xref: /linux/kernel/locking/rwsem.c (revision 0074281bb6316108e0cff094bd4db78ab3eee236)
1 // SPDX-License-Identifier: GPL-2.0
2 /* kernel/rwsem.c: R/W semaphores, public implementation
3  *
4  * Written by David Howells (dhowells@redhat.com).
5  * Derived from asm-i386/semaphore.h
6  *
7  * Writer lock-stealing by Alex Shi <alex.shi@intel.com>
8  * and Michel Lespinasse <walken@google.com>
9  *
10  * Optimistic spinning by Tim Chen <tim.c.chen@intel.com>
11  * and Davidlohr Bueso <davidlohr@hp.com>. Based on mutexes.
12  *
13  * Rwsem count bit fields re-definition and rwsem rearchitecture by
14  * Waiman Long <longman@redhat.com> and
15  * Peter Zijlstra <peterz@infradead.org>.
16  */
17 
18 #include <linux/types.h>
19 #include <linux/kernel.h>
20 #include <linux/sched.h>
21 #include <linux/sched/rt.h>
22 #include <linux/sched/task.h>
23 #include <linux/sched/debug.h>
24 #include <linux/sched/wake_q.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/clock.h>
27 #include <linux/export.h>
28 #include <linux/rwsem.h>
29 #include <linux/atomic.h>
30 #include <linux/hung_task.h>
31 #include <trace/events/lock.h>
32 
33 #ifndef CONFIG_PREEMPT_RT
34 #include "lock_events.h"
35 
36 /*
37  * The least significant 2 bits of the owner value has the following
38  * meanings when set.
39  *  - Bit 0: RWSEM_READER_OWNED - rwsem may be owned by readers (just a hint)
40  *  - Bit 1: RWSEM_NONSPINNABLE - Cannot spin on a reader-owned lock
41  *
42  * When the rwsem is reader-owned and a spinning writer has timed out,
43  * the nonspinnable bit will be set to disable optimistic spinning.
44 
45  * When a writer acquires a rwsem, it puts its task_struct pointer
46  * into the owner field. It is cleared after an unlock.
47  *
48  * When a reader acquires a rwsem, it will also puts its task_struct
49  * pointer into the owner field with the RWSEM_READER_OWNED bit set.
50  * On unlock, the owner field will largely be left untouched. So
51  * for a free or reader-owned rwsem, the owner value may contain
52  * information about the last reader that acquires the rwsem.
53  *
54  * That information may be helpful in debugging cases where the system
55  * seems to hang on a reader owned rwsem especially if only one reader
56  * is involved. Ideally we would like to track all the readers that own
57  * a rwsem, but the overhead is simply too big.
58  *
59  * A fast path reader optimistic lock stealing is supported when the rwsem
60  * is previously owned by a writer and the following conditions are met:
61  *  - rwsem is not currently writer owned
62  *  - the handoff isn't set.
63  */
64 #define RWSEM_READER_OWNED	(1UL << 0)
65 #define RWSEM_NONSPINNABLE	(1UL << 1)
66 #define RWSEM_OWNER_FLAGS_MASK	(RWSEM_READER_OWNED | RWSEM_NONSPINNABLE)
67 
68 #ifdef CONFIG_DEBUG_RWSEMS
69 # define DEBUG_RWSEMS_WARN_ON(c, sem)	do {			\
70 	if (!debug_locks_silent &&				\
71 	    WARN_ONCE(c, "DEBUG_RWSEMS_WARN_ON(%s): count = 0x%lx, magic = 0x%lx, owner = 0x%lx, curr 0x%lx, list %sempty\n",\
72 		#c, atomic_long_read(&(sem)->count),		\
73 		(unsigned long) sem->magic,			\
74 		atomic_long_read(&(sem)->owner), (long)current,	\
75 		list_empty(&(sem)->wait_list) ? "" : "not "))	\
76 			debug_locks_off();			\
77 	} while (0)
78 #else
79 # define DEBUG_RWSEMS_WARN_ON(c, sem)
80 #endif
81 
82 /*
83  * On 64-bit architectures, the bit definitions of the count are:
84  *
85  * Bit  0    - writer locked bit
86  * Bit  1    - waiters present bit
87  * Bit  2    - lock handoff bit
88  * Bits 3-7  - reserved
89  * Bits 8-62 - 55-bit reader count
90  * Bit  63   - read fail bit
91  *
92  * On 32-bit architectures, the bit definitions of the count are:
93  *
94  * Bit  0    - writer locked bit
95  * Bit  1    - waiters present bit
96  * Bit  2    - lock handoff bit
97  * Bits 3-7  - reserved
98  * Bits 8-30 - 23-bit reader count
99  * Bit  31   - read fail bit
100  *
101  * It is not likely that the most significant bit (read fail bit) will ever
102  * be set. This guard bit is still checked anyway in the down_read() fastpath
103  * just in case we need to use up more of the reader bits for other purpose
104  * in the future.
105  *
106  * atomic_long_fetch_add() is used to obtain reader lock, whereas
107  * atomic_long_cmpxchg() will be used to obtain writer lock.
108  *
109  * There are three places where the lock handoff bit may be set or cleared.
110  * 1) rwsem_mark_wake() for readers		-- set, clear
111  * 2) rwsem_try_write_lock() for writers	-- set, clear
112  * 3) rwsem_del_waiter()			-- clear
113  *
114  * For all the above cases, wait_lock will be held. A writer must also
115  * be the first one in the wait_list to be eligible for setting the handoff
116  * bit. So concurrent setting/clearing of handoff bit is not possible.
117  */
118 #define RWSEM_WRITER_LOCKED	(1UL << 0)
119 #define RWSEM_FLAG_WAITERS	(1UL << 1)
120 #define RWSEM_FLAG_HANDOFF	(1UL << 2)
121 #define RWSEM_FLAG_READFAIL	(1UL << (BITS_PER_LONG - 1))
122 
123 #define RWSEM_READER_SHIFT	8
124 #define RWSEM_READER_BIAS	(1UL << RWSEM_READER_SHIFT)
125 #define RWSEM_READER_MASK	(~(RWSEM_READER_BIAS - 1))
126 #define RWSEM_WRITER_MASK	RWSEM_WRITER_LOCKED
127 #define RWSEM_LOCK_MASK		(RWSEM_WRITER_MASK|RWSEM_READER_MASK)
128 #define RWSEM_READ_FAILED_MASK	(RWSEM_WRITER_MASK|RWSEM_FLAG_WAITERS|\
129 				 RWSEM_FLAG_HANDOFF|RWSEM_FLAG_READFAIL)
130 
131 /*
132  * All writes to owner are protected by WRITE_ONCE() to make sure that
133  * store tearing can't happen as optimistic spinners may read and use
134  * the owner value concurrently without lock. Read from owner, however,
135  * may not need READ_ONCE() as long as the pointer value is only used
136  * for comparison and isn't being dereferenced.
137  *
138  * Both rwsem_{set,clear}_owner() functions should be in the same
139  * preempt disable section as the atomic op that changes sem->count.
140  */
rwsem_set_owner(struct rw_semaphore * sem)141 static inline void rwsem_set_owner(struct rw_semaphore *sem)
142 {
143 	lockdep_assert_preemption_disabled();
144 	atomic_long_set(&sem->owner, (long)current);
145 }
146 
rwsem_clear_owner(struct rw_semaphore * sem)147 static inline void rwsem_clear_owner(struct rw_semaphore *sem)
148 {
149 	lockdep_assert_preemption_disabled();
150 	atomic_long_set(&sem->owner, 0);
151 }
152 
153 /*
154  * Test the flags in the owner field.
155  */
rwsem_test_oflags(struct rw_semaphore * sem,long flags)156 static inline bool rwsem_test_oflags(struct rw_semaphore *sem, long flags)
157 {
158 	return atomic_long_read(&sem->owner) & flags;
159 }
160 
161 /*
162  * The task_struct pointer of the last owning reader will be left in
163  * the owner field.
164  *
165  * Note that the owner value just indicates the task has owned the rwsem
166  * previously, it may not be the real owner or one of the real owners
167  * anymore when that field is examined, so take it with a grain of salt.
168  *
169  * The reader non-spinnable bit is preserved.
170  */
__rwsem_set_reader_owned(struct rw_semaphore * sem,struct task_struct * owner)171 static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem,
172 					    struct task_struct *owner)
173 {
174 	unsigned long val = (unsigned long)owner | RWSEM_READER_OWNED |
175 		(atomic_long_read(&sem->owner) & RWSEM_NONSPINNABLE);
176 
177 	atomic_long_set(&sem->owner, val);
178 }
179 
rwsem_set_reader_owned(struct rw_semaphore * sem)180 static inline void rwsem_set_reader_owned(struct rw_semaphore *sem)
181 {
182 	__rwsem_set_reader_owned(sem, current);
183 }
184 
185 #if defined(CONFIG_DEBUG_RWSEMS) || defined(CONFIG_DETECT_HUNG_TASK_BLOCKER)
186 /*
187  * Return just the real task structure pointer of the owner
188  */
rwsem_owner(struct rw_semaphore * sem)189 struct task_struct *rwsem_owner(struct rw_semaphore *sem)
190 {
191 	return (struct task_struct *)
192 		(atomic_long_read(&sem->owner) & ~RWSEM_OWNER_FLAGS_MASK);
193 }
194 
195 /*
196  * Return true if the rwsem is owned by a reader.
197  */
is_rwsem_reader_owned(struct rw_semaphore * sem)198 bool is_rwsem_reader_owned(struct rw_semaphore *sem)
199 {
200 	/*
201 	 * Check the count to see if it is write-locked.
202 	 */
203 	long count = atomic_long_read(&sem->count);
204 
205 	if (count & RWSEM_WRITER_MASK)
206 		return false;
207 	return rwsem_test_oflags(sem, RWSEM_READER_OWNED);
208 }
209 
210 /*
211  * With CONFIG_DEBUG_RWSEMS or CONFIG_DETECT_HUNG_TASK_BLOCKER configured,
212  * it will make sure that the owner field of a reader-owned rwsem either
213  * points to a real reader-owner(s) or gets cleared. The only exception is
214  * when the unlock is done by up_read_non_owner().
215  */
rwsem_clear_reader_owned(struct rw_semaphore * sem)216 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem)
217 {
218 	unsigned long val = atomic_long_read(&sem->owner);
219 
220 	while ((val & ~RWSEM_OWNER_FLAGS_MASK) == (unsigned long)current) {
221 		if (atomic_long_try_cmpxchg(&sem->owner, &val,
222 					    val & RWSEM_OWNER_FLAGS_MASK))
223 			return;
224 	}
225 }
226 #else
rwsem_clear_reader_owned(struct rw_semaphore * sem)227 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem)
228 {
229 }
230 #endif
231 
232 /*
233  * Set the RWSEM_NONSPINNABLE bits if the RWSEM_READER_OWNED flag
234  * remains set. Otherwise, the operation will be aborted.
235  */
rwsem_set_nonspinnable(struct rw_semaphore * sem)236 static inline void rwsem_set_nonspinnable(struct rw_semaphore *sem)
237 {
238 	unsigned long owner = atomic_long_read(&sem->owner);
239 
240 	do {
241 		if (!(owner & RWSEM_READER_OWNED))
242 			break;
243 		if (owner & RWSEM_NONSPINNABLE)
244 			break;
245 	} while (!atomic_long_try_cmpxchg(&sem->owner, &owner,
246 					  owner | RWSEM_NONSPINNABLE));
247 }
248 
rwsem_read_trylock(struct rw_semaphore * sem,long * cntp)249 static inline bool rwsem_read_trylock(struct rw_semaphore *sem, long *cntp)
250 {
251 	*cntp = atomic_long_add_return_acquire(RWSEM_READER_BIAS, &sem->count);
252 
253 	if (WARN_ON_ONCE(*cntp < 0))
254 		rwsem_set_nonspinnable(sem);
255 
256 	if (!(*cntp & RWSEM_READ_FAILED_MASK)) {
257 		rwsem_set_reader_owned(sem);
258 		return true;
259 	}
260 
261 	return false;
262 }
263 
rwsem_write_trylock(struct rw_semaphore * sem)264 static inline bool rwsem_write_trylock(struct rw_semaphore *sem)
265 {
266 	long tmp = RWSEM_UNLOCKED_VALUE;
267 
268 	if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp, RWSEM_WRITER_LOCKED)) {
269 		rwsem_set_owner(sem);
270 		return true;
271 	}
272 
273 	return false;
274 }
275 
276 /*
277  * Return the real task structure pointer of the owner and the embedded
278  * flags in the owner. pflags must be non-NULL.
279  */
280 static inline struct task_struct *
rwsem_owner_flags(struct rw_semaphore * sem,unsigned long * pflags)281 rwsem_owner_flags(struct rw_semaphore *sem, unsigned long *pflags)
282 {
283 	unsigned long owner = atomic_long_read(&sem->owner);
284 
285 	*pflags = owner & RWSEM_OWNER_FLAGS_MASK;
286 	return (struct task_struct *)(owner & ~RWSEM_OWNER_FLAGS_MASK);
287 }
288 
289 /*
290  * Guide to the rw_semaphore's count field.
291  *
292  * When the RWSEM_WRITER_LOCKED bit in count is set, the lock is owned
293  * by a writer.
294  *
295  * The lock is owned by readers when
296  * (1) the RWSEM_WRITER_LOCKED isn't set in count,
297  * (2) some of the reader bits are set in count, and
298  * (3) the owner field has RWSEM_READ_OWNED bit set.
299  *
300  * Having some reader bits set is not enough to guarantee a readers owned
301  * lock as the readers may be in the process of backing out from the count
302  * and a writer has just released the lock. So another writer may steal
303  * the lock immediately after that.
304  */
305 
306 /*
307  * Initialize an rwsem:
308  */
__init_rwsem(struct rw_semaphore * sem,const char * name,struct lock_class_key * key)309 void __init_rwsem(struct rw_semaphore *sem, const char *name,
310 		  struct lock_class_key *key)
311 {
312 #ifdef CONFIG_DEBUG_LOCK_ALLOC
313 	/*
314 	 * Make sure we are not reinitializing a held semaphore:
315 	 */
316 	debug_check_no_locks_freed((void *)sem, sizeof(*sem));
317 	lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP);
318 #endif
319 #ifdef CONFIG_DEBUG_RWSEMS
320 	sem->magic = sem;
321 #endif
322 	atomic_long_set(&sem->count, RWSEM_UNLOCKED_VALUE);
323 	raw_spin_lock_init(&sem->wait_lock);
324 	INIT_LIST_HEAD(&sem->wait_list);
325 	atomic_long_set(&sem->owner, 0L);
326 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER
327 	osq_lock_init(&sem->osq);
328 #endif
329 }
330 EXPORT_SYMBOL(__init_rwsem);
331 
332 enum rwsem_waiter_type {
333 	RWSEM_WAITING_FOR_WRITE,
334 	RWSEM_WAITING_FOR_READ
335 };
336 
337 struct rwsem_waiter {
338 	struct list_head list;
339 	struct task_struct *task;
340 	enum rwsem_waiter_type type;
341 	unsigned long timeout;
342 	bool handoff_set;
343 };
344 #define rwsem_first_waiter(sem) \
345 	list_first_entry(&sem->wait_list, struct rwsem_waiter, list)
346 
347 enum rwsem_wake_type {
348 	RWSEM_WAKE_ANY,		/* Wake whatever's at head of wait list */
349 	RWSEM_WAKE_READERS,	/* Wake readers only */
350 	RWSEM_WAKE_READ_OWNED	/* Waker thread holds the read lock */
351 };
352 
353 /*
354  * The typical HZ value is either 250 or 1000. So set the minimum waiting
355  * time to at least 4ms or 1 jiffy (if it is higher than 4ms) in the wait
356  * queue before initiating the handoff protocol.
357  */
358 #define RWSEM_WAIT_TIMEOUT	DIV_ROUND_UP(HZ, 250)
359 
360 /*
361  * Magic number to batch-wakeup waiting readers, even when writers are
362  * also present in the queue. This both limits the amount of work the
363  * waking thread must do and also prevents any potential counter overflow,
364  * however unlikely.
365  */
366 #define MAX_READERS_WAKEUP	0x100
367 
368 static inline void
rwsem_add_waiter(struct rw_semaphore * sem,struct rwsem_waiter * waiter)369 rwsem_add_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter)
370 {
371 	lockdep_assert_held(&sem->wait_lock);
372 	list_add_tail(&waiter->list, &sem->wait_list);
373 	/* caller will set RWSEM_FLAG_WAITERS */
374 }
375 
376 /*
377  * Remove a waiter from the wait_list and clear flags.
378  *
379  * Both rwsem_mark_wake() and rwsem_try_write_lock() contain a full 'copy' of
380  * this function. Modify with care.
381  *
382  * Return: true if wait_list isn't empty and false otherwise
383  */
384 static inline bool
rwsem_del_waiter(struct rw_semaphore * sem,struct rwsem_waiter * waiter)385 rwsem_del_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter)
386 {
387 	lockdep_assert_held(&sem->wait_lock);
388 	list_del(&waiter->list);
389 	if (likely(!list_empty(&sem->wait_list)))
390 		return true;
391 
392 	atomic_long_andnot(RWSEM_FLAG_HANDOFF | RWSEM_FLAG_WAITERS, &sem->count);
393 	return false;
394 }
395 
396 /*
397  * handle the lock release when processes blocked on it that can now run
398  * - if we come here from up_xxxx(), then the RWSEM_FLAG_WAITERS bit must
399  *   have been set.
400  * - there must be someone on the queue
401  * - the wait_lock must be held by the caller
402  * - tasks are marked for wakeup, the caller must later invoke wake_up_q()
403  *   to actually wakeup the blocked task(s) and drop the reference count,
404  *   preferably when the wait_lock is released
405  * - woken process blocks are discarded from the list after having task zeroed
406  * - writers are only marked woken if downgrading is false
407  *
408  * Implies rwsem_del_waiter() for all woken readers.
409  */
rwsem_mark_wake(struct rw_semaphore * sem,enum rwsem_wake_type wake_type,struct wake_q_head * wake_q)410 static void rwsem_mark_wake(struct rw_semaphore *sem,
411 			    enum rwsem_wake_type wake_type,
412 			    struct wake_q_head *wake_q)
413 {
414 	struct rwsem_waiter *waiter, *tmp;
415 	long oldcount, woken = 0, adjustment = 0;
416 	struct list_head wlist;
417 
418 	lockdep_assert_held(&sem->wait_lock);
419 
420 	/*
421 	 * Take a peek at the queue head waiter such that we can determine
422 	 * the wakeup(s) to perform.
423 	 */
424 	waiter = rwsem_first_waiter(sem);
425 
426 	if (waiter->type == RWSEM_WAITING_FOR_WRITE) {
427 		if (wake_type == RWSEM_WAKE_ANY) {
428 			/*
429 			 * Mark writer at the front of the queue for wakeup.
430 			 * Until the task is actually later awoken later by
431 			 * the caller, other writers are able to steal it.
432 			 * Readers, on the other hand, will block as they
433 			 * will notice the queued writer.
434 			 */
435 			wake_q_add(wake_q, waiter->task);
436 			lockevent_inc(rwsem_wake_writer);
437 		}
438 
439 		return;
440 	}
441 
442 	/*
443 	 * No reader wakeup if there are too many of them already.
444 	 */
445 	if (unlikely(atomic_long_read(&sem->count) < 0))
446 		return;
447 
448 	/*
449 	 * Writers might steal the lock before we grant it to the next reader.
450 	 * We prefer to do the first reader grant before counting readers
451 	 * so we can bail out early if a writer stole the lock.
452 	 */
453 	if (wake_type != RWSEM_WAKE_READ_OWNED) {
454 		struct task_struct *owner;
455 
456 		adjustment = RWSEM_READER_BIAS;
457 		oldcount = atomic_long_fetch_add(adjustment, &sem->count);
458 		if (unlikely(oldcount & RWSEM_WRITER_MASK)) {
459 			/*
460 			 * When we've been waiting "too" long (for writers
461 			 * to give up the lock), request a HANDOFF to
462 			 * force the issue.
463 			 */
464 			if (time_after(jiffies, waiter->timeout)) {
465 				if (!(oldcount & RWSEM_FLAG_HANDOFF)) {
466 					adjustment -= RWSEM_FLAG_HANDOFF;
467 					lockevent_inc(rwsem_rlock_handoff);
468 				}
469 				waiter->handoff_set = true;
470 			}
471 
472 			atomic_long_add(-adjustment, &sem->count);
473 			return;
474 		}
475 		/*
476 		 * Set it to reader-owned to give spinners an early
477 		 * indication that readers now have the lock.
478 		 * The reader nonspinnable bit seen at slowpath entry of
479 		 * the reader is copied over.
480 		 */
481 		owner = waiter->task;
482 		__rwsem_set_reader_owned(sem, owner);
483 	}
484 
485 	/*
486 	 * Grant up to MAX_READERS_WAKEUP read locks to all the readers in the
487 	 * queue. We know that the woken will be at least 1 as we accounted
488 	 * for above. Note we increment the 'active part' of the count by the
489 	 * number of readers before waking any processes up.
490 	 *
491 	 * This is an adaptation of the phase-fair R/W locks where at the
492 	 * reader phase (first waiter is a reader), all readers are eligible
493 	 * to acquire the lock at the same time irrespective of their order
494 	 * in the queue. The writers acquire the lock according to their
495 	 * order in the queue.
496 	 *
497 	 * We have to do wakeup in 2 passes to prevent the possibility that
498 	 * the reader count may be decremented before it is incremented. It
499 	 * is because the to-be-woken waiter may not have slept yet. So it
500 	 * may see waiter->task got cleared, finish its critical section and
501 	 * do an unlock before the reader count increment.
502 	 *
503 	 * 1) Collect the read-waiters in a separate list, count them and
504 	 *    fully increment the reader count in rwsem.
505 	 * 2) For each waiters in the new list, clear waiter->task and
506 	 *    put them into wake_q to be woken up later.
507 	 */
508 	INIT_LIST_HEAD(&wlist);
509 	list_for_each_entry_safe(waiter, tmp, &sem->wait_list, list) {
510 		if (waiter->type == RWSEM_WAITING_FOR_WRITE)
511 			continue;
512 
513 		woken++;
514 		list_move_tail(&waiter->list, &wlist);
515 
516 		/*
517 		 * Limit # of readers that can be woken up per wakeup call.
518 		 */
519 		if (unlikely(woken >= MAX_READERS_WAKEUP))
520 			break;
521 	}
522 
523 	adjustment = woken * RWSEM_READER_BIAS - adjustment;
524 	lockevent_cond_inc(rwsem_wake_reader, woken);
525 
526 	oldcount = atomic_long_read(&sem->count);
527 	if (list_empty(&sem->wait_list)) {
528 		/*
529 		 * Combined with list_move_tail() above, this implies
530 		 * rwsem_del_waiter().
531 		 */
532 		adjustment -= RWSEM_FLAG_WAITERS;
533 		if (oldcount & RWSEM_FLAG_HANDOFF)
534 			adjustment -= RWSEM_FLAG_HANDOFF;
535 	} else if (woken) {
536 		/*
537 		 * When we've woken a reader, we no longer need to force
538 		 * writers to give up the lock and we can clear HANDOFF.
539 		 */
540 		if (oldcount & RWSEM_FLAG_HANDOFF)
541 			adjustment -= RWSEM_FLAG_HANDOFF;
542 	}
543 
544 	if (adjustment)
545 		atomic_long_add(adjustment, &sem->count);
546 
547 	/* 2nd pass */
548 	list_for_each_entry_safe(waiter, tmp, &wlist, list) {
549 		struct task_struct *tsk;
550 
551 		tsk = waiter->task;
552 		get_task_struct(tsk);
553 
554 		/*
555 		 * Ensure calling get_task_struct() before setting the reader
556 		 * waiter to nil such that rwsem_down_read_slowpath() cannot
557 		 * race with do_exit() by always holding a reference count
558 		 * to the task to wakeup.
559 		 */
560 		smp_store_release(&waiter->task, NULL);
561 		/*
562 		 * Ensure issuing the wakeup (either by us or someone else)
563 		 * after setting the reader waiter to nil.
564 		 */
565 		wake_q_add_safe(wake_q, tsk);
566 	}
567 }
568 
569 /*
570  * Remove a waiter and try to wake up other waiters in the wait queue
571  * This function is called from the out_nolock path of both the reader and
572  * writer slowpaths with wait_lock held. It releases the wait_lock and
573  * optionally wake up waiters before it returns.
574  */
575 static inline void
rwsem_del_wake_waiter(struct rw_semaphore * sem,struct rwsem_waiter * waiter,struct wake_q_head * wake_q)576 rwsem_del_wake_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter,
577 		      struct wake_q_head *wake_q)
578 		      __releases(&sem->wait_lock)
579 {
580 	bool first = rwsem_first_waiter(sem) == waiter;
581 
582 	wake_q_init(wake_q);
583 
584 	/*
585 	 * If the wait_list isn't empty and the waiter to be deleted is
586 	 * the first waiter, we wake up the remaining waiters as they may
587 	 * be eligible to acquire or spin on the lock.
588 	 */
589 	if (rwsem_del_waiter(sem, waiter) && first)
590 		rwsem_mark_wake(sem, RWSEM_WAKE_ANY, wake_q);
591 	raw_spin_unlock_irq(&sem->wait_lock);
592 	if (!wake_q_empty(wake_q))
593 		wake_up_q(wake_q);
594 }
595 
596 /*
597  * This function must be called with the sem->wait_lock held to prevent
598  * race conditions between checking the rwsem wait list and setting the
599  * sem->count accordingly.
600  *
601  * Implies rwsem_del_waiter() on success.
602  */
rwsem_try_write_lock(struct rw_semaphore * sem,struct rwsem_waiter * waiter)603 static inline bool rwsem_try_write_lock(struct rw_semaphore *sem,
604 					struct rwsem_waiter *waiter)
605 {
606 	struct rwsem_waiter *first = rwsem_first_waiter(sem);
607 	long count, new;
608 
609 	lockdep_assert_held(&sem->wait_lock);
610 
611 	count = atomic_long_read(&sem->count);
612 	do {
613 		bool has_handoff = !!(count & RWSEM_FLAG_HANDOFF);
614 
615 		if (has_handoff) {
616 			/*
617 			 * Honor handoff bit and yield only when the first
618 			 * waiter is the one that set it. Otherwisee, we
619 			 * still try to acquire the rwsem.
620 			 */
621 			if (first->handoff_set && (waiter != first))
622 				return false;
623 		}
624 
625 		new = count;
626 
627 		if (count & RWSEM_LOCK_MASK) {
628 			/*
629 			 * A waiter (first or not) can set the handoff bit
630 			 * if it is an RT task or wait in the wait queue
631 			 * for too long.
632 			 */
633 			if (has_handoff || (!rt_or_dl_task(waiter->task) &&
634 					    !time_after(jiffies, waiter->timeout)))
635 				return false;
636 
637 			new |= RWSEM_FLAG_HANDOFF;
638 		} else {
639 			new |= RWSEM_WRITER_LOCKED;
640 			new &= ~RWSEM_FLAG_HANDOFF;
641 
642 			if (list_is_singular(&sem->wait_list))
643 				new &= ~RWSEM_FLAG_WAITERS;
644 		}
645 	} while (!atomic_long_try_cmpxchg_acquire(&sem->count, &count, new));
646 
647 	/*
648 	 * We have either acquired the lock with handoff bit cleared or set
649 	 * the handoff bit. Only the first waiter can have its handoff_set
650 	 * set here to enable optimistic spinning in slowpath loop.
651 	 */
652 	if (new & RWSEM_FLAG_HANDOFF) {
653 		first->handoff_set = true;
654 		lockevent_inc(rwsem_wlock_handoff);
655 		return false;
656 	}
657 
658 	/*
659 	 * Have rwsem_try_write_lock() fully imply rwsem_del_waiter() on
660 	 * success.
661 	 */
662 	list_del(&waiter->list);
663 	rwsem_set_owner(sem);
664 	return true;
665 }
666 
667 /*
668  * The rwsem_spin_on_owner() function returns the following 4 values
669  * depending on the lock owner state.
670  *   OWNER_NULL  : owner is currently NULL
671  *   OWNER_WRITER: when owner changes and is a writer
672  *   OWNER_READER: when owner changes and the new owner may be a reader.
673  *   OWNER_NONSPINNABLE:
674  *		   when optimistic spinning has to stop because either the
675  *		   owner stops running, is unknown, or its timeslice has
676  *		   been used up.
677  */
678 enum owner_state {
679 	OWNER_NULL		= 1 << 0,
680 	OWNER_WRITER		= 1 << 1,
681 	OWNER_READER		= 1 << 2,
682 	OWNER_NONSPINNABLE	= 1 << 3,
683 };
684 
685 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER
686 /*
687  * Try to acquire write lock before the writer has been put on wait queue.
688  */
rwsem_try_write_lock_unqueued(struct rw_semaphore * sem)689 static inline bool rwsem_try_write_lock_unqueued(struct rw_semaphore *sem)
690 {
691 	long count = atomic_long_read(&sem->count);
692 
693 	while (!(count & (RWSEM_LOCK_MASK|RWSEM_FLAG_HANDOFF))) {
694 		if (atomic_long_try_cmpxchg_acquire(&sem->count, &count,
695 					count | RWSEM_WRITER_LOCKED)) {
696 			rwsem_set_owner(sem);
697 			lockevent_inc(rwsem_opt_lock);
698 			return true;
699 		}
700 	}
701 	return false;
702 }
703 
rwsem_can_spin_on_owner(struct rw_semaphore * sem)704 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem)
705 {
706 	struct task_struct *owner;
707 	unsigned long flags;
708 	bool ret = true;
709 
710 	if (need_resched()) {
711 		lockevent_inc(rwsem_opt_fail);
712 		return false;
713 	}
714 
715 	/*
716 	 * Disable preemption is equal to the RCU read-side crital section,
717 	 * thus the task_strcut structure won't go away.
718 	 */
719 	owner = rwsem_owner_flags(sem, &flags);
720 	/*
721 	 * Don't check the read-owner as the entry may be stale.
722 	 */
723 	if ((flags & RWSEM_NONSPINNABLE) ||
724 	    (owner && !(flags & RWSEM_READER_OWNED) && !owner_on_cpu(owner)))
725 		ret = false;
726 
727 	lockevent_cond_inc(rwsem_opt_fail, !ret);
728 	return ret;
729 }
730 
731 static inline enum owner_state
rwsem_owner_state(struct task_struct * owner,unsigned long flags)732 rwsem_owner_state(struct task_struct *owner, unsigned long flags)
733 {
734 	if (flags & RWSEM_NONSPINNABLE)
735 		return OWNER_NONSPINNABLE;
736 
737 	if (flags & RWSEM_READER_OWNED)
738 		return OWNER_READER;
739 
740 	return owner ? OWNER_WRITER : OWNER_NULL;
741 }
742 
743 static noinline enum owner_state
rwsem_spin_on_owner(struct rw_semaphore * sem)744 rwsem_spin_on_owner(struct rw_semaphore *sem)
745 {
746 	struct task_struct *new, *owner;
747 	unsigned long flags, new_flags;
748 	enum owner_state state;
749 
750 	lockdep_assert_preemption_disabled();
751 
752 	owner = rwsem_owner_flags(sem, &flags);
753 	state = rwsem_owner_state(owner, flags);
754 	if (state != OWNER_WRITER)
755 		return state;
756 
757 	for (;;) {
758 		/*
759 		 * When a waiting writer set the handoff flag, it may spin
760 		 * on the owner as well. Once that writer acquires the lock,
761 		 * we can spin on it. So we don't need to quit even when the
762 		 * handoff bit is set.
763 		 */
764 		new = rwsem_owner_flags(sem, &new_flags);
765 		if ((new != owner) || (new_flags != flags)) {
766 			state = rwsem_owner_state(new, new_flags);
767 			break;
768 		}
769 
770 		/*
771 		 * Ensure we emit the owner->on_cpu, dereference _after_
772 		 * checking sem->owner still matches owner, if that fails,
773 		 * owner might point to free()d memory, if it still matches,
774 		 * our spinning context already disabled preemption which is
775 		 * equal to RCU read-side crital section ensures the memory
776 		 * stays valid.
777 		 */
778 		barrier();
779 
780 		if (need_resched() || !owner_on_cpu(owner)) {
781 			state = OWNER_NONSPINNABLE;
782 			break;
783 		}
784 
785 		cpu_relax();
786 	}
787 
788 	return state;
789 }
790 
791 /*
792  * Calculate reader-owned rwsem spinning threshold for writer
793  *
794  * The more readers own the rwsem, the longer it will take for them to
795  * wind down and free the rwsem. So the empirical formula used to
796  * determine the actual spinning time limit here is:
797  *
798  *   Spinning threshold = (10 + nr_readers/2)us
799  *
800  * The limit is capped to a maximum of 25us (30 readers). This is just
801  * a heuristic and is subjected to change in the future.
802  */
rwsem_rspin_threshold(struct rw_semaphore * sem)803 static inline u64 rwsem_rspin_threshold(struct rw_semaphore *sem)
804 {
805 	long count = atomic_long_read(&sem->count);
806 	int readers = count >> RWSEM_READER_SHIFT;
807 	u64 delta;
808 
809 	if (readers > 30)
810 		readers = 30;
811 	delta = (20 + readers) * NSEC_PER_USEC / 2;
812 
813 	return sched_clock() + delta;
814 }
815 
rwsem_optimistic_spin(struct rw_semaphore * sem)816 static bool rwsem_optimistic_spin(struct rw_semaphore *sem)
817 {
818 	bool taken = false;
819 	int prev_owner_state = OWNER_NULL;
820 	int loop = 0;
821 	u64 rspin_threshold = 0;
822 
823 	/* sem->wait_lock should not be held when doing optimistic spinning */
824 	if (!osq_lock(&sem->osq))
825 		goto done;
826 
827 	/*
828 	 * Optimistically spin on the owner field and attempt to acquire the
829 	 * lock whenever the owner changes. Spinning will be stopped when:
830 	 *  1) the owning writer isn't running; or
831 	 *  2) readers own the lock and spinning time has exceeded limit.
832 	 */
833 	for (;;) {
834 		enum owner_state owner_state;
835 
836 		owner_state = rwsem_spin_on_owner(sem);
837 		if (owner_state == OWNER_NONSPINNABLE)
838 			break;
839 
840 		/*
841 		 * Try to acquire the lock
842 		 */
843 		taken = rwsem_try_write_lock_unqueued(sem);
844 
845 		if (taken)
846 			break;
847 
848 		/*
849 		 * Time-based reader-owned rwsem optimistic spinning
850 		 */
851 		if (owner_state == OWNER_READER) {
852 			/*
853 			 * Re-initialize rspin_threshold every time when
854 			 * the owner state changes from non-reader to reader.
855 			 * This allows a writer to steal the lock in between
856 			 * 2 reader phases and have the threshold reset at
857 			 * the beginning of the 2nd reader phase.
858 			 */
859 			if (prev_owner_state != OWNER_READER) {
860 				if (rwsem_test_oflags(sem, RWSEM_NONSPINNABLE))
861 					break;
862 				rspin_threshold = rwsem_rspin_threshold(sem);
863 				loop = 0;
864 			}
865 
866 			/*
867 			 * Check time threshold once every 16 iterations to
868 			 * avoid calling sched_clock() too frequently so
869 			 * as to reduce the average latency between the times
870 			 * when the lock becomes free and when the spinner
871 			 * is ready to do a trylock.
872 			 */
873 			else if (!(++loop & 0xf) && (sched_clock() > rspin_threshold)) {
874 				rwsem_set_nonspinnable(sem);
875 				lockevent_inc(rwsem_opt_nospin);
876 				break;
877 			}
878 		}
879 
880 		/*
881 		 * An RT task cannot do optimistic spinning if it cannot
882 		 * be sure the lock holder is running or live-lock may
883 		 * happen if the current task and the lock holder happen
884 		 * to run in the same CPU. However, aborting optimistic
885 		 * spinning while a NULL owner is detected may miss some
886 		 * opportunity where spinning can continue without causing
887 		 * problem.
888 		 *
889 		 * There are 2 possible cases where an RT task may be able
890 		 * to continue spinning.
891 		 *
892 		 * 1) The lock owner is in the process of releasing the
893 		 *    lock, sem->owner is cleared but the lock has not
894 		 *    been released yet.
895 		 * 2) The lock was free and owner cleared, but another
896 		 *    task just comes in and acquire the lock before
897 		 *    we try to get it. The new owner may be a spinnable
898 		 *    writer.
899 		 *
900 		 * To take advantage of two scenarios listed above, the RT
901 		 * task is made to retry one more time to see if it can
902 		 * acquire the lock or continue spinning on the new owning
903 		 * writer. Of course, if the time lag is long enough or the
904 		 * new owner is not a writer or spinnable, the RT task will
905 		 * quit spinning.
906 		 *
907 		 * If the owner is a writer, the need_resched() check is
908 		 * done inside rwsem_spin_on_owner(). If the owner is not
909 		 * a writer, need_resched() check needs to be done here.
910 		 */
911 		if (owner_state != OWNER_WRITER) {
912 			if (need_resched())
913 				break;
914 			if (rt_or_dl_task(current) &&
915 			   (prev_owner_state != OWNER_WRITER))
916 				break;
917 		}
918 		prev_owner_state = owner_state;
919 
920 		/*
921 		 * The cpu_relax() call is a compiler barrier which forces
922 		 * everything in this loop to be re-loaded. We don't need
923 		 * memory barriers as we'll eventually observe the right
924 		 * values at the cost of a few extra spins.
925 		 */
926 		cpu_relax();
927 	}
928 	osq_unlock(&sem->osq);
929 done:
930 	lockevent_cond_inc(rwsem_opt_fail, !taken);
931 	return taken;
932 }
933 
934 /*
935  * Clear the owner's RWSEM_NONSPINNABLE bit if it is set. This should
936  * only be called when the reader count reaches 0.
937  */
clear_nonspinnable(struct rw_semaphore * sem)938 static inline void clear_nonspinnable(struct rw_semaphore *sem)
939 {
940 	if (unlikely(rwsem_test_oflags(sem, RWSEM_NONSPINNABLE)))
941 		atomic_long_andnot(RWSEM_NONSPINNABLE, &sem->owner);
942 }
943 
944 #else
rwsem_can_spin_on_owner(struct rw_semaphore * sem)945 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem)
946 {
947 	return false;
948 }
949 
rwsem_optimistic_spin(struct rw_semaphore * sem)950 static inline bool rwsem_optimistic_spin(struct rw_semaphore *sem)
951 {
952 	return false;
953 }
954 
clear_nonspinnable(struct rw_semaphore * sem)955 static inline void clear_nonspinnable(struct rw_semaphore *sem) { }
956 
957 static inline enum owner_state
rwsem_spin_on_owner(struct rw_semaphore * sem)958 rwsem_spin_on_owner(struct rw_semaphore *sem)
959 {
960 	return OWNER_NONSPINNABLE;
961 }
962 #endif
963 
964 /*
965  * Prepare to wake up waiter(s) in the wait queue by putting them into the
966  * given wake_q if the rwsem lock owner isn't a writer. If rwsem is likely
967  * reader-owned, wake up read lock waiters in queue front or wake up any
968  * front waiter otherwise.
969 
970  * This is being called from both reader and writer slow paths.
971  */
rwsem_cond_wake_waiter(struct rw_semaphore * sem,long count,struct wake_q_head * wake_q)972 static inline void rwsem_cond_wake_waiter(struct rw_semaphore *sem, long count,
973 					  struct wake_q_head *wake_q)
974 {
975 	enum rwsem_wake_type wake_type;
976 
977 	if (count & RWSEM_WRITER_MASK)
978 		return;
979 
980 	if (count & RWSEM_READER_MASK) {
981 		wake_type = RWSEM_WAKE_READERS;
982 	} else {
983 		wake_type = RWSEM_WAKE_ANY;
984 		clear_nonspinnable(sem);
985 	}
986 	rwsem_mark_wake(sem, wake_type, wake_q);
987 }
988 
989 /*
990  * Wait for the read lock to be granted
991  */
992 static struct rw_semaphore __sched *
rwsem_down_read_slowpath(struct rw_semaphore * sem,long count,unsigned int state)993 rwsem_down_read_slowpath(struct rw_semaphore *sem, long count, unsigned int state)
994 {
995 	long adjustment = -RWSEM_READER_BIAS;
996 	long rcnt = (count >> RWSEM_READER_SHIFT);
997 	struct rwsem_waiter waiter;
998 	DEFINE_WAKE_Q(wake_q);
999 
1000 	/*
1001 	 * To prevent a constant stream of readers from starving a sleeping
1002 	 * writer, don't attempt optimistic lock stealing if the lock is
1003 	 * very likely owned by readers.
1004 	 */
1005 	if ((atomic_long_read(&sem->owner) & RWSEM_READER_OWNED) &&
1006 	    (rcnt > 1) && !(count & RWSEM_WRITER_LOCKED))
1007 		goto queue;
1008 
1009 	/*
1010 	 * Reader optimistic lock stealing.
1011 	 */
1012 	if (!(count & (RWSEM_WRITER_LOCKED | RWSEM_FLAG_HANDOFF))) {
1013 		rwsem_set_reader_owned(sem);
1014 		lockevent_inc(rwsem_rlock_steal);
1015 
1016 		/*
1017 		 * Wake up other readers in the wait queue if it is
1018 		 * the first reader.
1019 		 */
1020 		if ((rcnt == 1) && (count & RWSEM_FLAG_WAITERS)) {
1021 			raw_spin_lock_irq(&sem->wait_lock);
1022 			if (!list_empty(&sem->wait_list))
1023 				rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED,
1024 						&wake_q);
1025 			raw_spin_unlock_irq(&sem->wait_lock);
1026 			wake_up_q(&wake_q);
1027 		}
1028 		return sem;
1029 	}
1030 
1031 queue:
1032 	waiter.task = current;
1033 	waiter.type = RWSEM_WAITING_FOR_READ;
1034 	waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT;
1035 	waiter.handoff_set = false;
1036 
1037 	raw_spin_lock_irq(&sem->wait_lock);
1038 	if (list_empty(&sem->wait_list)) {
1039 		/*
1040 		 * In case the wait queue is empty and the lock isn't owned
1041 		 * by a writer, this reader can exit the slowpath and return
1042 		 * immediately as its RWSEM_READER_BIAS has already been set
1043 		 * in the count.
1044 		 */
1045 		if (!(atomic_long_read(&sem->count) & RWSEM_WRITER_MASK)) {
1046 			/* Provide lock ACQUIRE */
1047 			smp_acquire__after_ctrl_dep();
1048 			raw_spin_unlock_irq(&sem->wait_lock);
1049 			rwsem_set_reader_owned(sem);
1050 			lockevent_inc(rwsem_rlock_fast);
1051 			return sem;
1052 		}
1053 		adjustment += RWSEM_FLAG_WAITERS;
1054 	}
1055 	rwsem_add_waiter(sem, &waiter);
1056 
1057 	/* we're now waiting on the lock, but no longer actively locking */
1058 	count = atomic_long_add_return(adjustment, &sem->count);
1059 
1060 	rwsem_cond_wake_waiter(sem, count, &wake_q);
1061 	raw_spin_unlock_irq(&sem->wait_lock);
1062 
1063 	if (!wake_q_empty(&wake_q))
1064 		wake_up_q(&wake_q);
1065 
1066 	trace_contention_begin(sem, LCB_F_READ);
1067 	set_current_state(state);
1068 
1069 	if (state == TASK_UNINTERRUPTIBLE)
1070 		hung_task_set_blocker(sem, BLOCKER_TYPE_RWSEM_READER);
1071 
1072 	/* wait to be given the lock */
1073 	for (;;) {
1074 		if (!smp_load_acquire(&waiter.task)) {
1075 			/* Matches rwsem_mark_wake()'s smp_store_release(). */
1076 			break;
1077 		}
1078 		if (signal_pending_state(state, current)) {
1079 			raw_spin_lock_irq(&sem->wait_lock);
1080 			if (waiter.task)
1081 				goto out_nolock;
1082 			raw_spin_unlock_irq(&sem->wait_lock);
1083 			/* Ordered by sem->wait_lock against rwsem_mark_wake(). */
1084 			break;
1085 		}
1086 		schedule_preempt_disabled();
1087 		lockevent_inc(rwsem_sleep_reader);
1088 		set_current_state(state);
1089 	}
1090 
1091 	if (state == TASK_UNINTERRUPTIBLE)
1092 		hung_task_clear_blocker();
1093 
1094 	__set_current_state(TASK_RUNNING);
1095 	lockevent_inc(rwsem_rlock);
1096 	trace_contention_end(sem, 0);
1097 	return sem;
1098 
1099 out_nolock:
1100 	rwsem_del_wake_waiter(sem, &waiter, &wake_q);
1101 	__set_current_state(TASK_RUNNING);
1102 	lockevent_inc(rwsem_rlock_fail);
1103 	trace_contention_end(sem, -EINTR);
1104 	return ERR_PTR(-EINTR);
1105 }
1106 
1107 /*
1108  * Wait until we successfully acquire the write lock
1109  */
1110 static struct rw_semaphore __sched *
rwsem_down_write_slowpath(struct rw_semaphore * sem,int state)1111 rwsem_down_write_slowpath(struct rw_semaphore *sem, int state)
1112 {
1113 	struct rwsem_waiter waiter;
1114 	DEFINE_WAKE_Q(wake_q);
1115 
1116 	/* do optimistic spinning and steal lock if possible */
1117 	if (rwsem_can_spin_on_owner(sem) && rwsem_optimistic_spin(sem)) {
1118 		/* rwsem_optimistic_spin() implies ACQUIRE on success */
1119 		return sem;
1120 	}
1121 
1122 	/*
1123 	 * Optimistic spinning failed, proceed to the slowpath
1124 	 * and block until we can acquire the sem.
1125 	 */
1126 	waiter.task = current;
1127 	waiter.type = RWSEM_WAITING_FOR_WRITE;
1128 	waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT;
1129 	waiter.handoff_set = false;
1130 
1131 	raw_spin_lock_irq(&sem->wait_lock);
1132 	rwsem_add_waiter(sem, &waiter);
1133 
1134 	/* we're now waiting on the lock */
1135 	if (rwsem_first_waiter(sem) != &waiter) {
1136 		rwsem_cond_wake_waiter(sem, atomic_long_read(&sem->count),
1137 				       &wake_q);
1138 		if (!wake_q_empty(&wake_q)) {
1139 			/*
1140 			 * We want to minimize wait_lock hold time especially
1141 			 * when a large number of readers are to be woken up.
1142 			 */
1143 			raw_spin_unlock_irq(&sem->wait_lock);
1144 			wake_up_q(&wake_q);
1145 			raw_spin_lock_irq(&sem->wait_lock);
1146 		}
1147 	} else {
1148 		atomic_long_or(RWSEM_FLAG_WAITERS, &sem->count);
1149 	}
1150 
1151 	/* wait until we successfully acquire the lock */
1152 	set_current_state(state);
1153 	trace_contention_begin(sem, LCB_F_WRITE);
1154 
1155 	if (state == TASK_UNINTERRUPTIBLE)
1156 		hung_task_set_blocker(sem, BLOCKER_TYPE_RWSEM_WRITER);
1157 
1158 	for (;;) {
1159 		if (rwsem_try_write_lock(sem, &waiter)) {
1160 			/* rwsem_try_write_lock() implies ACQUIRE on success */
1161 			break;
1162 		}
1163 
1164 		raw_spin_unlock_irq(&sem->wait_lock);
1165 
1166 		if (signal_pending_state(state, current))
1167 			goto out_nolock;
1168 
1169 		/*
1170 		 * After setting the handoff bit and failing to acquire
1171 		 * the lock, attempt to spin on owner to accelerate lock
1172 		 * transfer. If the previous owner is a on-cpu writer and it
1173 		 * has just released the lock, OWNER_NULL will be returned.
1174 		 * In this case, we attempt to acquire the lock again
1175 		 * without sleeping.
1176 		 */
1177 		if (waiter.handoff_set) {
1178 			enum owner_state owner_state;
1179 
1180 			owner_state = rwsem_spin_on_owner(sem);
1181 			if (owner_state == OWNER_NULL)
1182 				goto trylock_again;
1183 		}
1184 
1185 		schedule_preempt_disabled();
1186 		lockevent_inc(rwsem_sleep_writer);
1187 		set_current_state(state);
1188 trylock_again:
1189 		raw_spin_lock_irq(&sem->wait_lock);
1190 	}
1191 
1192 	if (state == TASK_UNINTERRUPTIBLE)
1193 		hung_task_clear_blocker();
1194 
1195 	__set_current_state(TASK_RUNNING);
1196 	raw_spin_unlock_irq(&sem->wait_lock);
1197 	lockevent_inc(rwsem_wlock);
1198 	trace_contention_end(sem, 0);
1199 	return sem;
1200 
1201 out_nolock:
1202 	__set_current_state(TASK_RUNNING);
1203 	raw_spin_lock_irq(&sem->wait_lock);
1204 	rwsem_del_wake_waiter(sem, &waiter, &wake_q);
1205 	lockevent_inc(rwsem_wlock_fail);
1206 	trace_contention_end(sem, -EINTR);
1207 	return ERR_PTR(-EINTR);
1208 }
1209 
1210 /*
1211  * handle waking up a waiter on the semaphore
1212  * - up_read/up_write has decremented the active part of count if we come here
1213  */
rwsem_wake(struct rw_semaphore * sem)1214 static struct rw_semaphore *rwsem_wake(struct rw_semaphore *sem)
1215 {
1216 	unsigned long flags;
1217 	DEFINE_WAKE_Q(wake_q);
1218 
1219 	raw_spin_lock_irqsave(&sem->wait_lock, flags);
1220 
1221 	if (!list_empty(&sem->wait_list))
1222 		rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
1223 
1224 	raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
1225 	wake_up_q(&wake_q);
1226 
1227 	return sem;
1228 }
1229 
1230 /*
1231  * downgrade a write lock into a read lock
1232  * - caller incremented waiting part of count and discovered it still negative
1233  * - just wake up any readers at the front of the queue
1234  */
rwsem_downgrade_wake(struct rw_semaphore * sem)1235 static struct rw_semaphore *rwsem_downgrade_wake(struct rw_semaphore *sem)
1236 {
1237 	unsigned long flags;
1238 	DEFINE_WAKE_Q(wake_q);
1239 
1240 	raw_spin_lock_irqsave(&sem->wait_lock, flags);
1241 
1242 	if (!list_empty(&sem->wait_list))
1243 		rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED, &wake_q);
1244 
1245 	raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
1246 	wake_up_q(&wake_q);
1247 
1248 	return sem;
1249 }
1250 
1251 /*
1252  * lock for reading
1253  */
__down_read_common(struct rw_semaphore * sem,int state)1254 static __always_inline int __down_read_common(struct rw_semaphore *sem, int state)
1255 {
1256 	int ret = 0;
1257 	long count;
1258 
1259 	preempt_disable();
1260 	if (!rwsem_read_trylock(sem, &count)) {
1261 		if (IS_ERR(rwsem_down_read_slowpath(sem, count, state))) {
1262 			ret = -EINTR;
1263 			goto out;
1264 		}
1265 		DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1266 	}
1267 out:
1268 	preempt_enable();
1269 	return ret;
1270 }
1271 
__down_read(struct rw_semaphore * sem)1272 static __always_inline void __down_read(struct rw_semaphore *sem)
1273 {
1274 	__down_read_common(sem, TASK_UNINTERRUPTIBLE);
1275 }
1276 
__down_read_interruptible(struct rw_semaphore * sem)1277 static __always_inline int __down_read_interruptible(struct rw_semaphore *sem)
1278 {
1279 	return __down_read_common(sem, TASK_INTERRUPTIBLE);
1280 }
1281 
__down_read_killable(struct rw_semaphore * sem)1282 static __always_inline int __down_read_killable(struct rw_semaphore *sem)
1283 {
1284 	return __down_read_common(sem, TASK_KILLABLE);
1285 }
1286 
__down_read_trylock(struct rw_semaphore * sem)1287 static inline int __down_read_trylock(struct rw_semaphore *sem)
1288 {
1289 	int ret = 0;
1290 	long tmp;
1291 
1292 	DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1293 
1294 	preempt_disable();
1295 	tmp = atomic_long_read(&sem->count);
1296 	while (!(tmp & RWSEM_READ_FAILED_MASK)) {
1297 		if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp,
1298 						    tmp + RWSEM_READER_BIAS)) {
1299 			rwsem_set_reader_owned(sem);
1300 			ret = 1;
1301 			break;
1302 		}
1303 	}
1304 	preempt_enable();
1305 	return ret;
1306 }
1307 
1308 /*
1309  * lock for writing
1310  */
__down_write_common(struct rw_semaphore * sem,int state)1311 static __always_inline int __down_write_common(struct rw_semaphore *sem, int state)
1312 {
1313 	int ret = 0;
1314 
1315 	preempt_disable();
1316 	if (unlikely(!rwsem_write_trylock(sem))) {
1317 		if (IS_ERR(rwsem_down_write_slowpath(sem, state)))
1318 			ret = -EINTR;
1319 	}
1320 	preempt_enable();
1321 	return ret;
1322 }
1323 
__down_write(struct rw_semaphore * sem)1324 static __always_inline void __down_write(struct rw_semaphore *sem)
1325 {
1326 	__down_write_common(sem, TASK_UNINTERRUPTIBLE);
1327 }
1328 
__down_write_killable(struct rw_semaphore * sem)1329 static __always_inline int __down_write_killable(struct rw_semaphore *sem)
1330 {
1331 	return __down_write_common(sem, TASK_KILLABLE);
1332 }
1333 
__down_write_trylock(struct rw_semaphore * sem)1334 static inline int __down_write_trylock(struct rw_semaphore *sem)
1335 {
1336 	int ret;
1337 
1338 	preempt_disable();
1339 	DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1340 	ret = rwsem_write_trylock(sem);
1341 	preempt_enable();
1342 
1343 	return ret;
1344 }
1345 
1346 /*
1347  * unlock after reading
1348  */
__up_read(struct rw_semaphore * sem)1349 static inline void __up_read(struct rw_semaphore *sem)
1350 {
1351 	long tmp;
1352 
1353 	DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1354 	DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1355 
1356 	preempt_disable();
1357 	rwsem_clear_reader_owned(sem);
1358 	tmp = atomic_long_add_return_release(-RWSEM_READER_BIAS, &sem->count);
1359 	DEBUG_RWSEMS_WARN_ON(tmp < 0, sem);
1360 	if (unlikely((tmp & (RWSEM_LOCK_MASK|RWSEM_FLAG_WAITERS)) ==
1361 		      RWSEM_FLAG_WAITERS)) {
1362 		clear_nonspinnable(sem);
1363 		rwsem_wake(sem);
1364 	}
1365 	preempt_enable();
1366 }
1367 
1368 /*
1369  * unlock after writing
1370  */
__up_write(struct rw_semaphore * sem)1371 static inline void __up_write(struct rw_semaphore *sem)
1372 {
1373 	long tmp;
1374 
1375 	DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1376 	/*
1377 	 * sem->owner may differ from current if the ownership is transferred
1378 	 * to an anonymous writer by setting the RWSEM_NONSPINNABLE bits.
1379 	 */
1380 	DEBUG_RWSEMS_WARN_ON((rwsem_owner(sem) != current) &&
1381 			    !rwsem_test_oflags(sem, RWSEM_NONSPINNABLE), sem);
1382 
1383 	preempt_disable();
1384 	rwsem_clear_owner(sem);
1385 	tmp = atomic_long_fetch_add_release(-RWSEM_WRITER_LOCKED, &sem->count);
1386 	if (unlikely(tmp & RWSEM_FLAG_WAITERS))
1387 		rwsem_wake(sem);
1388 	preempt_enable();
1389 }
1390 
1391 /*
1392  * downgrade write lock to read lock
1393  */
__downgrade_write(struct rw_semaphore * sem)1394 static inline void __downgrade_write(struct rw_semaphore *sem)
1395 {
1396 	long tmp;
1397 
1398 	/*
1399 	 * When downgrading from exclusive to shared ownership,
1400 	 * anything inside the write-locked region cannot leak
1401 	 * into the read side. In contrast, anything in the
1402 	 * read-locked region is ok to be re-ordered into the
1403 	 * write side. As such, rely on RELEASE semantics.
1404 	 */
1405 	DEBUG_RWSEMS_WARN_ON(rwsem_owner(sem) != current, sem);
1406 	preempt_disable();
1407 	tmp = atomic_long_fetch_add_release(
1408 		-RWSEM_WRITER_LOCKED+RWSEM_READER_BIAS, &sem->count);
1409 	rwsem_set_reader_owned(sem);
1410 	if (tmp & RWSEM_FLAG_WAITERS)
1411 		rwsem_downgrade_wake(sem);
1412 	preempt_enable();
1413 }
1414 
1415 #else /* !CONFIG_PREEMPT_RT */
1416 
1417 #define RT_MUTEX_BUILD_MUTEX
1418 #include "rtmutex.c"
1419 
1420 #define rwbase_set_and_save_current_state(state)	\
1421 	set_current_state(state)
1422 
1423 #define rwbase_restore_current_state()			\
1424 	__set_current_state(TASK_RUNNING)
1425 
1426 #define rwbase_rtmutex_lock_state(rtm, state)		\
1427 	__rt_mutex_lock(rtm, state)
1428 
1429 #define rwbase_rtmutex_slowlock_locked(rtm, state, wq)	\
1430 	__rt_mutex_slowlock_locked(rtm, NULL, state, wq)
1431 
1432 #define rwbase_rtmutex_unlock(rtm)			\
1433 	__rt_mutex_unlock(rtm)
1434 
1435 #define rwbase_rtmutex_trylock(rtm)			\
1436 	__rt_mutex_trylock(rtm)
1437 
1438 #define rwbase_signal_pending_state(state, current)	\
1439 	signal_pending_state(state, current)
1440 
1441 #define rwbase_pre_schedule()				\
1442 	rt_mutex_pre_schedule()
1443 
1444 #define rwbase_schedule()				\
1445 	rt_mutex_schedule()
1446 
1447 #define rwbase_post_schedule()				\
1448 	rt_mutex_post_schedule()
1449 
1450 #include "rwbase_rt.c"
1451 
__init_rwsem(struct rw_semaphore * sem,const char * name,struct lock_class_key * key)1452 void __init_rwsem(struct rw_semaphore *sem, const char *name,
1453 		  struct lock_class_key *key)
1454 {
1455 	init_rwbase_rt(&(sem)->rwbase);
1456 
1457 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1458 	debug_check_no_locks_freed((void *)sem, sizeof(*sem));
1459 	lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP);
1460 #endif
1461 }
1462 EXPORT_SYMBOL(__init_rwsem);
1463 
__down_read(struct rw_semaphore * sem)1464 static inline void __down_read(struct rw_semaphore *sem)
1465 {
1466 	rwbase_read_lock(&sem->rwbase, TASK_UNINTERRUPTIBLE);
1467 }
1468 
__down_read_interruptible(struct rw_semaphore * sem)1469 static inline int __down_read_interruptible(struct rw_semaphore *sem)
1470 {
1471 	return rwbase_read_lock(&sem->rwbase, TASK_INTERRUPTIBLE);
1472 }
1473 
__down_read_killable(struct rw_semaphore * sem)1474 static inline int __down_read_killable(struct rw_semaphore *sem)
1475 {
1476 	return rwbase_read_lock(&sem->rwbase, TASK_KILLABLE);
1477 }
1478 
__down_read_trylock(struct rw_semaphore * sem)1479 static inline int __down_read_trylock(struct rw_semaphore *sem)
1480 {
1481 	return rwbase_read_trylock(&sem->rwbase);
1482 }
1483 
__up_read(struct rw_semaphore * sem)1484 static inline void __up_read(struct rw_semaphore *sem)
1485 {
1486 	rwbase_read_unlock(&sem->rwbase, TASK_NORMAL);
1487 }
1488 
__down_write(struct rw_semaphore * sem)1489 static inline void __sched __down_write(struct rw_semaphore *sem)
1490 {
1491 	rwbase_write_lock(&sem->rwbase, TASK_UNINTERRUPTIBLE);
1492 }
1493 
__down_write_killable(struct rw_semaphore * sem)1494 static inline int __sched __down_write_killable(struct rw_semaphore *sem)
1495 {
1496 	return rwbase_write_lock(&sem->rwbase, TASK_KILLABLE);
1497 }
1498 
__down_write_trylock(struct rw_semaphore * sem)1499 static inline int __down_write_trylock(struct rw_semaphore *sem)
1500 {
1501 	return rwbase_write_trylock(&sem->rwbase);
1502 }
1503 
__up_write(struct rw_semaphore * sem)1504 static inline void __up_write(struct rw_semaphore *sem)
1505 {
1506 	rwbase_write_unlock(&sem->rwbase);
1507 }
1508 
__downgrade_write(struct rw_semaphore * sem)1509 static inline void __downgrade_write(struct rw_semaphore *sem)
1510 {
1511 	rwbase_write_downgrade(&sem->rwbase);
1512 }
1513 
1514 /* Debug stubs for the common API */
1515 #define DEBUG_RWSEMS_WARN_ON(c, sem)
1516 
__rwsem_set_reader_owned(struct rw_semaphore * sem,struct task_struct * owner)1517 static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem,
1518 					    struct task_struct *owner)
1519 {
1520 }
1521 
is_rwsem_reader_owned(struct rw_semaphore * sem)1522 static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem)
1523 {
1524 	int count = atomic_read(&sem->rwbase.readers);
1525 
1526 	return count < 0 && count != READER_BIAS;
1527 }
1528 
1529 #endif /* CONFIG_PREEMPT_RT */
1530 
1531 /*
1532  * lock for reading
1533  */
down_read(struct rw_semaphore * sem)1534 void __sched down_read(struct rw_semaphore *sem)
1535 {
1536 	might_sleep();
1537 	rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1538 
1539 	LOCK_CONTENDED(sem, __down_read_trylock, __down_read);
1540 }
1541 EXPORT_SYMBOL(down_read);
1542 
down_read_interruptible(struct rw_semaphore * sem)1543 int __sched down_read_interruptible(struct rw_semaphore *sem)
1544 {
1545 	might_sleep();
1546 	rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1547 
1548 	if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_interruptible)) {
1549 		rwsem_release(&sem->dep_map, _RET_IP_);
1550 		return -EINTR;
1551 	}
1552 
1553 	return 0;
1554 }
1555 EXPORT_SYMBOL(down_read_interruptible);
1556 
down_read_killable(struct rw_semaphore * sem)1557 int __sched down_read_killable(struct rw_semaphore *sem)
1558 {
1559 	might_sleep();
1560 	rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1561 
1562 	if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) {
1563 		rwsem_release(&sem->dep_map, _RET_IP_);
1564 		return -EINTR;
1565 	}
1566 
1567 	return 0;
1568 }
1569 EXPORT_SYMBOL(down_read_killable);
1570 
1571 /*
1572  * trylock for reading -- returns 1 if successful, 0 if contention
1573  */
down_read_trylock(struct rw_semaphore * sem)1574 int down_read_trylock(struct rw_semaphore *sem)
1575 {
1576 	int ret = __down_read_trylock(sem);
1577 
1578 	if (ret == 1)
1579 		rwsem_acquire_read(&sem->dep_map, 0, 1, _RET_IP_);
1580 	return ret;
1581 }
1582 EXPORT_SYMBOL(down_read_trylock);
1583 
1584 /*
1585  * lock for writing
1586  */
down_write(struct rw_semaphore * sem)1587 void __sched down_write(struct rw_semaphore *sem)
1588 {
1589 	might_sleep();
1590 	rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_);
1591 	LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1592 }
1593 EXPORT_SYMBOL(down_write);
1594 
1595 /*
1596  * lock for writing
1597  */
down_write_killable(struct rw_semaphore * sem)1598 int __sched down_write_killable(struct rw_semaphore *sem)
1599 {
1600 	might_sleep();
1601 	rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_);
1602 
1603 	if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock,
1604 				  __down_write_killable)) {
1605 		rwsem_release(&sem->dep_map, _RET_IP_);
1606 		return -EINTR;
1607 	}
1608 
1609 	return 0;
1610 }
1611 EXPORT_SYMBOL(down_write_killable);
1612 
1613 /*
1614  * trylock for writing -- returns 1 if successful, 0 if contention
1615  */
down_write_trylock(struct rw_semaphore * sem)1616 int down_write_trylock(struct rw_semaphore *sem)
1617 {
1618 	int ret = __down_write_trylock(sem);
1619 
1620 	if (ret == 1)
1621 		rwsem_acquire(&sem->dep_map, 0, 1, _RET_IP_);
1622 
1623 	return ret;
1624 }
1625 EXPORT_SYMBOL(down_write_trylock);
1626 
1627 /*
1628  * release a read lock
1629  */
up_read(struct rw_semaphore * sem)1630 void up_read(struct rw_semaphore *sem)
1631 {
1632 	rwsem_release(&sem->dep_map, _RET_IP_);
1633 	__up_read(sem);
1634 }
1635 EXPORT_SYMBOL(up_read);
1636 
1637 /*
1638  * release a write lock
1639  */
up_write(struct rw_semaphore * sem)1640 void up_write(struct rw_semaphore *sem)
1641 {
1642 	rwsem_release(&sem->dep_map, _RET_IP_);
1643 	__up_write(sem);
1644 }
1645 EXPORT_SYMBOL(up_write);
1646 
1647 /*
1648  * downgrade write lock to read lock
1649  */
downgrade_write(struct rw_semaphore * sem)1650 void downgrade_write(struct rw_semaphore *sem)
1651 {
1652 	lock_downgrade(&sem->dep_map, _RET_IP_);
1653 	__downgrade_write(sem);
1654 }
1655 EXPORT_SYMBOL(downgrade_write);
1656 
1657 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1658 
down_read_nested(struct rw_semaphore * sem,int subclass)1659 void down_read_nested(struct rw_semaphore *sem, int subclass)
1660 {
1661 	might_sleep();
1662 	rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_);
1663 	LOCK_CONTENDED(sem, __down_read_trylock, __down_read);
1664 }
1665 EXPORT_SYMBOL(down_read_nested);
1666 
down_read_killable_nested(struct rw_semaphore * sem,int subclass)1667 int down_read_killable_nested(struct rw_semaphore *sem, int subclass)
1668 {
1669 	might_sleep();
1670 	rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_);
1671 
1672 	if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) {
1673 		rwsem_release(&sem->dep_map, _RET_IP_);
1674 		return -EINTR;
1675 	}
1676 
1677 	return 0;
1678 }
1679 EXPORT_SYMBOL(down_read_killable_nested);
1680 
_down_write_nest_lock(struct rw_semaphore * sem,struct lockdep_map * nest)1681 void _down_write_nest_lock(struct rw_semaphore *sem, struct lockdep_map *nest)
1682 {
1683 	might_sleep();
1684 	rwsem_acquire_nest(&sem->dep_map, 0, 0, nest, _RET_IP_);
1685 	LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1686 }
1687 EXPORT_SYMBOL(_down_write_nest_lock);
1688 
down_read_non_owner(struct rw_semaphore * sem)1689 void down_read_non_owner(struct rw_semaphore *sem)
1690 {
1691 	might_sleep();
1692 	__down_read(sem);
1693 	/*
1694 	 * The owner value for a reader-owned lock is mostly for debugging
1695 	 * purpose only and is not critical to the correct functioning of
1696 	 * rwsem. So it is perfectly fine to set it in a preempt-enabled
1697 	 * context here.
1698 	 */
1699 	__rwsem_set_reader_owned(sem, NULL);
1700 }
1701 EXPORT_SYMBOL(down_read_non_owner);
1702 
down_write_nested(struct rw_semaphore * sem,int subclass)1703 void down_write_nested(struct rw_semaphore *sem, int subclass)
1704 {
1705 	might_sleep();
1706 	rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_);
1707 	LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1708 }
1709 EXPORT_SYMBOL(down_write_nested);
1710 
down_write_killable_nested(struct rw_semaphore * sem,int subclass)1711 int __sched down_write_killable_nested(struct rw_semaphore *sem, int subclass)
1712 {
1713 	might_sleep();
1714 	rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_);
1715 
1716 	if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock,
1717 				  __down_write_killable)) {
1718 		rwsem_release(&sem->dep_map, _RET_IP_);
1719 		return -EINTR;
1720 	}
1721 
1722 	return 0;
1723 }
1724 EXPORT_SYMBOL(down_write_killable_nested);
1725 
up_read_non_owner(struct rw_semaphore * sem)1726 void up_read_non_owner(struct rw_semaphore *sem)
1727 {
1728 	DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1729 	__up_read(sem);
1730 }
1731 EXPORT_SYMBOL(up_read_non_owner);
1732 
1733 #endif
1734