1 /*
2  * linux/kernel/posix-timers.c
3  *
4  *
5  * 2002-10-15  Posix Clocks & timers
6  *                           by George Anzinger george@mvista.com
7  *
8  *			     Copyright (C) 2002 2003 by MontaVista Software.
9  *
10  * 2004-06-01  Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11  *			     Copyright (C) 2004 Boris Hu
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or (at
16  * your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful, but
19  * WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21  * General Public License for more details.
22 
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26  *
27  * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
28  */
29 
30 /* These are all the functions necessary to implement
31  * POSIX clocks & timers
32  */
33 #include <linux/mm.h>
34 #include <linux/interrupt.h>
35 #include <linux/slab.h>
36 #include <linux/time.h>
37 #include <linux/mutex.h>
38 
39 #include <asm/uaccess.h>
40 #include <linux/list.h>
41 #include <linux/init.h>
42 #include <linux/compiler.h>
43 #include <linux/idr.h>
44 #include <linux/posix-clock.h>
45 #include <linux/posix-timers.h>
46 #include <linux/syscalls.h>
47 #include <linux/wait.h>
48 #include <linux/workqueue.h>
49 #include <linux/export.h>
50 
51 /*
52  * Management arrays for POSIX timers.	 Timers are kept in slab memory
53  * Timer ids are allocated by an external routine that keeps track of the
54  * id and the timer.  The external interface is:
55  *
56  * void *idr_find(struct idr *idp, int id);           to find timer_id <id>
57  * int idr_get_new(struct idr *idp, void *ptr);       to get a new id and
58  *                                                    related it to <ptr>
59  * void idr_remove(struct idr *idp, int id);          to release <id>
60  * void idr_init(struct idr *idp);                    to initialize <idp>
61  *                                                    which we supply.
62  * The idr_get_new *may* call slab for more memory so it must not be
63  * called under a spin lock.  Likewise idr_remore may release memory
64  * (but it may be ok to do this under a lock...).
65  * idr_find is just a memory look up and is quite fast.  A -1 return
66  * indicates that the requested id does not exist.
67  */
68 
69 /*
70  * Lets keep our timers in a slab cache :-)
71  */
72 static struct kmem_cache *posix_timers_cache;
73 static struct idr posix_timers_id;
74 static DEFINE_SPINLOCK(idr_lock);
75 
76 /*
77  * we assume that the new SIGEV_THREAD_ID shares no bits with the other
78  * SIGEV values.  Here we put out an error if this assumption fails.
79  */
80 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
81                        ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
82 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
83 #endif
84 
85 /*
86  * parisc wants ENOTSUP instead of EOPNOTSUPP
87  */
88 #ifndef ENOTSUP
89 # define ENANOSLEEP_NOTSUP EOPNOTSUPP
90 #else
91 # define ENANOSLEEP_NOTSUP ENOTSUP
92 #endif
93 
94 /*
95  * The timer ID is turned into a timer address by idr_find().
96  * Verifying a valid ID consists of:
97  *
98  * a) checking that idr_find() returns other than -1.
99  * b) checking that the timer id matches the one in the timer itself.
100  * c) that the timer owner is in the callers thread group.
101  */
102 
103 /*
104  * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
105  *	    to implement others.  This structure defines the various
106  *	    clocks.
107  *
108  * RESOLUTION: Clock resolution is used to round up timer and interval
109  *	    times, NOT to report clock times, which are reported with as
110  *	    much resolution as the system can muster.  In some cases this
111  *	    resolution may depend on the underlying clock hardware and
112  *	    may not be quantifiable until run time, and only then is the
113  *	    necessary code is written.	The standard says we should say
114  *	    something about this issue in the documentation...
115  *
116  * FUNCTIONS: The CLOCKs structure defines possible functions to
117  *	    handle various clock functions.
118  *
119  *	    The standard POSIX timer management code assumes the
120  *	    following: 1.) The k_itimer struct (sched.h) is used for
121  *	    the timer.  2.) The list, it_lock, it_clock, it_id and
122  *	    it_pid fields are not modified by timer code.
123  *
124  * Permissions: It is assumed that the clock_settime() function defined
125  *	    for each clock will take care of permission checks.	 Some
126  *	    clocks may be set able by any user (i.e. local process
127  *	    clocks) others not.	 Currently the only set able clock we
128  *	    have is CLOCK_REALTIME and its high res counter part, both of
129  *	    which we beg off on and pass to do_sys_settimeofday().
130  */
131 
132 static struct k_clock posix_clocks[MAX_CLOCKS];
133 
134 /*
135  * These ones are defined below.
136  */
137 static int common_nsleep(const clockid_t, int flags, struct timespec *t,
138 			 struct timespec __user *rmtp);
139 static int common_timer_create(struct k_itimer *new_timer);
140 static void common_timer_get(struct k_itimer *, struct itimerspec *);
141 static int common_timer_set(struct k_itimer *, int,
142 			    struct itimerspec *, struct itimerspec *);
143 static int common_timer_del(struct k_itimer *timer);
144 
145 static enum hrtimer_restart posix_timer_fn(struct hrtimer *data);
146 
147 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
148 
149 #define lock_timer(tid, flags)						   \
150 ({	struct k_itimer *__timr;					   \
151 	__cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags));  \
152 	__timr;								   \
153 })
154 
unlock_timer(struct k_itimer * timr,unsigned long flags)155 static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
156 {
157 	spin_unlock_irqrestore(&timr->it_lock, flags);
158 }
159 
160 /* Get clock_realtime */
posix_clock_realtime_get(clockid_t which_clock,struct timespec * tp)161 static int posix_clock_realtime_get(clockid_t which_clock, struct timespec *tp)
162 {
163 	ktime_get_real_ts(tp);
164 	return 0;
165 }
166 
167 /* Set clock_realtime */
posix_clock_realtime_set(const clockid_t which_clock,const struct timespec * tp)168 static int posix_clock_realtime_set(const clockid_t which_clock,
169 				    const struct timespec *tp)
170 {
171 	return do_sys_settimeofday(tp, NULL);
172 }
173 
posix_clock_realtime_adj(const clockid_t which_clock,struct timex * t)174 static int posix_clock_realtime_adj(const clockid_t which_clock,
175 				    struct timex *t)
176 {
177 	return do_adjtimex(t);
178 }
179 
180 /*
181  * Get monotonic time for posix timers
182  */
posix_ktime_get_ts(clockid_t which_clock,struct timespec * tp)183 static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp)
184 {
185 	ktime_get_ts(tp);
186 	return 0;
187 }
188 
189 /*
190  * Get monotonic-raw time for posix timers
191  */
posix_get_monotonic_raw(clockid_t which_clock,struct timespec * tp)192 static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec *tp)
193 {
194 	getrawmonotonic(tp);
195 	return 0;
196 }
197 
198 
posix_get_realtime_coarse(clockid_t which_clock,struct timespec * tp)199 static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec *tp)
200 {
201 	*tp = current_kernel_time();
202 	return 0;
203 }
204 
posix_get_monotonic_coarse(clockid_t which_clock,struct timespec * tp)205 static int posix_get_monotonic_coarse(clockid_t which_clock,
206 						struct timespec *tp)
207 {
208 	*tp = get_monotonic_coarse();
209 	return 0;
210 }
211 
posix_get_coarse_res(const clockid_t which_clock,struct timespec * tp)212 static int posix_get_coarse_res(const clockid_t which_clock, struct timespec *tp)
213 {
214 	*tp = ktime_to_timespec(KTIME_LOW_RES);
215 	return 0;
216 }
217 
posix_get_boottime(const clockid_t which_clock,struct timespec * tp)218 static int posix_get_boottime(const clockid_t which_clock, struct timespec *tp)
219 {
220 	get_monotonic_boottime(tp);
221 	return 0;
222 }
223 
224 
225 /*
226  * Initialize everything, well, just everything in Posix clocks/timers ;)
227  */
init_posix_timers(void)228 static __init int init_posix_timers(void)
229 {
230 	struct k_clock clock_realtime = {
231 		.clock_getres	= hrtimer_get_res,
232 		.clock_get	= posix_clock_realtime_get,
233 		.clock_set	= posix_clock_realtime_set,
234 		.clock_adj	= posix_clock_realtime_adj,
235 		.nsleep		= common_nsleep,
236 		.nsleep_restart	= hrtimer_nanosleep_restart,
237 		.timer_create	= common_timer_create,
238 		.timer_set	= common_timer_set,
239 		.timer_get	= common_timer_get,
240 		.timer_del	= common_timer_del,
241 	};
242 	struct k_clock clock_monotonic = {
243 		.clock_getres	= hrtimer_get_res,
244 		.clock_get	= posix_ktime_get_ts,
245 		.nsleep		= common_nsleep,
246 		.nsleep_restart	= hrtimer_nanosleep_restart,
247 		.timer_create	= common_timer_create,
248 		.timer_set	= common_timer_set,
249 		.timer_get	= common_timer_get,
250 		.timer_del	= common_timer_del,
251 	};
252 	struct k_clock clock_monotonic_raw = {
253 		.clock_getres	= hrtimer_get_res,
254 		.clock_get	= posix_get_monotonic_raw,
255 	};
256 	struct k_clock clock_realtime_coarse = {
257 		.clock_getres	= posix_get_coarse_res,
258 		.clock_get	= posix_get_realtime_coarse,
259 	};
260 	struct k_clock clock_monotonic_coarse = {
261 		.clock_getres	= posix_get_coarse_res,
262 		.clock_get	= posix_get_monotonic_coarse,
263 	};
264 	struct k_clock clock_boottime = {
265 		.clock_getres	= hrtimer_get_res,
266 		.clock_get	= posix_get_boottime,
267 		.nsleep		= common_nsleep,
268 		.nsleep_restart	= hrtimer_nanosleep_restart,
269 		.timer_create	= common_timer_create,
270 		.timer_set	= common_timer_set,
271 		.timer_get	= common_timer_get,
272 		.timer_del	= common_timer_del,
273 	};
274 
275 	posix_timers_register_clock(CLOCK_REALTIME, &clock_realtime);
276 	posix_timers_register_clock(CLOCK_MONOTONIC, &clock_monotonic);
277 	posix_timers_register_clock(CLOCK_MONOTONIC_RAW, &clock_monotonic_raw);
278 	posix_timers_register_clock(CLOCK_REALTIME_COARSE, &clock_realtime_coarse);
279 	posix_timers_register_clock(CLOCK_MONOTONIC_COARSE, &clock_monotonic_coarse);
280 	posix_timers_register_clock(CLOCK_BOOTTIME, &clock_boottime);
281 
282 	posix_timers_cache = kmem_cache_create("posix_timers_cache",
283 					sizeof (struct k_itimer), 0, SLAB_PANIC,
284 					NULL);
285 	idr_init(&posix_timers_id);
286 	return 0;
287 }
288 
289 __initcall(init_posix_timers);
290 
schedule_next_timer(struct k_itimer * timr)291 static void schedule_next_timer(struct k_itimer *timr)
292 {
293 	struct hrtimer *timer = &timr->it.real.timer;
294 
295 	if (timr->it.real.interval.tv64 == 0)
296 		return;
297 
298 	timr->it_overrun += (unsigned int) hrtimer_forward(timer,
299 						timer->base->get_time(),
300 						timr->it.real.interval);
301 
302 	timr->it_overrun_last = timr->it_overrun;
303 	timr->it_overrun = -1;
304 	++timr->it_requeue_pending;
305 	hrtimer_restart(timer);
306 }
307 
308 /*
309  * This function is exported for use by the signal deliver code.  It is
310  * called just prior to the info block being released and passes that
311  * block to us.  It's function is to update the overrun entry AND to
312  * restart the timer.  It should only be called if the timer is to be
313  * restarted (i.e. we have flagged this in the sys_private entry of the
314  * info block).
315  *
316  * To protect against the timer going away while the interrupt is queued,
317  * we require that the it_requeue_pending flag be set.
318  */
do_schedule_next_timer(struct siginfo * info)319 void do_schedule_next_timer(struct siginfo *info)
320 {
321 	struct k_itimer *timr;
322 	unsigned long flags;
323 
324 	timr = lock_timer(info->si_tid, &flags);
325 
326 	if (timr && timr->it_requeue_pending == info->si_sys_private) {
327 		if (timr->it_clock < 0)
328 			posix_cpu_timer_schedule(timr);
329 		else
330 			schedule_next_timer(timr);
331 
332 		info->si_overrun += timr->it_overrun_last;
333 	}
334 
335 	if (timr)
336 		unlock_timer(timr, flags);
337 }
338 
posix_timer_event(struct k_itimer * timr,int si_private)339 int posix_timer_event(struct k_itimer *timr, int si_private)
340 {
341 	struct task_struct *task;
342 	int shared, ret = -1;
343 	/*
344 	 * FIXME: if ->sigq is queued we can race with
345 	 * dequeue_signal()->do_schedule_next_timer().
346 	 *
347 	 * If dequeue_signal() sees the "right" value of
348 	 * si_sys_private it calls do_schedule_next_timer().
349 	 * We re-queue ->sigq and drop ->it_lock().
350 	 * do_schedule_next_timer() locks the timer
351 	 * and re-schedules it while ->sigq is pending.
352 	 * Not really bad, but not that we want.
353 	 */
354 	timr->sigq->info.si_sys_private = si_private;
355 
356 	rcu_read_lock();
357 	task = pid_task(timr->it_pid, PIDTYPE_PID);
358 	if (task) {
359 		shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
360 		ret = send_sigqueue(timr->sigq, task, shared);
361 	}
362 	rcu_read_unlock();
363 	/* If we failed to send the signal the timer stops. */
364 	return ret > 0;
365 }
366 EXPORT_SYMBOL_GPL(posix_timer_event);
367 
368 /*
369  * This function gets called when a POSIX.1b interval timer expires.  It
370  * is used as a callback from the kernel internal timer.  The
371  * run_timer_list code ALWAYS calls with interrupts on.
372 
373  * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
374  */
posix_timer_fn(struct hrtimer * timer)375 static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
376 {
377 	struct k_itimer *timr;
378 	unsigned long flags;
379 	int si_private = 0;
380 	enum hrtimer_restart ret = HRTIMER_NORESTART;
381 
382 	timr = container_of(timer, struct k_itimer, it.real.timer);
383 	spin_lock_irqsave(&timr->it_lock, flags);
384 
385 	if (timr->it.real.interval.tv64 != 0)
386 		si_private = ++timr->it_requeue_pending;
387 
388 	if (posix_timer_event(timr, si_private)) {
389 		/*
390 		 * signal was not sent because of sig_ignor
391 		 * we will not get a call back to restart it AND
392 		 * it should be restarted.
393 		 */
394 		if (timr->it.real.interval.tv64 != 0) {
395 			ktime_t now = hrtimer_cb_get_time(timer);
396 
397 			/*
398 			 * FIXME: What we really want, is to stop this
399 			 * timer completely and restart it in case the
400 			 * SIG_IGN is removed. This is a non trivial
401 			 * change which involves sighand locking
402 			 * (sigh !), which we don't want to do late in
403 			 * the release cycle.
404 			 *
405 			 * For now we just let timers with an interval
406 			 * less than a jiffie expire every jiffie to
407 			 * avoid softirq starvation in case of SIG_IGN
408 			 * and a very small interval, which would put
409 			 * the timer right back on the softirq pending
410 			 * list. By moving now ahead of time we trick
411 			 * hrtimer_forward() to expire the timer
412 			 * later, while we still maintain the overrun
413 			 * accuracy, but have some inconsistency in
414 			 * the timer_gettime() case. This is at least
415 			 * better than a starved softirq. A more
416 			 * complex fix which solves also another related
417 			 * inconsistency is already in the pipeline.
418 			 */
419 #ifdef CONFIG_HIGH_RES_TIMERS
420 			{
421 				ktime_t kj = ktime_set(0, NSEC_PER_SEC / HZ);
422 
423 				if (timr->it.real.interval.tv64 < kj.tv64)
424 					now = ktime_add(now, kj);
425 			}
426 #endif
427 			timr->it_overrun += (unsigned int)
428 				hrtimer_forward(timer, now,
429 						timr->it.real.interval);
430 			ret = HRTIMER_RESTART;
431 			++timr->it_requeue_pending;
432 		}
433 	}
434 
435 	unlock_timer(timr, flags);
436 	return ret;
437 }
438 
good_sigevent(sigevent_t * event)439 static struct pid *good_sigevent(sigevent_t * event)
440 {
441 	struct task_struct *rtn = current->group_leader;
442 
443 	if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
444 		(!(rtn = find_task_by_vpid(event->sigev_notify_thread_id)) ||
445 		 !same_thread_group(rtn, current) ||
446 		 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
447 		return NULL;
448 
449 	if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
450 	    ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
451 		return NULL;
452 
453 	return task_pid(rtn);
454 }
455 
posix_timers_register_clock(const clockid_t clock_id,struct k_clock * new_clock)456 void posix_timers_register_clock(const clockid_t clock_id,
457 				 struct k_clock *new_clock)
458 {
459 	if ((unsigned) clock_id >= MAX_CLOCKS) {
460 		printk(KERN_WARNING "POSIX clock register failed for clock_id %d\n",
461 		       clock_id);
462 		return;
463 	}
464 
465 	if (!new_clock->clock_get) {
466 		printk(KERN_WARNING "POSIX clock id %d lacks clock_get()\n",
467 		       clock_id);
468 		return;
469 	}
470 	if (!new_clock->clock_getres) {
471 		printk(KERN_WARNING "POSIX clock id %d lacks clock_getres()\n",
472 		       clock_id);
473 		return;
474 	}
475 
476 	posix_clocks[clock_id] = *new_clock;
477 }
478 EXPORT_SYMBOL_GPL(posix_timers_register_clock);
479 
alloc_posix_timer(void)480 static struct k_itimer * alloc_posix_timer(void)
481 {
482 	struct k_itimer *tmr;
483 	tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
484 	if (!tmr)
485 		return tmr;
486 	if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
487 		kmem_cache_free(posix_timers_cache, tmr);
488 		return NULL;
489 	}
490 	memset(&tmr->sigq->info, 0, sizeof(siginfo_t));
491 	return tmr;
492 }
493 
k_itimer_rcu_free(struct rcu_head * head)494 static void k_itimer_rcu_free(struct rcu_head *head)
495 {
496 	struct k_itimer *tmr = container_of(head, struct k_itimer, it.rcu);
497 
498 	kmem_cache_free(posix_timers_cache, tmr);
499 }
500 
501 #define IT_ID_SET	1
502 #define IT_ID_NOT_SET	0
release_posix_timer(struct k_itimer * tmr,int it_id_set)503 static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
504 {
505 	if (it_id_set) {
506 		unsigned long flags;
507 		spin_lock_irqsave(&idr_lock, flags);
508 		idr_remove(&posix_timers_id, tmr->it_id);
509 		spin_unlock_irqrestore(&idr_lock, flags);
510 	}
511 	put_pid(tmr->it_pid);
512 	sigqueue_free(tmr->sigq);
513 	call_rcu(&tmr->it.rcu, k_itimer_rcu_free);
514 }
515 
clockid_to_kclock(const clockid_t id)516 static struct k_clock *clockid_to_kclock(const clockid_t id)
517 {
518 	if (id < 0)
519 		return (id & CLOCKFD_MASK) == CLOCKFD ?
520 			&clock_posix_dynamic : &clock_posix_cpu;
521 
522 	if (id >= MAX_CLOCKS || !posix_clocks[id].clock_getres)
523 		return NULL;
524 	return &posix_clocks[id];
525 }
526 
common_timer_create(struct k_itimer * new_timer)527 static int common_timer_create(struct k_itimer *new_timer)
528 {
529 	hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
530 	return 0;
531 }
532 
533 /* Create a POSIX.1b interval timer. */
534 
SYSCALL_DEFINE3(timer_create,const clockid_t,which_clock,struct sigevent __user *,timer_event_spec,timer_t __user *,created_timer_id)535 SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
536 		struct sigevent __user *, timer_event_spec,
537 		timer_t __user *, created_timer_id)
538 {
539 	struct k_clock *kc = clockid_to_kclock(which_clock);
540 	struct k_itimer *new_timer;
541 	int error, new_timer_id;
542 	sigevent_t event;
543 	int it_id_set = IT_ID_NOT_SET;
544 
545 	if (!kc)
546 		return -EINVAL;
547 	if (!kc->timer_create)
548 		return -EOPNOTSUPP;
549 
550 	new_timer = alloc_posix_timer();
551 	if (unlikely(!new_timer))
552 		return -EAGAIN;
553 
554 	spin_lock_init(&new_timer->it_lock);
555  retry:
556 	if (unlikely(!idr_pre_get(&posix_timers_id, GFP_KERNEL))) {
557 		error = -EAGAIN;
558 		goto out;
559 	}
560 	spin_lock_irq(&idr_lock);
561 	error = idr_get_new(&posix_timers_id, new_timer, &new_timer_id);
562 	spin_unlock_irq(&idr_lock);
563 	if (error) {
564 		if (error == -EAGAIN)
565 			goto retry;
566 		/*
567 		 * Weird looking, but we return EAGAIN if the IDR is
568 		 * full (proper POSIX return value for this)
569 		 */
570 		error = -EAGAIN;
571 		goto out;
572 	}
573 
574 	it_id_set = IT_ID_SET;
575 	new_timer->it_id = (timer_t) new_timer_id;
576 	new_timer->it_clock = which_clock;
577 	new_timer->it_overrun = -1;
578 
579 	if (timer_event_spec) {
580 		if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
581 			error = -EFAULT;
582 			goto out;
583 		}
584 		rcu_read_lock();
585 		new_timer->it_pid = get_pid(good_sigevent(&event));
586 		rcu_read_unlock();
587 		if (!new_timer->it_pid) {
588 			error = -EINVAL;
589 			goto out;
590 		}
591 	} else {
592 		event.sigev_notify = SIGEV_SIGNAL;
593 		event.sigev_signo = SIGALRM;
594 		event.sigev_value.sival_int = new_timer->it_id;
595 		new_timer->it_pid = get_pid(task_tgid(current));
596 	}
597 
598 	new_timer->it_sigev_notify     = event.sigev_notify;
599 	new_timer->sigq->info.si_signo = event.sigev_signo;
600 	new_timer->sigq->info.si_value = event.sigev_value;
601 	new_timer->sigq->info.si_tid   = new_timer->it_id;
602 	new_timer->sigq->info.si_code  = SI_TIMER;
603 
604 	if (copy_to_user(created_timer_id,
605 			 &new_timer_id, sizeof (new_timer_id))) {
606 		error = -EFAULT;
607 		goto out;
608 	}
609 
610 	error = kc->timer_create(new_timer);
611 	if (error)
612 		goto out;
613 
614 	spin_lock_irq(&current->sighand->siglock);
615 	new_timer->it_signal = current->signal;
616 	list_add(&new_timer->list, &current->signal->posix_timers);
617 	spin_unlock_irq(&current->sighand->siglock);
618 
619 	return 0;
620 	/*
621 	 * In the case of the timer belonging to another task, after
622 	 * the task is unlocked, the timer is owned by the other task
623 	 * and may cease to exist at any time.  Don't use or modify
624 	 * new_timer after the unlock call.
625 	 */
626 out:
627 	release_posix_timer(new_timer, it_id_set);
628 	return error;
629 }
630 
631 /*
632  * Locking issues: We need to protect the result of the id look up until
633  * we get the timer locked down so it is not deleted under us.  The
634  * removal is done under the idr spinlock so we use that here to bridge
635  * the find to the timer lock.  To avoid a dead lock, the timer id MUST
636  * be release with out holding the timer lock.
637  */
__lock_timer(timer_t timer_id,unsigned long * flags)638 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
639 {
640 	struct k_itimer *timr;
641 
642 	rcu_read_lock();
643 	timr = idr_find(&posix_timers_id, (int)timer_id);
644 	if (timr) {
645 		spin_lock_irqsave(&timr->it_lock, *flags);
646 		if (timr->it_signal == current->signal) {
647 			rcu_read_unlock();
648 			return timr;
649 		}
650 		spin_unlock_irqrestore(&timr->it_lock, *flags);
651 	}
652 	rcu_read_unlock();
653 
654 	return NULL;
655 }
656 
657 /*
658  * Get the time remaining on a POSIX.1b interval timer.  This function
659  * is ALWAYS called with spin_lock_irq on the timer, thus it must not
660  * mess with irq.
661  *
662  * We have a couple of messes to clean up here.  First there is the case
663  * of a timer that has a requeue pending.  These timers should appear to
664  * be in the timer list with an expiry as if we were to requeue them
665  * now.
666  *
667  * The second issue is the SIGEV_NONE timer which may be active but is
668  * not really ever put in the timer list (to save system resources).
669  * This timer may be expired, and if so, we will do it here.  Otherwise
670  * it is the same as a requeue pending timer WRT to what we should
671  * report.
672  */
673 static void
common_timer_get(struct k_itimer * timr,struct itimerspec * cur_setting)674 common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
675 {
676 	ktime_t now, remaining, iv;
677 	struct hrtimer *timer = &timr->it.real.timer;
678 
679 	memset(cur_setting, 0, sizeof(struct itimerspec));
680 
681 	iv = timr->it.real.interval;
682 
683 	/* interval timer ? */
684 	if (iv.tv64)
685 		cur_setting->it_interval = ktime_to_timespec(iv);
686 	else if (!hrtimer_active(timer) &&
687 		 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
688 		return;
689 
690 	now = timer->base->get_time();
691 
692 	/*
693 	 * When a requeue is pending or this is a SIGEV_NONE
694 	 * timer move the expiry time forward by intervals, so
695 	 * expiry is > now.
696 	 */
697 	if (iv.tv64 && (timr->it_requeue_pending & REQUEUE_PENDING ||
698 	    (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE))
699 		timr->it_overrun += (unsigned int) hrtimer_forward(timer, now, iv);
700 
701 	remaining = ktime_sub(hrtimer_get_expires(timer), now);
702 	/* Return 0 only, when the timer is expired and not pending */
703 	if (remaining.tv64 <= 0) {
704 		/*
705 		 * A single shot SIGEV_NONE timer must return 0, when
706 		 * it is expired !
707 		 */
708 		if ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
709 			cur_setting->it_value.tv_nsec = 1;
710 	} else
711 		cur_setting->it_value = ktime_to_timespec(remaining);
712 }
713 
714 /* Get the time remaining on a POSIX.1b interval timer. */
SYSCALL_DEFINE2(timer_gettime,timer_t,timer_id,struct itimerspec __user *,setting)715 SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
716 		struct itimerspec __user *, setting)
717 {
718 	struct itimerspec cur_setting;
719 	struct k_itimer *timr;
720 	struct k_clock *kc;
721 	unsigned long flags;
722 	int ret = 0;
723 
724 	timr = lock_timer(timer_id, &flags);
725 	if (!timr)
726 		return -EINVAL;
727 
728 	kc = clockid_to_kclock(timr->it_clock);
729 	if (WARN_ON_ONCE(!kc || !kc->timer_get))
730 		ret = -EINVAL;
731 	else
732 		kc->timer_get(timr, &cur_setting);
733 
734 	unlock_timer(timr, flags);
735 
736 	if (!ret && copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
737 		return -EFAULT;
738 
739 	return ret;
740 }
741 
742 /*
743  * Get the number of overruns of a POSIX.1b interval timer.  This is to
744  * be the overrun of the timer last delivered.  At the same time we are
745  * accumulating overruns on the next timer.  The overrun is frozen when
746  * the signal is delivered, either at the notify time (if the info block
747  * is not queued) or at the actual delivery time (as we are informed by
748  * the call back to do_schedule_next_timer().  So all we need to do is
749  * to pick up the frozen overrun.
750  */
SYSCALL_DEFINE1(timer_getoverrun,timer_t,timer_id)751 SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
752 {
753 	struct k_itimer *timr;
754 	int overrun;
755 	unsigned long flags;
756 
757 	timr = lock_timer(timer_id, &flags);
758 	if (!timr)
759 		return -EINVAL;
760 
761 	overrun = timr->it_overrun_last;
762 	unlock_timer(timr, flags);
763 
764 	return overrun;
765 }
766 
767 /* Set a POSIX.1b interval timer. */
768 /* timr->it_lock is taken. */
769 static int
common_timer_set(struct k_itimer * timr,int flags,struct itimerspec * new_setting,struct itimerspec * old_setting)770 common_timer_set(struct k_itimer *timr, int flags,
771 		 struct itimerspec *new_setting, struct itimerspec *old_setting)
772 {
773 	struct hrtimer *timer = &timr->it.real.timer;
774 	enum hrtimer_mode mode;
775 
776 	if (old_setting)
777 		common_timer_get(timr, old_setting);
778 
779 	/* disable the timer */
780 	timr->it.real.interval.tv64 = 0;
781 	/*
782 	 * careful here.  If smp we could be in the "fire" routine which will
783 	 * be spinning as we hold the lock.  But this is ONLY an SMP issue.
784 	 */
785 	if (hrtimer_try_to_cancel(timer) < 0)
786 		return TIMER_RETRY;
787 
788 	timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
789 		~REQUEUE_PENDING;
790 	timr->it_overrun_last = 0;
791 
792 	/* switch off the timer when it_value is zero */
793 	if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
794 		return 0;
795 
796 	mode = flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
797 	hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
798 	timr->it.real.timer.function = posix_timer_fn;
799 
800 	hrtimer_set_expires(timer, timespec_to_ktime(new_setting->it_value));
801 
802 	/* Convert interval */
803 	timr->it.real.interval = timespec_to_ktime(new_setting->it_interval);
804 
805 	/* SIGEV_NONE timers are not queued ! See common_timer_get */
806 	if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) {
807 		/* Setup correct expiry time for relative timers */
808 		if (mode == HRTIMER_MODE_REL) {
809 			hrtimer_add_expires(timer, timer->base->get_time());
810 		}
811 		return 0;
812 	}
813 
814 	hrtimer_start_expires(timer, mode);
815 	return 0;
816 }
817 
818 /* Set a POSIX.1b interval timer */
SYSCALL_DEFINE4(timer_settime,timer_t,timer_id,int,flags,const struct itimerspec __user *,new_setting,struct itimerspec __user *,old_setting)819 SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
820 		const struct itimerspec __user *, new_setting,
821 		struct itimerspec __user *, old_setting)
822 {
823 	struct k_itimer *timr;
824 	struct itimerspec new_spec, old_spec;
825 	int error = 0;
826 	unsigned long flag;
827 	struct itimerspec *rtn = old_setting ? &old_spec : NULL;
828 	struct k_clock *kc;
829 
830 	if (!new_setting)
831 		return -EINVAL;
832 
833 	if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
834 		return -EFAULT;
835 
836 	if (!timespec_valid(&new_spec.it_interval) ||
837 	    !timespec_valid(&new_spec.it_value))
838 		return -EINVAL;
839 retry:
840 	timr = lock_timer(timer_id, &flag);
841 	if (!timr)
842 		return -EINVAL;
843 
844 	kc = clockid_to_kclock(timr->it_clock);
845 	if (WARN_ON_ONCE(!kc || !kc->timer_set))
846 		error = -EINVAL;
847 	else
848 		error = kc->timer_set(timr, flags, &new_spec, rtn);
849 
850 	unlock_timer(timr, flag);
851 	if (error == TIMER_RETRY) {
852 		rtn = NULL;	// We already got the old time...
853 		goto retry;
854 	}
855 
856 	if (old_setting && !error &&
857 	    copy_to_user(old_setting, &old_spec, sizeof (old_spec)))
858 		error = -EFAULT;
859 
860 	return error;
861 }
862 
common_timer_del(struct k_itimer * timer)863 static int common_timer_del(struct k_itimer *timer)
864 {
865 	timer->it.real.interval.tv64 = 0;
866 
867 	if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0)
868 		return TIMER_RETRY;
869 	return 0;
870 }
871 
timer_delete_hook(struct k_itimer * timer)872 static inline int timer_delete_hook(struct k_itimer *timer)
873 {
874 	struct k_clock *kc = clockid_to_kclock(timer->it_clock);
875 
876 	if (WARN_ON_ONCE(!kc || !kc->timer_del))
877 		return -EINVAL;
878 	return kc->timer_del(timer);
879 }
880 
881 /* Delete a POSIX.1b interval timer. */
SYSCALL_DEFINE1(timer_delete,timer_t,timer_id)882 SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
883 {
884 	struct k_itimer *timer;
885 	unsigned long flags;
886 
887 retry_delete:
888 	timer = lock_timer(timer_id, &flags);
889 	if (!timer)
890 		return -EINVAL;
891 
892 	if (timer_delete_hook(timer) == TIMER_RETRY) {
893 		unlock_timer(timer, flags);
894 		goto retry_delete;
895 	}
896 
897 	spin_lock(&current->sighand->siglock);
898 	list_del(&timer->list);
899 	spin_unlock(&current->sighand->siglock);
900 	/*
901 	 * This keeps any tasks waiting on the spin lock from thinking
902 	 * they got something (see the lock code above).
903 	 */
904 	timer->it_signal = NULL;
905 
906 	unlock_timer(timer, flags);
907 	release_posix_timer(timer, IT_ID_SET);
908 	return 0;
909 }
910 
911 /*
912  * return timer owned by the process, used by exit_itimers
913  */
itimer_delete(struct k_itimer * timer)914 static void itimer_delete(struct k_itimer *timer)
915 {
916 	unsigned long flags;
917 
918 retry_delete:
919 	spin_lock_irqsave(&timer->it_lock, flags);
920 
921 	if (timer_delete_hook(timer) == TIMER_RETRY) {
922 		unlock_timer(timer, flags);
923 		goto retry_delete;
924 	}
925 	list_del(&timer->list);
926 	/*
927 	 * This keeps any tasks waiting on the spin lock from thinking
928 	 * they got something (see the lock code above).
929 	 */
930 	timer->it_signal = NULL;
931 
932 	unlock_timer(timer, flags);
933 	release_posix_timer(timer, IT_ID_SET);
934 }
935 
936 /*
937  * This is called by do_exit or de_thread, only when there are no more
938  * references to the shared signal_struct.
939  */
exit_itimers(struct signal_struct * sig)940 void exit_itimers(struct signal_struct *sig)
941 {
942 	struct k_itimer *tmr;
943 
944 	while (!list_empty(&sig->posix_timers)) {
945 		tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
946 		itimer_delete(tmr);
947 	}
948 }
949 
SYSCALL_DEFINE2(clock_settime,const clockid_t,which_clock,const struct timespec __user *,tp)950 SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
951 		const struct timespec __user *, tp)
952 {
953 	struct k_clock *kc = clockid_to_kclock(which_clock);
954 	struct timespec new_tp;
955 
956 	if (!kc || !kc->clock_set)
957 		return -EINVAL;
958 
959 	if (copy_from_user(&new_tp, tp, sizeof (*tp)))
960 		return -EFAULT;
961 
962 	return kc->clock_set(which_clock, &new_tp);
963 }
964 
SYSCALL_DEFINE2(clock_gettime,const clockid_t,which_clock,struct timespec __user *,tp)965 SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
966 		struct timespec __user *,tp)
967 {
968 	struct k_clock *kc = clockid_to_kclock(which_clock);
969 	struct timespec kernel_tp;
970 	int error;
971 
972 	if (!kc)
973 		return -EINVAL;
974 
975 	error = kc->clock_get(which_clock, &kernel_tp);
976 
977 	if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
978 		error = -EFAULT;
979 
980 	return error;
981 }
982 
SYSCALL_DEFINE2(clock_adjtime,const clockid_t,which_clock,struct timex __user *,utx)983 SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
984 		struct timex __user *, utx)
985 {
986 	struct k_clock *kc = clockid_to_kclock(which_clock);
987 	struct timex ktx;
988 	int err;
989 
990 	if (!kc)
991 		return -EINVAL;
992 	if (!kc->clock_adj)
993 		return -EOPNOTSUPP;
994 
995 	if (copy_from_user(&ktx, utx, sizeof(ktx)))
996 		return -EFAULT;
997 
998 	err = kc->clock_adj(which_clock, &ktx);
999 
1000 	if (!err && copy_to_user(utx, &ktx, sizeof(ktx)))
1001 		return -EFAULT;
1002 
1003 	return err;
1004 }
1005 
SYSCALL_DEFINE2(clock_getres,const clockid_t,which_clock,struct timespec __user *,tp)1006 SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
1007 		struct timespec __user *, tp)
1008 {
1009 	struct k_clock *kc = clockid_to_kclock(which_clock);
1010 	struct timespec rtn_tp;
1011 	int error;
1012 
1013 	if (!kc)
1014 		return -EINVAL;
1015 
1016 	error = kc->clock_getres(which_clock, &rtn_tp);
1017 
1018 	if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp)))
1019 		error = -EFAULT;
1020 
1021 	return error;
1022 }
1023 
1024 /*
1025  * nanosleep for monotonic and realtime clocks
1026  */
common_nsleep(const clockid_t which_clock,int flags,struct timespec * tsave,struct timespec __user * rmtp)1027 static int common_nsleep(const clockid_t which_clock, int flags,
1028 			 struct timespec *tsave, struct timespec __user *rmtp)
1029 {
1030 	return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ?
1031 				 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1032 				 which_clock);
1033 }
1034 
SYSCALL_DEFINE4(clock_nanosleep,const clockid_t,which_clock,int,flags,const struct timespec __user *,rqtp,struct timespec __user *,rmtp)1035 SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
1036 		const struct timespec __user *, rqtp,
1037 		struct timespec __user *, rmtp)
1038 {
1039 	struct k_clock *kc = clockid_to_kclock(which_clock);
1040 	struct timespec t;
1041 
1042 	if (!kc)
1043 		return -EINVAL;
1044 	if (!kc->nsleep)
1045 		return -ENANOSLEEP_NOTSUP;
1046 
1047 	if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
1048 		return -EFAULT;
1049 
1050 	if (!timespec_valid(&t))
1051 		return -EINVAL;
1052 
1053 	return kc->nsleep(which_clock, flags, &t, rmtp);
1054 }
1055 
1056 /*
1057  * This will restart clock_nanosleep. This is required only by
1058  * compat_clock_nanosleep_restart for now.
1059  */
clock_nanosleep_restart(struct restart_block * restart_block)1060 long clock_nanosleep_restart(struct restart_block *restart_block)
1061 {
1062 	clockid_t which_clock = restart_block->nanosleep.clockid;
1063 	struct k_clock *kc = clockid_to_kclock(which_clock);
1064 
1065 	if (WARN_ON_ONCE(!kc || !kc->nsleep_restart))
1066 		return -EINVAL;
1067 
1068 	return kc->nsleep_restart(restart_block);
1069 }
1070