer(node->slots[offset], slot);
341 				node->count++;
342 			} else
343 				rcu_assign_pointer(root->rnode, ptr_to_indirect(slot));
344 		}
345 
346 		/* Go a level down */
347 		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
348 		node = slot;
349 		slot = node->slots[offset];
350 		shift -= RADIX_TREE_MAP_SHIFT;
351 		height--;
352 	}
353 
354 	if (slot != NULL)
355 		return -EEXIST;
356 
357 	if (node) {
358 		node->count++;
359 		rcu_assign_pointer(node->slots[offset], item);
360 		BUG_ON(tag_get(node, 0, offset));
361 		BUG_ON(tag_get(node, 1, offset));
362 	} else {
363 		rcu_assign_pointer(root->rnode, item);
364 		BUG_ON(root_tag_get(root, 0));
365 		BUG_ON(root_tag_get(root, 1));
366 	}
367 
368 	return 0;
369 }
370 EXPORT_SYMBOL(radix_tree_insert);
371 
372 /*
373  * is_slot == 1 : search for the slot.
374  * is_slot == 0 : search for the node.
375  */
radix_tree_lookup_element(struct radix_tree_root * root,unsigned long index,int is_slot)376 static void *radix_tree_lookup_element(struct radix_tree_root *root,
377 				unsigned long index, int is_slot)
378 {
379 	unsigned int height, shift;
380 	struct radix_tree_node *node, **slot;
381 
382 	node = rcu_dereference_raw(root->rnode);
383 	if (node == NULL)
384 		return NULL;
385 
386 	if (!radix_tree_is_indirect_ptr(node)) {
387 		if (index > 0)
388 			return NULL;
389 		return is_slot ? (void *)&root->rnode : node;
390 	}
391 	node = indirect_to_ptr(node);
392 
393 	height = node->height;
394 	if (index > radix_tree_maxindex(height))
395 		return NULL;
396 
397 	shift = (height-1) * RADIX_TREE_MAP_SHIFT;
398 
399 	do {
400 		slot = (struct radix_tree_node **)
401 			(node->slots + ((index>>shift) & RADIX_TREE_MAP_MASK));
402 		node = rcu_dereference_raw(*slot);
403 		if (node == NULL)
404 			return NULL;
405 
406 		shift -= RADIX_TREE_MAP_SHIFT;
407 		height--;
408 	} while (height > 0);
409 
410 	return is_slot ? (void *)slot : indirect_to_ptr(node);
411 }
412 
413 /**
414  *	radix_tree_lookup_slot    -    lookup a slot in a radix tree
415  *	@root:		radix tree root
416  *	@index:		index key
417  *
418  *	Returns:  the slot corresponding to the position @index in the
419  *	radix tree @root. This is useful for update-if-exists operations.
420  *
421  *	This function can be called under rcu_read_lock iff the slot is not
422  *	modified by radix_tree_replace_slot, otherwise it must be called
423  *	exclusive from other writers. Any dereference of the slot must be done
424  *	using radix_tree_deref_slot.
425  */
radix_tree_lookup_slot(struct radix_tree_root * root,unsigned long index)426 void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index)
427 {
428 	return (void **)radix_tree_lookup_element(root, index, 1);
429 }
430 EXPORT_SYMBOL(radix_tree_lookup_slot);
431 
432 /**
433  *	radix_tree_lookup    -    perform lookup operation on a radix tree
434  *	@root:		radix tree root
435  *	@index:		index key
436  *
437  *	Lookup the item at the position @index in the radix tree @root.
438  *
439  *	This function can be called under rcu_read_lock, however the caller
440  *	must manage lifetimes of leaf nodes (eg. RCU may also be used to free
441  *	them safely). No RCU barriers are required to access or modify the
442  *	returned item, however.
443  */
radix_tree_lookup(struct radix_tree_root * root,unsigned long index)444 void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index)
445 {
446 	return radix_tree_lookup_element(root, index, 0);
447 }
448 EXPORT_SYMBOL(radix_tree_lookup);
449 
450 /**
451  *	radix_tree_tag_set - set a tag on a radix tree node
452  *	@root:		radix tree root
453  *	@index:		index key
454  *	@tag: 		tag index
455  *
456  *	Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
457  *	corresponding to @index in the radix tree.  From
458  *	the root all the way down to the leaf node.
459  *
460  *	Returns the address of the tagged item.   Setting a tag on a not-present
461  *	item is a bug.
462  */
radix_tree_tag_set(struct radix_tree_root * root,unsigned long index,unsigned int tag)463 void *radix_tree_tag_set(struct radix_tree_root *root,
464 			unsigned long index, unsigned int tag)
465 {
466 	unsigned int height, shift;
467 	struct radix_tree_node *slot;
468 
469 	height = root->height;
470 	BUG_ON(index > radix_tree_maxindex(height));
471 
472 	slot = indirect_to_ptr(root->rnode);
473 	shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
474 
475 	while (height > 0) {
476 		int offset;
477 
478 		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
479 		if (!tag_get(slot, tag, offset))
480 			tag_set(slot, tag, offset);
481 		slot = slot->slots[offset];
482 		BUG_ON(slot == NULL);
483 		shift -= RADIX_TREE_MAP_SHIFT;
484 		height--;
485 	}
486 
487 	/* set the root's tag bit */
488 	if (slot && !root_tag_get(root, tag))
489 		root_tag_set(root, tag);
490 
491 	return slot;
492 }
493 EXPORT_SYMBOL(radix_tree_tag_set);
494 
495 /**
496  *	radix_tree_tag_clear - clear a tag on a radix tree node
497  *	@root:		radix tree root
498  *	@index:		index key
499  *	@tag: 		tag index
500  *
501  *	Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
502  *	corresponding to @index in the radix tree.  If
503  *	this causes the leaf node to have no tags set then clear the tag in the
504  *	next-to-leaf node, etc.
505  *
506  *	Returns the address of the tagged item on success, else NULL.  ie:
507  *	has the same return value and semantics as radix_tree_lookup().
508  */
radix_tree_tag_clear(struct radix_tree_root * root,unsigned long index,unsigned int tag)509 void *radix_tree_tag_clear(struct radix_tree_root *root,
510 			unsigned long index, unsigned int tag)
511 {
512 	struct radix_tree_node *node = NULL;
513 	struct radix_tree_node *slot = NULL;
514 	unsigned int height, shift;
515 	int uninitialized_var(offset);
516 
517 	height = root->height;
518 	if (index > radix_tree_maxindex(height))
519 		goto out;
520 
521 	shift = height * RADIX_TREE_MAP_SHIFT;
522 	slot = indirect_to_ptr(root->rnode);
523 
524 	while (shift) {
525 		if (slot == NULL)
526 			goto out;
527 
528 		shift -= RADIX_TREE_MAP_SHIFT;
529 		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
530 		node = slot;
531 		slot = slot->slots[offset];
532 	}
533 
534 	if (slot == NULL)
535 		goto out;
536 
537 	while (node) {
538 		if (!tag_get(node, tag, offset))
539 			goto out;
540 		tag_clear(node, tag, offset);
541 		if (any_tag_set(node, tag))
542 			goto out;
543 
544 		index >>= RADIX_TREE_MAP_SHIFT;
545 		offset = index & RADIX_TREE_MAP_MASK;
546 		node = node->parent;
547 	}
548 
549 	/* clear the root's tag bit */
550 	if (root_tag_get(root, tag))
551 		root_tag_clear(root, tag);
552 
553 out:
554 	return slot;
555 }
556 EXPORT_SYMBOL(radix_tree_tag_clear);
557 
558 /**
559  * radix_tree_tag_get - get a tag on a radix tree node
560  * @root:		radix tree root
561  * @index:		index key
562  * @tag: 		tag index (< RADIX_TREE_MAX_TAGS)
563  *
564  * Return values:
565  *
566  *  0: tag not present or not set
567  *  1: tag set
568  *
569  * Note that the return value of this function may not be relied on, even if
570  * the RCU lock is held, unless tag modification and node deletion are excluded
571  * from concurrency.
572  */
radix_tree_tag_get(struct radix_tree_root * root,unsigned long index,unsigned int tag)573 int radix_tree_tag_get(struct radix_tree_root *root,
574 			unsigned long index, unsigned int tag)
575 {
576 	unsigned int height, shift;
577 	struct radix_tree_node *node;
578 
579 	/* check the root's tag bit */
580 	if (!root_tag_get(root, tag))
581 		return 0;
582 
583 	node = rcu_dereference_raw(root->rnode);
584 	if (node == NULL)
585 		return 0;
586 
587 	if (!radix_tree_is_indirect_ptr(node))
588 		return (index == 0);
589 	node = indirect_to_ptr(node);
590 
591 	height = node->height;
592 	if (index > radix_tree_maxindex(height))
593 		return 0;
594 
595 	shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
596 
597 	for ( ; ; ) {
598 		int offset;
599 
600 		if (node == NULL)
601 			return 0;
602 
603 		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
604 		if (!tag_get(node, tag, offset))
605 			return 0;
606 		if (height == 1)
607 			return 1;
608 		node = rcu_dereference_raw(node->slots[offset]);
609 		shift -= RADIX_TREE_MAP_SHIFT;
610 		height--;
611 	}
612 }
613 EXPORT_SYMBOL(radix_tree_tag_get);
614 
615 /**
616  * radix_tree_range_tag_if_tagged - for each item in given range set given
617  *				   tag if item has another tag set
618  * @root:		radix tree root
619  * @first_indexp:	pointer to a starting index of a range to scan
620  * @last_index:		last index of a range to scan
621  * @nr_to_tag:		maximum number items to tag
622  * @iftag:		tag index to test
623  * @settag:		tag index to set if tested tag is set
624  *
625  * This function scans range of radix tree from first_index to last_index
626  * (inclusive).  For each item in the range if iftag is set, the function sets
627  * also settag. The function stops either after tagging nr_to_tag items or
628  * after reaching last_index.
629  *
630  * The tags must be set from the leaf level only and propagated back up the
631  * path to the root. We must do this so that we resolve the full path before
632  * setting any tags on intermediate nodes. If we set tags as we descend, then
633  * we can get to the leaf node and find that the index that has the iftag
634  * set is outside the range we are scanning. This reults in dangling tags and
635  * can lead to problems with later tag operations (e.g. livelocks on lookups).
636  *
637  * The function returns number of leaves where the tag was set and sets
638  * *first_indexp to the first unscanned index.
639  * WARNING! *first_indexp can wrap if last_index is ULONG_MAX. Caller must
640  * be prepared to handle that.
641  */
radix_tree_range_tag_if_tagged(struct radix_tree_root * root,unsigned long * first_indexp,unsigned long last_index,unsigned long nr_to_tag,unsigned int iftag,unsigned int settag)642 unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root *root,
643 		unsigned long *first_indexp, unsigned long last_index,
644 		unsigned long nr_to_tag,
645 		unsigned int iftag, unsigned int settag)
646 {
647 	unsigned int height = root->height;
648 	struct radix_tree_node *node = NULL;
649 	struct radix_tree_node *slot;
650 	unsigned int shift;
651 	unsigned long tagged = 0;
652 	unsigned long index = *first_indexp;
653 
654 	last_index = min(last_index, radix_tree_maxindex(height));
655 	if (index > last_index)
656 		return 0;
657 	if (!nr_to_tag)
658 		return 0;
659 	if (!root_tag_get(root, iftag)) {
660 		*first_indexp = last_index + 1;
661 		return 0;
662 	}
663 	if (height == 0) {
664 		*first_indexp = last_index + 1;
665 		root_tag_set(root, settag);
666 		return 1;
667 	}
668 
669 	shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
670 	slot = indirect_to_ptr(root->rnode);
671 
672 	for (;;) {
673 		unsigned long upindex;
674 		int offset;
675 
676 		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
677 		if (!slot->slots[offset])
678 			goto next;
679 		if (!tag_get(slot, iftag, offset))
680 			goto next;
681 		if (shift) {
682 			/* Go down one level */
683 			shift -= RADIX_TREE_MAP_SHIFT;
684 			node = slot;
685 			slot = slot->slots[offset];
686 			continue;
687 		}
688 
689 		/* tag the leaf */
690 		tagged++;
691 		tag_set(slot, settag, offset);
692 
693 		/* walk back up the path tagging interior nodes */
694 		upindex = index;
695 		while (node) {
696 			upindex >>= RADIX_TREE_MAP_SHIFT;
697 			offset = upindex & RADIX_TREE_MAP_MASK;
698 
699 			/* stop if we find a node with the tag already set */
700 			if (tag_get(node, settag, offset))
701 				break;
702 			tag_set(node, settag, offset);
703 			node = node->parent;
704 		}
705 
706 		/*
707 		 * Small optimization: now clear that node pointer.
708 		 * Since all of this slot's ancestors now have the tag set
709 		 * from setting it above, we have no further need to walk
710 		 * back up the tree setting tags, until we update slot to
711 		 * point to another radix_tree_node.
712 		 */
713 		node = NULL;
714 
715 next:
716 		/* Go to next item at level determined by 'shift' */
717 		index = ((index >> shift) + 1) << shift;
718 		/* Overflow can happen when last_index is ~0UL... */
719 		if (index > last_index || !index)
720 			break;
721 		if (tagged >= nr_to_tag)
722 			break;
723 		while (((index >> shift) & RADIX_TREE_MAP_MASK) == 0) {
724 			/*
725 			 * We've fully scanned this node. Go up. Because
726 			 * last_index is guaranteed to be in the tree, what
727 			 * we do below cannot wander astray.
728 			 */
729 			slot = slot->parent;
730 			shift += RADIX_TREE_MAP_SHIFT;
731 		}
732 	}
733 	/*
734 	 * We need not to tag the root tag if there is no tag which is set with
735 	 * settag within the range from *first_indexp to last_index.
736 	 */
737 	if (tagged > 0)
738 		root_tag_set(root, settag);
739 	*first_indexp = index;
740 
741 	return tagged;
742 }
743 EXPORT_SYMBOL(radix_tree_range_tag_if_tagged);
744 
745 
746 /**
747  *	radix_tree_next_hole    -    find the next hole (not-present entry)
748  *	@root:		tree root
749  *	@index:		index key
750  *	@max_scan:	maximum range to search
751  *
752  *	Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the lowest
753  *	indexed hole.
754  *
755  *	Returns: the index of the hole if found, otherwise returns an index
756  *	outside of the set specified (in which case 'return - index >= max_scan'
757  *	will be true). In rare cases of index wrap-around, 0 will be returned.
758  *
759  *	radix_tree_next_hole may be called under rcu_read_lock. However, like
760  *	radix_tree_gang_lookup, this will not atomically search a snapshot of
761  *	the tree at a single point in time. For example, if a hole is created
762  *	at index 5, then subsequently a hole is created at index 10,
763  *	radix_tree_next_hole covering both indexes may return 10 if called
764  *	under rcu_read_lock.
765  */
radix_tree_next_hole(struct radix_tree_root * root,unsigned long index,unsigned long max_scan)766 unsigned long radix_tree_next_hole(struct radix_tree_root *root,
767 				unsigned long index, unsigned long max_scan)
768 {
769 	unsigned long i;
770 
771 	for (i = 0; i < max_scan; i++) {
772 		if (!radix_tree_lookup(root, index))
773 			break;
774 		index++;
775 		if (index == 0)
776 			break;
777 	}
778 
779 	return index;
780 }
781 EXPORT_SYMBOL(radix_tree_next_hole);
782 
783 /**
784  *	radix_tree_prev_hole    -    find the prev hole (not-present entry)
785  *	@root:		tree root
786  *	@index:		index key
787  *	@max_scan:	maximum range to search
788  *
789  *	Search backwards in the range [max(index-max_scan+1, 0), index]
790  *	for the first hole.
791  *
792  *	Returns: the index of the hole if found, otherwise returns an index
793  *	outside of the set specified (in which case 'index - return >= max_scan'
794  *	will be true). In rare cases of wrap-around, ULONG_MAX will be returned.
795  *
796  *	radix_tree_next_hole may be called under rcu_read_lock. However, like
797  *	radix_tree_gang_lookup, this will not atomically search a snapshot of
798  *	the tree at a single point in time. For example, if a hole is created
799  *	at index 10, then subsequently a hole is created at index 5,
800  *	radix_tree_prev_hole covering both indexes may return 5 if called under
801  *	rcu_read_lock.
802  */
radix_tree_prev_hole(struct radix_tree_root * root,unsigned long index,unsigned long max_scan)803 unsigned long radix_tree_prev_hole(struct radix_tree_root *root,
804 				   unsigned long index, unsigned long max_scan)
805 {
806 	unsigned long i;
807 
808 	for (i = 0; i < max_scan; i++) {
809 		if (!radix_tree_lookup(root, index))
810 			break;
811 		index--;
812 		if (index == ULONG_MAX)
813 			break;
814 	}
815 
816 	return index;
817 }
818 EXPORT_SYMBOL(radix_tree_prev_hole);
819 
820 static unsigned int
__lookup(struct radix_tree_node * slot,void *** results,unsigned long * indices,unsigned long index,unsigned int max_items,unsigned long * next_index)821 __lookup(struct radix_tree_node *slot, void ***results, unsigned long *indices,
822 	unsigned long index, unsigned int max_items, unsigned long *next_index)
823 {
824 	unsigned int nr_found = 0;
825 	unsigned int shift, height;
826 	unsigned long i;
827 
828 	height = slot->height;
829 	if (height == 0)
830 		goto out;
831 	shift = (height-1) * RADIX_TREE_MAP_SHIFT;
832 
833 	for ( ; height > 1; height--) {
834 		i = (index >> shift) & RADIX_TREE_MAP_MASK;
835 		for (;;) {
836 			if (slot->slots[i] != NULL)
837 				break;
838 			index &= ~((1UL << shift) - 1);
839 			index += 1UL << shift;
840 			if (index == 0)
841 				goto out;	/* 32-bit wraparound */
842 			i++;
843 			if (i == RADIX_TREE_MAP_SIZE)
844 				goto out;
845 		}
846 
847 		shift -= RADIX_TREE_MAP_SHIFT;
848 		slot = rcu_dereference_raw(slot->slots[i]);
849 		if (slot == NULL)
850 			goto out;
851 	}
852 
853 	/* Bottom level: grab some items */
854 	for (i = index & RADIX_TREE_MAP_MASK; i < RADIX_TREE_MAP_SIZE; i++) {
855 		if (slot->slots[i]) {
856 			results[nr_found] = &(slot->slots[i]);
857 			if (indices)
858 				indices[nr_found] = index;
859 			if (++nr_found == max_items) {
860 				index++;
861 				goto out;
862 			}
863 		}
864 		index++;
865 	}
866 out:
867 	*next_index = index;
868 	return nr_found;
869 }
870 
871 /**
872  *	radix_tree_gang_lookup - perform multiple lookup on a radix tree
873  *	@root:		radix tree root
874  *	@results:	where the results of the lookup are placed
875  *	@first_index:	start the lookup from this key
876  *	@max_items:	place up to this many items at *results
877  *
878  *	Performs an index-ascending scan of the tree for present items.  Places
879  *	them at *@results and returns the number of items which were placed at
880  *	*@results.
881  *
882  *	The implementation is naive.
883  *
884  *	Like radix_tree_lookup, radix_tree_gang_lookup may be called under
885  *	rcu_read_lock. In this case, rather than the returned results being
886  *	an atomic snapshot of the tree at a single point in time, the semantics
887  *	of an RCU protected gang lookup are as though multiple radix_tree_lookups
888  *	have been issued in individual locks, and results stored in 'results'.
889  */
890 unsigned int
radix_tree_gang_lookup(struct radix_tree_root * root,void ** results,unsigned long first_index,unsigned int max_items)891 radix_tree_gang_lookup(struct radix_tree_root *root, void **results,
892 			unsigned long first_index, unsigned int max_items)
893 {
894 	unsigned long max_index;
895 	struct radix_tree_node *node;
896 	unsigned long cur_index = first_index;
897 	unsigned int ret;
898 
899 	node = rcu_dereference_raw(root->rnode);
900 	if (!node)
901 		return 0;
902 
903 	if (!radix_tree_is_indirect_ptr(node)) {
904 		if (first_index > 0)
905 			return 0;
906 		results[0] = node;
907 		return 1;
908 	}
909 	node = indirect_to_ptr(node);
910 
911 	max_index = radix_tree_maxindex(node->height);
912 
913 	ret = 0;
914 	while (ret < max_items) {
915 		unsigned int nr_found, slots_found, i;
916 		unsigned long next_index;	/* Index of next search */
917 
918 		if (cur_index > max_index)
919 			break;
920 		slots_found = __lookup(node, (void ***)results + ret, NULL,
921 				cur_index, max_items - ret, &next_index);
922 		nr_found = 0;
923 		for (i = 0; i < slots_found; i++) {
924 			struct radix_tree_node *slot;
925 			slot = *(((void ***)results)[ret + i]);
926 			if (!slot)
927 				continue;
928 			results[ret + nr_found] =
929 				indirect_to_ptr(rcu_dereference_raw(slot));
930 			nr_found++;
931 		}
932 		ret += nr_found;
933 		if (next_index == 0)
934 			break;
935 		cur_index = next_index;
936 	}
937 
938 	return ret;
939 }
940 EXPORT_SYMBOL(radix_tree_gang_lookup);
941 
942 /**
943  *	radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
944  *	@root:		radix tree root
945  *	@results:	where the results of the lookup are placed
946  *	@indices:	where their indices should be placed (but usually NULL)
947  *	@first_index:	start the lookup from this key
948  *	@max_items:	place up to this many items at *results
949  *
950  *	Performs an index-ascending scan of the tree for present items.  Places
951  *	their slots at *@results and returns the number of items which were
952  *	placed at *@results.
953  *
954  *	The implementation is naive.
955  *
956  *	Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
957  *	be dereferenced with radix_tree_deref_slot, and if using only RCU
958  *	protection, radix_tree_deref_slot may fail requiring a retry.
959  */
960 unsigned int
radix_tree_gang_lookup_slot(struct radix_tree_root * root,void *** results,unsigned long * indices,unsigned long first_index,unsigned int max_items)961 radix_tree_gang_lookup_slot(struct radix_tree_root *root,
962 			void ***results, unsigned long *indices,
963 			unsigned long first_index, unsigned int max_items)
964 {
965 	unsigned long max_index;
966 	struct radix_tree_node *node;
967 	unsigned long cur_index = first_index;
968 	unsigned int ret;
969 
970 	node = rcu_dereference_raw(root->rnode);
971 	if (!node)
972 		return 0;
973 
974 	if (!radix_tree_is_indirect_ptr(node)) {
975 		if (first_index > 0)
976 			return 0;
977 		results[0] = (void **)&root->rnode;
978 		if (indices)
979 			indices[0] = 0;
980 		return 1;
981 	}
982 	node = indirect_to_ptr(node);
983 
984 	max_index = radix_tree_maxindex(node->height);
985 
986 	ret = 0;
987 	while (ret < max_items) {
988 		unsigned int slots_found;
989 		unsigned long next_index;	/* Index of next search */
990 
991 		if (cur_index > max_index)
992 			break;
993 		slots_found = __lookup(node, results + ret,
994 				indices ? indices + ret : NULL,
995 				cur_index, max_items - ret, &next_index);
996 		ret += slots_found;
997 		if (next_index == 0)
998 			break;
999 		cur_index = next_index;
1000 	}
1001 
1002 	return ret;
1003 }
1004 EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
1005 
1006 /*
1007  * FIXME: the two tag_get()s here should use find_next_bit() instead of
1008  * open-coding the search.
1009  */
1010 static unsigned int
__lookup_tag(struct radix_tree_node * slot,void *** results,unsigned long index,unsigned int max_items,unsigned long * next_index,unsigned int tag)1011 __lookup_tag(struct radix_tree_node *slot, void ***results, unsigned long index,
1012 	unsigned int max_items, unsigned long *next_index, unsigned int tag)
1013 {
1014 	unsigned int nr_found = 0;
1015 	unsigned int shift, height;
1016 
1017 	height = slot->height;
1018 	if (height == 0)
1019 		goto out;
1020 	shift = (height-1) * RADIX_TREE_MAP_SHIFT;
1021 
1022 	while (height > 0) {
1023 		unsigned long i = (index >> shift) & RADIX_TREE_MAP_MASK ;
1024 
1025 		for (;;) {
1026 			if (tag_get(slot, tag, i))
1027 				break;
1028 			index &= ~((1UL << shift) - 1);
1029 			index += 1UL << shift;
1030 			if (index == 0)
1031 				goto out;	/* 32-bit wraparound */
1032 			i++;
1033 			if (i == RADIX_TREE_MAP_SIZE)
1034 				goto out;
1035 		}
1036 		height--;
1037 		if (height == 0) {	/* Bottom level: grab some items */
1038 			unsigned long j = index & RADIX_TREE_MAP_MASK;
1039 
1040 			for ( ; j < RADIX_TREE_MAP_SIZE; j++) {
1041 				index++;
1042 				if (!tag_get(slot, tag, j))
1043 					continue;
1044 				/*
1045 				 * Even though the tag was found set, we need to
1046 				 * recheck that we have a non-NULL node, because
1047 				 * if this lookup is lockless, it may have been
1048 				 * subsequently deleted.
1049 				 *
1050 				 * Similar care must be taken in any place that
1051 				 * lookup ->slots[x] without a lock (ie. can't
1052 				 * rely on its value remaining the same).
1053 				 */
1054 				if (slot->slots[j]) {
1055 					results[nr_found++] = &(slot->slots[j]);
1056 					if (nr_found == max_items)
1057 						goto out;
1058 				}
1059 			}
1060 		}
1061 		shift -= RADIX_TREE_MAP_SHIFT;
1062 		slot = rcu_dereference_raw(slot->slots[i]);
1063 		if (slot == NULL)
1064 			break;
1065 	}
1066 out:
1067 	*next_index = index;
1068 	return nr_found;
1069 }
1070 
1071 /**
1072  *	radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1073  *	                             based on a tag
1074  *	@root:		radix tree root
1075  *	@results:	where the results of the lookup are placed
1076  *	@first_index:	start the lookup from this key
1077  *	@max_items:	place up to this many items at *results
1078  *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
1079  *
1080  *	Performs an index-ascending scan of the tree for present items which
1081  *	have the tag indexed by @tag set.  Places the items at *@results and
1082  *	returns the number of items which were placed at *@results.
1083  */
1084 unsigned int
radix_tree_gang_lookup_tag(struct radix_tree_root * root,void ** results,unsigned long first_index,unsigned int max_items,unsigned int tag)1085 radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results,
1086 		unsigned long first_index, unsigned int max_items,
1087 		unsigned int tag)
1088 {
1089 	struct radix_tree_node *node;
1090 	unsigned long max_index;
1091 	unsigned long cur_index = first_index;
1092 	unsigned int ret;
1093 
1094 	/* check the root's tag bit */
1095 	if (!root_tag_get(root, tag))
1096 		return 0;
1097 
1098 	node = rcu_dereference_raw(root->rnode);
1099 	if (!node)
1100 		return 0;
1101 
1102 	if (!radix_tree_is_indirect_ptr(node)) {
1103 		if (first_index > 0)
1104 			return 0;
1105 		results[0] = node;
1106 		return 1;
1107 	}
1108 	node = indirect_to_ptr(node);
1109 
1110 	max_index = radix_tree_maxindex(node->height);
1111 
1112 	ret = 0;
1113 	while (ret < max_items) {
1114 		unsigned int nr_found, slots_found, i;
1115 		unsigned long next_index;	/* Index of next search */
1116 
1117 		if (cur_index > max_index)
1118 			break;
1119 		slots_found = __lookup_tag(node, (void ***)results + ret,
1120 				cur_index, max_items - ret, &next_index, tag);
1121 		nr_found = 0;
1122 		for (i = 0; i < slots_found; i++) {
1123 			struct radix_tree_node *slot;
1124 			slot = *(((void ***)results)[ret + i]);
1125 			if (!slot)
1126 				continue;
1127 			results[ret + nr_found] =
1128 				indirect_to_ptr(rcu_dereference_raw(slot));
1129 			nr_found++;
1130 		}
1131 		ret += nr_found;
1132 		if (next_index == 0)
1133 			break;
1134 		cur_index = next_index;
1135 	}
1136 
1137 	return ret;
1138 }
1139 EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1140 
1141 /**
1142  *	radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1143  *					  radix tree based on a tag
1144  *	@root:		radix tree root
1145  *	@results:	where the results of the lookup are placed
1146  *	@first_index:	start the lookup from this key
1147  *	@max_items:	place up to this many items at *results
1148  *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
1149  *
1150  *	Performs an index-ascending scan of the tree for present items which
1151  *	have the tag indexed by @tag set.  Places the slots at *@results and
1152  *	returns the number of slots which were placed at *@results.
1153  */
1154 unsigned int
radix_tree_gang_lookup_tag_slot(struct radix_tree_root * root,void *** results,unsigned long first_index,unsigned int max_items,unsigned int tag)1155 radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results,
1156 		unsigned long first_index, unsigned int max_items,
1157 		unsigned int tag)
1158 {
1159 	struct radix_tree_node *node;
1160 	unsigned long max_index;
1161 	unsigned long cur_index = first_index;
1162 	unsigned int ret;
1163 
1164 	/* check the root's tag bit */
1165 	if (!root_tag_get(root, tag))
1166 		return 0;
1167 
1168 	node = rcu_dereference_raw(root->rnode);
1169 	if (!node)
1170 		return 0;
1171 
1172 	if (!radix_tree_is_indirect_ptr(node)) {
1173 		if (first_index > 0)
1174 			return 0;
1175 		results[0] = (void **)&root->rnode;
1176 		return 1;
1177 	}
1178 	node = indirect_to_ptr(node);
1179 
1180 	max_index = radix_tree_maxindex(node->height);
1181 
1182 	ret = 0;
1183 	while (ret < max_items) {
1184 		unsigned int slots_found;
1185 		unsigned long next_index;	/* Index of next search */
1186 
1187 		if (cur_index > max_index)
1188 			break;
1189 		slots_found = __lookup_tag(node, results + ret,
1190 				cur_index, max_items - ret, &next_index, tag);
1191 		ret += slots_found;
1192 		if (next_index == 0)
1193 			break;
1194 		cur_index = next_index;
1195 	}
1196 
1197 	return ret;
1198 }
1199 EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1200 
1201 #if defined(CONFIG_SHMEM) && defined(CONFIG_SWAP)
1202 #include <linux/sched.h> /* for cond_resched() */
1203 
1204 /*
1205  * This linear search is at present only useful to shmem_unuse_inode().
1206  */
__locate(struct radix_tree_node * slot,void * item,unsigned long index,unsigned long * found_index)1207 static unsigned long __locate(struct radix_tree_node *slot, void *item,
1208 			      unsigned long index, unsigned long *found_index)
1209 {
1210 	unsigned int shift, height;
1211 	unsigned long i;
1212 
1213 	height = slot->height;
1214 	shift = (height-1) * RADIX_TREE_MAP_SHIFT;
1215 
1216 	for ( ; height > 1; height--) {
1217 		i = (index >> shift) & RADIX_TREE_MAP_MASK;
1218 		for (;;) {
1219 			if (slot->slots[i] != NULL)
1220 				break;
1221 			index &= ~((1UL << shift) - 1);
1222 			index += 1UL << shift;
1223 			if (index == 0)
1224 				goto out;	/* 32-bit wraparound */
1225 			i++;
1226 			if (i == RADIX_TREE_MAP_SIZE)
1227 				goto out;
1228 		}
1229 
1230 		shift -= RADIX_TREE_MAP_SHIFT;
1231 		slot = rcu_dereference_raw(slot->slots[i]);
1232 		if (slot == NULL)
1233 			goto out;
1234 	}
1235 
1236 	/* Bottom level: check items */
1237 	for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
1238 		if (slot->slots[i] == item) {
1239 			*found_index = index + i;
1240 			index = 0;
1241 			goto out;
1242 		}
1243 	}
1244 	index += RADIX_TREE_MAP_SIZE;
1245 out:
1246 	return index;
1247 }
1248 
1249 /**
1250  *	radix_tree_locate_item - search through radix tree for item
1251  *	@root:		radix tree root
1252  *	@item:		item to be found
1253  *
1254  *	Returns index where item was found, or -1 if not found.
1255  *	Caller must hold no lock (since this time-consuming function needs
1256  *	to be preemptible), and must check afterwards if item is still there.
1257  */
radix_tree_locate_item(struct radix_tree_root * root,void * item)1258 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1259 {
1260 	struct radix_tree_node *node;
1261 	unsigned long max_index;
1262 	unsigned long cur_index = 0;
1263 	unsigned long found_index = -1;
1264 
1265 	do {
1266 		rcu_read_lock();
1267 		node = rcu_dereference_raw(root->rnode);
1268 		if (!radix_tree_is_indirect_ptr(node)) {
1269 			rcu_read_unlock();
1270 			if (node == item)
1271 				found_index = 0;
1272 			break;
1273 		}
1274 
1275 		node = indirect_to_ptr(node);
1276 		max_index = radix_tree_maxindex(node->height);
1277 		if (cur_index > max_index)
1278 			break;
1279 
1280 		cur_index = __locate(node, item, cur_index, &found_index);
1281 		rcu_read_unlock();
1282 		cond_resched();
1283 	} while (cur_index != 0 && cur_index <= max_index);
1284 
1285 	return found_index;
1286 }
1287 #else
radix_tree_locate_item(struct radix_tree_root * root,void * item)1288 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1289 {
1290 	return -1;
1291 }
1292 #endif /* CONFIG_SHMEM && CONFIG_SWAP */
1293 
1294 /**
1295  *	radix_tree_shrink    -    shrink height of a radix tree to minimal
1296  *	@root		radix tree root
1297  */
radix_tree_shrink(struct radix_tree_root * root)1298 static inline void radix_tree_shrink(struct radix_tree_root *root)
1299 {
1300 	/* try to shrink tree height */
1301 	while (root->height > 0) {
1302 		struct radix_tree_node *to_free = root->rnode;
1303 		struct radix_tree_node *slot;
1304 
1305 		BUG_ON(!radix_tree_is_indirect_ptr(to_free));
1306 		to_free = indirect_to_ptr(to_free);
1307 
1308 		/*
1309 		 * The candidate node has more than one child, or its child
1310 		 * is not at the leftmost slot, we cannot shrink.
1311 		 */
1312 		if (to_free->count != 1)
1313 			break;
1314 		if (!to_free->slots[0])
1315 			break;
1316 
1317 		/*
1318 		 * We don't need rcu_assign_pointer(), since we are simply
1319 		 * moving the node from one part of the tree to another: if it
1320 		 * was safe to dereference the old pointer to it
1321 		 * (to_free->slots[0]), it will be safe to dereference the new
1322 		 * one (root->rnode) as far as dependent read barriers go.
1323 		 */
1324 		slot = to_free->slots[0];
1325 		if (root->height > 1) {
1326 			slot->parent = NULL;
1327 			slot = ptr_to_indirect(slot);
1328 		}
1329 		root->rnode = slot;
1330 		root->height--;
1331 
1332 		/*
1333 		 * We have a dilemma here. The node's slot[0] must not be
1334 		 * NULLed in case there are concurrent lookups expecting to
1335 		 * find the item. However if this was a bottom-level node,
1336 		 * then it may be subject to the slot pointer being visible
1337 		 * to callers dereferencing it. If item corresponding to
1338 		 * slot[0] is subsequently deleted, these callers would expect
1339 		 * their slot to become empty sooner or later.
1340 		 *
1341 		 * For example, lockless pagecache will look up a slot, deref
1342 		 * the page pointer, and if the page is 0 refcount it means it
1343 		 * was concurrently deleted from pagecache so try the deref
1344 		 * again. Fortunately there is already a requirement for logic
1345 		 * to retry the entire slot lookup -- the indirect pointer
1346 		 * problem (replacing direct root node with an indirect pointer
1347 		 * also results in a stale slot). So tag the slot as indirect
1348 		 * to force callers to retry.
1349 		 */
1350 		if (root->height == 0)
1351 			*((unsigned long *)&to_free->slots[0]) |=
1352 						RADIX_TREE_INDIRECT_PTR;
1353 
1354 		radix_tree_node_free(to_free);
1355 	}
1356 }
1357 
1358 /**
1359  *	radix_tree_delete    -    delete an item from a radix tree
1360  *	@root:		radix tree root
1361  *	@index:		index key
1362  *
1363  *	Remove the item at @index from the radix tree rooted at @root.
1364  *
1365  *	Returns the address of the deleted item, or NULL if it was not present.
1366  */
radix_tree_delete(struct radix_tree_root * root,unsigned long index)1367 void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1368 {
1369 	struct radix_tree_node *node = NULL;
1370 	struct radix_tree_node *slot = NULL;
1371 	struct radix_tree_node *to_free;
1372 	unsigned int height, shift;
1373 	int tag;
1374 	int uninitialized_var(offset);
1375 
1376 	height = root->height;
1377 	if (index > radix_tree_maxindex(height))
1378 		goto out;
1379 
1380 	slot = root->rnode;
1381 	if (height == 0) {
1382 		root_tag_clear_all(root);
1383 		root->rnode = NULL;
1384 		goto out;
1385 	}
1386 	slot = indirect_to_ptr(slot);
1387 	shift = height * RADIX_TREE_MAP_SHIFT;
1388 
1389 	do {
1390 		if (slot == NULL)
1391 			goto out;
1392 
1393 		shift -= RADIX_TREE_MAP_SHIFT;
1394 		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
1395 		node = slot;
1396 		slot = slot->slots[offset];
1397 	} while (shift);
1398 
1399 	if (slot == NULL)
1400 		goto out;
1401 
1402 	/*
1403 	 * Clear all tags associated with the item to be deleted.
1404 	 * This way of doing it would be inefficient, but seldom is any set.
1405 	 */
1406 	for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
1407 		if (tag_get(node, tag, offset))
1408 			radix_tree_tag_clear(root, index, tag);
1409 	}
1410 
1411 	to_free = NULL;
1412 	/* Now free the nodes we do not need anymore */
1413 	while (node) {
1414 		node->slots[offset] = NULL;
1415 		node->count--;
1416 		/*
1417 		 * Queue the node for deferred freeing after the
1418 		 * last reference to it disappears (set NULL, above).
1419 		 */
1420 		if (to_free)
1421 			radix_tree_node_free(to_free);
1422 
1423 		if (node->count) {
1424 			if (node == indirect_to_ptr(root->rnode))
1425 				radix_tree_shrink(root);
1426 			goto out;
1427 		}
1428 
1429 		/* Node with zero slots in use so free it */
1430 		to_free = node;
1431 
1432 		index >>= RADIX_TREE_MAP_SHIFT;
1433 		offset = index & RADIX_TREE_MAP_MASK;
1434 		node = node->parent;
1435 	}
1436 
1437 	root_tag_clear_all(root);
1438 	root->height = 0;
1439 	root->rnode = NULL;
1440 	if (to_free)
1441 		radix_tree_node_free(to_free);
1442 
1443 out:
1444 	return slot;
1445 }
1446 EXPORT_SYMBOL(radix_tree_delete);
1447 
1448 /**
1449  *	radix_tree_tagged - test whether any items in the tree are tagged
1450  *	@root:		radix tree root
1451  *	@tag:		tag to test
1452  */
radix_tree_tagged(struct radix_tree_root * root,unsigned int tag)1453 int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag)
1454 {
1455 	return root_tag_get(root, tag);
1456 }
1457 EXPORT_SYMBOL(radix_tree_tagged);
1458 
1459 static void
radix_tree_node_ctor(void * node)1460 radix_tree_node_ctor(void *node)
1461 {
1462 	memset(node, 0, sizeof(struct radix_tree_node));
1463 }
1464 
__maxindex(unsigned int height)1465 static __init unsigned long __maxindex(unsigned int height)
1466 {
1467 	unsigned int width = height * RADIX_TREE_MAP_SHIFT;
1468 	int shift = RADIX_TREE_INDEX_BITS - width;
1469 
1470 	if (shift < 0)
1471 		return ~0UL;
1472 	if (shift >= BITS_PER_LONG)
1473 		return 0UL;
1474 	return ~0UL >> shift;
1475 }
1476 
radix_tree_init_maxindex(void)1477 static __init void radix_tree_init_maxindex(void)
1478 {
1479 	unsigned int i;
1480 
1481 	for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
1482 		height_to_maxindex[i] = __maxindex(i);
1483 }
1484 
radix_tree_callback(struct notifier_block * nfb,unsigned long action,void * hcpu)1485 static int radix_tree_callback(struct notifier_block *nfb,
1486                             unsigned long action,
1487                             void *hcpu)
1488 {
1489        int cpu = (long)hcpu;
1490        struct radix_tree_preload *rtp;
1491 
1492        /* Free per-cpu pool of perloaded nodes */
1493        if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
1494                rtp = &per_cpu(radix_tree_preloads, cpu);
1495                while (rtp->nr) {
1496                        kmem_cache_free(radix_tree_node_cachep,
1497                                        rtp->nodes[rtp->nr-1]);
1498                        rtp->nodes[rtp->nr-1] = NULL;
1499                        rtp->nr--;
1500                }
1501        }
1502        return NOTIFY_OK;
1503 }
1504 
radix_tree_init(void)1505 void __init radix_tree_init(void)
1506 {
1507 	radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1508 			sizeof(struct radix_tree_node), 0,
1509 			SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1510 			radix_tree_node_ctor);
1511 	radix_tree_init_maxindex();
1512 	hotcpu_notifier(radix_tree_callback, 0);
1513 }
1514