1 /*
2  * Oct 15, 2000 Matt Domsch <Matt_Domsch@dell.com>
3  * Nicer crc32 functions/docs submitted by linux@horizon.com.  Thanks!
4  * Code was from the public domain, copyright abandoned.  Code was
5  * subsequently included in the kernel, thus was re-licensed under the
6  * GNU GPL v2.
7  *
8  * Oct 12, 2000 Matt Domsch <Matt_Domsch@dell.com>
9  * Same crc32 function was used in 5 other places in the kernel.
10  * I made one version, and deleted the others.
11  * There are various incantations of crc32().  Some use a seed of 0 or ~0.
12  * Some xor at the end with ~0.  The generic crc32() function takes
13  * seed as an argument, and doesn't xor at the end.  Then individual
14  * users can do whatever they need.
15  *   drivers/net/smc9194.c uses seed ~0, doesn't xor with ~0.
16  *   fs/jffs2 uses seed 0, doesn't xor with ~0.
17  *   fs/partitions/efi.c uses seed ~0, xor's with ~0.
18  *
19  * This source code is licensed under the GNU General Public License,
20  * Version 2.  See the file COPYING for more details.
21  */
22 
23 #include <linux/crc32.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/compiler.h>
27 #include <linux/types.h>
28 #include <linux/init.h>
29 #include <linux/atomic.h>
30 #include "crc32defs.h"
31 #if CRC_LE_BITS == 8
32 # define tole(x) __constant_cpu_to_le32(x)
33 #else
34 # define tole(x) (x)
35 #endif
36 
37 #if CRC_BE_BITS == 8
38 # define tobe(x) __constant_cpu_to_be32(x)
39 #else
40 # define tobe(x) (x)
41 #endif
42 #include "crc32table.h"
43 
44 MODULE_AUTHOR("Matt Domsch <Matt_Domsch@dell.com>");
45 MODULE_DESCRIPTION("Ethernet CRC32 calculations");
46 MODULE_LICENSE("GPL");
47 
48 #if CRC_LE_BITS == 8 || CRC_BE_BITS == 8
49 
50 static inline u32
crc32_body(u32 crc,unsigned char const * buf,size_t len,const u32 (* tab)[256])51 crc32_body(u32 crc, unsigned char const *buf, size_t len, const u32 (*tab)[256])
52 {
53 # ifdef __LITTLE_ENDIAN
54 #  define DO_CRC(x) crc = t0[(crc ^ (x)) & 255] ^ (crc >> 8)
55 #  define DO_CRC4 crc = t3[(crc) & 255] ^ \
56 		t2[(crc >> 8) & 255] ^ \
57 		t1[(crc >> 16) & 255] ^ \
58 		t0[(crc >> 24) & 255]
59 # else
60 #  define DO_CRC(x) crc = t0[((crc >> 24) ^ (x)) & 255] ^ (crc << 8)
61 #  define DO_CRC4 crc = t0[(crc) & 255] ^ \
62 		t1[(crc >> 8) & 255] ^  \
63 		t2[(crc >> 16) & 255] ^	\
64 		t3[(crc >> 24) & 255]
65 # endif
66 	const u32 *b;
67 	size_t    rem_len;
68 	const u32 *t0=tab[0], *t1=tab[1], *t2=tab[2], *t3=tab[3];
69 
70 	/* Align it */
71 	if (unlikely((long)buf & 3 && len)) {
72 		do {
73 			DO_CRC(*buf++);
74 		} while ((--len) && ((long)buf)&3);
75 	}
76 	rem_len = len & 3;
77 	/* load data 32 bits wide, xor data 32 bits wide. */
78 	len = len >> 2;
79 	b = (const u32 *)buf;
80 	for (--b; len; --len) {
81 		crc ^= *++b; /* use pre increment for speed */
82 		DO_CRC4;
83 	}
84 	len = rem_len;
85 	/* And the last few bytes */
86 	if (len) {
87 		u8 *p = (u8 *)(b + 1) - 1;
88 		do {
89 			DO_CRC(*++p); /* use pre increment for speed */
90 		} while (--len);
91 	}
92 	return crc;
93 #undef DO_CRC
94 #undef DO_CRC4
95 }
96 #endif
97 /**
98  * crc32_le() - Calculate bitwise little-endian Ethernet AUTODIN II CRC32
99  * @crc: seed value for computation.  ~0 for Ethernet, sometimes 0 for
100  *	other uses, or the previous crc32 value if computing incrementally.
101  * @p: pointer to buffer over which CRC is run
102  * @len: length of buffer @p
103  */
104 u32 __pure crc32_le(u32 crc, unsigned char const *p, size_t len);
105 
106 #if CRC_LE_BITS == 1
107 /*
108  * In fact, the table-based code will work in this case, but it can be
109  * simplified by inlining the table in ?: form.
110  */
111 
crc32_le(u32 crc,unsigned char const * p,size_t len)112 u32 __pure crc32_le(u32 crc, unsigned char const *p, size_t len)
113 {
114 	int i;
115 	while (len--) {
116 		crc ^= *p++;
117 		for (i = 0; i < 8; i++)
118 			crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
119 	}
120 	return crc;
121 }
122 #else				/* Table-based approach */
123 
crc32_le(u32 crc,unsigned char const * p,size_t len)124 u32 __pure crc32_le(u32 crc, unsigned char const *p, size_t len)
125 {
126 # if CRC_LE_BITS == 8
127 	const u32      (*tab)[] = crc32table_le;
128 
129 	crc = __cpu_to_le32(crc);
130 	crc = crc32_body(crc, p, len, tab);
131 	return __le32_to_cpu(crc);
132 # elif CRC_LE_BITS == 4
133 	while (len--) {
134 		crc ^= *p++;
135 		crc = (crc >> 4) ^ crc32table_le[crc & 15];
136 		crc = (crc >> 4) ^ crc32table_le[crc & 15];
137 	}
138 	return crc;
139 # elif CRC_LE_BITS == 2
140 	while (len--) {
141 		crc ^= *p++;
142 		crc = (crc >> 2) ^ crc32table_le[crc & 3];
143 		crc = (crc >> 2) ^ crc32table_le[crc & 3];
144 		crc = (crc >> 2) ^ crc32table_le[crc & 3];
145 		crc = (crc >> 2) ^ crc32table_le[crc & 3];
146 	}
147 	return crc;
148 # endif
149 }
150 #endif
151 
152 /**
153  * crc32_be() - Calculate bitwise big-endian Ethernet AUTODIN II CRC32
154  * @crc: seed value for computation.  ~0 for Ethernet, sometimes 0 for
155  *	other uses, or the previous crc32 value if computing incrementally.
156  * @p: pointer to buffer over which CRC is run
157  * @len: length of buffer @p
158  */
159 u32 __pure crc32_be(u32 crc, unsigned char const *p, size_t len);
160 
161 #if CRC_BE_BITS == 1
162 /*
163  * In fact, the table-based code will work in this case, but it can be
164  * simplified by inlining the table in ?: form.
165  */
166 
crc32_be(u32 crc,unsigned char const * p,size_t len)167 u32 __pure crc32_be(u32 crc, unsigned char const *p, size_t len)
168 {
169 	int i;
170 	while (len--) {
171 		crc ^= *p++ << 24;
172 		for (i = 0; i < 8; i++)
173 			crc =
174 			    (crc << 1) ^ ((crc & 0x80000000) ? CRCPOLY_BE :
175 					  0);
176 	}
177 	return crc;
178 }
179 
180 #else				/* Table-based approach */
crc32_be(u32 crc,unsigned char const * p,size_t len)181 u32 __pure crc32_be(u32 crc, unsigned char const *p, size_t len)
182 {
183 # if CRC_BE_BITS == 8
184 	const u32      (*tab)[] = crc32table_be;
185 
186 	crc = __cpu_to_be32(crc);
187 	crc = crc32_body(crc, p, len, tab);
188 	return __be32_to_cpu(crc);
189 # elif CRC_BE_BITS == 4
190 	while (len--) {
191 		crc ^= *p++ << 24;
192 		crc = (crc << 4) ^ crc32table_be[crc >> 28];
193 		crc = (crc << 4) ^ crc32table_be[crc >> 28];
194 	}
195 	return crc;
196 # elif CRC_BE_BITS == 2
197 	while (len--) {
198 		crc ^= *p++ << 24;
199 		crc = (crc << 2) ^ crc32table_be[crc >> 30];
200 		crc = (crc << 2) ^ crc32table_be[crc >> 30];
201 		crc = (crc << 2) ^ crc32table_be[crc >> 30];
202 		crc = (crc << 2) ^ crc32table_be[crc >> 30];
203 	}
204 	return crc;
205 # endif
206 }
207 #endif
208 
209 EXPORT_SYMBOL(crc32_le);
210 EXPORT_SYMBOL(crc32_be);
211 
212 /*
213  * A brief CRC tutorial.
214  *
215  * A CRC is a long-division remainder.  You add the CRC to the message,
216  * and the whole thing (message+CRC) is a multiple of the given
217  * CRC polynomial.  To check the CRC, you can either check that the
218  * CRC matches the recomputed value, *or* you can check that the
219  * remainder computed on the message+CRC is 0.  This latter approach
220  * is used by a lot of hardware implementations, and is why so many
221  * protocols put the end-of-frame flag after the CRC.
222  *
223  * It's actually the same long division you learned in school, except that
224  * - We're working in binary, so the digits are only 0 and 1, and
225  * - When dividing polynomials, there are no carries.  Rather than add and
226  *   subtract, we just xor.  Thus, we tend to get a bit sloppy about
227  *   the difference between adding and subtracting.
228  *
229  * A 32-bit CRC polynomial is actually 33 bits long.  But since it's
230  * 33 bits long, bit 32 is always going to be set, so usually the CRC
231  * is written in hex with the most significant bit omitted.  (If you're
232  * familiar with the IEEE 754 floating-point format, it's the same idea.)
233  *
234  * Note that a CRC is computed over a string of *bits*, so you have
235  * to decide on the endianness of the bits within each byte.  To get
236  * the best error-detecting properties, this should correspond to the
237  * order they're actually sent.  For example, standard RS-232 serial is
238  * little-endian; the most significant bit (sometimes used for parity)
239  * is sent last.  And when appending a CRC word to a message, you should
240  * do it in the right order, matching the endianness.
241  *
242  * Just like with ordinary division, the remainder is always smaller than
243  * the divisor (the CRC polynomial) you're dividing by.  Each step of the
244  * division, you take one more digit (bit) of the dividend and append it
245  * to the current remainder.  Then you figure out the appropriate multiple
246  * of the divisor to subtract to being the remainder back into range.
247  * In binary, it's easy - it has to be either 0 or 1, and to make the
248  * XOR cancel, it's just a copy of bit 32 of the remainder.
249  *
250  * When computing a CRC, we don't care about the quotient, so we can
251  * throw the quotient bit away, but subtract the appropriate multiple of
252  * the polynomial from the remainder and we're back to where we started,
253  * ready to process the next bit.
254  *
255  * A big-endian CRC written this way would be coded like:
256  * for (i = 0; i < input_bits; i++) {
257  * 	multiple = remainder & 0x80000000 ? CRCPOLY : 0;
258  * 	remainder = (remainder << 1 | next_input_bit()) ^ multiple;
259  * }
260  * Notice how, to get at bit 32 of the shifted remainder, we look
261  * at bit 31 of the remainder *before* shifting it.
262  *
263  * But also notice how the next_input_bit() bits we're shifting into
264  * the remainder don't actually affect any decision-making until
265  * 32 bits later.  Thus, the first 32 cycles of this are pretty boring.
266  * Also, to add the CRC to a message, we need a 32-bit-long hole for it at
267  * the end, so we have to add 32 extra cycles shifting in zeros at the
268  * end of every message,
269  *
270  * So the standard trick is to rearrage merging in the next_input_bit()
271  * until the moment it's needed.  Then the first 32 cycles can be precomputed,
272  * and merging in the final 32 zero bits to make room for the CRC can be
273  * skipped entirely.
274  * This changes the code to:
275  * for (i = 0; i < input_bits; i++) {
276  *      remainder ^= next_input_bit() << 31;
277  * 	multiple = (remainder & 0x80000000) ? CRCPOLY : 0;
278  * 	remainder = (remainder << 1) ^ multiple;
279  * }
280  * With this optimization, the little-endian code is simpler:
281  * for (i = 0; i < input_bits; i++) {
282  *      remainder ^= next_input_bit();
283  * 	multiple = (remainder & 1) ? CRCPOLY : 0;
284  * 	remainder = (remainder >> 1) ^ multiple;
285  * }
286  *
287  * Note that the other details of endianness have been hidden in CRCPOLY
288  * (which must be bit-reversed) and next_input_bit().
289  *
290  * However, as long as next_input_bit is returning the bits in a sensible
291  * order, we can actually do the merging 8 or more bits at a time rather
292  * than one bit at a time:
293  * for (i = 0; i < input_bytes; i++) {
294  * 	remainder ^= next_input_byte() << 24;
295  * 	for (j = 0; j < 8; j++) {
296  * 		multiple = (remainder & 0x80000000) ? CRCPOLY : 0;
297  * 		remainder = (remainder << 1) ^ multiple;
298  * 	}
299  * }
300  * Or in little-endian:
301  * for (i = 0; i < input_bytes; i++) {
302  * 	remainder ^= next_input_byte();
303  * 	for (j = 0; j < 8; j++) {
304  * 		multiple = (remainder & 1) ? CRCPOLY : 0;
305  * 		remainder = (remainder << 1) ^ multiple;
306  * 	}
307  * }
308  * If the input is a multiple of 32 bits, you can even XOR in a 32-bit
309  * word at a time and increase the inner loop count to 32.
310  *
311  * You can also mix and match the two loop styles, for example doing the
312  * bulk of a message byte-at-a-time and adding bit-at-a-time processing
313  * for any fractional bytes at the end.
314  *
315  * The only remaining optimization is to the byte-at-a-time table method.
316  * Here, rather than just shifting one bit of the remainder to decide
317  * in the correct multiple to subtract, we can shift a byte at a time.
318  * This produces a 40-bit (rather than a 33-bit) intermediate remainder,
319  * but again the multiple of the polynomial to subtract depends only on
320  * the high bits, the high 8 bits in this case.
321  *
322  * The multiple we need in that case is the low 32 bits of a 40-bit
323  * value whose high 8 bits are given, and which is a multiple of the
324  * generator polynomial.  This is simply the CRC-32 of the given
325  * one-byte message.
326  *
327  * Two more details: normally, appending zero bits to a message which
328  * is already a multiple of a polynomial produces a larger multiple of that
329  * polynomial.  To enable a CRC to detect this condition, it's common to
330  * invert the CRC before appending it.  This makes the remainder of the
331  * message+crc come out not as zero, but some fixed non-zero value.
332  *
333  * The same problem applies to zero bits prepended to the message, and
334  * a similar solution is used.  Instead of starting with a remainder of
335  * 0, an initial remainder of all ones is used.  As long as you start
336  * the same way on decoding, it doesn't make a difference.
337  */
338 
339 #ifdef UNITTEST
340 
341 #include <stdlib.h>
342 #include <stdio.h>
343 
344 #if 0				/*Not used at present */
345 static void
346 buf_dump(char const *prefix, unsigned char const *buf, size_t len)
347 {
348 	fputs(prefix, stdout);
349 	while (len--)
350 		printf(" %02x", *buf++);
351 	putchar('\n');
352 
353 }
354 #endif
355 
bytereverse(unsigned char * buf,size_t len)356 static void bytereverse(unsigned char *buf, size_t len)
357 {
358 	while (len--) {
359 		unsigned char x = bitrev8(*buf);
360 		*buf++ = x;
361 	}
362 }
363 
random_garbage(unsigned char * buf,size_t len)364 static void random_garbage(unsigned char *buf, size_t len)
365 {
366 	while (len--)
367 		*buf++ = (unsigned char) random();
368 }
369 
370 #if 0				/* Not used at present */
371 static void store_le(u32 x, unsigned char *buf)
372 {
373 	buf[0] = (unsigned char) x;
374 	buf[1] = (unsigned char) (x >> 8);
375 	buf[2] = (unsigned char) (x >> 16);
376 	buf[3] = (unsigned char) (x >> 24);
377 }
378 #endif
379 
store_be(u32 x,unsigned char * buf)380 static void store_be(u32 x, unsigned char *buf)
381 {
382 	buf[0] = (unsigned char) (x >> 24);
383 	buf[1] = (unsigned char) (x >> 16);
384 	buf[2] = (unsigned char) (x >> 8);
385 	buf[3] = (unsigned char) x;
386 }
387 
388 /*
389  * This checks that CRC(buf + CRC(buf)) = 0, and that
390  * CRC commutes with bit-reversal.  This has the side effect
391  * of bytewise bit-reversing the input buffer, and returns
392  * the CRC of the reversed buffer.
393  */
test_step(u32 init,unsigned char * buf,size_t len)394 static u32 test_step(u32 init, unsigned char *buf, size_t len)
395 {
396 	u32 crc1, crc2;
397 	size_t i;
398 
399 	crc1 = crc32_be(init, buf, len);
400 	store_be(crc1, buf + len);
401 	crc2 = crc32_be(init, buf, len + 4);
402 	if (crc2)
403 		printf("\nCRC cancellation fail: 0x%08x should be 0\n",
404 		       crc2);
405 
406 	for (i = 0; i <= len + 4; i++) {
407 		crc2 = crc32_be(init, buf, i);
408 		crc2 = crc32_be(crc2, buf + i, len + 4 - i);
409 		if (crc2)
410 			printf("\nCRC split fail: 0x%08x\n", crc2);
411 	}
412 
413 	/* Now swap it around for the other test */
414 
415 	bytereverse(buf, len + 4);
416 	init = bitrev32(init);
417 	crc2 = bitrev32(crc1);
418 	if (crc1 != bitrev32(crc2))
419 		printf("\nBit reversal fail: 0x%08x -> 0x%08x -> 0x%08x\n",
420 		       crc1, crc2, bitrev32(crc2));
421 	crc1 = crc32_le(init, buf, len);
422 	if (crc1 != crc2)
423 		printf("\nCRC endianness fail: 0x%08x != 0x%08x\n", crc1,
424 		       crc2);
425 	crc2 = crc32_le(init, buf, len + 4);
426 	if (crc2)
427 		printf("\nCRC cancellation fail: 0x%08x should be 0\n",
428 		       crc2);
429 
430 	for (i = 0; i <= len + 4; i++) {
431 		crc2 = crc32_le(init, buf, i);
432 		crc2 = crc32_le(crc2, buf + i, len + 4 - i);
433 		if (crc2)
434 			printf("\nCRC split fail: 0x%08x\n", crc2);
435 	}
436 
437 	return crc1;
438 }
439 
440 #define SIZE 64
441 #define INIT1 0
442 #define INIT2 0
443 
main(void)444 int main(void)
445 {
446 	unsigned char buf1[SIZE + 4];
447 	unsigned char buf2[SIZE + 4];
448 	unsigned char buf3[SIZE + 4];
449 	int i, j;
450 	u32 crc1, crc2, crc3;
451 
452 	for (i = 0; i <= SIZE; i++) {
453 		printf("\rTesting length %d...", i);
454 		fflush(stdout);
455 		random_garbage(buf1, i);
456 		random_garbage(buf2, i);
457 		for (j = 0; j < i; j++)
458 			buf3[j] = buf1[j] ^ buf2[j];
459 
460 		crc1 = test_step(INIT1, buf1, i);
461 		crc2 = test_step(INIT2, buf2, i);
462 		/* Now check that CRC(buf1 ^ buf2) = CRC(buf1) ^ CRC(buf2) */
463 		crc3 = test_step(INIT1 ^ INIT2, buf3, i);
464 		if (crc3 != (crc1 ^ crc2))
465 			printf("CRC XOR fail: 0x%08x != 0x%08x ^ 0x%08x\n",
466 			       crc3, crc1, crc2);
467 	}
468 	printf("\nAll test complete.  No failures expected.\n");
469 	return 0;
470 }
471 
472 #endif				/* UNITTEST */
473