1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * Copyright (C) 2018, Google LLC.
4 */
5 #ifndef SELFTEST_KVM_UTIL_H
6 #define SELFTEST_KVM_UTIL_H
7
8 #include "test_util.h"
9
10 #include <linux/compiler.h>
11 #include "linux/hashtable.h"
12 #include "linux/list.h"
13 #include <linux/kernel.h>
14 #include <linux/kvm.h>
15 #include "linux/rbtree.h"
16 #include <linux/types.h>
17
18 #include <asm/atomic.h>
19 #include <asm/kvm.h>
20
21 #include <sys/ioctl.h>
22
23 #include "kvm_util_arch.h"
24 #include "kvm_util_types.h"
25 #include "sparsebit.h"
26
27 #define KVM_DEV_PATH "/dev/kvm"
28 #define KVM_MAX_VCPUS 512
29
30 #define NSEC_PER_SEC 1000000000L
31
32 struct userspace_mem_region {
33 struct kvm_userspace_memory_region2 region;
34 struct sparsebit *unused_phy_pages;
35 struct sparsebit *protected_phy_pages;
36 int fd;
37 off_t offset;
38 enum vm_mem_backing_src_type backing_src_type;
39 void *host_mem;
40 void *host_alias;
41 void *mmap_start;
42 void *mmap_alias;
43 size_t mmap_size;
44 struct rb_node gpa_node;
45 struct rb_node hva_node;
46 struct hlist_node slot_node;
47 };
48
49 struct kvm_binary_stats {
50 int fd;
51 struct kvm_stats_header header;
52 struct kvm_stats_desc *desc;
53 };
54
55 struct kvm_vcpu {
56 struct list_head list;
57 uint32_t id;
58 int fd;
59 struct kvm_vm *vm;
60 struct kvm_run *run;
61 #ifdef __x86_64__
62 struct kvm_cpuid2 *cpuid;
63 #endif
64 struct kvm_binary_stats stats;
65 struct kvm_dirty_gfn *dirty_gfns;
66 uint32_t fetch_index;
67 uint32_t dirty_gfns_count;
68 };
69
70 struct userspace_mem_regions {
71 struct rb_root gpa_tree;
72 struct rb_root hva_tree;
73 DECLARE_HASHTABLE(slot_hash, 9);
74 };
75
76 enum kvm_mem_region_type {
77 MEM_REGION_CODE,
78 MEM_REGION_DATA,
79 MEM_REGION_PT,
80 MEM_REGION_TEST_DATA,
81 NR_MEM_REGIONS,
82 };
83
84 struct kvm_vm {
85 int mode;
86 unsigned long type;
87 int kvm_fd;
88 int fd;
89 unsigned int pgtable_levels;
90 unsigned int page_size;
91 unsigned int page_shift;
92 unsigned int pa_bits;
93 unsigned int va_bits;
94 uint64_t max_gfn;
95 struct list_head vcpus;
96 struct userspace_mem_regions regions;
97 struct sparsebit *vpages_valid;
98 struct sparsebit *vpages_mapped;
99 bool has_irqchip;
100 bool pgd_created;
101 vm_paddr_t ucall_mmio_addr;
102 vm_paddr_t pgd;
103 vm_vaddr_t handlers;
104 uint32_t dirty_ring_size;
105 uint64_t gpa_tag_mask;
106
107 struct kvm_vm_arch arch;
108
109 struct kvm_binary_stats stats;
110
111 /*
112 * KVM region slots. These are the default memslots used by page
113 * allocators, e.g., lib/elf uses the memslots[MEM_REGION_CODE]
114 * memslot.
115 */
116 uint32_t memslots[NR_MEM_REGIONS];
117 };
118
119 struct vcpu_reg_sublist {
120 const char *name;
121 long capability;
122 int feature;
123 int feature_type;
124 bool finalize;
125 __u64 *regs;
126 __u64 regs_n;
127 __u64 *rejects_set;
128 __u64 rejects_set_n;
129 __u64 *skips_set;
130 __u64 skips_set_n;
131 };
132
133 struct vcpu_reg_list {
134 char *name;
135 struct vcpu_reg_sublist sublists[];
136 };
137
138 #define for_each_sublist(c, s) \
139 for ((s) = &(c)->sublists[0]; (s)->regs; ++(s))
140
141 #define kvm_for_each_vcpu(vm, i, vcpu) \
142 for ((i) = 0; (i) <= (vm)->last_vcpu_id; (i)++) \
143 if (!((vcpu) = vm->vcpus[i])) \
144 continue; \
145 else
146
147 struct userspace_mem_region *
148 memslot2region(struct kvm_vm *vm, uint32_t memslot);
149
vm_get_mem_region(struct kvm_vm * vm,enum kvm_mem_region_type type)150 static inline struct userspace_mem_region *vm_get_mem_region(struct kvm_vm *vm,
151 enum kvm_mem_region_type type)
152 {
153 assert(type < NR_MEM_REGIONS);
154 return memslot2region(vm, vm->memslots[type]);
155 }
156
157 /* Minimum allocated guest virtual and physical addresses */
158 #define KVM_UTIL_MIN_VADDR 0x2000
159 #define KVM_GUEST_PAGE_TABLE_MIN_PADDR 0x180000
160
161 #define DEFAULT_GUEST_STACK_VADDR_MIN 0xab6000
162 #define DEFAULT_STACK_PGS 5
163
164 enum vm_guest_mode {
165 VM_MODE_P52V48_4K,
166 VM_MODE_P52V48_16K,
167 VM_MODE_P52V48_64K,
168 VM_MODE_P48V48_4K,
169 VM_MODE_P48V48_16K,
170 VM_MODE_P48V48_64K,
171 VM_MODE_P40V48_4K,
172 VM_MODE_P40V48_16K,
173 VM_MODE_P40V48_64K,
174 VM_MODE_PXXV48_4K, /* For 48bits VA but ANY bits PA */
175 VM_MODE_P47V64_4K,
176 VM_MODE_P44V64_4K,
177 VM_MODE_P36V48_4K,
178 VM_MODE_P36V48_16K,
179 VM_MODE_P36V48_64K,
180 VM_MODE_P36V47_16K,
181 NUM_VM_MODES,
182 };
183
184 struct vm_shape {
185 uint32_t type;
186 uint8_t mode;
187 uint8_t pad0;
188 uint16_t pad1;
189 };
190
191 kvm_static_assert(sizeof(struct vm_shape) == sizeof(uint64_t));
192
193 #define VM_TYPE_DEFAULT 0
194
195 #define VM_SHAPE(__mode) \
196 ({ \
197 struct vm_shape shape = { \
198 .mode = (__mode), \
199 .type = VM_TYPE_DEFAULT \
200 }; \
201 \
202 shape; \
203 })
204
205 #if defined(__aarch64__)
206
207 extern enum vm_guest_mode vm_mode_default;
208
209 #define VM_MODE_DEFAULT vm_mode_default
210 #define MIN_PAGE_SHIFT 12U
211 #define ptes_per_page(page_size) ((page_size) / 8)
212
213 #elif defined(__x86_64__)
214
215 #define VM_MODE_DEFAULT VM_MODE_PXXV48_4K
216 #define MIN_PAGE_SHIFT 12U
217 #define ptes_per_page(page_size) ((page_size) / 8)
218
219 #elif defined(__s390x__)
220
221 #define VM_MODE_DEFAULT VM_MODE_P44V64_4K
222 #define MIN_PAGE_SHIFT 12U
223 #define ptes_per_page(page_size) ((page_size) / 16)
224
225 #elif defined(__riscv)
226
227 #if __riscv_xlen == 32
228 #error "RISC-V 32-bit kvm selftests not supported"
229 #endif
230
231 #define VM_MODE_DEFAULT VM_MODE_P40V48_4K
232 #define MIN_PAGE_SHIFT 12U
233 #define ptes_per_page(page_size) ((page_size) / 8)
234
235 #endif
236
237 #define VM_SHAPE_DEFAULT VM_SHAPE(VM_MODE_DEFAULT)
238
239 #define MIN_PAGE_SIZE (1U << MIN_PAGE_SHIFT)
240 #define PTES_PER_MIN_PAGE ptes_per_page(MIN_PAGE_SIZE)
241
242 struct vm_guest_mode_params {
243 unsigned int pa_bits;
244 unsigned int va_bits;
245 unsigned int page_size;
246 unsigned int page_shift;
247 };
248 extern const struct vm_guest_mode_params vm_guest_mode_params[];
249
250 int open_path_or_exit(const char *path, int flags);
251 int open_kvm_dev_path_or_exit(void);
252
253 bool get_kvm_param_bool(const char *param);
254 bool get_kvm_intel_param_bool(const char *param);
255 bool get_kvm_amd_param_bool(const char *param);
256
257 int get_kvm_param_integer(const char *param);
258 int get_kvm_intel_param_integer(const char *param);
259 int get_kvm_amd_param_integer(const char *param);
260
261 unsigned int kvm_check_cap(long cap);
262
kvm_has_cap(long cap)263 static inline bool kvm_has_cap(long cap)
264 {
265 return kvm_check_cap(cap);
266 }
267
268 #define __KVM_SYSCALL_ERROR(_name, _ret) \
269 "%s failed, rc: %i errno: %i (%s)", (_name), (_ret), errno, strerror(errno)
270
271 /*
272 * Use the "inner", double-underscore macro when reporting errors from within
273 * other macros so that the name of ioctl() and not its literal numeric value
274 * is printed on error. The "outer" macro is strongly preferred when reporting
275 * errors "directly", i.e. without an additional layer of macros, as it reduces
276 * the probability of passing in the wrong string.
277 */
278 #define __KVM_IOCTL_ERROR(_name, _ret) __KVM_SYSCALL_ERROR(_name, _ret)
279 #define KVM_IOCTL_ERROR(_ioctl, _ret) __KVM_IOCTL_ERROR(#_ioctl, _ret)
280
281 #define kvm_do_ioctl(fd, cmd, arg) \
282 ({ \
283 kvm_static_assert(!_IOC_SIZE(cmd) || sizeof(*arg) == _IOC_SIZE(cmd)); \
284 ioctl(fd, cmd, arg); \
285 })
286
287 #define __kvm_ioctl(kvm_fd, cmd, arg) \
288 kvm_do_ioctl(kvm_fd, cmd, arg)
289
290 #define kvm_ioctl(kvm_fd, cmd, arg) \
291 ({ \
292 int ret = __kvm_ioctl(kvm_fd, cmd, arg); \
293 \
294 TEST_ASSERT(!ret, __KVM_IOCTL_ERROR(#cmd, ret)); \
295 })
296
static_assert_is_vm(struct kvm_vm * vm)297 static __always_inline void static_assert_is_vm(struct kvm_vm *vm) { }
298
299 #define __vm_ioctl(vm, cmd, arg) \
300 ({ \
301 static_assert_is_vm(vm); \
302 kvm_do_ioctl((vm)->fd, cmd, arg); \
303 })
304
305 /*
306 * Assert that a VM or vCPU ioctl() succeeded, with extra magic to detect if
307 * the ioctl() failed because KVM killed/bugged the VM. To detect a dead VM,
308 * probe KVM_CAP_USER_MEMORY, which (a) has been supported by KVM since before
309 * selftests existed and (b) should never outright fail, i.e. is supposed to
310 * return 0 or 1. If KVM kills a VM, KVM returns -EIO for all ioctl()s for the
311 * VM and its vCPUs, including KVM_CHECK_EXTENSION.
312 */
313 #define __TEST_ASSERT_VM_VCPU_IOCTL(cond, name, ret, vm) \
314 do { \
315 int __errno = errno; \
316 \
317 static_assert_is_vm(vm); \
318 \
319 if (cond) \
320 break; \
321 \
322 if (errno == EIO && \
323 __vm_ioctl(vm, KVM_CHECK_EXTENSION, (void *)KVM_CAP_USER_MEMORY) < 0) { \
324 TEST_ASSERT(errno == EIO, "KVM killed the VM, should return -EIO"); \
325 TEST_FAIL("KVM killed/bugged the VM, check the kernel log for clues"); \
326 } \
327 errno = __errno; \
328 TEST_ASSERT(cond, __KVM_IOCTL_ERROR(name, ret)); \
329 } while (0)
330
331 #define TEST_ASSERT_VM_VCPU_IOCTL(cond, cmd, ret, vm) \
332 __TEST_ASSERT_VM_VCPU_IOCTL(cond, #cmd, ret, vm)
333
334 #define vm_ioctl(vm, cmd, arg) \
335 ({ \
336 int ret = __vm_ioctl(vm, cmd, arg); \
337 \
338 __TEST_ASSERT_VM_VCPU_IOCTL(!ret, #cmd, ret, vm); \
339 })
340
static_assert_is_vcpu(struct kvm_vcpu * vcpu)341 static __always_inline void static_assert_is_vcpu(struct kvm_vcpu *vcpu) { }
342
343 #define __vcpu_ioctl(vcpu, cmd, arg) \
344 ({ \
345 static_assert_is_vcpu(vcpu); \
346 kvm_do_ioctl((vcpu)->fd, cmd, arg); \
347 })
348
349 #define vcpu_ioctl(vcpu, cmd, arg) \
350 ({ \
351 int ret = __vcpu_ioctl(vcpu, cmd, arg); \
352 \
353 __TEST_ASSERT_VM_VCPU_IOCTL(!ret, #cmd, ret, (vcpu)->vm); \
354 })
355
356 /*
357 * Looks up and returns the value corresponding to the capability
358 * (KVM_CAP_*) given by cap.
359 */
vm_check_cap(struct kvm_vm * vm,long cap)360 static inline int vm_check_cap(struct kvm_vm *vm, long cap)
361 {
362 int ret = __vm_ioctl(vm, KVM_CHECK_EXTENSION, (void *)cap);
363
364 TEST_ASSERT_VM_VCPU_IOCTL(ret >= 0, KVM_CHECK_EXTENSION, ret, vm);
365 return ret;
366 }
367
__vm_enable_cap(struct kvm_vm * vm,uint32_t cap,uint64_t arg0)368 static inline int __vm_enable_cap(struct kvm_vm *vm, uint32_t cap, uint64_t arg0)
369 {
370 struct kvm_enable_cap enable_cap = { .cap = cap, .args = { arg0 } };
371
372 return __vm_ioctl(vm, KVM_ENABLE_CAP, &enable_cap);
373 }
vm_enable_cap(struct kvm_vm * vm,uint32_t cap,uint64_t arg0)374 static inline void vm_enable_cap(struct kvm_vm *vm, uint32_t cap, uint64_t arg0)
375 {
376 struct kvm_enable_cap enable_cap = { .cap = cap, .args = { arg0 } };
377
378 vm_ioctl(vm, KVM_ENABLE_CAP, &enable_cap);
379 }
380
vm_set_memory_attributes(struct kvm_vm * vm,uint64_t gpa,uint64_t size,uint64_t attributes)381 static inline void vm_set_memory_attributes(struct kvm_vm *vm, uint64_t gpa,
382 uint64_t size, uint64_t attributes)
383 {
384 struct kvm_memory_attributes attr = {
385 .attributes = attributes,
386 .address = gpa,
387 .size = size,
388 .flags = 0,
389 };
390
391 /*
392 * KVM_SET_MEMORY_ATTRIBUTES overwrites _all_ attributes. These flows
393 * need significant enhancements to support multiple attributes.
394 */
395 TEST_ASSERT(!attributes || attributes == KVM_MEMORY_ATTRIBUTE_PRIVATE,
396 "Update me to support multiple attributes!");
397
398 vm_ioctl(vm, KVM_SET_MEMORY_ATTRIBUTES, &attr);
399 }
400
401
vm_mem_set_private(struct kvm_vm * vm,uint64_t gpa,uint64_t size)402 static inline void vm_mem_set_private(struct kvm_vm *vm, uint64_t gpa,
403 uint64_t size)
404 {
405 vm_set_memory_attributes(vm, gpa, size, KVM_MEMORY_ATTRIBUTE_PRIVATE);
406 }
407
vm_mem_set_shared(struct kvm_vm * vm,uint64_t gpa,uint64_t size)408 static inline void vm_mem_set_shared(struct kvm_vm *vm, uint64_t gpa,
409 uint64_t size)
410 {
411 vm_set_memory_attributes(vm, gpa, size, 0);
412 }
413
414 void vm_guest_mem_fallocate(struct kvm_vm *vm, uint64_t gpa, uint64_t size,
415 bool punch_hole);
416
vm_guest_mem_punch_hole(struct kvm_vm * vm,uint64_t gpa,uint64_t size)417 static inline void vm_guest_mem_punch_hole(struct kvm_vm *vm, uint64_t gpa,
418 uint64_t size)
419 {
420 vm_guest_mem_fallocate(vm, gpa, size, true);
421 }
422
vm_guest_mem_allocate(struct kvm_vm * vm,uint64_t gpa,uint64_t size)423 static inline void vm_guest_mem_allocate(struct kvm_vm *vm, uint64_t gpa,
424 uint64_t size)
425 {
426 vm_guest_mem_fallocate(vm, gpa, size, false);
427 }
428
429 void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size);
430 const char *vm_guest_mode_string(uint32_t i);
431
432 void kvm_vm_free(struct kvm_vm *vmp);
433 void kvm_vm_restart(struct kvm_vm *vmp);
434 void kvm_vm_release(struct kvm_vm *vmp);
435 void kvm_vm_elf_load(struct kvm_vm *vm, const char *filename);
436 int kvm_memfd_alloc(size_t size, bool hugepages);
437
438 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent);
439
kvm_vm_get_dirty_log(struct kvm_vm * vm,int slot,void * log)440 static inline void kvm_vm_get_dirty_log(struct kvm_vm *vm, int slot, void *log)
441 {
442 struct kvm_dirty_log args = { .dirty_bitmap = log, .slot = slot };
443
444 vm_ioctl(vm, KVM_GET_DIRTY_LOG, &args);
445 }
446
kvm_vm_clear_dirty_log(struct kvm_vm * vm,int slot,void * log,uint64_t first_page,uint32_t num_pages)447 static inline void kvm_vm_clear_dirty_log(struct kvm_vm *vm, int slot, void *log,
448 uint64_t first_page, uint32_t num_pages)
449 {
450 struct kvm_clear_dirty_log args = {
451 .dirty_bitmap = log,
452 .slot = slot,
453 .first_page = first_page,
454 .num_pages = num_pages
455 };
456
457 vm_ioctl(vm, KVM_CLEAR_DIRTY_LOG, &args);
458 }
459
kvm_vm_reset_dirty_ring(struct kvm_vm * vm)460 static inline uint32_t kvm_vm_reset_dirty_ring(struct kvm_vm *vm)
461 {
462 return __vm_ioctl(vm, KVM_RESET_DIRTY_RINGS, NULL);
463 }
464
kvm_vm_register_coalesced_io(struct kvm_vm * vm,uint64_t address,uint64_t size,bool pio)465 static inline void kvm_vm_register_coalesced_io(struct kvm_vm *vm,
466 uint64_t address,
467 uint64_t size, bool pio)
468 {
469 struct kvm_coalesced_mmio_zone zone = {
470 .addr = address,
471 .size = size,
472 .pio = pio,
473 };
474
475 vm_ioctl(vm, KVM_REGISTER_COALESCED_MMIO, &zone);
476 }
477
kvm_vm_unregister_coalesced_io(struct kvm_vm * vm,uint64_t address,uint64_t size,bool pio)478 static inline void kvm_vm_unregister_coalesced_io(struct kvm_vm *vm,
479 uint64_t address,
480 uint64_t size, bool pio)
481 {
482 struct kvm_coalesced_mmio_zone zone = {
483 .addr = address,
484 .size = size,
485 .pio = pio,
486 };
487
488 vm_ioctl(vm, KVM_UNREGISTER_COALESCED_MMIO, &zone);
489 }
490
vm_get_stats_fd(struct kvm_vm * vm)491 static inline int vm_get_stats_fd(struct kvm_vm *vm)
492 {
493 int fd = __vm_ioctl(vm, KVM_GET_STATS_FD, NULL);
494
495 TEST_ASSERT_VM_VCPU_IOCTL(fd >= 0, KVM_GET_STATS_FD, fd, vm);
496 return fd;
497 }
498
read_stats_header(int stats_fd,struct kvm_stats_header * header)499 static inline void read_stats_header(int stats_fd, struct kvm_stats_header *header)
500 {
501 ssize_t ret;
502
503 ret = pread(stats_fd, header, sizeof(*header), 0);
504 TEST_ASSERT(ret == sizeof(*header),
505 "Failed to read '%lu' header bytes, ret = '%ld'",
506 sizeof(*header), ret);
507 }
508
509 struct kvm_stats_desc *read_stats_descriptors(int stats_fd,
510 struct kvm_stats_header *header);
511
get_stats_descriptor_size(struct kvm_stats_header * header)512 static inline ssize_t get_stats_descriptor_size(struct kvm_stats_header *header)
513 {
514 /*
515 * The base size of the descriptor is defined by KVM's ABI, but the
516 * size of the name field is variable, as far as KVM's ABI is
517 * concerned. For a given instance of KVM, the name field is the same
518 * size for all stats and is provided in the overall stats header.
519 */
520 return sizeof(struct kvm_stats_desc) + header->name_size;
521 }
522
get_stats_descriptor(struct kvm_stats_desc * stats,int index,struct kvm_stats_header * header)523 static inline struct kvm_stats_desc *get_stats_descriptor(struct kvm_stats_desc *stats,
524 int index,
525 struct kvm_stats_header *header)
526 {
527 /*
528 * Note, size_desc includes the size of the name field, which is
529 * variable. i.e. this is NOT equivalent to &stats_desc[i].
530 */
531 return (void *)stats + index * get_stats_descriptor_size(header);
532 }
533
534 void read_stat_data(int stats_fd, struct kvm_stats_header *header,
535 struct kvm_stats_desc *desc, uint64_t *data,
536 size_t max_elements);
537
538 void kvm_get_stat(struct kvm_binary_stats *stats, const char *name,
539 uint64_t *data, size_t max_elements);
540
541 #define __get_stat(stats, stat) \
542 ({ \
543 uint64_t data; \
544 \
545 kvm_get_stat(stats, #stat, &data, 1); \
546 data; \
547 })
548
549 #define vm_get_stat(vm, stat) __get_stat(&(vm)->stats, stat)
550 #define vcpu_get_stat(vcpu, stat) __get_stat(&(vcpu)->stats, stat)
551
552 void vm_create_irqchip(struct kvm_vm *vm);
553
__vm_create_guest_memfd(struct kvm_vm * vm,uint64_t size,uint64_t flags)554 static inline int __vm_create_guest_memfd(struct kvm_vm *vm, uint64_t size,
555 uint64_t flags)
556 {
557 struct kvm_create_guest_memfd guest_memfd = {
558 .size = size,
559 .flags = flags,
560 };
561
562 return __vm_ioctl(vm, KVM_CREATE_GUEST_MEMFD, &guest_memfd);
563 }
564
vm_create_guest_memfd(struct kvm_vm * vm,uint64_t size,uint64_t flags)565 static inline int vm_create_guest_memfd(struct kvm_vm *vm, uint64_t size,
566 uint64_t flags)
567 {
568 int fd = __vm_create_guest_memfd(vm, size, flags);
569
570 TEST_ASSERT(fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_GUEST_MEMFD, fd));
571 return fd;
572 }
573
574 void vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
575 uint64_t gpa, uint64_t size, void *hva);
576 int __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
577 uint64_t gpa, uint64_t size, void *hva);
578 void vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
579 uint64_t gpa, uint64_t size, void *hva,
580 uint32_t guest_memfd, uint64_t guest_memfd_offset);
581 int __vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
582 uint64_t gpa, uint64_t size, void *hva,
583 uint32_t guest_memfd, uint64_t guest_memfd_offset);
584
585 void vm_userspace_mem_region_add(struct kvm_vm *vm,
586 enum vm_mem_backing_src_type src_type,
587 uint64_t guest_paddr, uint32_t slot, uint64_t npages,
588 uint32_t flags);
589 void vm_mem_add(struct kvm_vm *vm, enum vm_mem_backing_src_type src_type,
590 uint64_t guest_paddr, uint32_t slot, uint64_t npages,
591 uint32_t flags, int guest_memfd_fd, uint64_t guest_memfd_offset);
592
593 #ifndef vm_arch_has_protected_memory
vm_arch_has_protected_memory(struct kvm_vm * vm)594 static inline bool vm_arch_has_protected_memory(struct kvm_vm *vm)
595 {
596 return false;
597 }
598 #endif
599
600 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags);
601 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa);
602 void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot);
603 struct kvm_vcpu *__vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id);
604 void vm_populate_vaddr_bitmap(struct kvm_vm *vm);
605 vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min);
606 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min);
607 vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
608 enum kvm_mem_region_type type);
609 vm_vaddr_t vm_vaddr_alloc_shared(struct kvm_vm *vm, size_t sz,
610 vm_vaddr_t vaddr_min,
611 enum kvm_mem_region_type type);
612 vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages);
613 vm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm,
614 enum kvm_mem_region_type type);
615 vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm);
616
617 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
618 unsigned int npages);
619 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa);
620 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva);
621 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva);
622 void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa);
623
624 #ifndef vcpu_arch_put_guest
625 #define vcpu_arch_put_guest(mem, val) do { (mem) = (val); } while (0)
626 #endif
627
vm_untag_gpa(struct kvm_vm * vm,vm_paddr_t gpa)628 static inline vm_paddr_t vm_untag_gpa(struct kvm_vm *vm, vm_paddr_t gpa)
629 {
630 return gpa & ~vm->gpa_tag_mask;
631 }
632
633 void vcpu_run(struct kvm_vcpu *vcpu);
634 int _vcpu_run(struct kvm_vcpu *vcpu);
635
__vcpu_run(struct kvm_vcpu * vcpu)636 static inline int __vcpu_run(struct kvm_vcpu *vcpu)
637 {
638 return __vcpu_ioctl(vcpu, KVM_RUN, NULL);
639 }
640
641 void vcpu_run_complete_io(struct kvm_vcpu *vcpu);
642 struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vcpu *vcpu);
643
vcpu_enable_cap(struct kvm_vcpu * vcpu,uint32_t cap,uint64_t arg0)644 static inline void vcpu_enable_cap(struct kvm_vcpu *vcpu, uint32_t cap,
645 uint64_t arg0)
646 {
647 struct kvm_enable_cap enable_cap = { .cap = cap, .args = { arg0 } };
648
649 vcpu_ioctl(vcpu, KVM_ENABLE_CAP, &enable_cap);
650 }
651
vcpu_guest_debug_set(struct kvm_vcpu * vcpu,struct kvm_guest_debug * debug)652 static inline void vcpu_guest_debug_set(struct kvm_vcpu *vcpu,
653 struct kvm_guest_debug *debug)
654 {
655 vcpu_ioctl(vcpu, KVM_SET_GUEST_DEBUG, debug);
656 }
657
vcpu_mp_state_get(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)658 static inline void vcpu_mp_state_get(struct kvm_vcpu *vcpu,
659 struct kvm_mp_state *mp_state)
660 {
661 vcpu_ioctl(vcpu, KVM_GET_MP_STATE, mp_state);
662 }
vcpu_mp_state_set(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)663 static inline void vcpu_mp_state_set(struct kvm_vcpu *vcpu,
664 struct kvm_mp_state *mp_state)
665 {
666 vcpu_ioctl(vcpu, KVM_SET_MP_STATE, mp_state);
667 }
668
vcpu_regs_get(struct kvm_vcpu * vcpu,struct kvm_regs * regs)669 static inline void vcpu_regs_get(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
670 {
671 vcpu_ioctl(vcpu, KVM_GET_REGS, regs);
672 }
673
vcpu_regs_set(struct kvm_vcpu * vcpu,struct kvm_regs * regs)674 static inline void vcpu_regs_set(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
675 {
676 vcpu_ioctl(vcpu, KVM_SET_REGS, regs);
677 }
vcpu_sregs_get(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)678 static inline void vcpu_sregs_get(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
679 {
680 vcpu_ioctl(vcpu, KVM_GET_SREGS, sregs);
681
682 }
vcpu_sregs_set(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)683 static inline void vcpu_sregs_set(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
684 {
685 vcpu_ioctl(vcpu, KVM_SET_SREGS, sregs);
686 }
_vcpu_sregs_set(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)687 static inline int _vcpu_sregs_set(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
688 {
689 return __vcpu_ioctl(vcpu, KVM_SET_SREGS, sregs);
690 }
vcpu_fpu_get(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)691 static inline void vcpu_fpu_get(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
692 {
693 vcpu_ioctl(vcpu, KVM_GET_FPU, fpu);
694 }
vcpu_fpu_set(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)695 static inline void vcpu_fpu_set(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
696 {
697 vcpu_ioctl(vcpu, KVM_SET_FPU, fpu);
698 }
699
__vcpu_get_reg(struct kvm_vcpu * vcpu,uint64_t id,void * addr)700 static inline int __vcpu_get_reg(struct kvm_vcpu *vcpu, uint64_t id, void *addr)
701 {
702 struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)addr };
703
704 return __vcpu_ioctl(vcpu, KVM_GET_ONE_REG, ®);
705 }
__vcpu_set_reg(struct kvm_vcpu * vcpu,uint64_t id,uint64_t val)706 static inline int __vcpu_set_reg(struct kvm_vcpu *vcpu, uint64_t id, uint64_t val)
707 {
708 struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)&val };
709
710 return __vcpu_ioctl(vcpu, KVM_SET_ONE_REG, ®);
711 }
vcpu_get_reg(struct kvm_vcpu * vcpu,uint64_t id)712 static inline uint64_t vcpu_get_reg(struct kvm_vcpu *vcpu, uint64_t id)
713 {
714 uint64_t val;
715 struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)&val };
716
717 TEST_ASSERT(KVM_REG_SIZE(id) <= sizeof(val), "Reg %lx too big", id);
718
719 vcpu_ioctl(vcpu, KVM_GET_ONE_REG, ®);
720 return val;
721 }
vcpu_set_reg(struct kvm_vcpu * vcpu,uint64_t id,uint64_t val)722 static inline void vcpu_set_reg(struct kvm_vcpu *vcpu, uint64_t id, uint64_t val)
723 {
724 struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)&val };
725
726 TEST_ASSERT(KVM_REG_SIZE(id) <= sizeof(val), "Reg %lx too big", id);
727
728 vcpu_ioctl(vcpu, KVM_SET_ONE_REG, ®);
729 }
730
731 #ifdef __KVM_HAVE_VCPU_EVENTS
vcpu_events_get(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)732 static inline void vcpu_events_get(struct kvm_vcpu *vcpu,
733 struct kvm_vcpu_events *events)
734 {
735 vcpu_ioctl(vcpu, KVM_GET_VCPU_EVENTS, events);
736 }
vcpu_events_set(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)737 static inline void vcpu_events_set(struct kvm_vcpu *vcpu,
738 struct kvm_vcpu_events *events)
739 {
740 vcpu_ioctl(vcpu, KVM_SET_VCPU_EVENTS, events);
741 }
742 #endif
743 #ifdef __x86_64__
vcpu_nested_state_get(struct kvm_vcpu * vcpu,struct kvm_nested_state * state)744 static inline void vcpu_nested_state_get(struct kvm_vcpu *vcpu,
745 struct kvm_nested_state *state)
746 {
747 vcpu_ioctl(vcpu, KVM_GET_NESTED_STATE, state);
748 }
__vcpu_nested_state_set(struct kvm_vcpu * vcpu,struct kvm_nested_state * state)749 static inline int __vcpu_nested_state_set(struct kvm_vcpu *vcpu,
750 struct kvm_nested_state *state)
751 {
752 return __vcpu_ioctl(vcpu, KVM_SET_NESTED_STATE, state);
753 }
754
vcpu_nested_state_set(struct kvm_vcpu * vcpu,struct kvm_nested_state * state)755 static inline void vcpu_nested_state_set(struct kvm_vcpu *vcpu,
756 struct kvm_nested_state *state)
757 {
758 vcpu_ioctl(vcpu, KVM_SET_NESTED_STATE, state);
759 }
760 #endif
vcpu_get_stats_fd(struct kvm_vcpu * vcpu)761 static inline int vcpu_get_stats_fd(struct kvm_vcpu *vcpu)
762 {
763 int fd = __vcpu_ioctl(vcpu, KVM_GET_STATS_FD, NULL);
764
765 TEST_ASSERT_VM_VCPU_IOCTL(fd >= 0, KVM_CHECK_EXTENSION, fd, vcpu->vm);
766 return fd;
767 }
768
769 int __kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr);
770
kvm_has_device_attr(int dev_fd,uint32_t group,uint64_t attr)771 static inline void kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr)
772 {
773 int ret = __kvm_has_device_attr(dev_fd, group, attr);
774
775 TEST_ASSERT(!ret, "KVM_HAS_DEVICE_ATTR failed, rc: %i errno: %i", ret, errno);
776 }
777
778 int __kvm_device_attr_get(int dev_fd, uint32_t group, uint64_t attr, void *val);
779
kvm_device_attr_get(int dev_fd,uint32_t group,uint64_t attr,void * val)780 static inline void kvm_device_attr_get(int dev_fd, uint32_t group,
781 uint64_t attr, void *val)
782 {
783 int ret = __kvm_device_attr_get(dev_fd, group, attr, val);
784
785 TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_GET_DEVICE_ATTR, ret));
786 }
787
788 int __kvm_device_attr_set(int dev_fd, uint32_t group, uint64_t attr, void *val);
789
kvm_device_attr_set(int dev_fd,uint32_t group,uint64_t attr,void * val)790 static inline void kvm_device_attr_set(int dev_fd, uint32_t group,
791 uint64_t attr, void *val)
792 {
793 int ret = __kvm_device_attr_set(dev_fd, group, attr, val);
794
795 TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_SET_DEVICE_ATTR, ret));
796 }
797
__vcpu_has_device_attr(struct kvm_vcpu * vcpu,uint32_t group,uint64_t attr)798 static inline int __vcpu_has_device_attr(struct kvm_vcpu *vcpu, uint32_t group,
799 uint64_t attr)
800 {
801 return __kvm_has_device_attr(vcpu->fd, group, attr);
802 }
803
vcpu_has_device_attr(struct kvm_vcpu * vcpu,uint32_t group,uint64_t attr)804 static inline void vcpu_has_device_attr(struct kvm_vcpu *vcpu, uint32_t group,
805 uint64_t attr)
806 {
807 kvm_has_device_attr(vcpu->fd, group, attr);
808 }
809
__vcpu_device_attr_get(struct kvm_vcpu * vcpu,uint32_t group,uint64_t attr,void * val)810 static inline int __vcpu_device_attr_get(struct kvm_vcpu *vcpu, uint32_t group,
811 uint64_t attr, void *val)
812 {
813 return __kvm_device_attr_get(vcpu->fd, group, attr, val);
814 }
815
vcpu_device_attr_get(struct kvm_vcpu * vcpu,uint32_t group,uint64_t attr,void * val)816 static inline void vcpu_device_attr_get(struct kvm_vcpu *vcpu, uint32_t group,
817 uint64_t attr, void *val)
818 {
819 kvm_device_attr_get(vcpu->fd, group, attr, val);
820 }
821
__vcpu_device_attr_set(struct kvm_vcpu * vcpu,uint32_t group,uint64_t attr,void * val)822 static inline int __vcpu_device_attr_set(struct kvm_vcpu *vcpu, uint32_t group,
823 uint64_t attr, void *val)
824 {
825 return __kvm_device_attr_set(vcpu->fd, group, attr, val);
826 }
827
vcpu_device_attr_set(struct kvm_vcpu * vcpu,uint32_t group,uint64_t attr,void * val)828 static inline void vcpu_device_attr_set(struct kvm_vcpu *vcpu, uint32_t group,
829 uint64_t attr, void *val)
830 {
831 kvm_device_attr_set(vcpu->fd, group, attr, val);
832 }
833
834 int __kvm_test_create_device(struct kvm_vm *vm, uint64_t type);
835 int __kvm_create_device(struct kvm_vm *vm, uint64_t type);
836
kvm_create_device(struct kvm_vm * vm,uint64_t type)837 static inline int kvm_create_device(struct kvm_vm *vm, uint64_t type)
838 {
839 int fd = __kvm_create_device(vm, type);
840
841 TEST_ASSERT(fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_DEVICE, fd));
842 return fd;
843 }
844
845 void *vcpu_map_dirty_ring(struct kvm_vcpu *vcpu);
846
847 /*
848 * VM VCPU Args Set
849 *
850 * Input Args:
851 * vm - Virtual Machine
852 * num - number of arguments
853 * ... - arguments, each of type uint64_t
854 *
855 * Output Args: None
856 *
857 * Return: None
858 *
859 * Sets the first @num input parameters for the function at @vcpu's entry point,
860 * per the C calling convention of the architecture, to the values given as
861 * variable args. Each of the variable args is expected to be of type uint64_t.
862 * The maximum @num can be is specific to the architecture.
863 */
864 void vcpu_args_set(struct kvm_vcpu *vcpu, unsigned int num, ...);
865
866 void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level);
867 int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level);
868
869 #define KVM_MAX_IRQ_ROUTES 4096
870
871 struct kvm_irq_routing *kvm_gsi_routing_create(void);
872 void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing,
873 uint32_t gsi, uint32_t pin);
874 int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing);
875 void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing);
876
877 const char *exit_reason_str(unsigned int exit_reason);
878
879 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
880 uint32_t memslot);
881 vm_paddr_t __vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
882 vm_paddr_t paddr_min, uint32_t memslot,
883 bool protected);
884 vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm);
885
vm_phy_pages_alloc(struct kvm_vm * vm,size_t num,vm_paddr_t paddr_min,uint32_t memslot)886 static inline vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
887 vm_paddr_t paddr_min, uint32_t memslot)
888 {
889 /*
890 * By default, allocate memory as protected for VMs that support
891 * protected memory, as the majority of memory for such VMs is
892 * protected, i.e. using shared memory is effectively opt-in.
893 */
894 return __vm_phy_pages_alloc(vm, num, paddr_min, memslot,
895 vm_arch_has_protected_memory(vm));
896 }
897
898 /*
899 * ____vm_create() does KVM_CREATE_VM and little else. __vm_create() also
900 * loads the test binary into guest memory and creates an IRQ chip (x86 only).
901 * __vm_create() does NOT create vCPUs, @nr_runnable_vcpus is used purely to
902 * calculate the amount of memory needed for per-vCPU data, e.g. stacks.
903 */
904 struct kvm_vm *____vm_create(struct vm_shape shape);
905 struct kvm_vm *__vm_create(struct vm_shape shape, uint32_t nr_runnable_vcpus,
906 uint64_t nr_extra_pages);
907
vm_create_barebones(void)908 static inline struct kvm_vm *vm_create_barebones(void)
909 {
910 return ____vm_create(VM_SHAPE_DEFAULT);
911 }
912
vm_create_barebones_type(unsigned long type)913 static inline struct kvm_vm *vm_create_barebones_type(unsigned long type)
914 {
915 const struct vm_shape shape = {
916 .mode = VM_MODE_DEFAULT,
917 .type = type,
918 };
919
920 return ____vm_create(shape);
921 }
922
vm_create(uint32_t nr_runnable_vcpus)923 static inline struct kvm_vm *vm_create(uint32_t nr_runnable_vcpus)
924 {
925 return __vm_create(VM_SHAPE_DEFAULT, nr_runnable_vcpus, 0);
926 }
927
928 struct kvm_vm *__vm_create_with_vcpus(struct vm_shape shape, uint32_t nr_vcpus,
929 uint64_t extra_mem_pages,
930 void *guest_code, struct kvm_vcpu *vcpus[]);
931
vm_create_with_vcpus(uint32_t nr_vcpus,void * guest_code,struct kvm_vcpu * vcpus[])932 static inline struct kvm_vm *vm_create_with_vcpus(uint32_t nr_vcpus,
933 void *guest_code,
934 struct kvm_vcpu *vcpus[])
935 {
936 return __vm_create_with_vcpus(VM_SHAPE_DEFAULT, nr_vcpus, 0,
937 guest_code, vcpus);
938 }
939
940
941 struct kvm_vm *__vm_create_shape_with_one_vcpu(struct vm_shape shape,
942 struct kvm_vcpu **vcpu,
943 uint64_t extra_mem_pages,
944 void *guest_code);
945
946 /*
947 * Create a VM with a single vCPU with reasonable defaults and @extra_mem_pages
948 * additional pages of guest memory. Returns the VM and vCPU (via out param).
949 */
__vm_create_with_one_vcpu(struct kvm_vcpu ** vcpu,uint64_t extra_mem_pages,void * guest_code)950 static inline struct kvm_vm *__vm_create_with_one_vcpu(struct kvm_vcpu **vcpu,
951 uint64_t extra_mem_pages,
952 void *guest_code)
953 {
954 return __vm_create_shape_with_one_vcpu(VM_SHAPE_DEFAULT, vcpu,
955 extra_mem_pages, guest_code);
956 }
957
vm_create_with_one_vcpu(struct kvm_vcpu ** vcpu,void * guest_code)958 static inline struct kvm_vm *vm_create_with_one_vcpu(struct kvm_vcpu **vcpu,
959 void *guest_code)
960 {
961 return __vm_create_with_one_vcpu(vcpu, 0, guest_code);
962 }
963
vm_create_shape_with_one_vcpu(struct vm_shape shape,struct kvm_vcpu ** vcpu,void * guest_code)964 static inline struct kvm_vm *vm_create_shape_with_one_vcpu(struct vm_shape shape,
965 struct kvm_vcpu **vcpu,
966 void *guest_code)
967 {
968 return __vm_create_shape_with_one_vcpu(shape, vcpu, 0, guest_code);
969 }
970
971 struct kvm_vcpu *vm_recreate_with_one_vcpu(struct kvm_vm *vm);
972
973 void kvm_set_files_rlimit(uint32_t nr_vcpus);
974
975 void kvm_pin_this_task_to_pcpu(uint32_t pcpu);
976 void kvm_print_vcpu_pinning_help(void);
977 void kvm_parse_vcpu_pinning(const char *pcpus_string, uint32_t vcpu_to_pcpu[],
978 int nr_vcpus);
979
980 unsigned long vm_compute_max_gfn(struct kvm_vm *vm);
981 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size);
982 unsigned int vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages);
983 unsigned int vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages);
984 static inline unsigned int
vm_adjust_num_guest_pages(enum vm_guest_mode mode,unsigned int num_guest_pages)985 vm_adjust_num_guest_pages(enum vm_guest_mode mode, unsigned int num_guest_pages)
986 {
987 unsigned int n;
988 n = vm_num_guest_pages(mode, vm_num_host_pages(mode, num_guest_pages));
989 #ifdef __s390x__
990 /* s390 requires 1M aligned guest sizes */
991 n = (n + 255) & ~255;
992 #endif
993 return n;
994 }
995
996 #define sync_global_to_guest(vm, g) ({ \
997 typeof(g) *_p = addr_gva2hva(vm, (vm_vaddr_t)&(g)); \
998 memcpy(_p, &(g), sizeof(g)); \
999 })
1000
1001 #define sync_global_from_guest(vm, g) ({ \
1002 typeof(g) *_p = addr_gva2hva(vm, (vm_vaddr_t)&(g)); \
1003 memcpy(&(g), _p, sizeof(g)); \
1004 })
1005
1006 /*
1007 * Write a global value, but only in the VM's (guest's) domain. Primarily used
1008 * for "globals" that hold per-VM values (VMs always duplicate code and global
1009 * data into their own region of physical memory), but can be used anytime it's
1010 * undesirable to change the host's copy of the global.
1011 */
1012 #define write_guest_global(vm, g, val) ({ \
1013 typeof(g) *_p = addr_gva2hva(vm, (vm_vaddr_t)&(g)); \
1014 typeof(g) _val = val; \
1015 \
1016 memcpy(_p, &(_val), sizeof(g)); \
1017 })
1018
1019 void assert_on_unhandled_exception(struct kvm_vcpu *vcpu);
1020
1021 void vcpu_arch_dump(FILE *stream, struct kvm_vcpu *vcpu,
1022 uint8_t indent);
1023
vcpu_dump(FILE * stream,struct kvm_vcpu * vcpu,uint8_t indent)1024 static inline void vcpu_dump(FILE *stream, struct kvm_vcpu *vcpu,
1025 uint8_t indent)
1026 {
1027 vcpu_arch_dump(stream, vcpu, indent);
1028 }
1029
1030 /*
1031 * Adds a vCPU with reasonable defaults (e.g. a stack)
1032 *
1033 * Input Args:
1034 * vm - Virtual Machine
1035 * vcpu_id - The id of the VCPU to add to the VM.
1036 */
1037 struct kvm_vcpu *vm_arch_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id);
1038 void vcpu_arch_set_entry_point(struct kvm_vcpu *vcpu, void *guest_code);
1039
vm_vcpu_add(struct kvm_vm * vm,uint32_t vcpu_id,void * guest_code)1040 static inline struct kvm_vcpu *vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id,
1041 void *guest_code)
1042 {
1043 struct kvm_vcpu *vcpu = vm_arch_vcpu_add(vm, vcpu_id);
1044
1045 vcpu_arch_set_entry_point(vcpu, guest_code);
1046
1047 return vcpu;
1048 }
1049
1050 /* Re-create a vCPU after restarting a VM, e.g. for state save/restore tests. */
1051 struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm, uint32_t vcpu_id);
1052
vm_vcpu_recreate(struct kvm_vm * vm,uint32_t vcpu_id)1053 static inline struct kvm_vcpu *vm_vcpu_recreate(struct kvm_vm *vm,
1054 uint32_t vcpu_id)
1055 {
1056 return vm_arch_vcpu_recreate(vm, vcpu_id);
1057 }
1058
1059 void vcpu_arch_free(struct kvm_vcpu *vcpu);
1060
1061 void virt_arch_pgd_alloc(struct kvm_vm *vm);
1062
virt_pgd_alloc(struct kvm_vm * vm)1063 static inline void virt_pgd_alloc(struct kvm_vm *vm)
1064 {
1065 virt_arch_pgd_alloc(vm);
1066 }
1067
1068 /*
1069 * VM Virtual Page Map
1070 *
1071 * Input Args:
1072 * vm - Virtual Machine
1073 * vaddr - VM Virtual Address
1074 * paddr - VM Physical Address
1075 * memslot - Memory region slot for new virtual translation tables
1076 *
1077 * Output Args: None
1078 *
1079 * Return: None
1080 *
1081 * Within @vm, creates a virtual translation for the page starting
1082 * at @vaddr to the page starting at @paddr.
1083 */
1084 void virt_arch_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr);
1085
virt_pg_map(struct kvm_vm * vm,uint64_t vaddr,uint64_t paddr)1086 static inline void virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr)
1087 {
1088 virt_arch_pg_map(vm, vaddr, paddr);
1089 }
1090
1091
1092 /*
1093 * Address Guest Virtual to Guest Physical
1094 *
1095 * Input Args:
1096 * vm - Virtual Machine
1097 * gva - VM virtual address
1098 *
1099 * Output Args: None
1100 *
1101 * Return:
1102 * Equivalent VM physical address
1103 *
1104 * Returns the VM physical address of the translated VM virtual
1105 * address given by @gva.
1106 */
1107 vm_paddr_t addr_arch_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva);
1108
addr_gva2gpa(struct kvm_vm * vm,vm_vaddr_t gva)1109 static inline vm_paddr_t addr_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva)
1110 {
1111 return addr_arch_gva2gpa(vm, gva);
1112 }
1113
1114 /*
1115 * Virtual Translation Tables Dump
1116 *
1117 * Input Args:
1118 * stream - Output FILE stream
1119 * vm - Virtual Machine
1120 * indent - Left margin indent amount
1121 *
1122 * Output Args: None
1123 *
1124 * Return: None
1125 *
1126 * Dumps to the FILE stream given by @stream, the contents of all the
1127 * virtual translation tables for the VM given by @vm.
1128 */
1129 void virt_arch_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent);
1130
virt_dump(FILE * stream,struct kvm_vm * vm,uint8_t indent)1131 static inline void virt_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
1132 {
1133 virt_arch_dump(stream, vm, indent);
1134 }
1135
1136
__vm_disable_nx_huge_pages(struct kvm_vm * vm)1137 static inline int __vm_disable_nx_huge_pages(struct kvm_vm *vm)
1138 {
1139 return __vm_enable_cap(vm, KVM_CAP_VM_DISABLE_NX_HUGE_PAGES, 0);
1140 }
1141
1142 /*
1143 * Arch hook that is invoked via a constructor, i.e. before exeucting main(),
1144 * to allow for arch-specific setup that is common to all tests, e.g. computing
1145 * the default guest "mode".
1146 */
1147 void kvm_selftest_arch_init(void);
1148
1149 void kvm_arch_vm_post_create(struct kvm_vm *vm);
1150
1151 bool vm_is_gpa_protected(struct kvm_vm *vm, vm_paddr_t paddr);
1152
1153 uint32_t guest_get_vcpuid(void);
1154
1155 #endif /* SELFTEST_KVM_UTIL_H */
1156