1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/lockdep.c
4  *
5  * Runtime locking correctness validator
6  *
7  * Started by Ingo Molnar:
8  *
9  *  Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
11  *
12  * this code maps all the lock dependencies as they occur in a live kernel
13  * and will warn about the following classes of locking bugs:
14  *
15  * - lock inversion scenarios
16  * - circular lock dependencies
17  * - hardirq/softirq safe/unsafe locking bugs
18  *
19  * Bugs are reported even if the current locking scenario does not cause
20  * any deadlock at this point.
21  *
22  * I.e. if anytime in the past two locks were taken in a different order,
23  * even if it happened for another task, even if those were different
24  * locks (but of the same class as this lock), this code will detect it.
25  *
26  * Thanks to Arjan van de Ven for coming up with the initial idea of
27  * mapping lock dependencies runtime.
28  */
29 #define DISABLE_BRANCH_PROFILING
30 #include <linux/mutex.h>
31 #include <linux/sched.h>
32 #include <linux/sched/clock.h>
33 #include <linux/sched/task.h>
34 #include <linux/sched/mm.h>
35 #include <linux/delay.h>
36 #include <linux/module.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/stacktrace.h>
43 #include <linux/debug_locks.h>
44 #include <linux/irqflags.h>
45 #include <linux/utsname.h>
46 #include <linux/hash.h>
47 #include <linux/ftrace.h>
48 #include <linux/stringify.h>
49 #include <linux/bitmap.h>
50 #include <linux/bitops.h>
51 #include <linux/gfp.h>
52 #include <linux/random.h>
53 #include <linux/jhash.h>
54 #include <linux/nmi.h>
55 #include <linux/rcupdate.h>
56 #include <linux/kprobes.h>
57 #include <linux/lockdep.h>
58 #include <linux/context_tracking.h>
59 #include <linux/console.h>
60 #include <linux/kasan.h>
61 
62 #include <asm/sections.h>
63 
64 #include "lockdep_internals.h"
65 #include "lock_events.h"
66 
67 #include <trace/events/lock.h>
68 
69 #ifdef CONFIG_PROVE_LOCKING
70 static int prove_locking = 1;
71 module_param(prove_locking, int, 0644);
72 #else
73 #define prove_locking 0
74 #endif
75 
76 #ifdef CONFIG_LOCK_STAT
77 static int lock_stat = 1;
78 module_param(lock_stat, int, 0644);
79 #else
80 #define lock_stat 0
81 #endif
82 
83 #ifdef CONFIG_SYSCTL
84 static const struct ctl_table kern_lockdep_table[] = {
85 #ifdef CONFIG_PROVE_LOCKING
86 	{
87 		.procname       = "prove_locking",
88 		.data           = &prove_locking,
89 		.maxlen         = sizeof(int),
90 		.mode           = 0644,
91 		.proc_handler   = proc_dointvec,
92 	},
93 #endif /* CONFIG_PROVE_LOCKING */
94 #ifdef CONFIG_LOCK_STAT
95 	{
96 		.procname       = "lock_stat",
97 		.data           = &lock_stat,
98 		.maxlen         = sizeof(int),
99 		.mode           = 0644,
100 		.proc_handler   = proc_dointvec,
101 	},
102 #endif /* CONFIG_LOCK_STAT */
103 };
104 
kernel_lockdep_sysctls_init(void)105 static __init int kernel_lockdep_sysctls_init(void)
106 {
107 	register_sysctl_init("kernel", kern_lockdep_table);
108 	return 0;
109 }
110 late_initcall(kernel_lockdep_sysctls_init);
111 #endif /* CONFIG_SYSCTL */
112 
113 DEFINE_PER_CPU(unsigned int, lockdep_recursion);
114 EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion);
115 
lockdep_enabled(void)116 static __always_inline bool lockdep_enabled(void)
117 {
118 	if (!debug_locks)
119 		return false;
120 
121 	if (this_cpu_read(lockdep_recursion))
122 		return false;
123 
124 	if (current->lockdep_recursion)
125 		return false;
126 
127 	return true;
128 }
129 
130 /*
131  * lockdep_lock: protects the lockdep graph, the hashes and the
132  *               class/list/hash allocators.
133  *
134  * This is one of the rare exceptions where it's justified
135  * to use a raw spinlock - we really dont want the spinlock
136  * code to recurse back into the lockdep code...
137  */
138 static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
139 static struct task_struct *__owner;
140 
lockdep_lock(void)141 static inline void lockdep_lock(void)
142 {
143 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
144 
145 	__this_cpu_inc(lockdep_recursion);
146 	arch_spin_lock(&__lock);
147 	__owner = current;
148 }
149 
lockdep_unlock(void)150 static inline void lockdep_unlock(void)
151 {
152 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
153 
154 	if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current))
155 		return;
156 
157 	__owner = NULL;
158 	arch_spin_unlock(&__lock);
159 	__this_cpu_dec(lockdep_recursion);
160 }
161 
162 #ifdef CONFIG_PROVE_LOCKING
lockdep_assert_locked(void)163 static inline bool lockdep_assert_locked(void)
164 {
165 	return DEBUG_LOCKS_WARN_ON(__owner != current);
166 }
167 #endif
168 
169 static struct task_struct *lockdep_selftest_task_struct;
170 
171 
graph_lock(void)172 static int graph_lock(void)
173 {
174 	lockdep_lock();
175 	lockevent_inc(lockdep_lock);
176 	/*
177 	 * Make sure that if another CPU detected a bug while
178 	 * walking the graph we dont change it (while the other
179 	 * CPU is busy printing out stuff with the graph lock
180 	 * dropped already)
181 	 */
182 	if (!debug_locks) {
183 		lockdep_unlock();
184 		return 0;
185 	}
186 	return 1;
187 }
188 
graph_unlock(void)189 static inline void graph_unlock(void)
190 {
191 	lockdep_unlock();
192 }
193 
194 /*
195  * Turn lock debugging off and return with 0 if it was off already,
196  * and also release the graph lock:
197  */
debug_locks_off_graph_unlock(void)198 static inline int debug_locks_off_graph_unlock(void)
199 {
200 	int ret = debug_locks_off();
201 
202 	lockdep_unlock();
203 
204 	return ret;
205 }
206 
207 unsigned long nr_list_entries;
208 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES];
209 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES);
210 
211 /*
212  * All data structures here are protected by the global debug_lock.
213  *
214  * nr_lock_classes is the number of elements of lock_classes[] that is
215  * in use.
216  */
217 #define KEYHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1)
218 #define KEYHASH_SIZE		(1UL << KEYHASH_BITS)
219 static struct hlist_head lock_keys_hash[KEYHASH_SIZE];
220 unsigned long nr_lock_classes;
221 unsigned long nr_zapped_classes;
222 unsigned long max_lock_class_idx;
223 struct lock_class lock_classes[MAX_LOCKDEP_KEYS];
224 DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS);
225 
hlock_class(struct held_lock * hlock)226 static inline struct lock_class *hlock_class(struct held_lock *hlock)
227 {
228 	unsigned int class_idx = hlock->class_idx;
229 
230 	/* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */
231 	barrier();
232 
233 	if (!test_bit(class_idx, lock_classes_in_use)) {
234 		/*
235 		 * Someone passed in garbage, we give up.
236 		 */
237 		DEBUG_LOCKS_WARN_ON(1);
238 		return NULL;
239 	}
240 
241 	/*
242 	 * At this point, if the passed hlock->class_idx is still garbage,
243 	 * we just have to live with it
244 	 */
245 	return lock_classes + class_idx;
246 }
247 
248 #ifdef CONFIG_LOCK_STAT
249 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats);
250 
lockstat_clock(void)251 static inline u64 lockstat_clock(void)
252 {
253 	return local_clock();
254 }
255 
lock_point(unsigned long points[],unsigned long ip)256 static int lock_point(unsigned long points[], unsigned long ip)
257 {
258 	int i;
259 
260 	for (i = 0; i < LOCKSTAT_POINTS; i++) {
261 		if (points[i] == 0) {
262 			points[i] = ip;
263 			break;
264 		}
265 		if (points[i] == ip)
266 			break;
267 	}
268 
269 	return i;
270 }
271 
lock_time_inc(struct lock_time * lt,u64 time)272 static void lock_time_inc(struct lock_time *lt, u64 time)
273 {
274 	if (time > lt->max)
275 		lt->max = time;
276 
277 	if (time < lt->min || !lt->nr)
278 		lt->min = time;
279 
280 	lt->total += time;
281 	lt->nr++;
282 }
283 
lock_time_add(struct lock_time * src,struct lock_time * dst)284 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst)
285 {
286 	if (!src->nr)
287 		return;
288 
289 	if (src->max > dst->max)
290 		dst->max = src->max;
291 
292 	if (src->min < dst->min || !dst->nr)
293 		dst->min = src->min;
294 
295 	dst->total += src->total;
296 	dst->nr += src->nr;
297 }
298 
lock_stats(struct lock_class * class)299 struct lock_class_stats lock_stats(struct lock_class *class)
300 {
301 	struct lock_class_stats stats;
302 	int cpu, i;
303 
304 	memset(&stats, 0, sizeof(struct lock_class_stats));
305 	for_each_possible_cpu(cpu) {
306 		struct lock_class_stats *pcs =
307 			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
308 
309 		for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++)
310 			stats.contention_point[i] += pcs->contention_point[i];
311 
312 		for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++)
313 			stats.contending_point[i] += pcs->contending_point[i];
314 
315 		lock_time_add(&pcs->read_waittime, &stats.read_waittime);
316 		lock_time_add(&pcs->write_waittime, &stats.write_waittime);
317 
318 		lock_time_add(&pcs->read_holdtime, &stats.read_holdtime);
319 		lock_time_add(&pcs->write_holdtime, &stats.write_holdtime);
320 
321 		for (i = 0; i < ARRAY_SIZE(stats.bounces); i++)
322 			stats.bounces[i] += pcs->bounces[i];
323 	}
324 
325 	return stats;
326 }
327 
clear_lock_stats(struct lock_class * class)328 void clear_lock_stats(struct lock_class *class)
329 {
330 	int cpu;
331 
332 	for_each_possible_cpu(cpu) {
333 		struct lock_class_stats *cpu_stats =
334 			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
335 
336 		memset(cpu_stats, 0, sizeof(struct lock_class_stats));
337 	}
338 	memset(class->contention_point, 0, sizeof(class->contention_point));
339 	memset(class->contending_point, 0, sizeof(class->contending_point));
340 }
341 
get_lock_stats(struct lock_class * class)342 static struct lock_class_stats *get_lock_stats(struct lock_class *class)
343 {
344 	return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes];
345 }
346 
lock_release_holdtime(struct held_lock * hlock)347 static void lock_release_holdtime(struct held_lock *hlock)
348 {
349 	struct lock_class_stats *stats;
350 	u64 holdtime;
351 
352 	if (!lock_stat)
353 		return;
354 
355 	holdtime = lockstat_clock() - hlock->holdtime_stamp;
356 
357 	stats = get_lock_stats(hlock_class(hlock));
358 	if (hlock->read)
359 		lock_time_inc(&stats->read_holdtime, holdtime);
360 	else
361 		lock_time_inc(&stats->write_holdtime, holdtime);
362 }
363 #else
lock_release_holdtime(struct held_lock * hlock)364 static inline void lock_release_holdtime(struct held_lock *hlock)
365 {
366 }
367 #endif
368 
369 /*
370  * We keep a global list of all lock classes. The list is only accessed with
371  * the lockdep spinlock lock held. free_lock_classes is a list with free
372  * elements. These elements are linked together by the lock_entry member in
373  * struct lock_class.
374  */
375 static LIST_HEAD(all_lock_classes);
376 static LIST_HEAD(free_lock_classes);
377 
378 /**
379  * struct pending_free - information about data structures about to be freed
380  * @zapped: Head of a list with struct lock_class elements.
381  * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements
382  *	are about to be freed.
383  */
384 struct pending_free {
385 	struct list_head zapped;
386 	DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS);
387 };
388 
389 /**
390  * struct delayed_free - data structures used for delayed freeing
391  *
392  * A data structure for delayed freeing of data structures that may be
393  * accessed by RCU readers at the time these were freed.
394  *
395  * @rcu_head:  Used to schedule an RCU callback for freeing data structures.
396  * @index:     Index of @pf to which freed data structures are added.
397  * @scheduled: Whether or not an RCU callback has been scheduled.
398  * @pf:        Array with information about data structures about to be freed.
399  */
400 static struct delayed_free {
401 	struct rcu_head		rcu_head;
402 	int			index;
403 	int			scheduled;
404 	struct pending_free	pf[2];
405 } delayed_free;
406 
407 /*
408  * The lockdep classes are in a hash-table as well, for fast lookup:
409  */
410 #define CLASSHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1)
411 #define CLASSHASH_SIZE		(1UL << CLASSHASH_BITS)
412 #define __classhashfn(key)	hash_long((unsigned long)key, CLASSHASH_BITS)
413 #define classhashentry(key)	(classhash_table + __classhashfn((key)))
414 
415 static struct hlist_head classhash_table[CLASSHASH_SIZE];
416 
417 /*
418  * We put the lock dependency chains into a hash-table as well, to cache
419  * their existence:
420  */
421 #define CHAINHASH_BITS		(MAX_LOCKDEP_CHAINS_BITS-1)
422 #define CHAINHASH_SIZE		(1UL << CHAINHASH_BITS)
423 #define __chainhashfn(chain)	hash_long(chain, CHAINHASH_BITS)
424 #define chainhashentry(chain)	(chainhash_table + __chainhashfn((chain)))
425 
426 static struct hlist_head chainhash_table[CHAINHASH_SIZE];
427 
428 /*
429  * the id of held_lock
430  */
hlock_id(struct held_lock * hlock)431 static inline u16 hlock_id(struct held_lock *hlock)
432 {
433 	BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16);
434 
435 	return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS));
436 }
437 
chain_hlock_class_idx(u16 hlock_id)438 static inline __maybe_unused unsigned int chain_hlock_class_idx(u16 hlock_id)
439 {
440 	return hlock_id & (MAX_LOCKDEP_KEYS - 1);
441 }
442 
443 /*
444  * The hash key of the lock dependency chains is a hash itself too:
445  * it's a hash of all locks taken up to that lock, including that lock.
446  * It's a 64-bit hash, because it's important for the keys to be
447  * unique.
448  */
iterate_chain_key(u64 key,u32 idx)449 static inline u64 iterate_chain_key(u64 key, u32 idx)
450 {
451 	u32 k0 = key, k1 = key >> 32;
452 
453 	__jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */
454 
455 	return k0 | (u64)k1 << 32;
456 }
457 
lockdep_init_task(struct task_struct * task)458 void lockdep_init_task(struct task_struct *task)
459 {
460 	task->lockdep_depth = 0; /* no locks held yet */
461 	task->curr_chain_key = INITIAL_CHAIN_KEY;
462 	task->lockdep_recursion = 0;
463 }
464 
lockdep_recursion_inc(void)465 static __always_inline void lockdep_recursion_inc(void)
466 {
467 	__this_cpu_inc(lockdep_recursion);
468 }
469 
lockdep_recursion_finish(void)470 static __always_inline void lockdep_recursion_finish(void)
471 {
472 	if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion)))
473 		__this_cpu_write(lockdep_recursion, 0);
474 }
475 
lockdep_set_selftest_task(struct task_struct * task)476 void lockdep_set_selftest_task(struct task_struct *task)
477 {
478 	lockdep_selftest_task_struct = task;
479 }
480 
481 /*
482  * Debugging switches:
483  */
484 
485 #define VERBOSE			0
486 #define VERY_VERBOSE		0
487 
488 #if VERBOSE
489 # define HARDIRQ_VERBOSE	1
490 # define SOFTIRQ_VERBOSE	1
491 #else
492 # define HARDIRQ_VERBOSE	0
493 # define SOFTIRQ_VERBOSE	0
494 #endif
495 
496 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE
497 /*
498  * Quick filtering for interesting events:
499  */
class_filter(struct lock_class * class)500 static int class_filter(struct lock_class *class)
501 {
502 #if 0
503 	/* Example */
504 	if (class->name_version == 1 &&
505 			!strcmp(class->name, "lockname"))
506 		return 1;
507 	if (class->name_version == 1 &&
508 			!strcmp(class->name, "&struct->lockfield"))
509 		return 1;
510 #endif
511 	/* Filter everything else. 1 would be to allow everything else */
512 	return 0;
513 }
514 #endif
515 
verbose(struct lock_class * class)516 static int verbose(struct lock_class *class)
517 {
518 #if VERBOSE
519 	return class_filter(class);
520 #endif
521 	return 0;
522 }
523 
print_lockdep_off(const char * bug_msg)524 static void print_lockdep_off(const char *bug_msg)
525 {
526 	printk(KERN_DEBUG "%s\n", bug_msg);
527 	printk(KERN_DEBUG "turning off the locking correctness validator.\n");
528 #ifdef CONFIG_LOCK_STAT
529 	printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n");
530 #endif
531 }
532 
533 unsigned long nr_stack_trace_entries;
534 
535 #ifdef CONFIG_PROVE_LOCKING
536 /**
537  * struct lock_trace - single stack backtrace
538  * @hash_entry:	Entry in a stack_trace_hash[] list.
539  * @hash:	jhash() of @entries.
540  * @nr_entries:	Number of entries in @entries.
541  * @entries:	Actual stack backtrace.
542  */
543 struct lock_trace {
544 	struct hlist_node	hash_entry;
545 	u32			hash;
546 	u32			nr_entries;
547 	unsigned long		entries[] __aligned(sizeof(unsigned long));
548 };
549 #define LOCK_TRACE_SIZE_IN_LONGS				\
550 	(sizeof(struct lock_trace) / sizeof(unsigned long))
551 /*
552  * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock.
553  */
554 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES];
555 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE];
556 
traces_identical(struct lock_trace * t1,struct lock_trace * t2)557 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2)
558 {
559 	return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries &&
560 		memcmp(t1->entries, t2->entries,
561 		       t1->nr_entries * sizeof(t1->entries[0])) == 0;
562 }
563 
save_trace(void)564 static struct lock_trace *save_trace(void)
565 {
566 	struct lock_trace *trace, *t2;
567 	struct hlist_head *hash_head;
568 	u32 hash;
569 	int max_entries;
570 
571 	BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE);
572 	BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES);
573 
574 	trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries);
575 	max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries -
576 		LOCK_TRACE_SIZE_IN_LONGS;
577 
578 	if (max_entries <= 0) {
579 		if (!debug_locks_off_graph_unlock())
580 			return NULL;
581 
582 		nbcon_cpu_emergency_enter();
583 		print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!");
584 		dump_stack();
585 		nbcon_cpu_emergency_exit();
586 
587 		return NULL;
588 	}
589 	trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3);
590 
591 	hash = jhash(trace->entries, trace->nr_entries *
592 		     sizeof(trace->entries[0]), 0);
593 	trace->hash = hash;
594 	hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1));
595 	hlist_for_each_entry(t2, hash_head, hash_entry) {
596 		if (traces_identical(trace, t2))
597 			return t2;
598 	}
599 	nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries;
600 	hlist_add_head(&trace->hash_entry, hash_head);
601 
602 	return trace;
603 }
604 
605 /* Return the number of stack traces in the stack_trace[] array. */
lockdep_stack_trace_count(void)606 u64 lockdep_stack_trace_count(void)
607 {
608 	struct lock_trace *trace;
609 	u64 c = 0;
610 	int i;
611 
612 	for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) {
613 		hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) {
614 			c++;
615 		}
616 	}
617 
618 	return c;
619 }
620 
621 /* Return the number of stack hash chains that have at least one stack trace. */
lockdep_stack_hash_count(void)622 u64 lockdep_stack_hash_count(void)
623 {
624 	u64 c = 0;
625 	int i;
626 
627 	for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++)
628 		if (!hlist_empty(&stack_trace_hash[i]))
629 			c++;
630 
631 	return c;
632 }
633 #endif
634 
635 unsigned int nr_hardirq_chains;
636 unsigned int nr_softirq_chains;
637 unsigned int nr_process_chains;
638 unsigned int max_lockdep_depth;
639 
640 #ifdef CONFIG_DEBUG_LOCKDEP
641 /*
642  * Various lockdep statistics:
643  */
644 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats);
645 #endif
646 
647 #ifdef CONFIG_PROVE_LOCKING
648 /*
649  * Locking printouts:
650  */
651 
652 #define __USAGE(__STATE)						\
653 	[LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W",	\
654 	[LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W",		\
655 	[LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\
656 	[LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R",
657 
658 static const char *usage_str[] =
659 {
660 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE)
661 #include "lockdep_states.h"
662 #undef LOCKDEP_STATE
663 	[LOCK_USED] = "INITIAL USE",
664 	[LOCK_USED_READ] = "INITIAL READ USE",
665 	/* abused as string storage for verify_lock_unused() */
666 	[LOCK_USAGE_STATES] = "IN-NMI",
667 };
668 #endif
669 
__get_key_name(const struct lockdep_subclass_key * key,char * str)670 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str)
671 {
672 	return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str);
673 }
674 
lock_flag(enum lock_usage_bit bit)675 static inline unsigned long lock_flag(enum lock_usage_bit bit)
676 {
677 	return 1UL << bit;
678 }
679 
get_usage_char(struct lock_class * class,enum lock_usage_bit bit)680 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit)
681 {
682 	/*
683 	 * The usage character defaults to '.' (i.e., irqs disabled and not in
684 	 * irq context), which is the safest usage category.
685 	 */
686 	char c = '.';
687 
688 	/*
689 	 * The order of the following usage checks matters, which will
690 	 * result in the outcome character as follows:
691 	 *
692 	 * - '+': irq is enabled and not in irq context
693 	 * - '-': in irq context and irq is disabled
694 	 * - '?': in irq context and irq is enabled
695 	 */
696 	if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) {
697 		c = '+';
698 		if (class->usage_mask & lock_flag(bit))
699 			c = '?';
700 	} else if (class->usage_mask & lock_flag(bit))
701 		c = '-';
702 
703 	return c;
704 }
705 
get_usage_chars(struct lock_class * class,char usage[LOCK_USAGE_CHARS])706 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS])
707 {
708 	int i = 0;
709 
710 #define LOCKDEP_STATE(__STATE) 						\
711 	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE);	\
712 	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ);
713 #include "lockdep_states.h"
714 #undef LOCKDEP_STATE
715 
716 	usage[i] = '\0';
717 }
718 
__print_lock_name(struct held_lock * hlock,struct lock_class * class)719 static void __print_lock_name(struct held_lock *hlock, struct lock_class *class)
720 {
721 	char str[KSYM_NAME_LEN];
722 	const char *name;
723 
724 	name = class->name;
725 	if (!name) {
726 		name = __get_key_name(class->key, str);
727 		printk(KERN_CONT "%s", name);
728 	} else {
729 		printk(KERN_CONT "%s", name);
730 		if (class->name_version > 1)
731 			printk(KERN_CONT "#%d", class->name_version);
732 		if (class->subclass)
733 			printk(KERN_CONT "/%d", class->subclass);
734 		if (hlock && class->print_fn)
735 			class->print_fn(hlock->instance);
736 	}
737 }
738 
print_lock_name(struct held_lock * hlock,struct lock_class * class)739 static void print_lock_name(struct held_lock *hlock, struct lock_class *class)
740 {
741 	char usage[LOCK_USAGE_CHARS];
742 
743 	get_usage_chars(class, usage);
744 
745 	printk(KERN_CONT " (");
746 	__print_lock_name(hlock, class);
747 	printk(KERN_CONT "){%s}-{%d:%d}", usage,
748 			class->wait_type_outer ?: class->wait_type_inner,
749 			class->wait_type_inner);
750 }
751 
print_lockdep_cache(struct lockdep_map * lock)752 static void print_lockdep_cache(struct lockdep_map *lock)
753 {
754 	const char *name;
755 	char str[KSYM_NAME_LEN];
756 
757 	name = lock->name;
758 	if (!name)
759 		name = __get_key_name(lock->key->subkeys, str);
760 
761 	printk(KERN_CONT "%s", name);
762 }
763 
print_lock(struct held_lock * hlock)764 static void print_lock(struct held_lock *hlock)
765 {
766 	/*
767 	 * We can be called locklessly through debug_show_all_locks() so be
768 	 * extra careful, the hlock might have been released and cleared.
769 	 *
770 	 * If this indeed happens, lets pretend it does not hurt to continue
771 	 * to print the lock unless the hlock class_idx does not point to a
772 	 * registered class. The rationale here is: since we don't attempt
773 	 * to distinguish whether we are in this situation, if it just
774 	 * happened we can't count on class_idx to tell either.
775 	 */
776 	struct lock_class *lock = hlock_class(hlock);
777 
778 	if (!lock) {
779 		printk(KERN_CONT "<RELEASED>\n");
780 		return;
781 	}
782 
783 	printk(KERN_CONT "%px", hlock->instance);
784 	print_lock_name(hlock, lock);
785 	printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip);
786 }
787 
lockdep_print_held_locks(struct task_struct * p)788 static void lockdep_print_held_locks(struct task_struct *p)
789 {
790 	int i, depth = READ_ONCE(p->lockdep_depth);
791 
792 	if (!depth)
793 		printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p));
794 	else
795 		printk("%d lock%s held by %s/%d:\n", depth,
796 		       str_plural(depth), p->comm, task_pid_nr(p));
797 	/*
798 	 * It's not reliable to print a task's held locks if it's not sleeping
799 	 * and it's not the current task.
800 	 */
801 	if (p != current && task_is_running(p))
802 		return;
803 	for (i = 0; i < depth; i++) {
804 		printk(" #%d: ", i);
805 		print_lock(p->held_locks + i);
806 	}
807 }
808 
print_kernel_ident(void)809 static void print_kernel_ident(void)
810 {
811 	printk("%s %.*s %s\n", init_utsname()->release,
812 		(int)strcspn(init_utsname()->version, " "),
813 		init_utsname()->version,
814 		print_tainted());
815 }
816 
very_verbose(struct lock_class * class)817 static int very_verbose(struct lock_class *class)
818 {
819 #if VERY_VERBOSE
820 	return class_filter(class);
821 #endif
822 	return 0;
823 }
824 
825 /*
826  * Is this the address of a static object:
827  */
828 #ifdef __KERNEL__
static_obj(const void * obj)829 static int static_obj(const void *obj)
830 {
831 	unsigned long addr = (unsigned long) obj;
832 
833 	if (is_kernel_core_data(addr))
834 		return 1;
835 
836 	/*
837 	 * keys are allowed in the __ro_after_init section.
838 	 */
839 	if (is_kernel_rodata(addr))
840 		return 1;
841 
842 	/*
843 	 * in initdata section and used during bootup only?
844 	 * NOTE: On some platforms the initdata section is
845 	 * outside of the _stext ... _end range.
846 	 */
847 	if (system_state < SYSTEM_FREEING_INITMEM &&
848 		init_section_contains((void *)addr, 1))
849 		return 1;
850 
851 	/*
852 	 * in-kernel percpu var?
853 	 */
854 	if (is_kernel_percpu_address(addr))
855 		return 1;
856 
857 	/*
858 	 * module static or percpu var?
859 	 */
860 	return is_module_address(addr) || is_module_percpu_address(addr);
861 }
862 #endif
863 
864 /*
865  * To make lock name printouts unique, we calculate a unique
866  * class->name_version generation counter. The caller must hold the graph
867  * lock.
868  */
count_matching_names(struct lock_class * new_class)869 static int count_matching_names(struct lock_class *new_class)
870 {
871 	struct lock_class *class;
872 	int count = 0;
873 
874 	if (!new_class->name)
875 		return 0;
876 
877 	list_for_each_entry(class, &all_lock_classes, lock_entry) {
878 		if (new_class->key - new_class->subclass == class->key)
879 			return class->name_version;
880 		if (class->name && !strcmp(class->name, new_class->name))
881 			count = max(count, class->name_version);
882 	}
883 
884 	return count + 1;
885 }
886 
887 /* used from NMI context -- must be lockless */
888 static noinstr struct lock_class *
look_up_lock_class(const struct lockdep_map * lock,unsigned int subclass)889 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass)
890 {
891 	struct lockdep_subclass_key *key;
892 	struct hlist_head *hash_head;
893 	struct lock_class *class;
894 
895 	if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) {
896 		instrumentation_begin();
897 		debug_locks_off();
898 		nbcon_cpu_emergency_enter();
899 		printk(KERN_ERR
900 			"BUG: looking up invalid subclass: %u\n", subclass);
901 		printk(KERN_ERR
902 			"turning off the locking correctness validator.\n");
903 		dump_stack();
904 		nbcon_cpu_emergency_exit();
905 		instrumentation_end();
906 		return NULL;
907 	}
908 
909 	/*
910 	 * If it is not initialised then it has never been locked,
911 	 * so it won't be present in the hash table.
912 	 */
913 	if (unlikely(!lock->key))
914 		return NULL;
915 
916 	/*
917 	 * NOTE: the class-key must be unique. For dynamic locks, a static
918 	 * lock_class_key variable is passed in through the mutex_init()
919 	 * (or spin_lock_init()) call - which acts as the key. For static
920 	 * locks we use the lock object itself as the key.
921 	 */
922 	BUILD_BUG_ON(sizeof(struct lock_class_key) >
923 			sizeof(struct lockdep_map));
924 
925 	key = lock->key->subkeys + subclass;
926 
927 	hash_head = classhashentry(key);
928 
929 	/*
930 	 * We do an RCU walk of the hash, see lockdep_free_key_range().
931 	 */
932 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
933 		return NULL;
934 
935 	hlist_for_each_entry_rcu_notrace(class, hash_head, hash_entry) {
936 		if (class->key == key) {
937 			/*
938 			 * Huh! same key, different name? Did someone trample
939 			 * on some memory? We're most confused.
940 			 */
941 			WARN_ONCE(class->name != lock->name &&
942 				  lock->key != &__lockdep_no_validate__,
943 				  "Looking for class \"%s\" with key %ps, but found a different class \"%s\" with the same key\n",
944 				  lock->name, lock->key, class->name);
945 			return class;
946 		}
947 	}
948 
949 	return NULL;
950 }
951 
952 /*
953  * Static locks do not have their class-keys yet - for them the key is
954  * the lock object itself. If the lock is in the per cpu area, the
955  * canonical address of the lock (per cpu offset removed) is used.
956  */
assign_lock_key(struct lockdep_map * lock)957 static bool assign_lock_key(struct lockdep_map *lock)
958 {
959 	unsigned long can_addr, addr = (unsigned long)lock;
960 
961 #ifdef __KERNEL__
962 	/*
963 	 * lockdep_free_key_range() assumes that struct lock_class_key
964 	 * objects do not overlap. Since we use the address of lock
965 	 * objects as class key for static objects, check whether the
966 	 * size of lock_class_key objects does not exceed the size of
967 	 * the smallest lock object.
968 	 */
969 	BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t));
970 #endif
971 
972 	if (__is_kernel_percpu_address(addr, &can_addr))
973 		lock->key = (void *)can_addr;
974 	else if (__is_module_percpu_address(addr, &can_addr))
975 		lock->key = (void *)can_addr;
976 	else if (static_obj(lock))
977 		lock->key = (void *)lock;
978 	else {
979 		/* Debug-check: all keys must be persistent! */
980 		debug_locks_off();
981 		nbcon_cpu_emergency_enter();
982 		pr_err("INFO: trying to register non-static key.\n");
983 		pr_err("The code is fine but needs lockdep annotation, or maybe\n");
984 		pr_err("you didn't initialize this object before use?\n");
985 		pr_err("turning off the locking correctness validator.\n");
986 		dump_stack();
987 		nbcon_cpu_emergency_exit();
988 		return false;
989 	}
990 
991 	return true;
992 }
993 
994 #ifdef CONFIG_DEBUG_LOCKDEP
995 
996 /* Check whether element @e occurs in list @h */
in_list(struct list_head * e,struct list_head * h)997 static bool in_list(struct list_head *e, struct list_head *h)
998 {
999 	struct list_head *f;
1000 
1001 	list_for_each(f, h) {
1002 		if (e == f)
1003 			return true;
1004 	}
1005 
1006 	return false;
1007 }
1008 
1009 /*
1010  * Check whether entry @e occurs in any of the locks_after or locks_before
1011  * lists.
1012  */
in_any_class_list(struct list_head * e)1013 static bool in_any_class_list(struct list_head *e)
1014 {
1015 	struct lock_class *class;
1016 	int i;
1017 
1018 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1019 		class = &lock_classes[i];
1020 		if (in_list(e, &class->locks_after) ||
1021 		    in_list(e, &class->locks_before))
1022 			return true;
1023 	}
1024 	return false;
1025 }
1026 
class_lock_list_valid(struct lock_class * c,struct list_head * h)1027 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h)
1028 {
1029 	struct lock_list *e;
1030 
1031 	list_for_each_entry(e, h, entry) {
1032 		if (e->links_to != c) {
1033 			printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s",
1034 			       c->name ? : "(?)",
1035 			       (unsigned long)(e - list_entries),
1036 			       e->links_to && e->links_to->name ?
1037 			       e->links_to->name : "(?)",
1038 			       e->class && e->class->name ? e->class->name :
1039 			       "(?)");
1040 			return false;
1041 		}
1042 	}
1043 	return true;
1044 }
1045 
1046 #ifdef CONFIG_PROVE_LOCKING
1047 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
1048 #endif
1049 
check_lock_chain_key(struct lock_chain * chain)1050 static bool check_lock_chain_key(struct lock_chain *chain)
1051 {
1052 #ifdef CONFIG_PROVE_LOCKING
1053 	u64 chain_key = INITIAL_CHAIN_KEY;
1054 	int i;
1055 
1056 	for (i = chain->base; i < chain->base + chain->depth; i++)
1057 		chain_key = iterate_chain_key(chain_key, chain_hlocks[i]);
1058 	/*
1059 	 * The 'unsigned long long' casts avoid that a compiler warning
1060 	 * is reported when building tools/lib/lockdep.
1061 	 */
1062 	if (chain->chain_key != chain_key) {
1063 		printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n",
1064 		       (unsigned long long)(chain - lock_chains),
1065 		       (unsigned long long)chain->chain_key,
1066 		       (unsigned long long)chain_key);
1067 		return false;
1068 	}
1069 #endif
1070 	return true;
1071 }
1072 
in_any_zapped_class_list(struct lock_class * class)1073 static bool in_any_zapped_class_list(struct lock_class *class)
1074 {
1075 	struct pending_free *pf;
1076 	int i;
1077 
1078 	for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) {
1079 		if (in_list(&class->lock_entry, &pf->zapped))
1080 			return true;
1081 	}
1082 
1083 	return false;
1084 }
1085 
__check_data_structures(void)1086 static bool __check_data_structures(void)
1087 {
1088 	struct lock_class *class;
1089 	struct lock_chain *chain;
1090 	struct hlist_head *head;
1091 	struct lock_list *e;
1092 	int i;
1093 
1094 	/* Check whether all classes occur in a lock list. */
1095 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1096 		class = &lock_classes[i];
1097 		if (!in_list(&class->lock_entry, &all_lock_classes) &&
1098 		    !in_list(&class->lock_entry, &free_lock_classes) &&
1099 		    !in_any_zapped_class_list(class)) {
1100 			printk(KERN_INFO "class %px/%s is not in any class list\n",
1101 			       class, class->name ? : "(?)");
1102 			return false;
1103 		}
1104 	}
1105 
1106 	/* Check whether all classes have valid lock lists. */
1107 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1108 		class = &lock_classes[i];
1109 		if (!class_lock_list_valid(class, &class->locks_before))
1110 			return false;
1111 		if (!class_lock_list_valid(class, &class->locks_after))
1112 			return false;
1113 	}
1114 
1115 	/* Check the chain_key of all lock chains. */
1116 	for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
1117 		head = chainhash_table + i;
1118 		hlist_for_each_entry_rcu(chain, head, entry) {
1119 			if (!check_lock_chain_key(chain))
1120 				return false;
1121 		}
1122 	}
1123 
1124 	/*
1125 	 * Check whether all list entries that are in use occur in a class
1126 	 * lock list.
1127 	 */
1128 	for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1129 		e = list_entries + i;
1130 		if (!in_any_class_list(&e->entry)) {
1131 			printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n",
1132 			       (unsigned int)(e - list_entries),
1133 			       e->class->name ? : "(?)",
1134 			       e->links_to->name ? : "(?)");
1135 			return false;
1136 		}
1137 	}
1138 
1139 	/*
1140 	 * Check whether all list entries that are not in use do not occur in
1141 	 * a class lock list.
1142 	 */
1143 	for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1144 		e = list_entries + i;
1145 		if (in_any_class_list(&e->entry)) {
1146 			printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n",
1147 			       (unsigned int)(e - list_entries),
1148 			       e->class && e->class->name ? e->class->name :
1149 			       "(?)",
1150 			       e->links_to && e->links_to->name ?
1151 			       e->links_to->name : "(?)");
1152 			return false;
1153 		}
1154 	}
1155 
1156 	return true;
1157 }
1158 
1159 int check_consistency = 0;
1160 module_param(check_consistency, int, 0644);
1161 
check_data_structures(void)1162 static void check_data_structures(void)
1163 {
1164 	static bool once = false;
1165 
1166 	if (check_consistency && !once) {
1167 		if (!__check_data_structures()) {
1168 			once = true;
1169 			WARN_ON(once);
1170 		}
1171 	}
1172 }
1173 
1174 #else /* CONFIG_DEBUG_LOCKDEP */
1175 
check_data_structures(void)1176 static inline void check_data_structures(void) { }
1177 
1178 #endif /* CONFIG_DEBUG_LOCKDEP */
1179 
1180 static void init_chain_block_buckets(void);
1181 
1182 /*
1183  * Initialize the lock_classes[] array elements, the free_lock_classes list
1184  * and also the delayed_free structure.
1185  */
init_data_structures_once(void)1186 static void init_data_structures_once(void)
1187 {
1188 	static bool __read_mostly ds_initialized, rcu_head_initialized;
1189 	int i;
1190 
1191 	if (likely(rcu_head_initialized))
1192 		return;
1193 
1194 	if (system_state >= SYSTEM_SCHEDULING) {
1195 		init_rcu_head(&delayed_free.rcu_head);
1196 		rcu_head_initialized = true;
1197 	}
1198 
1199 	if (ds_initialized)
1200 		return;
1201 
1202 	ds_initialized = true;
1203 
1204 	INIT_LIST_HEAD(&delayed_free.pf[0].zapped);
1205 	INIT_LIST_HEAD(&delayed_free.pf[1].zapped);
1206 
1207 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1208 		list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes);
1209 		INIT_LIST_HEAD(&lock_classes[i].locks_after);
1210 		INIT_LIST_HEAD(&lock_classes[i].locks_before);
1211 	}
1212 	init_chain_block_buckets();
1213 }
1214 
keyhashentry(const struct lock_class_key * key)1215 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key)
1216 {
1217 	unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS);
1218 
1219 	return lock_keys_hash + hash;
1220 }
1221 
1222 /* Register a dynamically allocated key. */
lockdep_register_key(struct lock_class_key * key)1223 void lockdep_register_key(struct lock_class_key *key)
1224 {
1225 	struct hlist_head *hash_head;
1226 	struct lock_class_key *k;
1227 	unsigned long flags;
1228 
1229 	if (WARN_ON_ONCE(static_obj(key)))
1230 		return;
1231 	hash_head = keyhashentry(key);
1232 
1233 	raw_local_irq_save(flags);
1234 	if (!graph_lock())
1235 		goto restore_irqs;
1236 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1237 		if (WARN_ON_ONCE(k == key))
1238 			goto out_unlock;
1239 	}
1240 	hlist_add_head_rcu(&key->hash_entry, hash_head);
1241 out_unlock:
1242 	graph_unlock();
1243 restore_irqs:
1244 	raw_local_irq_restore(flags);
1245 }
1246 EXPORT_SYMBOL_GPL(lockdep_register_key);
1247 
1248 /* Check whether a key has been registered as a dynamic key. */
is_dynamic_key(const struct lock_class_key * key)1249 static bool is_dynamic_key(const struct lock_class_key *key)
1250 {
1251 	struct hlist_head *hash_head;
1252 	struct lock_class_key *k;
1253 	bool found = false;
1254 
1255 	if (WARN_ON_ONCE(static_obj(key)))
1256 		return false;
1257 
1258 	/*
1259 	 * If lock debugging is disabled lock_keys_hash[] may contain
1260 	 * pointers to memory that has already been freed. Avoid triggering
1261 	 * a use-after-free in that case by returning early.
1262 	 */
1263 	if (!debug_locks)
1264 		return true;
1265 
1266 	hash_head = keyhashentry(key);
1267 
1268 	rcu_read_lock();
1269 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1270 		if (k == key) {
1271 			found = true;
1272 			break;
1273 		}
1274 	}
1275 	rcu_read_unlock();
1276 
1277 	return found;
1278 }
1279 
1280 /*
1281  * Register a lock's class in the hash-table, if the class is not present
1282  * yet. Otherwise we look it up. We cache the result in the lock object
1283  * itself, so actual lookup of the hash should be once per lock object.
1284  */
1285 static struct lock_class *
register_lock_class(struct lockdep_map * lock,unsigned int subclass,int force)1286 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
1287 {
1288 	struct lockdep_subclass_key *key;
1289 	struct hlist_head *hash_head;
1290 	struct lock_class *class;
1291 	int idx;
1292 
1293 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
1294 
1295 	class = look_up_lock_class(lock, subclass);
1296 	if (likely(class))
1297 		goto out_set_class_cache;
1298 
1299 	if (!lock->key) {
1300 		if (!assign_lock_key(lock))
1301 			return NULL;
1302 	} else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) {
1303 		return NULL;
1304 	}
1305 
1306 	key = lock->key->subkeys + subclass;
1307 	hash_head = classhashentry(key);
1308 
1309 	if (!graph_lock()) {
1310 		return NULL;
1311 	}
1312 	/*
1313 	 * We have to do the hash-walk again, to avoid races
1314 	 * with another CPU:
1315 	 */
1316 	hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
1317 		if (class->key == key)
1318 			goto out_unlock_set;
1319 	}
1320 
1321 	init_data_structures_once();
1322 
1323 	/* Allocate a new lock class and add it to the hash. */
1324 	class = list_first_entry_or_null(&free_lock_classes, typeof(*class),
1325 					 lock_entry);
1326 	if (!class) {
1327 		if (!debug_locks_off_graph_unlock()) {
1328 			return NULL;
1329 		}
1330 
1331 		nbcon_cpu_emergency_enter();
1332 		print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!");
1333 		dump_stack();
1334 		nbcon_cpu_emergency_exit();
1335 		return NULL;
1336 	}
1337 	nr_lock_classes++;
1338 	__set_bit(class - lock_classes, lock_classes_in_use);
1339 	debug_atomic_inc(nr_unused_locks);
1340 	class->key = key;
1341 	class->name = lock->name;
1342 	class->subclass = subclass;
1343 	WARN_ON_ONCE(!list_empty(&class->locks_before));
1344 	WARN_ON_ONCE(!list_empty(&class->locks_after));
1345 	class->name_version = count_matching_names(class);
1346 	class->wait_type_inner = lock->wait_type_inner;
1347 	class->wait_type_outer = lock->wait_type_outer;
1348 	class->lock_type = lock->lock_type;
1349 	/*
1350 	 * We use RCU's safe list-add method to make
1351 	 * parallel walking of the hash-list safe:
1352 	 */
1353 	hlist_add_head_rcu(&class->hash_entry, hash_head);
1354 	/*
1355 	 * Remove the class from the free list and add it to the global list
1356 	 * of classes.
1357 	 */
1358 	list_move_tail(&class->lock_entry, &all_lock_classes);
1359 	idx = class - lock_classes;
1360 	if (idx > max_lock_class_idx)
1361 		max_lock_class_idx = idx;
1362 
1363 	if (verbose(class)) {
1364 		graph_unlock();
1365 
1366 		nbcon_cpu_emergency_enter();
1367 		printk("\nnew class %px: %s", class->key, class->name);
1368 		if (class->name_version > 1)
1369 			printk(KERN_CONT "#%d", class->name_version);
1370 		printk(KERN_CONT "\n");
1371 		dump_stack();
1372 		nbcon_cpu_emergency_exit();
1373 
1374 		if (!graph_lock()) {
1375 			return NULL;
1376 		}
1377 	}
1378 out_unlock_set:
1379 	graph_unlock();
1380 
1381 out_set_class_cache:
1382 	if (!subclass || force)
1383 		lock->class_cache[0] = class;
1384 	else if (subclass < NR_LOCKDEP_CACHING_CLASSES)
1385 		lock->class_cache[subclass] = class;
1386 
1387 	/*
1388 	 * Hash collision, did we smoke some? We found a class with a matching
1389 	 * hash but the subclass -- which is hashed in -- didn't match.
1390 	 */
1391 	if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass))
1392 		return NULL;
1393 
1394 	return class;
1395 }
1396 
1397 #ifdef CONFIG_PROVE_LOCKING
1398 /*
1399  * Allocate a lockdep entry. (assumes the graph_lock held, returns
1400  * with NULL on failure)
1401  */
alloc_list_entry(void)1402 static struct lock_list *alloc_list_entry(void)
1403 {
1404 	int idx = find_first_zero_bit(list_entries_in_use,
1405 				      ARRAY_SIZE(list_entries));
1406 
1407 	if (idx >= ARRAY_SIZE(list_entries)) {
1408 		if (!debug_locks_off_graph_unlock())
1409 			return NULL;
1410 
1411 		nbcon_cpu_emergency_enter();
1412 		print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!");
1413 		dump_stack();
1414 		nbcon_cpu_emergency_exit();
1415 		return NULL;
1416 	}
1417 	nr_list_entries++;
1418 	__set_bit(idx, list_entries_in_use);
1419 	return list_entries + idx;
1420 }
1421 
1422 /*
1423  * Add a new dependency to the head of the list:
1424  */
add_lock_to_list(struct lock_class * this,struct lock_class * links_to,struct list_head * head,u16 distance,u8 dep,const struct lock_trace * trace)1425 static int add_lock_to_list(struct lock_class *this,
1426 			    struct lock_class *links_to, struct list_head *head,
1427 			    u16 distance, u8 dep,
1428 			    const struct lock_trace *trace)
1429 {
1430 	struct lock_list *entry;
1431 	/*
1432 	 * Lock not present yet - get a new dependency struct and
1433 	 * add it to the list:
1434 	 */
1435 	entry = alloc_list_entry();
1436 	if (!entry)
1437 		return 0;
1438 
1439 	entry->class = this;
1440 	entry->links_to = links_to;
1441 	entry->dep = dep;
1442 	entry->distance = distance;
1443 	entry->trace = trace;
1444 	/*
1445 	 * Both allocation and removal are done under the graph lock; but
1446 	 * iteration is under RCU-sched; see look_up_lock_class() and
1447 	 * lockdep_free_key_range().
1448 	 */
1449 	list_add_tail_rcu(&entry->entry, head);
1450 
1451 	return 1;
1452 }
1453 
1454 /*
1455  * For good efficiency of modular, we use power of 2
1456  */
1457 #define MAX_CIRCULAR_QUEUE_SIZE		(1UL << CONFIG_LOCKDEP_CIRCULAR_QUEUE_BITS)
1458 #define CQ_MASK				(MAX_CIRCULAR_QUEUE_SIZE-1)
1459 
1460 /*
1461  * The circular_queue and helpers are used to implement graph
1462  * breadth-first search (BFS) algorithm, by which we can determine
1463  * whether there is a path from a lock to another. In deadlock checks,
1464  * a path from the next lock to be acquired to a previous held lock
1465  * indicates that adding the <prev> -> <next> lock dependency will
1466  * produce a circle in the graph. Breadth-first search instead of
1467  * depth-first search is used in order to find the shortest (circular)
1468  * path.
1469  */
1470 struct circular_queue {
1471 	struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE];
1472 	unsigned int  front, rear;
1473 };
1474 
1475 static struct circular_queue lock_cq;
1476 
1477 unsigned int max_bfs_queue_depth;
1478 
1479 static unsigned int lockdep_dependency_gen_id;
1480 
__cq_init(struct circular_queue * cq)1481 static inline void __cq_init(struct circular_queue *cq)
1482 {
1483 	cq->front = cq->rear = 0;
1484 	lockdep_dependency_gen_id++;
1485 }
1486 
__cq_empty(struct circular_queue * cq)1487 static inline int __cq_empty(struct circular_queue *cq)
1488 {
1489 	return (cq->front == cq->rear);
1490 }
1491 
__cq_full(struct circular_queue * cq)1492 static inline int __cq_full(struct circular_queue *cq)
1493 {
1494 	return ((cq->rear + 1) & CQ_MASK) == cq->front;
1495 }
1496 
__cq_enqueue(struct circular_queue * cq,struct lock_list * elem)1497 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem)
1498 {
1499 	if (__cq_full(cq))
1500 		return -1;
1501 
1502 	cq->element[cq->rear] = elem;
1503 	cq->rear = (cq->rear + 1) & CQ_MASK;
1504 	return 0;
1505 }
1506 
1507 /*
1508  * Dequeue an element from the circular_queue, return a lock_list if
1509  * the queue is not empty, or NULL if otherwise.
1510  */
__cq_dequeue(struct circular_queue * cq)1511 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq)
1512 {
1513 	struct lock_list * lock;
1514 
1515 	if (__cq_empty(cq))
1516 		return NULL;
1517 
1518 	lock = cq->element[cq->front];
1519 	cq->front = (cq->front + 1) & CQ_MASK;
1520 
1521 	return lock;
1522 }
1523 
__cq_get_elem_count(struct circular_queue * cq)1524 static inline unsigned int  __cq_get_elem_count(struct circular_queue *cq)
1525 {
1526 	return (cq->rear - cq->front) & CQ_MASK;
1527 }
1528 
mark_lock_accessed(struct lock_list * lock)1529 static inline void mark_lock_accessed(struct lock_list *lock)
1530 {
1531 	lock->class->dep_gen_id = lockdep_dependency_gen_id;
1532 }
1533 
visit_lock_entry(struct lock_list * lock,struct lock_list * parent)1534 static inline void visit_lock_entry(struct lock_list *lock,
1535 				    struct lock_list *parent)
1536 {
1537 	lock->parent = parent;
1538 }
1539 
lock_accessed(struct lock_list * lock)1540 static inline unsigned long lock_accessed(struct lock_list *lock)
1541 {
1542 	return lock->class->dep_gen_id == lockdep_dependency_gen_id;
1543 }
1544 
get_lock_parent(struct lock_list * child)1545 static inline struct lock_list *get_lock_parent(struct lock_list *child)
1546 {
1547 	return child->parent;
1548 }
1549 
get_lock_depth(struct lock_list * child)1550 static inline int get_lock_depth(struct lock_list *child)
1551 {
1552 	int depth = 0;
1553 	struct lock_list *parent;
1554 
1555 	while ((parent = get_lock_parent(child))) {
1556 		child = parent;
1557 		depth++;
1558 	}
1559 	return depth;
1560 }
1561 
1562 /*
1563  * Return the forward or backward dependency list.
1564  *
1565  * @lock:   the lock_list to get its class's dependency list
1566  * @offset: the offset to struct lock_class to determine whether it is
1567  *          locks_after or locks_before
1568  */
get_dep_list(struct lock_list * lock,int offset)1569 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset)
1570 {
1571 	void *lock_class = lock->class;
1572 
1573 	return lock_class + offset;
1574 }
1575 /*
1576  * Return values of a bfs search:
1577  *
1578  * BFS_E* indicates an error
1579  * BFS_R* indicates a result (match or not)
1580  *
1581  * BFS_EINVALIDNODE: Find a invalid node in the graph.
1582  *
1583  * BFS_EQUEUEFULL: The queue is full while doing the bfs.
1584  *
1585  * BFS_RMATCH: Find the matched node in the graph, and put that node into
1586  *             *@target_entry.
1587  *
1588  * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry
1589  *               _unchanged_.
1590  */
1591 enum bfs_result {
1592 	BFS_EINVALIDNODE = -2,
1593 	BFS_EQUEUEFULL = -1,
1594 	BFS_RMATCH = 0,
1595 	BFS_RNOMATCH = 1,
1596 };
1597 
1598 /*
1599  * bfs_result < 0 means error
1600  */
bfs_error(enum bfs_result res)1601 static inline bool bfs_error(enum bfs_result res)
1602 {
1603 	return res < 0;
1604 }
1605 
1606 /*
1607  * DEP_*_BIT in lock_list::dep
1608  *
1609  * For dependency @prev -> @next:
1610  *
1611  *   SR: @prev is shared reader (->read != 0) and @next is recursive reader
1612  *       (->read == 2)
1613  *   ER: @prev is exclusive locker (->read == 0) and @next is recursive reader
1614  *   SN: @prev is shared reader and @next is non-recursive locker (->read != 2)
1615  *   EN: @prev is exclusive locker and @next is non-recursive locker
1616  *
1617  * Note that we define the value of DEP_*_BITs so that:
1618  *   bit0 is prev->read == 0
1619  *   bit1 is next->read != 2
1620  */
1621 #define DEP_SR_BIT (0 + (0 << 1)) /* 0 */
1622 #define DEP_ER_BIT (1 + (0 << 1)) /* 1 */
1623 #define DEP_SN_BIT (0 + (1 << 1)) /* 2 */
1624 #define DEP_EN_BIT (1 + (1 << 1)) /* 3 */
1625 
1626 #define DEP_SR_MASK (1U << (DEP_SR_BIT))
1627 #define DEP_ER_MASK (1U << (DEP_ER_BIT))
1628 #define DEP_SN_MASK (1U << (DEP_SN_BIT))
1629 #define DEP_EN_MASK (1U << (DEP_EN_BIT))
1630 
1631 static inline unsigned int
__calc_dep_bit(struct held_lock * prev,struct held_lock * next)1632 __calc_dep_bit(struct held_lock *prev, struct held_lock *next)
1633 {
1634 	return (prev->read == 0) + ((next->read != 2) << 1);
1635 }
1636 
calc_dep(struct held_lock * prev,struct held_lock * next)1637 static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next)
1638 {
1639 	return 1U << __calc_dep_bit(prev, next);
1640 }
1641 
1642 /*
1643  * calculate the dep_bit for backwards edges. We care about whether @prev is
1644  * shared and whether @next is recursive.
1645  */
1646 static inline unsigned int
__calc_dep_bitb(struct held_lock * prev,struct held_lock * next)1647 __calc_dep_bitb(struct held_lock *prev, struct held_lock *next)
1648 {
1649 	return (next->read != 2) + ((prev->read == 0) << 1);
1650 }
1651 
calc_depb(struct held_lock * prev,struct held_lock * next)1652 static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next)
1653 {
1654 	return 1U << __calc_dep_bitb(prev, next);
1655 }
1656 
1657 /*
1658  * Initialize a lock_list entry @lock belonging to @class as the root for a BFS
1659  * search.
1660  */
__bfs_init_root(struct lock_list * lock,struct lock_class * class)1661 static inline void __bfs_init_root(struct lock_list *lock,
1662 				   struct lock_class *class)
1663 {
1664 	lock->class = class;
1665 	lock->parent = NULL;
1666 	lock->only_xr = 0;
1667 }
1668 
1669 /*
1670  * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the
1671  * root for a BFS search.
1672  *
1673  * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure
1674  * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)->
1675  * and -(S*)->.
1676  */
bfs_init_root(struct lock_list * lock,struct held_lock * hlock)1677 static inline void bfs_init_root(struct lock_list *lock,
1678 				 struct held_lock *hlock)
1679 {
1680 	__bfs_init_root(lock, hlock_class(hlock));
1681 	lock->only_xr = (hlock->read == 2);
1682 }
1683 
1684 /*
1685  * Similar to bfs_init_root() but initialize the root for backwards BFS.
1686  *
1687  * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure
1688  * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not
1689  * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->).
1690  */
bfs_init_rootb(struct lock_list * lock,struct held_lock * hlock)1691 static inline void bfs_init_rootb(struct lock_list *lock,
1692 				  struct held_lock *hlock)
1693 {
1694 	__bfs_init_root(lock, hlock_class(hlock));
1695 	lock->only_xr = (hlock->read != 0);
1696 }
1697 
__bfs_next(struct lock_list * lock,int offset)1698 static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset)
1699 {
1700 	if (!lock || !lock->parent)
1701 		return NULL;
1702 
1703 	return list_next_or_null_rcu(get_dep_list(lock->parent, offset),
1704 				     &lock->entry, struct lock_list, entry);
1705 }
1706 
1707 /*
1708  * Breadth-First Search to find a strong path in the dependency graph.
1709  *
1710  * @source_entry: the source of the path we are searching for.
1711  * @data: data used for the second parameter of @match function
1712  * @match: match function for the search
1713  * @target_entry: pointer to the target of a matched path
1714  * @offset: the offset to struct lock_class to determine whether it is
1715  *          locks_after or locks_before
1716  *
1717  * We may have multiple edges (considering different kinds of dependencies,
1718  * e.g. ER and SN) between two nodes in the dependency graph. But
1719  * only the strong dependency path in the graph is relevant to deadlocks. A
1720  * strong dependency path is a dependency path that doesn't have two adjacent
1721  * dependencies as -(*R)-> -(S*)->, please see:
1722  *
1723  *         Documentation/locking/lockdep-design.rst
1724  *
1725  * for more explanation of the definition of strong dependency paths
1726  *
1727  * In __bfs(), we only traverse in the strong dependency path:
1728  *
1729  *     In lock_list::only_xr, we record whether the previous dependency only
1730  *     has -(*R)-> in the search, and if it does (prev only has -(*R)->), we
1731  *     filter out any -(S*)-> in the current dependency and after that, the
1732  *     ->only_xr is set according to whether we only have -(*R)-> left.
1733  */
__bfs(struct lock_list * source_entry,void * data,bool (* match)(struct lock_list * entry,void * data),bool (* skip)(struct lock_list * entry,void * data),struct lock_list ** target_entry,int offset)1734 static enum bfs_result __bfs(struct lock_list *source_entry,
1735 			     void *data,
1736 			     bool (*match)(struct lock_list *entry, void *data),
1737 			     bool (*skip)(struct lock_list *entry, void *data),
1738 			     struct lock_list **target_entry,
1739 			     int offset)
1740 {
1741 	struct circular_queue *cq = &lock_cq;
1742 	struct lock_list *lock = NULL;
1743 	struct lock_list *entry;
1744 	struct list_head *head;
1745 	unsigned int cq_depth;
1746 	bool first;
1747 
1748 	lockdep_assert_locked();
1749 
1750 	__cq_init(cq);
1751 	__cq_enqueue(cq, source_entry);
1752 
1753 	while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) {
1754 		if (!lock->class)
1755 			return BFS_EINVALIDNODE;
1756 
1757 		/*
1758 		 * Step 1: check whether we already finish on this one.
1759 		 *
1760 		 * If we have visited all the dependencies from this @lock to
1761 		 * others (iow, if we have visited all lock_list entries in
1762 		 * @lock->class->locks_{after,before}) we skip, otherwise go
1763 		 * and visit all the dependencies in the list and mark this
1764 		 * list accessed.
1765 		 */
1766 		if (lock_accessed(lock))
1767 			continue;
1768 		else
1769 			mark_lock_accessed(lock);
1770 
1771 		/*
1772 		 * Step 2: check whether prev dependency and this form a strong
1773 		 *         dependency path.
1774 		 */
1775 		if (lock->parent) { /* Parent exists, check prev dependency */
1776 			u8 dep = lock->dep;
1777 			bool prev_only_xr = lock->parent->only_xr;
1778 
1779 			/*
1780 			 * Mask out all -(S*)-> if we only have *R in previous
1781 			 * step, because -(*R)-> -(S*)-> don't make up a strong
1782 			 * dependency.
1783 			 */
1784 			if (prev_only_xr)
1785 				dep &= ~(DEP_SR_MASK | DEP_SN_MASK);
1786 
1787 			/* If nothing left, we skip */
1788 			if (!dep)
1789 				continue;
1790 
1791 			/* If there are only -(*R)-> left, set that for the next step */
1792 			lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK));
1793 		}
1794 
1795 		/*
1796 		 * Step 3: we haven't visited this and there is a strong
1797 		 *         dependency path to this, so check with @match.
1798 		 *         If @skip is provide and returns true, we skip this
1799 		 *         lock (and any path this lock is in).
1800 		 */
1801 		if (skip && skip(lock, data))
1802 			continue;
1803 
1804 		if (match(lock, data)) {
1805 			*target_entry = lock;
1806 			return BFS_RMATCH;
1807 		}
1808 
1809 		/*
1810 		 * Step 4: if not match, expand the path by adding the
1811 		 *         forward or backwards dependencies in the search
1812 		 *
1813 		 */
1814 		first = true;
1815 		head = get_dep_list(lock, offset);
1816 		list_for_each_entry_rcu(entry, head, entry) {
1817 			visit_lock_entry(entry, lock);
1818 
1819 			/*
1820 			 * Note we only enqueue the first of the list into the
1821 			 * queue, because we can always find a sibling
1822 			 * dependency from one (see __bfs_next()), as a result
1823 			 * the space of queue is saved.
1824 			 */
1825 			if (!first)
1826 				continue;
1827 
1828 			first = false;
1829 
1830 			if (__cq_enqueue(cq, entry))
1831 				return BFS_EQUEUEFULL;
1832 
1833 			cq_depth = __cq_get_elem_count(cq);
1834 			if (max_bfs_queue_depth < cq_depth)
1835 				max_bfs_queue_depth = cq_depth;
1836 		}
1837 	}
1838 
1839 	return BFS_RNOMATCH;
1840 }
1841 
1842 static inline enum bfs_result
__bfs_forwards(struct lock_list * src_entry,void * data,bool (* match)(struct lock_list * entry,void * data),bool (* skip)(struct lock_list * entry,void * data),struct lock_list ** target_entry)1843 __bfs_forwards(struct lock_list *src_entry,
1844 	       void *data,
1845 	       bool (*match)(struct lock_list *entry, void *data),
1846 	       bool (*skip)(struct lock_list *entry, void *data),
1847 	       struct lock_list **target_entry)
1848 {
1849 	return __bfs(src_entry, data, match, skip, target_entry,
1850 		     offsetof(struct lock_class, locks_after));
1851 
1852 }
1853 
1854 static inline enum bfs_result
__bfs_backwards(struct lock_list * src_entry,void * data,bool (* match)(struct lock_list * entry,void * data),bool (* skip)(struct lock_list * entry,void * data),struct lock_list ** target_entry)1855 __bfs_backwards(struct lock_list *src_entry,
1856 		void *data,
1857 		bool (*match)(struct lock_list *entry, void *data),
1858 	       bool (*skip)(struct lock_list *entry, void *data),
1859 		struct lock_list **target_entry)
1860 {
1861 	return __bfs(src_entry, data, match, skip, target_entry,
1862 		     offsetof(struct lock_class, locks_before));
1863 
1864 }
1865 
print_lock_trace(const struct lock_trace * trace,unsigned int spaces)1866 static void print_lock_trace(const struct lock_trace *trace,
1867 			     unsigned int spaces)
1868 {
1869 	stack_trace_print(trace->entries, trace->nr_entries, spaces);
1870 }
1871 
1872 /*
1873  * Print a dependency chain entry (this is only done when a deadlock
1874  * has been detected):
1875  */
1876 static noinline void
print_circular_bug_entry(struct lock_list * target,int depth)1877 print_circular_bug_entry(struct lock_list *target, int depth)
1878 {
1879 	if (debug_locks_silent)
1880 		return;
1881 	printk("\n-> #%u", depth);
1882 	print_lock_name(NULL, target->class);
1883 	printk(KERN_CONT ":\n");
1884 	print_lock_trace(target->trace, 6);
1885 }
1886 
1887 static void
print_circular_lock_scenario(struct held_lock * src,struct held_lock * tgt,struct lock_list * prt)1888 print_circular_lock_scenario(struct held_lock *src,
1889 			     struct held_lock *tgt,
1890 			     struct lock_list *prt)
1891 {
1892 	struct lock_class *source = hlock_class(src);
1893 	struct lock_class *target = hlock_class(tgt);
1894 	struct lock_class *parent = prt->class;
1895 	int src_read = src->read;
1896 	int tgt_read = tgt->read;
1897 
1898 	/*
1899 	 * A direct locking problem where unsafe_class lock is taken
1900 	 * directly by safe_class lock, then all we need to show
1901 	 * is the deadlock scenario, as it is obvious that the
1902 	 * unsafe lock is taken under the safe lock.
1903 	 *
1904 	 * But if there is a chain instead, where the safe lock takes
1905 	 * an intermediate lock (middle_class) where this lock is
1906 	 * not the same as the safe lock, then the lock chain is
1907 	 * used to describe the problem. Otherwise we would need
1908 	 * to show a different CPU case for each link in the chain
1909 	 * from the safe_class lock to the unsafe_class lock.
1910 	 */
1911 	if (parent != source) {
1912 		printk("Chain exists of:\n  ");
1913 		__print_lock_name(src, source);
1914 		printk(KERN_CONT " --> ");
1915 		__print_lock_name(NULL, parent);
1916 		printk(KERN_CONT " --> ");
1917 		__print_lock_name(tgt, target);
1918 		printk(KERN_CONT "\n\n");
1919 	}
1920 
1921 	printk(" Possible unsafe locking scenario:\n\n");
1922 	printk("       CPU0                    CPU1\n");
1923 	printk("       ----                    ----\n");
1924 	if (tgt_read != 0)
1925 		printk("  rlock(");
1926 	else
1927 		printk("  lock(");
1928 	__print_lock_name(tgt, target);
1929 	printk(KERN_CONT ");\n");
1930 	printk("                               lock(");
1931 	__print_lock_name(NULL, parent);
1932 	printk(KERN_CONT ");\n");
1933 	printk("                               lock(");
1934 	__print_lock_name(tgt, target);
1935 	printk(KERN_CONT ");\n");
1936 	if (src_read != 0)
1937 		printk("  rlock(");
1938 	else if (src->sync)
1939 		printk("  sync(");
1940 	else
1941 		printk("  lock(");
1942 	__print_lock_name(src, source);
1943 	printk(KERN_CONT ");\n");
1944 	printk("\n *** DEADLOCK ***\n\n");
1945 }
1946 
1947 /*
1948  * When a circular dependency is detected, print the
1949  * header first:
1950  */
1951 static noinline void
print_circular_bug_header(struct lock_list * entry,unsigned int depth,struct held_lock * check_src,struct held_lock * check_tgt)1952 print_circular_bug_header(struct lock_list *entry, unsigned int depth,
1953 			struct held_lock *check_src,
1954 			struct held_lock *check_tgt)
1955 {
1956 	struct task_struct *curr = current;
1957 
1958 	if (debug_locks_silent)
1959 		return;
1960 
1961 	pr_warn("\n");
1962 	pr_warn("======================================================\n");
1963 	pr_warn("WARNING: possible circular locking dependency detected\n");
1964 	print_kernel_ident();
1965 	pr_warn("------------------------------------------------------\n");
1966 	pr_warn("%s/%d is trying to acquire lock:\n",
1967 		curr->comm, task_pid_nr(curr));
1968 	print_lock(check_src);
1969 
1970 	pr_warn("\nbut task is already holding lock:\n");
1971 
1972 	print_lock(check_tgt);
1973 	pr_warn("\nwhich lock already depends on the new lock.\n\n");
1974 	pr_warn("\nthe existing dependency chain (in reverse order) is:\n");
1975 
1976 	print_circular_bug_entry(entry, depth);
1977 }
1978 
1979 /*
1980  * We are about to add A -> B into the dependency graph, and in __bfs() a
1981  * strong dependency path A -> .. -> B is found: hlock_class equals
1982  * entry->class.
1983  *
1984  * If A -> .. -> B can replace A -> B in any __bfs() search (means the former
1985  * is _stronger_ than or equal to the latter), we consider A -> B as redundant.
1986  * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A
1987  * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the
1988  * dependency graph, as any strong path ..-> A -> B ->.. we can get with
1989  * having dependency A -> B, we could already get a equivalent path ..-> A ->
1990  * .. -> B -> .. with A -> .. -> B. Therefore A -> B is redundant.
1991  *
1992  * We need to make sure both the start and the end of A -> .. -> B is not
1993  * weaker than A -> B. For the start part, please see the comment in
1994  * check_redundant(). For the end part, we need:
1995  *
1996  * Either
1997  *
1998  *     a) A -> B is -(*R)-> (everything is not weaker than that)
1999  *
2000  * or
2001  *
2002  *     b) A -> .. -> B is -(*N)-> (nothing is stronger than this)
2003  *
2004  */
hlock_equal(struct lock_list * entry,void * data)2005 static inline bool hlock_equal(struct lock_list *entry, void *data)
2006 {
2007 	struct held_lock *hlock = (struct held_lock *)data;
2008 
2009 	return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
2010 	       (hlock->read == 2 ||  /* A -> B is -(*R)-> */
2011 		!entry->only_xr); /* A -> .. -> B is -(*N)-> */
2012 }
2013 
2014 /*
2015  * We are about to add B -> A into the dependency graph, and in __bfs() a
2016  * strong dependency path A -> .. -> B is found: hlock_class equals
2017  * entry->class.
2018  *
2019  * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong
2020  * dependency cycle, that means:
2021  *
2022  * Either
2023  *
2024  *     a) B -> A is -(E*)->
2025  *
2026  * or
2027  *
2028  *     b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B)
2029  *
2030  * as then we don't have -(*R)-> -(S*)-> in the cycle.
2031  */
hlock_conflict(struct lock_list * entry,void * data)2032 static inline bool hlock_conflict(struct lock_list *entry, void *data)
2033 {
2034 	struct held_lock *hlock = (struct held_lock *)data;
2035 
2036 	return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
2037 	       (hlock->read == 0 || /* B -> A is -(E*)-> */
2038 		!entry->only_xr); /* A -> .. -> B is -(*N)-> */
2039 }
2040 
print_circular_bug(struct lock_list * this,struct lock_list * target,struct held_lock * check_src,struct held_lock * check_tgt)2041 static noinline void print_circular_bug(struct lock_list *this,
2042 				struct lock_list *target,
2043 				struct held_lock *check_src,
2044 				struct held_lock *check_tgt)
2045 {
2046 	struct task_struct *curr = current;
2047 	struct lock_list *parent;
2048 	struct lock_list *first_parent;
2049 	int depth;
2050 
2051 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2052 		return;
2053 
2054 	this->trace = save_trace();
2055 	if (!this->trace)
2056 		return;
2057 
2058 	depth = get_lock_depth(target);
2059 
2060 	nbcon_cpu_emergency_enter();
2061 
2062 	print_circular_bug_header(target, depth, check_src, check_tgt);
2063 
2064 	parent = get_lock_parent(target);
2065 	first_parent = parent;
2066 
2067 	while (parent) {
2068 		print_circular_bug_entry(parent, --depth);
2069 		parent = get_lock_parent(parent);
2070 	}
2071 
2072 	printk("\nother info that might help us debug this:\n\n");
2073 	print_circular_lock_scenario(check_src, check_tgt,
2074 				     first_parent);
2075 
2076 	lockdep_print_held_locks(curr);
2077 
2078 	printk("\nstack backtrace:\n");
2079 	dump_stack();
2080 
2081 	nbcon_cpu_emergency_exit();
2082 }
2083 
print_bfs_bug(int ret)2084 static noinline void print_bfs_bug(int ret)
2085 {
2086 	if (!debug_locks_off_graph_unlock())
2087 		return;
2088 
2089 	/*
2090 	 * Breadth-first-search failed, graph got corrupted?
2091 	 */
2092 	if (ret == BFS_EQUEUEFULL)
2093 		pr_warn("Increase LOCKDEP_CIRCULAR_QUEUE_BITS to avoid this warning:\n");
2094 
2095 	WARN(1, "lockdep bfs error:%d\n", ret);
2096 }
2097 
noop_count(struct lock_list * entry,void * data)2098 static bool noop_count(struct lock_list *entry, void *data)
2099 {
2100 	(*(unsigned long *)data)++;
2101 	return false;
2102 }
2103 
__lockdep_count_forward_deps(struct lock_list * this)2104 static unsigned long __lockdep_count_forward_deps(struct lock_list *this)
2105 {
2106 	unsigned long  count = 0;
2107 	struct lock_list *target_entry;
2108 
2109 	__bfs_forwards(this, (void *)&count, noop_count, NULL, &target_entry);
2110 
2111 	return count;
2112 }
lockdep_count_forward_deps(struct lock_class * class)2113 unsigned long lockdep_count_forward_deps(struct lock_class *class)
2114 {
2115 	unsigned long ret, flags;
2116 	struct lock_list this;
2117 
2118 	__bfs_init_root(&this, class);
2119 
2120 	raw_local_irq_save(flags);
2121 	lockdep_lock();
2122 	ret = __lockdep_count_forward_deps(&this);
2123 	lockdep_unlock();
2124 	raw_local_irq_restore(flags);
2125 
2126 	return ret;
2127 }
2128 
__lockdep_count_backward_deps(struct lock_list * this)2129 static unsigned long __lockdep_count_backward_deps(struct lock_list *this)
2130 {
2131 	unsigned long  count = 0;
2132 	struct lock_list *target_entry;
2133 
2134 	__bfs_backwards(this, (void *)&count, noop_count, NULL, &target_entry);
2135 
2136 	return count;
2137 }
2138 
lockdep_count_backward_deps(struct lock_class * class)2139 unsigned long lockdep_count_backward_deps(struct lock_class *class)
2140 {
2141 	unsigned long ret, flags;
2142 	struct lock_list this;
2143 
2144 	__bfs_init_root(&this, class);
2145 
2146 	raw_local_irq_save(flags);
2147 	lockdep_lock();
2148 	ret = __lockdep_count_backward_deps(&this);
2149 	lockdep_unlock();
2150 	raw_local_irq_restore(flags);
2151 
2152 	return ret;
2153 }
2154 
2155 /*
2156  * Check that the dependency graph starting at <src> can lead to
2157  * <target> or not.
2158  */
2159 static noinline enum bfs_result
check_path(struct held_lock * target,struct lock_list * src_entry,bool (* match)(struct lock_list * entry,void * data),bool (* skip)(struct lock_list * entry,void * data),struct lock_list ** target_entry)2160 check_path(struct held_lock *target, struct lock_list *src_entry,
2161 	   bool (*match)(struct lock_list *entry, void *data),
2162 	   bool (*skip)(struct lock_list *entry, void *data),
2163 	   struct lock_list **target_entry)
2164 {
2165 	enum bfs_result ret;
2166 
2167 	ret = __bfs_forwards(src_entry, target, match, skip, target_entry);
2168 
2169 	if (unlikely(bfs_error(ret)))
2170 		print_bfs_bug(ret);
2171 
2172 	return ret;
2173 }
2174 
2175 static void print_deadlock_bug(struct task_struct *, struct held_lock *, struct held_lock *);
2176 
2177 /*
2178  * Prove that the dependency graph starting at <src> can not
2179  * lead to <target>. If it can, there is a circle when adding
2180  * <target> -> <src> dependency.
2181  *
2182  * Print an error and return BFS_RMATCH if it does.
2183  */
2184 static noinline enum bfs_result
check_noncircular(struct held_lock * src,struct held_lock * target,struct lock_trace ** const trace)2185 check_noncircular(struct held_lock *src, struct held_lock *target,
2186 		  struct lock_trace **const trace)
2187 {
2188 	enum bfs_result ret;
2189 	struct lock_list *target_entry;
2190 	struct lock_list src_entry;
2191 
2192 	bfs_init_root(&src_entry, src);
2193 
2194 	debug_atomic_inc(nr_cyclic_checks);
2195 
2196 	ret = check_path(target, &src_entry, hlock_conflict, NULL, &target_entry);
2197 
2198 	if (unlikely(ret == BFS_RMATCH)) {
2199 		if (!*trace) {
2200 			/*
2201 			 * If save_trace fails here, the printing might
2202 			 * trigger a WARN but because of the !nr_entries it
2203 			 * should not do bad things.
2204 			 */
2205 			*trace = save_trace();
2206 		}
2207 
2208 		if (src->class_idx == target->class_idx)
2209 			print_deadlock_bug(current, src, target);
2210 		else
2211 			print_circular_bug(&src_entry, target_entry, src, target);
2212 	}
2213 
2214 	return ret;
2215 }
2216 
2217 #ifdef CONFIG_TRACE_IRQFLAGS
2218 
2219 /*
2220  * Forwards and backwards subgraph searching, for the purposes of
2221  * proving that two subgraphs can be connected by a new dependency
2222  * without creating any illegal irq-safe -> irq-unsafe lock dependency.
2223  *
2224  * A irq safe->unsafe deadlock happens with the following conditions:
2225  *
2226  * 1) We have a strong dependency path A -> ... -> B
2227  *
2228  * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore
2229  *    irq can create a new dependency B -> A (consider the case that a holder
2230  *    of B gets interrupted by an irq whose handler will try to acquire A).
2231  *
2232  * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a
2233  *    strong circle:
2234  *
2235  *      For the usage bits of B:
2236  *        a) if A -> B is -(*N)->, then B -> A could be any type, so any
2237  *           ENABLED_IRQ usage suffices.
2238  *        b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only
2239  *           ENABLED_IRQ_*_READ usage suffices.
2240  *
2241  *      For the usage bits of A:
2242  *        c) if A -> B is -(E*)->, then B -> A could be any type, so any
2243  *           USED_IN_IRQ usage suffices.
2244  *        d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only
2245  *           USED_IN_IRQ_*_READ usage suffices.
2246  */
2247 
2248 /*
2249  * There is a strong dependency path in the dependency graph: A -> B, and now
2250  * we need to decide which usage bit of A should be accumulated to detect
2251  * safe->unsafe bugs.
2252  *
2253  * Note that usage_accumulate() is used in backwards search, so ->only_xr
2254  * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true).
2255  *
2256  * As above, if only_xr is false, which means A -> B has -(E*)-> dependency
2257  * path, any usage of A should be considered. Otherwise, we should only
2258  * consider _READ usage.
2259  */
usage_accumulate(struct lock_list * entry,void * mask)2260 static inline bool usage_accumulate(struct lock_list *entry, void *mask)
2261 {
2262 	if (!entry->only_xr)
2263 		*(unsigned long *)mask |= entry->class->usage_mask;
2264 	else /* Mask out _READ usage bits */
2265 		*(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ);
2266 
2267 	return false;
2268 }
2269 
2270 /*
2271  * There is a strong dependency path in the dependency graph: A -> B, and now
2272  * we need to decide which usage bit of B conflicts with the usage bits of A,
2273  * i.e. which usage bit of B may introduce safe->unsafe deadlocks.
2274  *
2275  * As above, if only_xr is false, which means A -> B has -(*N)-> dependency
2276  * path, any usage of B should be considered. Otherwise, we should only
2277  * consider _READ usage.
2278  */
usage_match(struct lock_list * entry,void * mask)2279 static inline bool usage_match(struct lock_list *entry, void *mask)
2280 {
2281 	if (!entry->only_xr)
2282 		return !!(entry->class->usage_mask & *(unsigned long *)mask);
2283 	else /* Mask out _READ usage bits */
2284 		return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask);
2285 }
2286 
usage_skip(struct lock_list * entry,void * mask)2287 static inline bool usage_skip(struct lock_list *entry, void *mask)
2288 {
2289 	if (entry->class->lock_type == LD_LOCK_NORMAL)
2290 		return false;
2291 
2292 	/*
2293 	 * Skip local_lock() for irq inversion detection.
2294 	 *
2295 	 * For !RT, local_lock() is not a real lock, so it won't carry any
2296 	 * dependency.
2297 	 *
2298 	 * For RT, an irq inversion happens when we have lock A and B, and on
2299 	 * some CPU we can have:
2300 	 *
2301 	 *	lock(A);
2302 	 *	<interrupted>
2303 	 *	  lock(B);
2304 	 *
2305 	 * where lock(B) cannot sleep, and we have a dependency B -> ... -> A.
2306 	 *
2307 	 * Now we prove local_lock() cannot exist in that dependency. First we
2308 	 * have the observation for any lock chain L1 -> ... -> Ln, for any
2309 	 * 1 <= i <= n, Li.inner_wait_type <= L1.inner_wait_type, otherwise
2310 	 * wait context check will complain. And since B is not a sleep lock,
2311 	 * therefore B.inner_wait_type >= 2, and since the inner_wait_type of
2312 	 * local_lock() is 3, which is greater than 2, therefore there is no
2313 	 * way the local_lock() exists in the dependency B -> ... -> A.
2314 	 *
2315 	 * As a result, we will skip local_lock(), when we search for irq
2316 	 * inversion bugs.
2317 	 */
2318 	if (entry->class->lock_type == LD_LOCK_PERCPU &&
2319 	    DEBUG_LOCKS_WARN_ON(entry->class->wait_type_inner < LD_WAIT_CONFIG))
2320 		return false;
2321 
2322 	/*
2323 	 * Skip WAIT_OVERRIDE for irq inversion detection -- it's not actually
2324 	 * a lock and only used to override the wait_type.
2325 	 */
2326 
2327 	return true;
2328 }
2329 
2330 /*
2331  * Find a node in the forwards-direction dependency sub-graph starting
2332  * at @root->class that matches @bit.
2333  *
2334  * Return BFS_MATCH if such a node exists in the subgraph, and put that node
2335  * into *@target_entry.
2336  */
2337 static enum bfs_result
find_usage_forwards(struct lock_list * root,unsigned long usage_mask,struct lock_list ** target_entry)2338 find_usage_forwards(struct lock_list *root, unsigned long usage_mask,
2339 			struct lock_list **target_entry)
2340 {
2341 	enum bfs_result result;
2342 
2343 	debug_atomic_inc(nr_find_usage_forwards_checks);
2344 
2345 	result = __bfs_forwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2346 
2347 	return result;
2348 }
2349 
2350 /*
2351  * Find a node in the backwards-direction dependency sub-graph starting
2352  * at @root->class that matches @bit.
2353  */
2354 static enum bfs_result
find_usage_backwards(struct lock_list * root,unsigned long usage_mask,struct lock_list ** target_entry)2355 find_usage_backwards(struct lock_list *root, unsigned long usage_mask,
2356 			struct lock_list **target_entry)
2357 {
2358 	enum bfs_result result;
2359 
2360 	debug_atomic_inc(nr_find_usage_backwards_checks);
2361 
2362 	result = __bfs_backwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2363 
2364 	return result;
2365 }
2366 
print_lock_class_header(struct lock_class * class,int depth)2367 static void print_lock_class_header(struct lock_class *class, int depth)
2368 {
2369 	int bit;
2370 
2371 	printk("%*s->", depth, "");
2372 	print_lock_name(NULL, class);
2373 #ifdef CONFIG_DEBUG_LOCKDEP
2374 	printk(KERN_CONT " ops: %lu", debug_class_ops_read(class));
2375 #endif
2376 	printk(KERN_CONT " {\n");
2377 
2378 	for (bit = 0; bit < LOCK_TRACE_STATES; bit++) {
2379 		if (class->usage_mask & (1 << bit)) {
2380 			int len = depth;
2381 
2382 			len += printk("%*s   %s", depth, "", usage_str[bit]);
2383 			len += printk(KERN_CONT " at:\n");
2384 			print_lock_trace(class->usage_traces[bit], len);
2385 		}
2386 	}
2387 	printk("%*s }\n", depth, "");
2388 
2389 	printk("%*s ... key      at: [<%px>] %pS\n",
2390 		depth, "", class->key, class->key);
2391 }
2392 
2393 /*
2394  * Dependency path printing:
2395  *
2396  * After BFS we get a lock dependency path (linked via ->parent of lock_list),
2397  * printing out each lock in the dependency path will help on understanding how
2398  * the deadlock could happen. Here are some details about dependency path
2399  * printing:
2400  *
2401  * 1)	A lock_list can be either forwards or backwards for a lock dependency,
2402  * 	for a lock dependency A -> B, there are two lock_lists:
2403  *
2404  * 	a)	lock_list in the ->locks_after list of A, whose ->class is B and
2405  * 		->links_to is A. In this case, we can say the lock_list is
2406  * 		"A -> B" (forwards case).
2407  *
2408  * 	b)	lock_list in the ->locks_before list of B, whose ->class is A
2409  * 		and ->links_to is B. In this case, we can say the lock_list is
2410  * 		"B <- A" (bacwards case).
2411  *
2412  * 	The ->trace of both a) and b) point to the call trace where B was
2413  * 	acquired with A held.
2414  *
2415  * 2)	A "helper" lock_list is introduced during BFS, this lock_list doesn't
2416  * 	represent a certain lock dependency, it only provides an initial entry
2417  * 	for BFS. For example, BFS may introduce a "helper" lock_list whose
2418  * 	->class is A, as a result BFS will search all dependencies starting with
2419  * 	A, e.g. A -> B or A -> C.
2420  *
2421  * 	The notation of a forwards helper lock_list is like "-> A", which means
2422  * 	we should search the forwards dependencies starting with "A", e.g A -> B
2423  * 	or A -> C.
2424  *
2425  * 	The notation of a bacwards helper lock_list is like "<- B", which means
2426  * 	we should search the backwards dependencies ending with "B", e.g.
2427  * 	B <- A or B <- C.
2428  */
2429 
2430 /*
2431  * printk the shortest lock dependencies from @root to @leaf in reverse order.
2432  *
2433  * We have a lock dependency path as follow:
2434  *
2435  *    @root                                                                 @leaf
2436  *      |                                                                     |
2437  *      V                                                                     V
2438  *	          ->parent                                   ->parent
2439  * | lock_list | <--------- | lock_list | ... | lock_list  | <--------- | lock_list |
2440  * |    -> L1  |            | L1 -> L2  | ... |Ln-2 -> Ln-1|            | Ln-1 -> Ln|
2441  *
2442  * , so it's natural that we start from @leaf and print every ->class and
2443  * ->trace until we reach the @root.
2444  */
2445 static void __used
print_shortest_lock_dependencies(struct lock_list * leaf,struct lock_list * root)2446 print_shortest_lock_dependencies(struct lock_list *leaf,
2447 				 struct lock_list *root)
2448 {
2449 	struct lock_list *entry = leaf;
2450 	int depth;
2451 
2452 	/*compute depth from generated tree by BFS*/
2453 	depth = get_lock_depth(leaf);
2454 
2455 	do {
2456 		print_lock_class_header(entry->class, depth);
2457 		printk("%*s ... acquired at:\n", depth, "");
2458 		print_lock_trace(entry->trace, 2);
2459 		printk("\n");
2460 
2461 		if (depth == 0 && (entry != root)) {
2462 			printk("lockdep:%s bad path found in chain graph\n", __func__);
2463 			break;
2464 		}
2465 
2466 		entry = get_lock_parent(entry);
2467 		depth--;
2468 	} while (entry && (depth >= 0));
2469 }
2470 
2471 /*
2472  * printk the shortest lock dependencies from @leaf to @root.
2473  *
2474  * We have a lock dependency path (from a backwards search) as follow:
2475  *
2476  *    @leaf                                                                 @root
2477  *      |                                                                     |
2478  *      V                                                                     V
2479  *	          ->parent                                   ->parent
2480  * | lock_list | ---------> | lock_list | ... | lock_list  | ---------> | lock_list |
2481  * | L2 <- L1  |            | L3 <- L2  | ... | Ln <- Ln-1 |            |    <- Ln  |
2482  *
2483  * , so when we iterate from @leaf to @root, we actually print the lock
2484  * dependency path L1 -> L2 -> .. -> Ln in the non-reverse order.
2485  *
2486  * Another thing to notice here is that ->class of L2 <- L1 is L1, while the
2487  * ->trace of L2 <- L1 is the call trace of L2, in fact we don't have the call
2488  * trace of L1 in the dependency path, which is alright, because most of the
2489  * time we can figure out where L1 is held from the call trace of L2.
2490  */
2491 static void __used
print_shortest_lock_dependencies_backwards(struct lock_list * leaf,struct lock_list * root)2492 print_shortest_lock_dependencies_backwards(struct lock_list *leaf,
2493 					   struct lock_list *root)
2494 {
2495 	struct lock_list *entry = leaf;
2496 	const struct lock_trace *trace = NULL;
2497 	int depth;
2498 
2499 	/*compute depth from generated tree by BFS*/
2500 	depth = get_lock_depth(leaf);
2501 
2502 	do {
2503 		print_lock_class_header(entry->class, depth);
2504 		if (trace) {
2505 			printk("%*s ... acquired at:\n", depth, "");
2506 			print_lock_trace(trace, 2);
2507 			printk("\n");
2508 		}
2509 
2510 		/*
2511 		 * Record the pointer to the trace for the next lock_list
2512 		 * entry, see the comments for the function.
2513 		 */
2514 		trace = entry->trace;
2515 
2516 		if (depth == 0 && (entry != root)) {
2517 			printk("lockdep:%s bad path found in chain graph\n", __func__);
2518 			break;
2519 		}
2520 
2521 		entry = get_lock_parent(entry);
2522 		depth--;
2523 	} while (entry && (depth >= 0));
2524 }
2525 
2526 static void
print_irq_lock_scenario(struct lock_list * safe_entry,struct lock_list * unsafe_entry,struct lock_class * prev_class,struct lock_class * next_class)2527 print_irq_lock_scenario(struct lock_list *safe_entry,
2528 			struct lock_list *unsafe_entry,
2529 			struct lock_class *prev_class,
2530 			struct lock_class *next_class)
2531 {
2532 	struct lock_class *safe_class = safe_entry->class;
2533 	struct lock_class *unsafe_class = unsafe_entry->class;
2534 	struct lock_class *middle_class = prev_class;
2535 
2536 	if (middle_class == safe_class)
2537 		middle_class = next_class;
2538 
2539 	/*
2540 	 * A direct locking problem where unsafe_class lock is taken
2541 	 * directly by safe_class lock, then all we need to show
2542 	 * is the deadlock scenario, as it is obvious that the
2543 	 * unsafe lock is taken under the safe lock.
2544 	 *
2545 	 * But if there is a chain instead, where the safe lock takes
2546 	 * an intermediate lock (middle_class) where this lock is
2547 	 * not the same as the safe lock, then the lock chain is
2548 	 * used to describe the problem. Otherwise we would need
2549 	 * to show a different CPU case for each link in the chain
2550 	 * from the safe_class lock to the unsafe_class lock.
2551 	 */
2552 	if (middle_class != unsafe_class) {
2553 		printk("Chain exists of:\n  ");
2554 		__print_lock_name(NULL, safe_class);
2555 		printk(KERN_CONT " --> ");
2556 		__print_lock_name(NULL, middle_class);
2557 		printk(KERN_CONT " --> ");
2558 		__print_lock_name(NULL, unsafe_class);
2559 		printk(KERN_CONT "\n\n");
2560 	}
2561 
2562 	printk(" Possible interrupt unsafe locking scenario:\n\n");
2563 	printk("       CPU0                    CPU1\n");
2564 	printk("       ----                    ----\n");
2565 	printk("  lock(");
2566 	__print_lock_name(NULL, unsafe_class);
2567 	printk(KERN_CONT ");\n");
2568 	printk("                               local_irq_disable();\n");
2569 	printk("                               lock(");
2570 	__print_lock_name(NULL, safe_class);
2571 	printk(KERN_CONT ");\n");
2572 	printk("                               lock(");
2573 	__print_lock_name(NULL, middle_class);
2574 	printk(KERN_CONT ");\n");
2575 	printk("  <Interrupt>\n");
2576 	printk("    lock(");
2577 	__print_lock_name(NULL, safe_class);
2578 	printk(KERN_CONT ");\n");
2579 	printk("\n *** DEADLOCK ***\n\n");
2580 }
2581 
2582 static void
print_bad_irq_dependency(struct task_struct * curr,struct lock_list * prev_root,struct lock_list * next_root,struct lock_list * backwards_entry,struct lock_list * forwards_entry,struct held_lock * prev,struct held_lock * next,enum lock_usage_bit bit1,enum lock_usage_bit bit2,const char * irqclass)2583 print_bad_irq_dependency(struct task_struct *curr,
2584 			 struct lock_list *prev_root,
2585 			 struct lock_list *next_root,
2586 			 struct lock_list *backwards_entry,
2587 			 struct lock_list *forwards_entry,
2588 			 struct held_lock *prev,
2589 			 struct held_lock *next,
2590 			 enum lock_usage_bit bit1,
2591 			 enum lock_usage_bit bit2,
2592 			 const char *irqclass)
2593 {
2594 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2595 		return;
2596 
2597 	nbcon_cpu_emergency_enter();
2598 
2599 	pr_warn("\n");
2600 	pr_warn("=====================================================\n");
2601 	pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n",
2602 		irqclass, irqclass);
2603 	print_kernel_ident();
2604 	pr_warn("-----------------------------------------------------\n");
2605 	pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n",
2606 		curr->comm, task_pid_nr(curr),
2607 		lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
2608 		curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT,
2609 		lockdep_hardirqs_enabled(),
2610 		curr->softirqs_enabled);
2611 	print_lock(next);
2612 
2613 	pr_warn("\nand this task is already holding:\n");
2614 	print_lock(prev);
2615 	pr_warn("which would create a new lock dependency:\n");
2616 	print_lock_name(prev, hlock_class(prev));
2617 	pr_cont(" ->");
2618 	print_lock_name(next, hlock_class(next));
2619 	pr_cont("\n");
2620 
2621 	pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n",
2622 		irqclass);
2623 	print_lock_name(NULL, backwards_entry->class);
2624 	pr_warn("\n... which became %s-irq-safe at:\n", irqclass);
2625 
2626 	print_lock_trace(backwards_entry->class->usage_traces[bit1], 1);
2627 
2628 	pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass);
2629 	print_lock_name(NULL, forwards_entry->class);
2630 	pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass);
2631 	pr_warn("...");
2632 
2633 	print_lock_trace(forwards_entry->class->usage_traces[bit2], 1);
2634 
2635 	pr_warn("\nother info that might help us debug this:\n\n");
2636 	print_irq_lock_scenario(backwards_entry, forwards_entry,
2637 				hlock_class(prev), hlock_class(next));
2638 
2639 	lockdep_print_held_locks(curr);
2640 
2641 	pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass);
2642 	print_shortest_lock_dependencies_backwards(backwards_entry, prev_root);
2643 
2644 	pr_warn("\nthe dependencies between the lock to be acquired");
2645 	pr_warn(" and %s-irq-unsafe lock:\n", irqclass);
2646 	next_root->trace = save_trace();
2647 	if (!next_root->trace)
2648 		goto out;
2649 	print_shortest_lock_dependencies(forwards_entry, next_root);
2650 
2651 	pr_warn("\nstack backtrace:\n");
2652 	dump_stack();
2653 out:
2654 	nbcon_cpu_emergency_exit();
2655 }
2656 
2657 static const char *state_names[] = {
2658 #define LOCKDEP_STATE(__STATE) \
2659 	__stringify(__STATE),
2660 #include "lockdep_states.h"
2661 #undef LOCKDEP_STATE
2662 };
2663 
2664 static const char *state_rnames[] = {
2665 #define LOCKDEP_STATE(__STATE) \
2666 	__stringify(__STATE)"-READ",
2667 #include "lockdep_states.h"
2668 #undef LOCKDEP_STATE
2669 };
2670 
state_name(enum lock_usage_bit bit)2671 static inline const char *state_name(enum lock_usage_bit bit)
2672 {
2673 	if (bit & LOCK_USAGE_READ_MASK)
2674 		return state_rnames[bit >> LOCK_USAGE_DIR_MASK];
2675 	else
2676 		return state_names[bit >> LOCK_USAGE_DIR_MASK];
2677 }
2678 
2679 /*
2680  * The bit number is encoded like:
2681  *
2682  *  bit0: 0 exclusive, 1 read lock
2683  *  bit1: 0 used in irq, 1 irq enabled
2684  *  bit2-n: state
2685  */
exclusive_bit(int new_bit)2686 static int exclusive_bit(int new_bit)
2687 {
2688 	int state = new_bit & LOCK_USAGE_STATE_MASK;
2689 	int dir = new_bit & LOCK_USAGE_DIR_MASK;
2690 
2691 	/*
2692 	 * keep state, bit flip the direction and strip read.
2693 	 */
2694 	return state | (dir ^ LOCK_USAGE_DIR_MASK);
2695 }
2696 
2697 /*
2698  * Observe that when given a bitmask where each bitnr is encoded as above, a
2699  * right shift of the mask transforms the individual bitnrs as -1 and
2700  * conversely, a left shift transforms into +1 for the individual bitnrs.
2701  *
2702  * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can
2703  * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0)
2704  * instead by subtracting the bit number by 2, or shifting the mask right by 2.
2705  *
2706  * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2.
2707  *
2708  * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is
2709  * all bits set) and recompose with bitnr1 flipped.
2710  */
invert_dir_mask(unsigned long mask)2711 static unsigned long invert_dir_mask(unsigned long mask)
2712 {
2713 	unsigned long excl = 0;
2714 
2715 	/* Invert dir */
2716 	excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK;
2717 	excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK;
2718 
2719 	return excl;
2720 }
2721 
2722 /*
2723  * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ
2724  * usage may cause deadlock too, for example:
2725  *
2726  * P1				P2
2727  * <irq disabled>
2728  * write_lock(l1);		<irq enabled>
2729  *				read_lock(l2);
2730  * write_lock(l2);
2731  * 				<in irq>
2732  * 				read_lock(l1);
2733  *
2734  * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2
2735  * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible
2736  * deadlock.
2737  *
2738  * In fact, all of the following cases may cause deadlocks:
2739  *
2740  * 	 LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*
2741  * 	 LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*
2742  * 	 LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ
2743  * 	 LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ
2744  *
2745  * As a result, to calculate the "exclusive mask", first we invert the
2746  * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with
2747  * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all
2748  * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*).
2749  */
exclusive_mask(unsigned long mask)2750 static unsigned long exclusive_mask(unsigned long mask)
2751 {
2752 	unsigned long excl = invert_dir_mask(mask);
2753 
2754 	excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2755 	excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2756 
2757 	return excl;
2758 }
2759 
2760 /*
2761  * Retrieve the _possible_ original mask to which @mask is
2762  * exclusive. Ie: this is the opposite of exclusive_mask().
2763  * Note that 2 possible original bits can match an exclusive
2764  * bit: one has LOCK_USAGE_READ_MASK set, the other has it
2765  * cleared. So both are returned for each exclusive bit.
2766  */
original_mask(unsigned long mask)2767 static unsigned long original_mask(unsigned long mask)
2768 {
2769 	unsigned long excl = invert_dir_mask(mask);
2770 
2771 	/* Include read in existing usages */
2772 	excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2773 	excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2774 
2775 	return excl;
2776 }
2777 
2778 /*
2779  * Find the first pair of bit match between an original
2780  * usage mask and an exclusive usage mask.
2781  */
find_exclusive_match(unsigned long mask,unsigned long excl_mask,enum lock_usage_bit * bitp,enum lock_usage_bit * excl_bitp)2782 static int find_exclusive_match(unsigned long mask,
2783 				unsigned long excl_mask,
2784 				enum lock_usage_bit *bitp,
2785 				enum lock_usage_bit *excl_bitp)
2786 {
2787 	int bit, excl, excl_read;
2788 
2789 	for_each_set_bit(bit, &mask, LOCK_USED) {
2790 		/*
2791 		 * exclusive_bit() strips the read bit, however,
2792 		 * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need
2793 		 * to search excl | LOCK_USAGE_READ_MASK as well.
2794 		 */
2795 		excl = exclusive_bit(bit);
2796 		excl_read = excl | LOCK_USAGE_READ_MASK;
2797 		if (excl_mask & lock_flag(excl)) {
2798 			*bitp = bit;
2799 			*excl_bitp = excl;
2800 			return 0;
2801 		} else if (excl_mask & lock_flag(excl_read)) {
2802 			*bitp = bit;
2803 			*excl_bitp = excl_read;
2804 			return 0;
2805 		}
2806 	}
2807 	return -1;
2808 }
2809 
2810 /*
2811  * Prove that the new dependency does not connect a hardirq-safe(-read)
2812  * lock with a hardirq-unsafe lock - to achieve this we search
2813  * the backwards-subgraph starting at <prev>, and the
2814  * forwards-subgraph starting at <next>:
2815  */
check_irq_usage(struct task_struct * curr,struct held_lock * prev,struct held_lock * next)2816 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev,
2817 			   struct held_lock *next)
2818 {
2819 	unsigned long usage_mask = 0, forward_mask, backward_mask;
2820 	enum lock_usage_bit forward_bit = 0, backward_bit = 0;
2821 	struct lock_list *target_entry1;
2822 	struct lock_list *target_entry;
2823 	struct lock_list this, that;
2824 	enum bfs_result ret;
2825 
2826 	/*
2827 	 * Step 1: gather all hard/soft IRQs usages backward in an
2828 	 * accumulated usage mask.
2829 	 */
2830 	bfs_init_rootb(&this, prev);
2831 
2832 	ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, usage_skip, NULL);
2833 	if (bfs_error(ret)) {
2834 		print_bfs_bug(ret);
2835 		return 0;
2836 	}
2837 
2838 	usage_mask &= LOCKF_USED_IN_IRQ_ALL;
2839 	if (!usage_mask)
2840 		return 1;
2841 
2842 	/*
2843 	 * Step 2: find exclusive uses forward that match the previous
2844 	 * backward accumulated mask.
2845 	 */
2846 	forward_mask = exclusive_mask(usage_mask);
2847 
2848 	bfs_init_root(&that, next);
2849 
2850 	ret = find_usage_forwards(&that, forward_mask, &target_entry1);
2851 	if (bfs_error(ret)) {
2852 		print_bfs_bug(ret);
2853 		return 0;
2854 	}
2855 	if (ret == BFS_RNOMATCH)
2856 		return 1;
2857 
2858 	/*
2859 	 * Step 3: we found a bad match! Now retrieve a lock from the backward
2860 	 * list whose usage mask matches the exclusive usage mask from the
2861 	 * lock found on the forward list.
2862 	 *
2863 	 * Note, we should only keep the LOCKF_ENABLED_IRQ_ALL bits, considering
2864 	 * the follow case:
2865 	 *
2866 	 * When trying to add A -> B to the graph, we find that there is a
2867 	 * hardirq-safe L, that L -> ... -> A, and another hardirq-unsafe M,
2868 	 * that B -> ... -> M. However M is **softirq-safe**, if we use exact
2869 	 * invert bits of M's usage_mask, we will find another lock N that is
2870 	 * **softirq-unsafe** and N -> ... -> A, however N -> .. -> M will not
2871 	 * cause a inversion deadlock.
2872 	 */
2873 	backward_mask = original_mask(target_entry1->class->usage_mask & LOCKF_ENABLED_IRQ_ALL);
2874 
2875 	ret = find_usage_backwards(&this, backward_mask, &target_entry);
2876 	if (bfs_error(ret)) {
2877 		print_bfs_bug(ret);
2878 		return 0;
2879 	}
2880 	if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH))
2881 		return 1;
2882 
2883 	/*
2884 	 * Step 4: narrow down to a pair of incompatible usage bits
2885 	 * and report it.
2886 	 */
2887 	ret = find_exclusive_match(target_entry->class->usage_mask,
2888 				   target_entry1->class->usage_mask,
2889 				   &backward_bit, &forward_bit);
2890 	if (DEBUG_LOCKS_WARN_ON(ret == -1))
2891 		return 1;
2892 
2893 	print_bad_irq_dependency(curr, &this, &that,
2894 				 target_entry, target_entry1,
2895 				 prev, next,
2896 				 backward_bit, forward_bit,
2897 				 state_name(backward_bit));
2898 
2899 	return 0;
2900 }
2901 
2902 #else
2903 
check_irq_usage(struct task_struct * curr,struct held_lock * prev,struct held_lock * next)2904 static inline int check_irq_usage(struct task_struct *curr,
2905 				  struct held_lock *prev, struct held_lock *next)
2906 {
2907 	return 1;
2908 }
2909 
usage_skip(struct lock_list * entry,void * mask)2910 static inline bool usage_skip(struct lock_list *entry, void *mask)
2911 {
2912 	return false;
2913 }
2914 
2915 #endif /* CONFIG_TRACE_IRQFLAGS */
2916 
2917 #ifdef CONFIG_LOCKDEP_SMALL
2918 /*
2919  * Check that the dependency graph starting at <src> can lead to
2920  * <target> or not. If it can, <src> -> <target> dependency is already
2921  * in the graph.
2922  *
2923  * Return BFS_RMATCH if it does, or BFS_RNOMATCH if it does not, return BFS_E* if
2924  * any error appears in the bfs search.
2925  */
2926 static noinline enum bfs_result
check_redundant(struct held_lock * src,struct held_lock * target)2927 check_redundant(struct held_lock *src, struct held_lock *target)
2928 {
2929 	enum bfs_result ret;
2930 	struct lock_list *target_entry;
2931 	struct lock_list src_entry;
2932 
2933 	bfs_init_root(&src_entry, src);
2934 	/*
2935 	 * Special setup for check_redundant().
2936 	 *
2937 	 * To report redundant, we need to find a strong dependency path that
2938 	 * is equal to or stronger than <src> -> <target>. So if <src> is E,
2939 	 * we need to let __bfs() only search for a path starting at a -(E*)->,
2940 	 * we achieve this by setting the initial node's ->only_xr to true in
2941 	 * that case. And if <prev> is S, we set initial ->only_xr to false
2942 	 * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant.
2943 	 */
2944 	src_entry.only_xr = src->read == 0;
2945 
2946 	debug_atomic_inc(nr_redundant_checks);
2947 
2948 	/*
2949 	 * Note: we skip local_lock() for redundant check, because as the
2950 	 * comment in usage_skip(), A -> local_lock() -> B and A -> B are not
2951 	 * the same.
2952 	 */
2953 	ret = check_path(target, &src_entry, hlock_equal, usage_skip, &target_entry);
2954 
2955 	if (ret == BFS_RMATCH)
2956 		debug_atomic_inc(nr_redundant);
2957 
2958 	return ret;
2959 }
2960 
2961 #else
2962 
2963 static inline enum bfs_result
check_redundant(struct held_lock * src,struct held_lock * target)2964 check_redundant(struct held_lock *src, struct held_lock *target)
2965 {
2966 	return BFS_RNOMATCH;
2967 }
2968 
2969 #endif
2970 
inc_chains(int irq_context)2971 static void inc_chains(int irq_context)
2972 {
2973 	if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2974 		nr_hardirq_chains++;
2975 	else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2976 		nr_softirq_chains++;
2977 	else
2978 		nr_process_chains++;
2979 }
2980 
dec_chains(int irq_context)2981 static void dec_chains(int irq_context)
2982 {
2983 	if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2984 		nr_hardirq_chains--;
2985 	else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2986 		nr_softirq_chains--;
2987 	else
2988 		nr_process_chains--;
2989 }
2990 
2991 static void
print_deadlock_scenario(struct held_lock * nxt,struct held_lock * prv)2992 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv)
2993 {
2994 	struct lock_class *next = hlock_class(nxt);
2995 	struct lock_class *prev = hlock_class(prv);
2996 
2997 	printk(" Possible unsafe locking scenario:\n\n");
2998 	printk("       CPU0\n");
2999 	printk("       ----\n");
3000 	printk("  lock(");
3001 	__print_lock_name(prv, prev);
3002 	printk(KERN_CONT ");\n");
3003 	printk("  lock(");
3004 	__print_lock_name(nxt, next);
3005 	printk(KERN_CONT ");\n");
3006 	printk("\n *** DEADLOCK ***\n\n");
3007 	printk(" May be due to missing lock nesting notation\n\n");
3008 }
3009 
3010 static void
print_deadlock_bug(struct task_struct * curr,struct held_lock * prev,struct held_lock * next)3011 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev,
3012 		   struct held_lock *next)
3013 {
3014 	struct lock_class *class = hlock_class(prev);
3015 
3016 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
3017 		return;
3018 
3019 	nbcon_cpu_emergency_enter();
3020 
3021 	pr_warn("\n");
3022 	pr_warn("============================================\n");
3023 	pr_warn("WARNING: possible recursive locking detected\n");
3024 	print_kernel_ident();
3025 	pr_warn("--------------------------------------------\n");
3026 	pr_warn("%s/%d is trying to acquire lock:\n",
3027 		curr->comm, task_pid_nr(curr));
3028 	print_lock(next);
3029 	pr_warn("\nbut task is already holding lock:\n");
3030 	print_lock(prev);
3031 
3032 	if (class->cmp_fn) {
3033 		pr_warn("and the lock comparison function returns %i:\n",
3034 			class->cmp_fn(prev->instance, next->instance));
3035 	}
3036 
3037 	pr_warn("\nother info that might help us debug this:\n");
3038 	print_deadlock_scenario(next, prev);
3039 	lockdep_print_held_locks(curr);
3040 
3041 	pr_warn("\nstack backtrace:\n");
3042 	dump_stack();
3043 
3044 	nbcon_cpu_emergency_exit();
3045 }
3046 
3047 /*
3048  * Check whether we are holding such a class already.
3049  *
3050  * (Note that this has to be done separately, because the graph cannot
3051  * detect such classes of deadlocks.)
3052  *
3053  * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same
3054  * lock class is held but nest_lock is also held, i.e. we rely on the
3055  * nest_lock to avoid the deadlock.
3056  */
3057 static int
check_deadlock(struct task_struct * curr,struct held_lock * next)3058 check_deadlock(struct task_struct *curr, struct held_lock *next)
3059 {
3060 	struct lock_class *class;
3061 	struct held_lock *prev;
3062 	struct held_lock *nest = NULL;
3063 	int i;
3064 
3065 	for (i = 0; i < curr->lockdep_depth; i++) {
3066 		prev = curr->held_locks + i;
3067 
3068 		if (prev->instance == next->nest_lock)
3069 			nest = prev;
3070 
3071 		if (hlock_class(prev) != hlock_class(next))
3072 			continue;
3073 
3074 		/*
3075 		 * Allow read-after-read recursion of the same
3076 		 * lock class (i.e. read_lock(lock)+read_lock(lock)):
3077 		 */
3078 		if ((next->read == 2) && prev->read)
3079 			continue;
3080 
3081 		class = hlock_class(prev);
3082 
3083 		if (class->cmp_fn &&
3084 		    class->cmp_fn(prev->instance, next->instance) < 0)
3085 			continue;
3086 
3087 		/*
3088 		 * We're holding the nest_lock, which serializes this lock's
3089 		 * nesting behaviour.
3090 		 */
3091 		if (nest)
3092 			return 2;
3093 
3094 		print_deadlock_bug(curr, prev, next);
3095 		return 0;
3096 	}
3097 	return 1;
3098 }
3099 
3100 /*
3101  * There was a chain-cache miss, and we are about to add a new dependency
3102  * to a previous lock. We validate the following rules:
3103  *
3104  *  - would the adding of the <prev> -> <next> dependency create a
3105  *    circular dependency in the graph? [== circular deadlock]
3106  *
3107  *  - does the new prev->next dependency connect any hardirq-safe lock
3108  *    (in the full backwards-subgraph starting at <prev>) with any
3109  *    hardirq-unsafe lock (in the full forwards-subgraph starting at
3110  *    <next>)? [== illegal lock inversion with hardirq contexts]
3111  *
3112  *  - does the new prev->next dependency connect any softirq-safe lock
3113  *    (in the full backwards-subgraph starting at <prev>) with any
3114  *    softirq-unsafe lock (in the full forwards-subgraph starting at
3115  *    <next>)? [== illegal lock inversion with softirq contexts]
3116  *
3117  * any of these scenarios could lead to a deadlock.
3118  *
3119  * Then if all the validations pass, we add the forwards and backwards
3120  * dependency.
3121  */
3122 static int
check_prev_add(struct task_struct * curr,struct held_lock * prev,struct held_lock * next,u16 distance,struct lock_trace ** const trace)3123 check_prev_add(struct task_struct *curr, struct held_lock *prev,
3124 	       struct held_lock *next, u16 distance,
3125 	       struct lock_trace **const trace)
3126 {
3127 	struct lock_list *entry;
3128 	enum bfs_result ret;
3129 
3130 	if (!hlock_class(prev)->key || !hlock_class(next)->key) {
3131 		/*
3132 		 * The warning statements below may trigger a use-after-free
3133 		 * of the class name. It is better to trigger a use-after free
3134 		 * and to have the class name most of the time instead of not
3135 		 * having the class name available.
3136 		 */
3137 		WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key,
3138 			  "Detected use-after-free of lock class %px/%s\n",
3139 			  hlock_class(prev),
3140 			  hlock_class(prev)->name);
3141 		WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key,
3142 			  "Detected use-after-free of lock class %px/%s\n",
3143 			  hlock_class(next),
3144 			  hlock_class(next)->name);
3145 		return 2;
3146 	}
3147 
3148 	if (prev->class_idx == next->class_idx) {
3149 		struct lock_class *class = hlock_class(prev);
3150 
3151 		if (class->cmp_fn &&
3152 		    class->cmp_fn(prev->instance, next->instance) < 0)
3153 			return 2;
3154 	}
3155 
3156 	/*
3157 	 * Prove that the new <prev> -> <next> dependency would not
3158 	 * create a circular dependency in the graph. (We do this by
3159 	 * a breadth-first search into the graph starting at <next>,
3160 	 * and check whether we can reach <prev>.)
3161 	 *
3162 	 * The search is limited by the size of the circular queue (i.e.,
3163 	 * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes
3164 	 * in the graph whose neighbours are to be checked.
3165 	 */
3166 	ret = check_noncircular(next, prev, trace);
3167 	if (unlikely(bfs_error(ret) || ret == BFS_RMATCH))
3168 		return 0;
3169 
3170 	if (!check_irq_usage(curr, prev, next))
3171 		return 0;
3172 
3173 	/*
3174 	 * Is the <prev> -> <next> dependency already present?
3175 	 *
3176 	 * (this may occur even though this is a new chain: consider
3177 	 *  e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3
3178 	 *  chains - the second one will be new, but L1 already has
3179 	 *  L2 added to its dependency list, due to the first chain.)
3180 	 */
3181 	list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) {
3182 		if (entry->class == hlock_class(next)) {
3183 			if (distance == 1)
3184 				entry->distance = 1;
3185 			entry->dep |= calc_dep(prev, next);
3186 
3187 			/*
3188 			 * Also, update the reverse dependency in @next's
3189 			 * ->locks_before list.
3190 			 *
3191 			 *  Here we reuse @entry as the cursor, which is fine
3192 			 *  because we won't go to the next iteration of the
3193 			 *  outer loop:
3194 			 *
3195 			 *  For normal cases, we return in the inner loop.
3196 			 *
3197 			 *  If we fail to return, we have inconsistency, i.e.
3198 			 *  <prev>::locks_after contains <next> while
3199 			 *  <next>::locks_before doesn't contain <prev>. In
3200 			 *  that case, we return after the inner and indicate
3201 			 *  something is wrong.
3202 			 */
3203 			list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) {
3204 				if (entry->class == hlock_class(prev)) {
3205 					if (distance == 1)
3206 						entry->distance = 1;
3207 					entry->dep |= calc_depb(prev, next);
3208 					return 1;
3209 				}
3210 			}
3211 
3212 			/* <prev> is not found in <next>::locks_before */
3213 			return 0;
3214 		}
3215 	}
3216 
3217 	/*
3218 	 * Is the <prev> -> <next> link redundant?
3219 	 */
3220 	ret = check_redundant(prev, next);
3221 	if (bfs_error(ret))
3222 		return 0;
3223 	else if (ret == BFS_RMATCH)
3224 		return 2;
3225 
3226 	if (!*trace) {
3227 		*trace = save_trace();
3228 		if (!*trace)
3229 			return 0;
3230 	}
3231 
3232 	/*
3233 	 * Ok, all validations passed, add the new lock
3234 	 * to the previous lock's dependency list:
3235 	 */
3236 	ret = add_lock_to_list(hlock_class(next), hlock_class(prev),
3237 			       &hlock_class(prev)->locks_after, distance,
3238 			       calc_dep(prev, next), *trace);
3239 
3240 	if (!ret)
3241 		return 0;
3242 
3243 	ret = add_lock_to_list(hlock_class(prev), hlock_class(next),
3244 			       &hlock_class(next)->locks_before, distance,
3245 			       calc_depb(prev, next), *trace);
3246 	if (!ret)
3247 		return 0;
3248 
3249 	return 2;
3250 }
3251 
3252 /*
3253  * Add the dependency to all directly-previous locks that are 'relevant'.
3254  * The ones that are relevant are (in increasing distance from curr):
3255  * all consecutive trylock entries and the final non-trylock entry - or
3256  * the end of this context's lock-chain - whichever comes first.
3257  */
3258 static int
check_prevs_add(struct task_struct * curr,struct held_lock * next)3259 check_prevs_add(struct task_struct *curr, struct held_lock *next)
3260 {
3261 	struct lock_trace *trace = NULL;
3262 	int depth = curr->lockdep_depth;
3263 	struct held_lock *hlock;
3264 
3265 	/*
3266 	 * Debugging checks.
3267 	 *
3268 	 * Depth must not be zero for a non-head lock:
3269 	 */
3270 	if (!depth)
3271 		goto out_bug;
3272 	/*
3273 	 * At least two relevant locks must exist for this
3274 	 * to be a head:
3275 	 */
3276 	if (curr->held_locks[depth].irq_context !=
3277 			curr->held_locks[depth-1].irq_context)
3278 		goto out_bug;
3279 
3280 	for (;;) {
3281 		u16 distance = curr->lockdep_depth - depth + 1;
3282 		hlock = curr->held_locks + depth - 1;
3283 
3284 		if (hlock->check) {
3285 			int ret = check_prev_add(curr, hlock, next, distance, &trace);
3286 			if (!ret)
3287 				return 0;
3288 
3289 			/*
3290 			 * Stop after the first non-trylock entry,
3291 			 * as non-trylock entries have added their
3292 			 * own direct dependencies already, so this
3293 			 * lock is connected to them indirectly:
3294 			 */
3295 			if (!hlock->trylock)
3296 				break;
3297 		}
3298 
3299 		depth--;
3300 		/*
3301 		 * End of lock-stack?
3302 		 */
3303 		if (!depth)
3304 			break;
3305 		/*
3306 		 * Stop the search if we cross into another context:
3307 		 */
3308 		if (curr->held_locks[depth].irq_context !=
3309 				curr->held_locks[depth-1].irq_context)
3310 			break;
3311 	}
3312 	return 1;
3313 out_bug:
3314 	if (!debug_locks_off_graph_unlock())
3315 		return 0;
3316 
3317 	/*
3318 	 * Clearly we all shouldn't be here, but since we made it we
3319 	 * can reliable say we messed up our state. See the above two
3320 	 * gotos for reasons why we could possibly end up here.
3321 	 */
3322 	WARN_ON(1);
3323 
3324 	return 0;
3325 }
3326 
3327 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS];
3328 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS);
3329 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
3330 unsigned long nr_zapped_lock_chains;
3331 unsigned int nr_free_chain_hlocks;	/* Free chain_hlocks in buckets */
3332 unsigned int nr_lost_chain_hlocks;	/* Lost chain_hlocks */
3333 unsigned int nr_large_chain_blocks;	/* size > MAX_CHAIN_BUCKETS */
3334 
3335 /*
3336  * The first 2 chain_hlocks entries in the chain block in the bucket
3337  * list contains the following meta data:
3338  *
3339  *   entry[0]:
3340  *     Bit    15 - always set to 1 (it is not a class index)
3341  *     Bits 0-14 - upper 15 bits of the next block index
3342  *   entry[1]    - lower 16 bits of next block index
3343  *
3344  * A next block index of all 1 bits means it is the end of the list.
3345  *
3346  * On the unsized bucket (bucket-0), the 3rd and 4th entries contain
3347  * the chain block size:
3348  *
3349  *   entry[2] - upper 16 bits of the chain block size
3350  *   entry[3] - lower 16 bits of the chain block size
3351  */
3352 #define MAX_CHAIN_BUCKETS	16
3353 #define CHAIN_BLK_FLAG		(1U << 15)
3354 #define CHAIN_BLK_LIST_END	0xFFFFU
3355 
3356 static int chain_block_buckets[MAX_CHAIN_BUCKETS];
3357 
size_to_bucket(int size)3358 static inline int size_to_bucket(int size)
3359 {
3360 	if (size > MAX_CHAIN_BUCKETS)
3361 		return 0;
3362 
3363 	return size - 1;
3364 }
3365 
3366 /*
3367  * Iterate all the chain blocks in a bucket.
3368  */
3369 #define for_each_chain_block(bucket, prev, curr)		\
3370 	for ((prev) = -1, (curr) = chain_block_buckets[bucket];	\
3371 	     (curr) >= 0;					\
3372 	     (prev) = (curr), (curr) = chain_block_next(curr))
3373 
3374 /*
3375  * next block or -1
3376  */
chain_block_next(int offset)3377 static inline int chain_block_next(int offset)
3378 {
3379 	int next = chain_hlocks[offset];
3380 
3381 	WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG));
3382 
3383 	if (next == CHAIN_BLK_LIST_END)
3384 		return -1;
3385 
3386 	next &= ~CHAIN_BLK_FLAG;
3387 	next <<= 16;
3388 	next |= chain_hlocks[offset + 1];
3389 
3390 	return next;
3391 }
3392 
3393 /*
3394  * bucket-0 only
3395  */
chain_block_size(int offset)3396 static inline int chain_block_size(int offset)
3397 {
3398 	return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3];
3399 }
3400 
init_chain_block(int offset,int next,int bucket,int size)3401 static inline void init_chain_block(int offset, int next, int bucket, int size)
3402 {
3403 	chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG;
3404 	chain_hlocks[offset + 1] = (u16)next;
3405 
3406 	if (size && !bucket) {
3407 		chain_hlocks[offset + 2] = size >> 16;
3408 		chain_hlocks[offset + 3] = (u16)size;
3409 	}
3410 }
3411 
add_chain_block(int offset,int size)3412 static inline void add_chain_block(int offset, int size)
3413 {
3414 	int bucket = size_to_bucket(size);
3415 	int next = chain_block_buckets[bucket];
3416 	int prev, curr;
3417 
3418 	if (unlikely(size < 2)) {
3419 		/*
3420 		 * We can't store single entries on the freelist. Leak them.
3421 		 *
3422 		 * One possible way out would be to uniquely mark them, other
3423 		 * than with CHAIN_BLK_FLAG, such that we can recover them when
3424 		 * the block before it is re-added.
3425 		 */
3426 		if (size)
3427 			nr_lost_chain_hlocks++;
3428 		return;
3429 	}
3430 
3431 	nr_free_chain_hlocks += size;
3432 	if (!bucket) {
3433 		nr_large_chain_blocks++;
3434 
3435 		/*
3436 		 * Variable sized, sort large to small.
3437 		 */
3438 		for_each_chain_block(0, prev, curr) {
3439 			if (size >= chain_block_size(curr))
3440 				break;
3441 		}
3442 		init_chain_block(offset, curr, 0, size);
3443 		if (prev < 0)
3444 			chain_block_buckets[0] = offset;
3445 		else
3446 			init_chain_block(prev, offset, 0, 0);
3447 		return;
3448 	}
3449 	/*
3450 	 * Fixed size, add to head.
3451 	 */
3452 	init_chain_block(offset, next, bucket, size);
3453 	chain_block_buckets[bucket] = offset;
3454 }
3455 
3456 /*
3457  * Only the first block in the list can be deleted.
3458  *
3459  * For the variable size bucket[0], the first block (the largest one) is
3460  * returned, broken up and put back into the pool. So if a chain block of
3461  * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be
3462  * queued up after the primordial chain block and never be used until the
3463  * hlock entries in the primordial chain block is almost used up. That
3464  * causes fragmentation and reduce allocation efficiency. That can be
3465  * monitored by looking at the "large chain blocks" number in lockdep_stats.
3466  */
del_chain_block(int bucket,int size,int next)3467 static inline void del_chain_block(int bucket, int size, int next)
3468 {
3469 	nr_free_chain_hlocks -= size;
3470 	chain_block_buckets[bucket] = next;
3471 
3472 	if (!bucket)
3473 		nr_large_chain_blocks--;
3474 }
3475 
init_chain_block_buckets(void)3476 static void init_chain_block_buckets(void)
3477 {
3478 	int i;
3479 
3480 	for (i = 0; i < MAX_CHAIN_BUCKETS; i++)
3481 		chain_block_buckets[i] = -1;
3482 
3483 	add_chain_block(0, ARRAY_SIZE(chain_hlocks));
3484 }
3485 
3486 /*
3487  * Return offset of a chain block of the right size or -1 if not found.
3488  *
3489  * Fairly simple worst-fit allocator with the addition of a number of size
3490  * specific free lists.
3491  */
alloc_chain_hlocks(int req)3492 static int alloc_chain_hlocks(int req)
3493 {
3494 	int bucket, curr, size;
3495 
3496 	/*
3497 	 * We rely on the MSB to act as an escape bit to denote freelist
3498 	 * pointers. Make sure this bit isn't set in 'normal' class_idx usage.
3499 	 */
3500 	BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG);
3501 
3502 	init_data_structures_once();
3503 
3504 	if (nr_free_chain_hlocks < req)
3505 		return -1;
3506 
3507 	/*
3508 	 * We require a minimum of 2 (u16) entries to encode a freelist
3509 	 * 'pointer'.
3510 	 */
3511 	req = max(req, 2);
3512 	bucket = size_to_bucket(req);
3513 	curr = chain_block_buckets[bucket];
3514 
3515 	if (bucket) {
3516 		if (curr >= 0) {
3517 			del_chain_block(bucket, req, chain_block_next(curr));
3518 			return curr;
3519 		}
3520 		/* Try bucket 0 */
3521 		curr = chain_block_buckets[0];
3522 	}
3523 
3524 	/*
3525 	 * The variable sized freelist is sorted by size; the first entry is
3526 	 * the largest. Use it if it fits.
3527 	 */
3528 	if (curr >= 0) {
3529 		size = chain_block_size(curr);
3530 		if (likely(size >= req)) {
3531 			del_chain_block(0, size, chain_block_next(curr));
3532 			if (size > req)
3533 				add_chain_block(curr + req, size - req);
3534 			return curr;
3535 		}
3536 	}
3537 
3538 	/*
3539 	 * Last resort, split a block in a larger sized bucket.
3540 	 */
3541 	for (size = MAX_CHAIN_BUCKETS; size > req; size--) {
3542 		bucket = size_to_bucket(size);
3543 		curr = chain_block_buckets[bucket];
3544 		if (curr < 0)
3545 			continue;
3546 
3547 		del_chain_block(bucket, size, chain_block_next(curr));
3548 		add_chain_block(curr + req, size - req);
3549 		return curr;
3550 	}
3551 
3552 	return -1;
3553 }
3554 
free_chain_hlocks(int base,int size)3555 static inline void free_chain_hlocks(int base, int size)
3556 {
3557 	add_chain_block(base, max(size, 2));
3558 }
3559 
lock_chain_get_class(struct lock_chain * chain,int i)3560 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i)
3561 {
3562 	u16 chain_hlock = chain_hlocks[chain->base + i];
3563 	unsigned int class_idx = chain_hlock_class_idx(chain_hlock);
3564 
3565 	return lock_classes + class_idx;
3566 }
3567 
3568 /*
3569  * Returns the index of the first held_lock of the current chain
3570  */
get_first_held_lock(struct task_struct * curr,struct held_lock * hlock)3571 static inline int get_first_held_lock(struct task_struct *curr,
3572 					struct held_lock *hlock)
3573 {
3574 	int i;
3575 	struct held_lock *hlock_curr;
3576 
3577 	for (i = curr->lockdep_depth - 1; i >= 0; i--) {
3578 		hlock_curr = curr->held_locks + i;
3579 		if (hlock_curr->irq_context != hlock->irq_context)
3580 			break;
3581 
3582 	}
3583 
3584 	return ++i;
3585 }
3586 
3587 #ifdef CONFIG_DEBUG_LOCKDEP
3588 /*
3589  * Returns the next chain_key iteration
3590  */
print_chain_key_iteration(u16 hlock_id,u64 chain_key)3591 static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key)
3592 {
3593 	u64 new_chain_key = iterate_chain_key(chain_key, hlock_id);
3594 
3595 	printk(" hlock_id:%d -> chain_key:%016Lx",
3596 		(unsigned int)hlock_id,
3597 		(unsigned long long)new_chain_key);
3598 	return new_chain_key;
3599 }
3600 
3601 static void
print_chain_keys_held_locks(struct task_struct * curr,struct held_lock * hlock_next)3602 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next)
3603 {
3604 	struct held_lock *hlock;
3605 	u64 chain_key = INITIAL_CHAIN_KEY;
3606 	int depth = curr->lockdep_depth;
3607 	int i = get_first_held_lock(curr, hlock_next);
3608 
3609 	printk("depth: %u (irq_context %u)\n", depth - i + 1,
3610 		hlock_next->irq_context);
3611 	for (; i < depth; i++) {
3612 		hlock = curr->held_locks + i;
3613 		chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key);
3614 
3615 		print_lock(hlock);
3616 	}
3617 
3618 	print_chain_key_iteration(hlock_id(hlock_next), chain_key);
3619 	print_lock(hlock_next);
3620 }
3621 
print_chain_keys_chain(struct lock_chain * chain)3622 static void print_chain_keys_chain(struct lock_chain *chain)
3623 {
3624 	int i;
3625 	u64 chain_key = INITIAL_CHAIN_KEY;
3626 	u16 hlock_id;
3627 
3628 	printk("depth: %u\n", chain->depth);
3629 	for (i = 0; i < chain->depth; i++) {
3630 		hlock_id = chain_hlocks[chain->base + i];
3631 		chain_key = print_chain_key_iteration(hlock_id, chain_key);
3632 
3633 		print_lock_name(NULL, lock_classes + chain_hlock_class_idx(hlock_id));
3634 		printk("\n");
3635 	}
3636 }
3637 
print_collision(struct task_struct * curr,struct held_lock * hlock_next,struct lock_chain * chain)3638 static void print_collision(struct task_struct *curr,
3639 			struct held_lock *hlock_next,
3640 			struct lock_chain *chain)
3641 {
3642 	nbcon_cpu_emergency_enter();
3643 
3644 	pr_warn("\n");
3645 	pr_warn("============================\n");
3646 	pr_warn("WARNING: chain_key collision\n");
3647 	print_kernel_ident();
3648 	pr_warn("----------------------------\n");
3649 	pr_warn("%s/%d: ", current->comm, task_pid_nr(current));
3650 	pr_warn("Hash chain already cached but the contents don't match!\n");
3651 
3652 	pr_warn("Held locks:");
3653 	print_chain_keys_held_locks(curr, hlock_next);
3654 
3655 	pr_warn("Locks in cached chain:");
3656 	print_chain_keys_chain(chain);
3657 
3658 	pr_warn("\nstack backtrace:\n");
3659 	dump_stack();
3660 
3661 	nbcon_cpu_emergency_exit();
3662 }
3663 #endif
3664 
3665 /*
3666  * Checks whether the chain and the current held locks are consistent
3667  * in depth and also in content. If they are not it most likely means
3668  * that there was a collision during the calculation of the chain_key.
3669  * Returns: 0 not passed, 1 passed
3670  */
check_no_collision(struct task_struct * curr,struct held_lock * hlock,struct lock_chain * chain)3671 static int check_no_collision(struct task_struct *curr,
3672 			struct held_lock *hlock,
3673 			struct lock_chain *chain)
3674 {
3675 #ifdef CONFIG_DEBUG_LOCKDEP
3676 	int i, j, id;
3677 
3678 	i = get_first_held_lock(curr, hlock);
3679 
3680 	if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) {
3681 		print_collision(curr, hlock, chain);
3682 		return 0;
3683 	}
3684 
3685 	for (j = 0; j < chain->depth - 1; j++, i++) {
3686 		id = hlock_id(&curr->held_locks[i]);
3687 
3688 		if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) {
3689 			print_collision(curr, hlock, chain);
3690 			return 0;
3691 		}
3692 	}
3693 #endif
3694 	return 1;
3695 }
3696 
3697 /*
3698  * Given an index that is >= -1, return the index of the next lock chain.
3699  * Return -2 if there is no next lock chain.
3700  */
lockdep_next_lockchain(long i)3701 long lockdep_next_lockchain(long i)
3702 {
3703 	i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1);
3704 	return i < ARRAY_SIZE(lock_chains) ? i : -2;
3705 }
3706 
lock_chain_count(void)3707 unsigned long lock_chain_count(void)
3708 {
3709 	return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains));
3710 }
3711 
3712 /* Must be called with the graph lock held. */
alloc_lock_chain(void)3713 static struct lock_chain *alloc_lock_chain(void)
3714 {
3715 	int idx = find_first_zero_bit(lock_chains_in_use,
3716 				      ARRAY_SIZE(lock_chains));
3717 
3718 	if (unlikely(idx >= ARRAY_SIZE(lock_chains)))
3719 		return NULL;
3720 	__set_bit(idx, lock_chains_in_use);
3721 	return lock_chains + idx;
3722 }
3723 
3724 /*
3725  * Adds a dependency chain into chain hashtable. And must be called with
3726  * graph_lock held.
3727  *
3728  * Return 0 if fail, and graph_lock is released.
3729  * Return 1 if succeed, with graph_lock held.
3730  */
add_chain_cache(struct task_struct * curr,struct held_lock * hlock,u64 chain_key)3731 static inline int add_chain_cache(struct task_struct *curr,
3732 				  struct held_lock *hlock,
3733 				  u64 chain_key)
3734 {
3735 	struct hlist_head *hash_head = chainhashentry(chain_key);
3736 	struct lock_chain *chain;
3737 	int i, j;
3738 
3739 	/*
3740 	 * The caller must hold the graph lock, ensure we've got IRQs
3741 	 * disabled to make this an IRQ-safe lock.. for recursion reasons
3742 	 * lockdep won't complain about its own locking errors.
3743 	 */
3744 	if (lockdep_assert_locked())
3745 		return 0;
3746 
3747 	chain = alloc_lock_chain();
3748 	if (!chain) {
3749 		if (!debug_locks_off_graph_unlock())
3750 			return 0;
3751 
3752 		nbcon_cpu_emergency_enter();
3753 		print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!");
3754 		dump_stack();
3755 		nbcon_cpu_emergency_exit();
3756 		return 0;
3757 	}
3758 	chain->chain_key = chain_key;
3759 	chain->irq_context = hlock->irq_context;
3760 	i = get_first_held_lock(curr, hlock);
3761 	chain->depth = curr->lockdep_depth + 1 - i;
3762 
3763 	BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks));
3764 	BUILD_BUG_ON((1UL << 6)  <= ARRAY_SIZE(curr->held_locks));
3765 	BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes));
3766 
3767 	j = alloc_chain_hlocks(chain->depth);
3768 	if (j < 0) {
3769 		if (!debug_locks_off_graph_unlock())
3770 			return 0;
3771 
3772 		nbcon_cpu_emergency_enter();
3773 		print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!");
3774 		dump_stack();
3775 		nbcon_cpu_emergency_exit();
3776 		return 0;
3777 	}
3778 
3779 	chain->base = j;
3780 	for (j = 0; j < chain->depth - 1; j++, i++) {
3781 		int lock_id = hlock_id(curr->held_locks + i);
3782 
3783 		chain_hlocks[chain->base + j] = lock_id;
3784 	}
3785 	chain_hlocks[chain->base + j] = hlock_id(hlock);
3786 	hlist_add_head_rcu(&chain->entry, hash_head);
3787 	debug_atomic_inc(chain_lookup_misses);
3788 	inc_chains(chain->irq_context);
3789 
3790 	return 1;
3791 }
3792 
3793 /*
3794  * Look up a dependency chain. Must be called with either the graph lock or
3795  * the RCU read lock held.
3796  */
lookup_chain_cache(u64 chain_key)3797 static inline struct lock_chain *lookup_chain_cache(u64 chain_key)
3798 {
3799 	struct hlist_head *hash_head = chainhashentry(chain_key);
3800 	struct lock_chain *chain;
3801 
3802 	hlist_for_each_entry_rcu(chain, hash_head, entry) {
3803 		if (READ_ONCE(chain->chain_key) == chain_key) {
3804 			debug_atomic_inc(chain_lookup_hits);
3805 			return chain;
3806 		}
3807 	}
3808 	return NULL;
3809 }
3810 
3811 /*
3812  * If the key is not present yet in dependency chain cache then
3813  * add it and return 1 - in this case the new dependency chain is
3814  * validated. If the key is already hashed, return 0.
3815  * (On return with 1 graph_lock is held.)
3816  */
lookup_chain_cache_add(struct task_struct * curr,struct held_lock * hlock,u64 chain_key)3817 static inline int lookup_chain_cache_add(struct task_struct *curr,
3818 					 struct held_lock *hlock,
3819 					 u64 chain_key)
3820 {
3821 	struct lock_class *class = hlock_class(hlock);
3822 	struct lock_chain *chain = lookup_chain_cache(chain_key);
3823 
3824 	if (chain) {
3825 cache_hit:
3826 		if (!check_no_collision(curr, hlock, chain))
3827 			return 0;
3828 
3829 		if (very_verbose(class)) {
3830 			printk("\nhash chain already cached, key: "
3831 					"%016Lx tail class: [%px] %s\n",
3832 					(unsigned long long)chain_key,
3833 					class->key, class->name);
3834 		}
3835 
3836 		return 0;
3837 	}
3838 
3839 	if (very_verbose(class)) {
3840 		printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n",
3841 			(unsigned long long)chain_key, class->key, class->name);
3842 	}
3843 
3844 	if (!graph_lock())
3845 		return 0;
3846 
3847 	/*
3848 	 * We have to walk the chain again locked - to avoid duplicates:
3849 	 */
3850 	chain = lookup_chain_cache(chain_key);
3851 	if (chain) {
3852 		graph_unlock();
3853 		goto cache_hit;
3854 	}
3855 
3856 	if (!add_chain_cache(curr, hlock, chain_key))
3857 		return 0;
3858 
3859 	return 1;
3860 }
3861 
validate_chain(struct task_struct * curr,struct held_lock * hlock,int chain_head,u64 chain_key)3862 static int validate_chain(struct task_struct *curr,
3863 			  struct held_lock *hlock,
3864 			  int chain_head, u64 chain_key)
3865 {
3866 	/*
3867 	 * Trylock needs to maintain the stack of held locks, but it
3868 	 * does not add new dependencies, because trylock can be done
3869 	 * in any order.
3870 	 *
3871 	 * We look up the chain_key and do the O(N^2) check and update of
3872 	 * the dependencies only if this is a new dependency chain.
3873 	 * (If lookup_chain_cache_add() return with 1 it acquires
3874 	 * graph_lock for us)
3875 	 */
3876 	if (!hlock->trylock && hlock->check &&
3877 	    lookup_chain_cache_add(curr, hlock, chain_key)) {
3878 		/*
3879 		 * Check whether last held lock:
3880 		 *
3881 		 * - is irq-safe, if this lock is irq-unsafe
3882 		 * - is softirq-safe, if this lock is hardirq-unsafe
3883 		 *
3884 		 * And check whether the new lock's dependency graph
3885 		 * could lead back to the previous lock:
3886 		 *
3887 		 * - within the current held-lock stack
3888 		 * - across our accumulated lock dependency records
3889 		 *
3890 		 * any of these scenarios could lead to a deadlock.
3891 		 */
3892 		/*
3893 		 * The simple case: does the current hold the same lock
3894 		 * already?
3895 		 */
3896 		int ret = check_deadlock(curr, hlock);
3897 
3898 		if (!ret)
3899 			return 0;
3900 		/*
3901 		 * Add dependency only if this lock is not the head
3902 		 * of the chain, and if the new lock introduces no more
3903 		 * lock dependency (because we already hold a lock with the
3904 		 * same lock class) nor deadlock (because the nest_lock
3905 		 * serializes nesting locks), see the comments for
3906 		 * check_deadlock().
3907 		 */
3908 		if (!chain_head && ret != 2) {
3909 			if (!check_prevs_add(curr, hlock))
3910 				return 0;
3911 		}
3912 
3913 		graph_unlock();
3914 	} else {
3915 		/* after lookup_chain_cache_add(): */
3916 		if (unlikely(!debug_locks))
3917 			return 0;
3918 	}
3919 
3920 	return 1;
3921 }
3922 #else
validate_chain(struct task_struct * curr,struct held_lock * hlock,int chain_head,u64 chain_key)3923 static inline int validate_chain(struct task_struct *curr,
3924 				 struct held_lock *hlock,
3925 				 int chain_head, u64 chain_key)
3926 {
3927 	return 1;
3928 }
3929 
init_chain_block_buckets(void)3930 static void init_chain_block_buckets(void)	{ }
3931 #endif /* CONFIG_PROVE_LOCKING */
3932 
3933 /*
3934  * We are building curr_chain_key incrementally, so double-check
3935  * it from scratch, to make sure that it's done correctly:
3936  */
check_chain_key(struct task_struct * curr)3937 static void check_chain_key(struct task_struct *curr)
3938 {
3939 #ifdef CONFIG_DEBUG_LOCKDEP
3940 	struct held_lock *hlock, *prev_hlock = NULL;
3941 	unsigned int i;
3942 	u64 chain_key = INITIAL_CHAIN_KEY;
3943 
3944 	for (i = 0; i < curr->lockdep_depth; i++) {
3945 		hlock = curr->held_locks + i;
3946 		if (chain_key != hlock->prev_chain_key) {
3947 			debug_locks_off();
3948 			/*
3949 			 * We got mighty confused, our chain keys don't match
3950 			 * with what we expect, someone trample on our task state?
3951 			 */
3952 			WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n",
3953 				curr->lockdep_depth, i,
3954 				(unsigned long long)chain_key,
3955 				(unsigned long long)hlock->prev_chain_key);
3956 			return;
3957 		}
3958 
3959 		/*
3960 		 * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is
3961 		 * it registered lock class index?
3962 		 */
3963 		if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use)))
3964 			return;
3965 
3966 		if (prev_hlock && (prev_hlock->irq_context !=
3967 							hlock->irq_context))
3968 			chain_key = INITIAL_CHAIN_KEY;
3969 		chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
3970 		prev_hlock = hlock;
3971 	}
3972 	if (chain_key != curr->curr_chain_key) {
3973 		debug_locks_off();
3974 		/*
3975 		 * More smoking hash instead of calculating it, damn see these
3976 		 * numbers float.. I bet that a pink elephant stepped on my memory.
3977 		 */
3978 		WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n",
3979 			curr->lockdep_depth, i,
3980 			(unsigned long long)chain_key,
3981 			(unsigned long long)curr->curr_chain_key);
3982 	}
3983 #endif
3984 }
3985 
3986 #ifdef CONFIG_PROVE_LOCKING
3987 static int mark_lock(struct task_struct *curr, struct held_lock *this,
3988 		     enum lock_usage_bit new_bit);
3989 
print_usage_bug_scenario(struct held_lock * lock)3990 static void print_usage_bug_scenario(struct held_lock *lock)
3991 {
3992 	struct lock_class *class = hlock_class(lock);
3993 
3994 	printk(" Possible unsafe locking scenario:\n\n");
3995 	printk("       CPU0\n");
3996 	printk("       ----\n");
3997 	printk("  lock(");
3998 	__print_lock_name(lock, class);
3999 	printk(KERN_CONT ");\n");
4000 	printk("  <Interrupt>\n");
4001 	printk("    lock(");
4002 	__print_lock_name(lock, class);
4003 	printk(KERN_CONT ");\n");
4004 	printk("\n *** DEADLOCK ***\n\n");
4005 }
4006 
4007 static void
print_usage_bug(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit prev_bit,enum lock_usage_bit new_bit)4008 print_usage_bug(struct task_struct *curr, struct held_lock *this,
4009 		enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit)
4010 {
4011 	if (!debug_locks_off() || debug_locks_silent)
4012 		return;
4013 
4014 	nbcon_cpu_emergency_enter();
4015 
4016 	pr_warn("\n");
4017 	pr_warn("================================\n");
4018 	pr_warn("WARNING: inconsistent lock state\n");
4019 	print_kernel_ident();
4020 	pr_warn("--------------------------------\n");
4021 
4022 	pr_warn("inconsistent {%s} -> {%s} usage.\n",
4023 		usage_str[prev_bit], usage_str[new_bit]);
4024 
4025 	pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n",
4026 		curr->comm, task_pid_nr(curr),
4027 		lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
4028 		lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT,
4029 		lockdep_hardirqs_enabled(),
4030 		lockdep_softirqs_enabled(curr));
4031 	print_lock(this);
4032 
4033 	pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]);
4034 	print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1);
4035 
4036 	print_irqtrace_events(curr);
4037 	pr_warn("\nother info that might help us debug this:\n");
4038 	print_usage_bug_scenario(this);
4039 
4040 	lockdep_print_held_locks(curr);
4041 
4042 	pr_warn("\nstack backtrace:\n");
4043 	dump_stack();
4044 
4045 	nbcon_cpu_emergency_exit();
4046 }
4047 
4048 /*
4049  * Print out an error if an invalid bit is set:
4050  */
4051 static inline int
valid_state(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit new_bit,enum lock_usage_bit bad_bit)4052 valid_state(struct task_struct *curr, struct held_lock *this,
4053 	    enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit)
4054 {
4055 	if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) {
4056 		graph_unlock();
4057 		print_usage_bug(curr, this, bad_bit, new_bit);
4058 		return 0;
4059 	}
4060 	return 1;
4061 }
4062 
4063 
4064 /*
4065  * print irq inversion bug:
4066  */
4067 static void
print_irq_inversion_bug(struct task_struct * curr,struct lock_list * root,struct lock_list * other,struct held_lock * this,int forwards,const char * irqclass)4068 print_irq_inversion_bug(struct task_struct *curr,
4069 			struct lock_list *root, struct lock_list *other,
4070 			struct held_lock *this, int forwards,
4071 			const char *irqclass)
4072 {
4073 	struct lock_list *entry = other;
4074 	struct lock_list *middle = NULL;
4075 	int depth;
4076 
4077 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
4078 		return;
4079 
4080 	nbcon_cpu_emergency_enter();
4081 
4082 	pr_warn("\n");
4083 	pr_warn("========================================================\n");
4084 	pr_warn("WARNING: possible irq lock inversion dependency detected\n");
4085 	print_kernel_ident();
4086 	pr_warn("--------------------------------------------------------\n");
4087 	pr_warn("%s/%d just changed the state of lock:\n",
4088 		curr->comm, task_pid_nr(curr));
4089 	print_lock(this);
4090 	if (forwards)
4091 		pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
4092 	else
4093 		pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
4094 	print_lock_name(NULL, other->class);
4095 	pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n");
4096 
4097 	pr_warn("\nother info that might help us debug this:\n");
4098 
4099 	/* Find a middle lock (if one exists) */
4100 	depth = get_lock_depth(other);
4101 	do {
4102 		if (depth == 0 && (entry != root)) {
4103 			pr_warn("lockdep:%s bad path found in chain graph\n", __func__);
4104 			break;
4105 		}
4106 		middle = entry;
4107 		entry = get_lock_parent(entry);
4108 		depth--;
4109 	} while (entry && entry != root && (depth >= 0));
4110 	if (forwards)
4111 		print_irq_lock_scenario(root, other,
4112 			middle ? middle->class : root->class, other->class);
4113 	else
4114 		print_irq_lock_scenario(other, root,
4115 			middle ? middle->class : other->class, root->class);
4116 
4117 	lockdep_print_held_locks(curr);
4118 
4119 	pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
4120 	root->trace = save_trace();
4121 	if (!root->trace)
4122 		goto out;
4123 	print_shortest_lock_dependencies(other, root);
4124 
4125 	pr_warn("\nstack backtrace:\n");
4126 	dump_stack();
4127 out:
4128 	nbcon_cpu_emergency_exit();
4129 }
4130 
4131 /*
4132  * Prove that in the forwards-direction subgraph starting at <this>
4133  * there is no lock matching <mask>:
4134  */
4135 static int
check_usage_forwards(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit bit)4136 check_usage_forwards(struct task_struct *curr, struct held_lock *this,
4137 		     enum lock_usage_bit bit)
4138 {
4139 	enum bfs_result ret;
4140 	struct lock_list root;
4141 	struct lock_list *target_entry;
4142 	enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4143 	unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4144 
4145 	bfs_init_root(&root, this);
4146 	ret = find_usage_forwards(&root, usage_mask, &target_entry);
4147 	if (bfs_error(ret)) {
4148 		print_bfs_bug(ret);
4149 		return 0;
4150 	}
4151 	if (ret == BFS_RNOMATCH)
4152 		return 1;
4153 
4154 	/* Check whether write or read usage is the match */
4155 	if (target_entry->class->usage_mask & lock_flag(bit)) {
4156 		print_irq_inversion_bug(curr, &root, target_entry,
4157 					this, 1, state_name(bit));
4158 	} else {
4159 		print_irq_inversion_bug(curr, &root, target_entry,
4160 					this, 1, state_name(read_bit));
4161 	}
4162 
4163 	return 0;
4164 }
4165 
4166 /*
4167  * Prove that in the backwards-direction subgraph starting at <this>
4168  * there is no lock matching <mask>:
4169  */
4170 static int
check_usage_backwards(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit bit)4171 check_usage_backwards(struct task_struct *curr, struct held_lock *this,
4172 		      enum lock_usage_bit bit)
4173 {
4174 	enum bfs_result ret;
4175 	struct lock_list root;
4176 	struct lock_list *target_entry;
4177 	enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4178 	unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4179 
4180 	bfs_init_rootb(&root, this);
4181 	ret = find_usage_backwards(&root, usage_mask, &target_entry);
4182 	if (bfs_error(ret)) {
4183 		print_bfs_bug(ret);
4184 		return 0;
4185 	}
4186 	if (ret == BFS_RNOMATCH)
4187 		return 1;
4188 
4189 	/* Check whether write or read usage is the match */
4190 	if (target_entry->class->usage_mask & lock_flag(bit)) {
4191 		print_irq_inversion_bug(curr, &root, target_entry,
4192 					this, 0, state_name(bit));
4193 	} else {
4194 		print_irq_inversion_bug(curr, &root, target_entry,
4195 					this, 0, state_name(read_bit));
4196 	}
4197 
4198 	return 0;
4199 }
4200 
print_irqtrace_events(struct task_struct * curr)4201 void print_irqtrace_events(struct task_struct *curr)
4202 {
4203 	const struct irqtrace_events *trace = &curr->irqtrace;
4204 
4205 	nbcon_cpu_emergency_enter();
4206 
4207 	printk("irq event stamp: %u\n", trace->irq_events);
4208 	printk("hardirqs last  enabled at (%u): [<%px>] %pS\n",
4209 		trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip,
4210 		(void *)trace->hardirq_enable_ip);
4211 	printk("hardirqs last disabled at (%u): [<%px>] %pS\n",
4212 		trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip,
4213 		(void *)trace->hardirq_disable_ip);
4214 	printk("softirqs last  enabled at (%u): [<%px>] %pS\n",
4215 		trace->softirq_enable_event, (void *)trace->softirq_enable_ip,
4216 		(void *)trace->softirq_enable_ip);
4217 	printk("softirqs last disabled at (%u): [<%px>] %pS\n",
4218 		trace->softirq_disable_event, (void *)trace->softirq_disable_ip,
4219 		(void *)trace->softirq_disable_ip);
4220 
4221 	nbcon_cpu_emergency_exit();
4222 }
4223 
HARDIRQ_verbose(struct lock_class * class)4224 static int HARDIRQ_verbose(struct lock_class *class)
4225 {
4226 #if HARDIRQ_VERBOSE
4227 	return class_filter(class);
4228 #endif
4229 	return 0;
4230 }
4231 
SOFTIRQ_verbose(struct lock_class * class)4232 static int SOFTIRQ_verbose(struct lock_class *class)
4233 {
4234 #if SOFTIRQ_VERBOSE
4235 	return class_filter(class);
4236 #endif
4237 	return 0;
4238 }
4239 
4240 static int (*state_verbose_f[])(struct lock_class *class) = {
4241 #define LOCKDEP_STATE(__STATE) \
4242 	__STATE##_verbose,
4243 #include "lockdep_states.h"
4244 #undef LOCKDEP_STATE
4245 };
4246 
state_verbose(enum lock_usage_bit bit,struct lock_class * class)4247 static inline int state_verbose(enum lock_usage_bit bit,
4248 				struct lock_class *class)
4249 {
4250 	return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class);
4251 }
4252 
4253 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *,
4254 			     enum lock_usage_bit bit, const char *name);
4255 
4256 static int
mark_lock_irq(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit new_bit)4257 mark_lock_irq(struct task_struct *curr, struct held_lock *this,
4258 		enum lock_usage_bit new_bit)
4259 {
4260 	int excl_bit = exclusive_bit(new_bit);
4261 	int read = new_bit & LOCK_USAGE_READ_MASK;
4262 	int dir = new_bit & LOCK_USAGE_DIR_MASK;
4263 
4264 	/*
4265 	 * Validate that this particular lock does not have conflicting
4266 	 * usage states.
4267 	 */
4268 	if (!valid_state(curr, this, new_bit, excl_bit))
4269 		return 0;
4270 
4271 	/*
4272 	 * Check for read in write conflicts
4273 	 */
4274 	if (!read && !valid_state(curr, this, new_bit,
4275 				  excl_bit + LOCK_USAGE_READ_MASK))
4276 		return 0;
4277 
4278 
4279 	/*
4280 	 * Validate that the lock dependencies don't have conflicting usage
4281 	 * states.
4282 	 */
4283 	if (dir) {
4284 		/*
4285 		 * mark ENABLED has to look backwards -- to ensure no dependee
4286 		 * has USED_IN state, which, again, would allow  recursion deadlocks.
4287 		 */
4288 		if (!check_usage_backwards(curr, this, excl_bit))
4289 			return 0;
4290 	} else {
4291 		/*
4292 		 * mark USED_IN has to look forwards -- to ensure no dependency
4293 		 * has ENABLED state, which would allow recursion deadlocks.
4294 		 */
4295 		if (!check_usage_forwards(curr, this, excl_bit))
4296 			return 0;
4297 	}
4298 
4299 	if (state_verbose(new_bit, hlock_class(this)))
4300 		return 2;
4301 
4302 	return 1;
4303 }
4304 
4305 /*
4306  * Mark all held locks with a usage bit:
4307  */
4308 static int
mark_held_locks(struct task_struct * curr,enum lock_usage_bit base_bit)4309 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit)
4310 {
4311 	struct held_lock *hlock;
4312 	int i;
4313 
4314 	for (i = 0; i < curr->lockdep_depth; i++) {
4315 		enum lock_usage_bit hlock_bit = base_bit;
4316 		hlock = curr->held_locks + i;
4317 
4318 		if (hlock->read)
4319 			hlock_bit += LOCK_USAGE_READ_MASK;
4320 
4321 		BUG_ON(hlock_bit >= LOCK_USAGE_STATES);
4322 
4323 		if (!hlock->check)
4324 			continue;
4325 
4326 		if (!mark_lock(curr, hlock, hlock_bit))
4327 			return 0;
4328 	}
4329 
4330 	return 1;
4331 }
4332 
4333 /*
4334  * Hardirqs will be enabled:
4335  */
__trace_hardirqs_on_caller(void)4336 static void __trace_hardirqs_on_caller(void)
4337 {
4338 	struct task_struct *curr = current;
4339 
4340 	/*
4341 	 * We are going to turn hardirqs on, so set the
4342 	 * usage bit for all held locks:
4343 	 */
4344 	if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ))
4345 		return;
4346 	/*
4347 	 * If we have softirqs enabled, then set the usage
4348 	 * bit for all held locks. (disabled hardirqs prevented
4349 	 * this bit from being set before)
4350 	 */
4351 	if (curr->softirqs_enabled)
4352 		mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ);
4353 }
4354 
4355 /**
4356  * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts
4357  *
4358  * Invoked before a possible transition to RCU idle from exit to user or
4359  * guest mode. This ensures that all RCU operations are done before RCU
4360  * stops watching. After the RCU transition lockdep_hardirqs_on() has to be
4361  * invoked to set the final state.
4362  */
lockdep_hardirqs_on_prepare(void)4363 void lockdep_hardirqs_on_prepare(void)
4364 {
4365 	if (unlikely(!debug_locks))
4366 		return;
4367 
4368 	/*
4369 	 * NMIs do not (and cannot) track lock dependencies, nothing to do.
4370 	 */
4371 	if (unlikely(in_nmi()))
4372 		return;
4373 
4374 	if (unlikely(this_cpu_read(lockdep_recursion)))
4375 		return;
4376 
4377 	if (unlikely(lockdep_hardirqs_enabled())) {
4378 		/*
4379 		 * Neither irq nor preemption are disabled here
4380 		 * so this is racy by nature but losing one hit
4381 		 * in a stat is not a big deal.
4382 		 */
4383 		__debug_atomic_inc(redundant_hardirqs_on);
4384 		return;
4385 	}
4386 
4387 	/*
4388 	 * We're enabling irqs and according to our state above irqs weren't
4389 	 * already enabled, yet we find the hardware thinks they are in fact
4390 	 * enabled.. someone messed up their IRQ state tracing.
4391 	 */
4392 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4393 		return;
4394 
4395 	/*
4396 	 * See the fine text that goes along with this variable definition.
4397 	 */
4398 	if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled))
4399 		return;
4400 
4401 	/*
4402 	 * Can't allow enabling interrupts while in an interrupt handler,
4403 	 * that's general bad form and such. Recursion, limited stack etc..
4404 	 */
4405 	if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context()))
4406 		return;
4407 
4408 	current->hardirq_chain_key = current->curr_chain_key;
4409 
4410 	lockdep_recursion_inc();
4411 	__trace_hardirqs_on_caller();
4412 	lockdep_recursion_finish();
4413 }
4414 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare);
4415 
lockdep_hardirqs_on(unsigned long ip)4416 void noinstr lockdep_hardirqs_on(unsigned long ip)
4417 {
4418 	struct irqtrace_events *trace = &current->irqtrace;
4419 
4420 	if (unlikely(!debug_locks))
4421 		return;
4422 
4423 	/*
4424 	 * NMIs can happen in the middle of local_irq_{en,dis}able() where the
4425 	 * tracking state and hardware state are out of sync.
4426 	 *
4427 	 * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from,
4428 	 * and not rely on hardware state like normal interrupts.
4429 	 */
4430 	if (unlikely(in_nmi())) {
4431 		if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4432 			return;
4433 
4434 		/*
4435 		 * Skip:
4436 		 *  - recursion check, because NMI can hit lockdep;
4437 		 *  - hardware state check, because above;
4438 		 *  - chain_key check, see lockdep_hardirqs_on_prepare().
4439 		 */
4440 		goto skip_checks;
4441 	}
4442 
4443 	if (unlikely(this_cpu_read(lockdep_recursion)))
4444 		return;
4445 
4446 	if (lockdep_hardirqs_enabled()) {
4447 		/*
4448 		 * Neither irq nor preemption are disabled here
4449 		 * so this is racy by nature but losing one hit
4450 		 * in a stat is not a big deal.
4451 		 */
4452 		__debug_atomic_inc(redundant_hardirqs_on);
4453 		return;
4454 	}
4455 
4456 	/*
4457 	 * We're enabling irqs and according to our state above irqs weren't
4458 	 * already enabled, yet we find the hardware thinks they are in fact
4459 	 * enabled.. someone messed up their IRQ state tracing.
4460 	 */
4461 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4462 		return;
4463 
4464 	/*
4465 	 * Ensure the lock stack remained unchanged between
4466 	 * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on().
4467 	 */
4468 	DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key !=
4469 			    current->curr_chain_key);
4470 
4471 skip_checks:
4472 	/* we'll do an OFF -> ON transition: */
4473 	__this_cpu_write(hardirqs_enabled, 1);
4474 	trace->hardirq_enable_ip = ip;
4475 	trace->hardirq_enable_event = ++trace->irq_events;
4476 	debug_atomic_inc(hardirqs_on_events);
4477 }
4478 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on);
4479 
4480 /*
4481  * Hardirqs were disabled:
4482  */
lockdep_hardirqs_off(unsigned long ip)4483 void noinstr lockdep_hardirqs_off(unsigned long ip)
4484 {
4485 	if (unlikely(!debug_locks))
4486 		return;
4487 
4488 	/*
4489 	 * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep;
4490 	 * they will restore the software state. This ensures the software
4491 	 * state is consistent inside NMIs as well.
4492 	 */
4493 	if (in_nmi()) {
4494 		if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4495 			return;
4496 	} else if (__this_cpu_read(lockdep_recursion))
4497 		return;
4498 
4499 	/*
4500 	 * So we're supposed to get called after you mask local IRQs, but for
4501 	 * some reason the hardware doesn't quite think you did a proper job.
4502 	 */
4503 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4504 		return;
4505 
4506 	if (lockdep_hardirqs_enabled()) {
4507 		struct irqtrace_events *trace = &current->irqtrace;
4508 
4509 		/*
4510 		 * We have done an ON -> OFF transition:
4511 		 */
4512 		__this_cpu_write(hardirqs_enabled, 0);
4513 		trace->hardirq_disable_ip = ip;
4514 		trace->hardirq_disable_event = ++trace->irq_events;
4515 		debug_atomic_inc(hardirqs_off_events);
4516 	} else {
4517 		debug_atomic_inc(redundant_hardirqs_off);
4518 	}
4519 }
4520 EXPORT_SYMBOL_GPL(lockdep_hardirqs_off);
4521 
4522 /*
4523  * Softirqs will be enabled:
4524  */
lockdep_softirqs_on(unsigned long ip)4525 void lockdep_softirqs_on(unsigned long ip)
4526 {
4527 	struct irqtrace_events *trace = &current->irqtrace;
4528 
4529 	if (unlikely(!lockdep_enabled()))
4530 		return;
4531 
4532 	/*
4533 	 * We fancy IRQs being disabled here, see softirq.c, avoids
4534 	 * funny state and nesting things.
4535 	 */
4536 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4537 		return;
4538 
4539 	if (current->softirqs_enabled) {
4540 		debug_atomic_inc(redundant_softirqs_on);
4541 		return;
4542 	}
4543 
4544 	lockdep_recursion_inc();
4545 	/*
4546 	 * We'll do an OFF -> ON transition:
4547 	 */
4548 	current->softirqs_enabled = 1;
4549 	trace->softirq_enable_ip = ip;
4550 	trace->softirq_enable_event = ++trace->irq_events;
4551 	debug_atomic_inc(softirqs_on_events);
4552 	/*
4553 	 * We are going to turn softirqs on, so set the
4554 	 * usage bit for all held locks, if hardirqs are
4555 	 * enabled too:
4556 	 */
4557 	if (lockdep_hardirqs_enabled())
4558 		mark_held_locks(current, LOCK_ENABLED_SOFTIRQ);
4559 	lockdep_recursion_finish();
4560 }
4561 
4562 /*
4563  * Softirqs were disabled:
4564  */
lockdep_softirqs_off(unsigned long ip)4565 void lockdep_softirqs_off(unsigned long ip)
4566 {
4567 	if (unlikely(!lockdep_enabled()))
4568 		return;
4569 
4570 	/*
4571 	 * We fancy IRQs being disabled here, see softirq.c
4572 	 */
4573 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4574 		return;
4575 
4576 	if (current->softirqs_enabled) {
4577 		struct irqtrace_events *trace = &current->irqtrace;
4578 
4579 		/*
4580 		 * We have done an ON -> OFF transition:
4581 		 */
4582 		current->softirqs_enabled = 0;
4583 		trace->softirq_disable_ip = ip;
4584 		trace->softirq_disable_event = ++trace->irq_events;
4585 		debug_atomic_inc(softirqs_off_events);
4586 		/*
4587 		 * Whoops, we wanted softirqs off, so why aren't they?
4588 		 */
4589 		DEBUG_LOCKS_WARN_ON(!softirq_count());
4590 	} else
4591 		debug_atomic_inc(redundant_softirqs_off);
4592 }
4593 
4594 /**
4595  * lockdep_cleanup_dead_cpu - Ensure CPU lockdep state is cleanly stopped
4596  *
4597  * @cpu: index of offlined CPU
4598  * @idle: task pointer for offlined CPU's idle thread
4599  *
4600  * Invoked after the CPU is dead. Ensures that the tracing infrastructure
4601  * is left in a suitable state for the CPU to be subsequently brought
4602  * online again.
4603  */
lockdep_cleanup_dead_cpu(unsigned int cpu,struct task_struct * idle)4604 void lockdep_cleanup_dead_cpu(unsigned int cpu, struct task_struct *idle)
4605 {
4606 	if (unlikely(!debug_locks))
4607 		return;
4608 
4609 	if (unlikely(per_cpu(hardirqs_enabled, cpu))) {
4610 		pr_warn("CPU %u left hardirqs enabled!", cpu);
4611 		if (idle)
4612 			print_irqtrace_events(idle);
4613 		/* Clean it up for when the CPU comes online again. */
4614 		per_cpu(hardirqs_enabled, cpu) = 0;
4615 	}
4616 }
4617 
4618 static int
mark_usage(struct task_struct * curr,struct held_lock * hlock,int check)4619 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4620 {
4621 	if (!check)
4622 		goto lock_used;
4623 
4624 	/*
4625 	 * If non-trylock use in a hardirq or softirq context, then
4626 	 * mark the lock as used in these contexts:
4627 	 */
4628 	if (!hlock->trylock) {
4629 		if (hlock->read) {
4630 			if (lockdep_hardirq_context())
4631 				if (!mark_lock(curr, hlock,
4632 						LOCK_USED_IN_HARDIRQ_READ))
4633 					return 0;
4634 			if (curr->softirq_context)
4635 				if (!mark_lock(curr, hlock,
4636 						LOCK_USED_IN_SOFTIRQ_READ))
4637 					return 0;
4638 		} else {
4639 			if (lockdep_hardirq_context())
4640 				if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ))
4641 					return 0;
4642 			if (curr->softirq_context)
4643 				if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ))
4644 					return 0;
4645 		}
4646 	}
4647 
4648 	/*
4649 	 * For lock_sync(), don't mark the ENABLED usage, since lock_sync()
4650 	 * creates no critical section and no extra dependency can be introduced
4651 	 * by interrupts
4652 	 */
4653 	if (!hlock->hardirqs_off && !hlock->sync) {
4654 		if (hlock->read) {
4655 			if (!mark_lock(curr, hlock,
4656 					LOCK_ENABLED_HARDIRQ_READ))
4657 				return 0;
4658 			if (curr->softirqs_enabled)
4659 				if (!mark_lock(curr, hlock,
4660 						LOCK_ENABLED_SOFTIRQ_READ))
4661 					return 0;
4662 		} else {
4663 			if (!mark_lock(curr, hlock,
4664 					LOCK_ENABLED_HARDIRQ))
4665 				return 0;
4666 			if (curr->softirqs_enabled)
4667 				if (!mark_lock(curr, hlock,
4668 						LOCK_ENABLED_SOFTIRQ))
4669 					return 0;
4670 		}
4671 	}
4672 
4673 lock_used:
4674 	/* mark it as used: */
4675 	if (!mark_lock(curr, hlock, LOCK_USED))
4676 		return 0;
4677 
4678 	return 1;
4679 }
4680 
task_irq_context(struct task_struct * task)4681 static inline unsigned int task_irq_context(struct task_struct *task)
4682 {
4683 	return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() +
4684 	       LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context;
4685 }
4686 
separate_irq_context(struct task_struct * curr,struct held_lock * hlock)4687 static int separate_irq_context(struct task_struct *curr,
4688 		struct held_lock *hlock)
4689 {
4690 	unsigned int depth = curr->lockdep_depth;
4691 
4692 	/*
4693 	 * Keep track of points where we cross into an interrupt context:
4694 	 */
4695 	if (depth) {
4696 		struct held_lock *prev_hlock;
4697 
4698 		prev_hlock = curr->held_locks + depth-1;
4699 		/*
4700 		 * If we cross into another context, reset the
4701 		 * hash key (this also prevents the checking and the
4702 		 * adding of the dependency to 'prev'):
4703 		 */
4704 		if (prev_hlock->irq_context != hlock->irq_context)
4705 			return 1;
4706 	}
4707 	return 0;
4708 }
4709 
4710 /*
4711  * Mark a lock with a usage bit, and validate the state transition:
4712  */
mark_lock(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit new_bit)4713 static int mark_lock(struct task_struct *curr, struct held_lock *this,
4714 			     enum lock_usage_bit new_bit)
4715 {
4716 	unsigned int new_mask, ret = 1;
4717 
4718 	if (new_bit >= LOCK_USAGE_STATES) {
4719 		DEBUG_LOCKS_WARN_ON(1);
4720 		return 0;
4721 	}
4722 
4723 	if (new_bit == LOCK_USED && this->read)
4724 		new_bit = LOCK_USED_READ;
4725 
4726 	new_mask = 1 << new_bit;
4727 
4728 	/*
4729 	 * If already set then do not dirty the cacheline,
4730 	 * nor do any checks:
4731 	 */
4732 	if (likely(hlock_class(this)->usage_mask & new_mask))
4733 		return 1;
4734 
4735 	if (!graph_lock())
4736 		return 0;
4737 	/*
4738 	 * Make sure we didn't race:
4739 	 */
4740 	if (unlikely(hlock_class(this)->usage_mask & new_mask))
4741 		goto unlock;
4742 
4743 	if (!hlock_class(this)->usage_mask)
4744 		debug_atomic_dec(nr_unused_locks);
4745 
4746 	hlock_class(this)->usage_mask |= new_mask;
4747 
4748 	if (new_bit < LOCK_TRACE_STATES) {
4749 		if (!(hlock_class(this)->usage_traces[new_bit] = save_trace()))
4750 			return 0;
4751 	}
4752 
4753 	if (new_bit < LOCK_USED) {
4754 		ret = mark_lock_irq(curr, this, new_bit);
4755 		if (!ret)
4756 			return 0;
4757 	}
4758 
4759 unlock:
4760 	graph_unlock();
4761 
4762 	/*
4763 	 * We must printk outside of the graph_lock:
4764 	 */
4765 	if (ret == 2) {
4766 		nbcon_cpu_emergency_enter();
4767 		printk("\nmarked lock as {%s}:\n", usage_str[new_bit]);
4768 		print_lock(this);
4769 		print_irqtrace_events(curr);
4770 		dump_stack();
4771 		nbcon_cpu_emergency_exit();
4772 	}
4773 
4774 	return ret;
4775 }
4776 
task_wait_context(struct task_struct * curr)4777 static inline short task_wait_context(struct task_struct *curr)
4778 {
4779 	/*
4780 	 * Set appropriate wait type for the context; for IRQs we have to take
4781 	 * into account force_irqthread as that is implied by PREEMPT_RT.
4782 	 */
4783 	if (lockdep_hardirq_context()) {
4784 		/*
4785 		 * Check if force_irqthreads will run us threaded.
4786 		 */
4787 		if (curr->hardirq_threaded || curr->irq_config)
4788 			return LD_WAIT_CONFIG;
4789 
4790 		return LD_WAIT_SPIN;
4791 	} else if (curr->softirq_context) {
4792 		/*
4793 		 * Softirqs are always threaded.
4794 		 */
4795 		return LD_WAIT_CONFIG;
4796 	}
4797 
4798 	return LD_WAIT_MAX;
4799 }
4800 
4801 static int
print_lock_invalid_wait_context(struct task_struct * curr,struct held_lock * hlock)4802 print_lock_invalid_wait_context(struct task_struct *curr,
4803 				struct held_lock *hlock)
4804 {
4805 	short curr_inner;
4806 
4807 	if (!debug_locks_off())
4808 		return 0;
4809 	if (debug_locks_silent)
4810 		return 0;
4811 
4812 	nbcon_cpu_emergency_enter();
4813 
4814 	pr_warn("\n");
4815 	pr_warn("=============================\n");
4816 	pr_warn("[ BUG: Invalid wait context ]\n");
4817 	print_kernel_ident();
4818 	pr_warn("-----------------------------\n");
4819 
4820 	pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4821 	print_lock(hlock);
4822 
4823 	pr_warn("other info that might help us debug this:\n");
4824 
4825 	curr_inner = task_wait_context(curr);
4826 	pr_warn("context-{%d:%d}\n", curr_inner, curr_inner);
4827 
4828 	lockdep_print_held_locks(curr);
4829 
4830 	pr_warn("stack backtrace:\n");
4831 	dump_stack();
4832 
4833 	nbcon_cpu_emergency_exit();
4834 
4835 	return 0;
4836 }
4837 
4838 /*
4839  * Verify the wait_type context.
4840  *
4841  * This check validates we take locks in the right wait-type order; that is it
4842  * ensures that we do not take mutexes inside spinlocks and do not attempt to
4843  * acquire spinlocks inside raw_spinlocks and the sort.
4844  *
4845  * The entire thing is slightly more complex because of RCU, RCU is a lock that
4846  * can be taken from (pretty much) any context but also has constraints.
4847  * However when taken in a stricter environment the RCU lock does not loosen
4848  * the constraints.
4849  *
4850  * Therefore we must look for the strictest environment in the lock stack and
4851  * compare that to the lock we're trying to acquire.
4852  */
check_wait_context(struct task_struct * curr,struct held_lock * next)4853 static int check_wait_context(struct task_struct *curr, struct held_lock *next)
4854 {
4855 	u8 next_inner = hlock_class(next)->wait_type_inner;
4856 	u8 next_outer = hlock_class(next)->wait_type_outer;
4857 	u8 curr_inner;
4858 	int depth;
4859 
4860 	if (!next_inner || next->trylock)
4861 		return 0;
4862 
4863 	if (!next_outer)
4864 		next_outer = next_inner;
4865 
4866 	/*
4867 	 * Find start of current irq_context..
4868 	 */
4869 	for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) {
4870 		struct held_lock *prev = curr->held_locks + depth;
4871 		if (prev->irq_context != next->irq_context)
4872 			break;
4873 	}
4874 	depth++;
4875 
4876 	curr_inner = task_wait_context(curr);
4877 
4878 	for (; depth < curr->lockdep_depth; depth++) {
4879 		struct held_lock *prev = curr->held_locks + depth;
4880 		struct lock_class *class = hlock_class(prev);
4881 		u8 prev_inner = class->wait_type_inner;
4882 
4883 		if (prev_inner) {
4884 			/*
4885 			 * We can have a bigger inner than a previous one
4886 			 * when outer is smaller than inner, as with RCU.
4887 			 *
4888 			 * Also due to trylocks.
4889 			 */
4890 			curr_inner = min(curr_inner, prev_inner);
4891 
4892 			/*
4893 			 * Allow override for annotations -- this is typically
4894 			 * only valid/needed for code that only exists when
4895 			 * CONFIG_PREEMPT_RT=n.
4896 			 */
4897 			if (unlikely(class->lock_type == LD_LOCK_WAIT_OVERRIDE))
4898 				curr_inner = prev_inner;
4899 		}
4900 	}
4901 
4902 	if (next_outer > curr_inner)
4903 		return print_lock_invalid_wait_context(curr, next);
4904 
4905 	return 0;
4906 }
4907 
4908 #else /* CONFIG_PROVE_LOCKING */
4909 
4910 static inline int
mark_usage(struct task_struct * curr,struct held_lock * hlock,int check)4911 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4912 {
4913 	return 1;
4914 }
4915 
task_irq_context(struct task_struct * task)4916 static inline unsigned int task_irq_context(struct task_struct *task)
4917 {
4918 	return 0;
4919 }
4920 
separate_irq_context(struct task_struct * curr,struct held_lock * hlock)4921 static inline int separate_irq_context(struct task_struct *curr,
4922 		struct held_lock *hlock)
4923 {
4924 	return 0;
4925 }
4926 
check_wait_context(struct task_struct * curr,struct held_lock * next)4927 static inline int check_wait_context(struct task_struct *curr,
4928 				     struct held_lock *next)
4929 {
4930 	return 0;
4931 }
4932 
4933 #endif /* CONFIG_PROVE_LOCKING */
4934 
4935 /*
4936  * Initialize a lock instance's lock-class mapping info:
4937  */
lockdep_init_map_type(struct lockdep_map * lock,const char * name,struct lock_class_key * key,int subclass,u8 inner,u8 outer,u8 lock_type)4938 void lockdep_init_map_type(struct lockdep_map *lock, const char *name,
4939 			    struct lock_class_key *key, int subclass,
4940 			    u8 inner, u8 outer, u8 lock_type)
4941 {
4942 	int i;
4943 
4944 	for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++)
4945 		lock->class_cache[i] = NULL;
4946 
4947 #ifdef CONFIG_LOCK_STAT
4948 	lock->cpu = raw_smp_processor_id();
4949 #endif
4950 
4951 	/*
4952 	 * Can't be having no nameless bastards around this place!
4953 	 */
4954 	if (DEBUG_LOCKS_WARN_ON(!name)) {
4955 		lock->name = "NULL";
4956 		return;
4957 	}
4958 
4959 	lock->name = name;
4960 
4961 	lock->wait_type_outer = outer;
4962 	lock->wait_type_inner = inner;
4963 	lock->lock_type = lock_type;
4964 
4965 	/*
4966 	 * No key, no joy, we need to hash something.
4967 	 */
4968 	if (DEBUG_LOCKS_WARN_ON(!key))
4969 		return;
4970 	/*
4971 	 * Sanity check, the lock-class key must either have been allocated
4972 	 * statically or must have been registered as a dynamic key.
4973 	 */
4974 	if (!static_obj(key) && !is_dynamic_key(key)) {
4975 		if (debug_locks)
4976 			printk(KERN_ERR "BUG: key %px has not been registered!\n", key);
4977 		DEBUG_LOCKS_WARN_ON(1);
4978 		return;
4979 	}
4980 	lock->key = key;
4981 
4982 	if (unlikely(!debug_locks))
4983 		return;
4984 
4985 	if (subclass) {
4986 		unsigned long flags;
4987 
4988 		if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled()))
4989 			return;
4990 
4991 		raw_local_irq_save(flags);
4992 		lockdep_recursion_inc();
4993 		register_lock_class(lock, subclass, 1);
4994 		lockdep_recursion_finish();
4995 		raw_local_irq_restore(flags);
4996 	}
4997 }
4998 EXPORT_SYMBOL_GPL(lockdep_init_map_type);
4999 
5000 struct lock_class_key __lockdep_no_validate__;
5001 EXPORT_SYMBOL_GPL(__lockdep_no_validate__);
5002 
5003 struct lock_class_key __lockdep_no_track__;
5004 EXPORT_SYMBOL_GPL(__lockdep_no_track__);
5005 
5006 #ifdef CONFIG_PROVE_LOCKING
lockdep_set_lock_cmp_fn(struct lockdep_map * lock,lock_cmp_fn cmp_fn,lock_print_fn print_fn)5007 void lockdep_set_lock_cmp_fn(struct lockdep_map *lock, lock_cmp_fn cmp_fn,
5008 			     lock_print_fn print_fn)
5009 {
5010 	struct lock_class *class = lock->class_cache[0];
5011 	unsigned long flags;
5012 
5013 	raw_local_irq_save(flags);
5014 	lockdep_recursion_inc();
5015 
5016 	if (!class)
5017 		class = register_lock_class(lock, 0, 0);
5018 
5019 	if (class) {
5020 		WARN_ON(class->cmp_fn	&& class->cmp_fn != cmp_fn);
5021 		WARN_ON(class->print_fn && class->print_fn != print_fn);
5022 
5023 		class->cmp_fn	= cmp_fn;
5024 		class->print_fn = print_fn;
5025 	}
5026 
5027 	lockdep_recursion_finish();
5028 	raw_local_irq_restore(flags);
5029 }
5030 EXPORT_SYMBOL_GPL(lockdep_set_lock_cmp_fn);
5031 #endif
5032 
5033 static void
print_lock_nested_lock_not_held(struct task_struct * curr,struct held_lock * hlock)5034 print_lock_nested_lock_not_held(struct task_struct *curr,
5035 				struct held_lock *hlock)
5036 {
5037 	if (!debug_locks_off())
5038 		return;
5039 	if (debug_locks_silent)
5040 		return;
5041 
5042 	nbcon_cpu_emergency_enter();
5043 
5044 	pr_warn("\n");
5045 	pr_warn("==================================\n");
5046 	pr_warn("WARNING: Nested lock was not taken\n");
5047 	print_kernel_ident();
5048 	pr_warn("----------------------------------\n");
5049 
5050 	pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
5051 	print_lock(hlock);
5052 
5053 	pr_warn("\nbut this task is not holding:\n");
5054 	pr_warn("%s\n", hlock->nest_lock->name);
5055 
5056 	pr_warn("\nstack backtrace:\n");
5057 	dump_stack();
5058 
5059 	pr_warn("\nother info that might help us debug this:\n");
5060 	lockdep_print_held_locks(curr);
5061 
5062 	pr_warn("\nstack backtrace:\n");
5063 	dump_stack();
5064 
5065 	nbcon_cpu_emergency_exit();
5066 }
5067 
5068 static int __lock_is_held(const struct lockdep_map *lock, int read);
5069 
5070 /*
5071  * This gets called for every mutex_lock*()/spin_lock*() operation.
5072  * We maintain the dependency maps and validate the locking attempt:
5073  *
5074  * The callers must make sure that IRQs are disabled before calling it,
5075  * otherwise we could get an interrupt which would want to take locks,
5076  * which would end up in lockdep again.
5077  */
__lock_acquire(struct lockdep_map * lock,unsigned int subclass,int trylock,int read,int check,int hardirqs_off,struct lockdep_map * nest_lock,unsigned long ip,int references,int pin_count,int sync)5078 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
5079 			  int trylock, int read, int check, int hardirqs_off,
5080 			  struct lockdep_map *nest_lock, unsigned long ip,
5081 			  int references, int pin_count, int sync)
5082 {
5083 	struct task_struct *curr = current;
5084 	struct lock_class *class = NULL;
5085 	struct held_lock *hlock;
5086 	unsigned int depth;
5087 	int chain_head = 0;
5088 	int class_idx;
5089 	u64 chain_key;
5090 
5091 	if (unlikely(!debug_locks))
5092 		return 0;
5093 
5094 	if (unlikely(lock->key == &__lockdep_no_track__))
5095 		return 0;
5096 
5097 	lockevent_inc(lockdep_acquire);
5098 
5099 	if (!prove_locking || lock->key == &__lockdep_no_validate__) {
5100 		check = 0;
5101 		lockevent_inc(lockdep_nocheck);
5102 	}
5103 
5104 	if (subclass < NR_LOCKDEP_CACHING_CLASSES)
5105 		class = lock->class_cache[subclass];
5106 	/*
5107 	 * Not cached?
5108 	 */
5109 	if (unlikely(!class)) {
5110 		class = register_lock_class(lock, subclass, 0);
5111 		if (!class)
5112 			return 0;
5113 	}
5114 
5115 	debug_class_ops_inc(class);
5116 
5117 	if (very_verbose(class)) {
5118 		nbcon_cpu_emergency_enter();
5119 		printk("\nacquire class [%px] %s", class->key, class->name);
5120 		if (class->name_version > 1)
5121 			printk(KERN_CONT "#%d", class->name_version);
5122 		printk(KERN_CONT "\n");
5123 		dump_stack();
5124 		nbcon_cpu_emergency_exit();
5125 	}
5126 
5127 	/*
5128 	 * Add the lock to the list of currently held locks.
5129 	 * (we dont increase the depth just yet, up until the
5130 	 * dependency checks are done)
5131 	 */
5132 	depth = curr->lockdep_depth;
5133 	/*
5134 	 * Ran out of static storage for our per-task lock stack again have we?
5135 	 */
5136 	if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
5137 		return 0;
5138 
5139 	class_idx = class - lock_classes;
5140 
5141 	if (depth && !sync) {
5142 		/* we're holding locks and the new held lock is not a sync */
5143 		hlock = curr->held_locks + depth - 1;
5144 		if (hlock->class_idx == class_idx && nest_lock) {
5145 			if (!references)
5146 				references++;
5147 
5148 			if (!hlock->references)
5149 				hlock->references++;
5150 
5151 			hlock->references += references;
5152 
5153 			/* Overflow */
5154 			if (DEBUG_LOCKS_WARN_ON(hlock->references < references))
5155 				return 0;
5156 
5157 			return 2;
5158 		}
5159 	}
5160 
5161 	hlock = curr->held_locks + depth;
5162 	/*
5163 	 * Plain impossible, we just registered it and checked it weren't no
5164 	 * NULL like.. I bet this mushroom I ate was good!
5165 	 */
5166 	if (DEBUG_LOCKS_WARN_ON(!class))
5167 		return 0;
5168 	hlock->class_idx = class_idx;
5169 	hlock->acquire_ip = ip;
5170 	hlock->instance = lock;
5171 	hlock->nest_lock = nest_lock;
5172 	hlock->irq_context = task_irq_context(curr);
5173 	hlock->trylock = trylock;
5174 	hlock->read = read;
5175 	hlock->check = check;
5176 	hlock->sync = !!sync;
5177 	hlock->hardirqs_off = !!hardirqs_off;
5178 	hlock->references = references;
5179 #ifdef CONFIG_LOCK_STAT
5180 	hlock->waittime_stamp = 0;
5181 	hlock->holdtime_stamp = lockstat_clock();
5182 #endif
5183 	hlock->pin_count = pin_count;
5184 
5185 	if (check_wait_context(curr, hlock))
5186 		return 0;
5187 
5188 	/* Initialize the lock usage bit */
5189 	if (!mark_usage(curr, hlock, check))
5190 		return 0;
5191 
5192 	/*
5193 	 * Calculate the chain hash: it's the combined hash of all the
5194 	 * lock keys along the dependency chain. We save the hash value
5195 	 * at every step so that we can get the current hash easily
5196 	 * after unlock. The chain hash is then used to cache dependency
5197 	 * results.
5198 	 *
5199 	 * The 'key ID' is what is the most compact key value to drive
5200 	 * the hash, not class->key.
5201 	 */
5202 	/*
5203 	 * Whoops, we did it again.. class_idx is invalid.
5204 	 */
5205 	if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use)))
5206 		return 0;
5207 
5208 	chain_key = curr->curr_chain_key;
5209 	if (!depth) {
5210 		/*
5211 		 * How can we have a chain hash when we ain't got no keys?!
5212 		 */
5213 		if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY))
5214 			return 0;
5215 		chain_head = 1;
5216 	}
5217 
5218 	hlock->prev_chain_key = chain_key;
5219 	if (separate_irq_context(curr, hlock)) {
5220 		chain_key = INITIAL_CHAIN_KEY;
5221 		chain_head = 1;
5222 	}
5223 	chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
5224 
5225 	if (nest_lock && !__lock_is_held(nest_lock, -1)) {
5226 		print_lock_nested_lock_not_held(curr, hlock);
5227 		return 0;
5228 	}
5229 
5230 	if (!debug_locks_silent) {
5231 		WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key);
5232 		WARN_ON_ONCE(!hlock_class(hlock)->key);
5233 	}
5234 
5235 	if (!validate_chain(curr, hlock, chain_head, chain_key))
5236 		return 0;
5237 
5238 	/* For lock_sync(), we are done here since no actual critical section */
5239 	if (hlock->sync)
5240 		return 1;
5241 
5242 	curr->curr_chain_key = chain_key;
5243 	curr->lockdep_depth++;
5244 	check_chain_key(curr);
5245 #ifdef CONFIG_DEBUG_LOCKDEP
5246 	if (unlikely(!debug_locks))
5247 		return 0;
5248 #endif
5249 	if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) {
5250 		debug_locks_off();
5251 		nbcon_cpu_emergency_enter();
5252 		print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!");
5253 		printk(KERN_DEBUG "depth: %i  max: %lu!\n",
5254 		       curr->lockdep_depth, MAX_LOCK_DEPTH);
5255 
5256 		lockdep_print_held_locks(current);
5257 		debug_show_all_locks();
5258 		dump_stack();
5259 		nbcon_cpu_emergency_exit();
5260 
5261 		return 0;
5262 	}
5263 
5264 	if (unlikely(curr->lockdep_depth > max_lockdep_depth))
5265 		max_lockdep_depth = curr->lockdep_depth;
5266 
5267 	return 1;
5268 }
5269 
print_unlock_imbalance_bug(struct task_struct * curr,struct lockdep_map * lock,unsigned long ip)5270 static void print_unlock_imbalance_bug(struct task_struct *curr,
5271 				       struct lockdep_map *lock,
5272 				       unsigned long ip)
5273 {
5274 	if (!debug_locks_off())
5275 		return;
5276 	if (debug_locks_silent)
5277 		return;
5278 
5279 	nbcon_cpu_emergency_enter();
5280 
5281 	pr_warn("\n");
5282 	pr_warn("=====================================\n");
5283 	pr_warn("WARNING: bad unlock balance detected!\n");
5284 	print_kernel_ident();
5285 	pr_warn("-------------------------------------\n");
5286 	pr_warn("%s/%d is trying to release lock (",
5287 		curr->comm, task_pid_nr(curr));
5288 	print_lockdep_cache(lock);
5289 	pr_cont(") at:\n");
5290 	print_ip_sym(KERN_WARNING, ip);
5291 	pr_warn("but there are no more locks to release!\n");
5292 	pr_warn("\nother info that might help us debug this:\n");
5293 	lockdep_print_held_locks(curr);
5294 
5295 	pr_warn("\nstack backtrace:\n");
5296 	dump_stack();
5297 
5298 	nbcon_cpu_emergency_exit();
5299 }
5300 
match_held_lock(const struct held_lock * hlock,const struct lockdep_map * lock)5301 static noinstr int match_held_lock(const struct held_lock *hlock,
5302 				   const struct lockdep_map *lock)
5303 {
5304 	if (hlock->instance == lock)
5305 		return 1;
5306 
5307 	if (hlock->references) {
5308 		const struct lock_class *class = lock->class_cache[0];
5309 
5310 		if (!class)
5311 			class = look_up_lock_class(lock, 0);
5312 
5313 		/*
5314 		 * If look_up_lock_class() failed to find a class, we're trying
5315 		 * to test if we hold a lock that has never yet been acquired.
5316 		 * Clearly if the lock hasn't been acquired _ever_, we're not
5317 		 * holding it either, so report failure.
5318 		 */
5319 		if (!class)
5320 			return 0;
5321 
5322 		/*
5323 		 * References, but not a lock we're actually ref-counting?
5324 		 * State got messed up, follow the sites that change ->references
5325 		 * and try to make sense of it.
5326 		 */
5327 		if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock))
5328 			return 0;
5329 
5330 		if (hlock->class_idx == class - lock_classes)
5331 			return 1;
5332 	}
5333 
5334 	return 0;
5335 }
5336 
5337 /* @depth must not be zero */
find_held_lock(struct task_struct * curr,struct lockdep_map * lock,unsigned int depth,int * idx)5338 static struct held_lock *find_held_lock(struct task_struct *curr,
5339 					struct lockdep_map *lock,
5340 					unsigned int depth, int *idx)
5341 {
5342 	struct held_lock *ret, *hlock, *prev_hlock;
5343 	int i;
5344 
5345 	i = depth - 1;
5346 	hlock = curr->held_locks + i;
5347 	ret = hlock;
5348 	if (match_held_lock(hlock, lock))
5349 		goto out;
5350 
5351 	ret = NULL;
5352 	for (i--, prev_hlock = hlock--;
5353 	     i >= 0;
5354 	     i--, prev_hlock = hlock--) {
5355 		/*
5356 		 * We must not cross into another context:
5357 		 */
5358 		if (prev_hlock->irq_context != hlock->irq_context) {
5359 			ret = NULL;
5360 			break;
5361 		}
5362 		if (match_held_lock(hlock, lock)) {
5363 			ret = hlock;
5364 			break;
5365 		}
5366 	}
5367 
5368 out:
5369 	*idx = i;
5370 	return ret;
5371 }
5372 
reacquire_held_locks(struct task_struct * curr,unsigned int depth,int idx,unsigned int * merged)5373 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth,
5374 				int idx, unsigned int *merged)
5375 {
5376 	struct held_lock *hlock;
5377 	int first_idx = idx;
5378 
5379 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
5380 		return 0;
5381 
5382 	for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) {
5383 		switch (__lock_acquire(hlock->instance,
5384 				    hlock_class(hlock)->subclass,
5385 				    hlock->trylock,
5386 				    hlock->read, hlock->check,
5387 				    hlock->hardirqs_off,
5388 				    hlock->nest_lock, hlock->acquire_ip,
5389 				    hlock->references, hlock->pin_count, 0)) {
5390 		case 0:
5391 			return 1;
5392 		case 1:
5393 			break;
5394 		case 2:
5395 			*merged += (idx == first_idx);
5396 			break;
5397 		default:
5398 			WARN_ON(1);
5399 			return 0;
5400 		}
5401 	}
5402 	return 0;
5403 }
5404 
5405 static int
__lock_set_class(struct lockdep_map * lock,const char * name,struct lock_class_key * key,unsigned int subclass,unsigned long ip)5406 __lock_set_class(struct lockdep_map *lock, const char *name,
5407 		 struct lock_class_key *key, unsigned int subclass,
5408 		 unsigned long ip)
5409 {
5410 	struct task_struct *curr = current;
5411 	unsigned int depth, merged = 0;
5412 	struct held_lock *hlock;
5413 	struct lock_class *class;
5414 	int i;
5415 
5416 	if (unlikely(!debug_locks))
5417 		return 0;
5418 
5419 	depth = curr->lockdep_depth;
5420 	/*
5421 	 * This function is about (re)setting the class of a held lock,
5422 	 * yet we're not actually holding any locks. Naughty user!
5423 	 */
5424 	if (DEBUG_LOCKS_WARN_ON(!depth))
5425 		return 0;
5426 
5427 	hlock = find_held_lock(curr, lock, depth, &i);
5428 	if (!hlock) {
5429 		print_unlock_imbalance_bug(curr, lock, ip);
5430 		return 0;
5431 	}
5432 
5433 	lockdep_init_map_type(lock, name, key, 0,
5434 			      lock->wait_type_inner,
5435 			      lock->wait_type_outer,
5436 			      lock->lock_type);
5437 	class = register_lock_class(lock, subclass, 0);
5438 	hlock->class_idx = class - lock_classes;
5439 
5440 	curr->lockdep_depth = i;
5441 	curr->curr_chain_key = hlock->prev_chain_key;
5442 
5443 	if (reacquire_held_locks(curr, depth, i, &merged))
5444 		return 0;
5445 
5446 	/*
5447 	 * I took it apart and put it back together again, except now I have
5448 	 * these 'spare' parts.. where shall I put them.
5449 	 */
5450 	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged))
5451 		return 0;
5452 	return 1;
5453 }
5454 
__lock_downgrade(struct lockdep_map * lock,unsigned long ip)5455 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5456 {
5457 	struct task_struct *curr = current;
5458 	unsigned int depth, merged = 0;
5459 	struct held_lock *hlock;
5460 	int i;
5461 
5462 	if (unlikely(!debug_locks))
5463 		return 0;
5464 
5465 	depth = curr->lockdep_depth;
5466 	/*
5467 	 * This function is about (re)setting the class of a held lock,
5468 	 * yet we're not actually holding any locks. Naughty user!
5469 	 */
5470 	if (DEBUG_LOCKS_WARN_ON(!depth))
5471 		return 0;
5472 
5473 	hlock = find_held_lock(curr, lock, depth, &i);
5474 	if (!hlock) {
5475 		print_unlock_imbalance_bug(curr, lock, ip);
5476 		return 0;
5477 	}
5478 
5479 	curr->lockdep_depth = i;
5480 	curr->curr_chain_key = hlock->prev_chain_key;
5481 
5482 	WARN(hlock->read, "downgrading a read lock");
5483 	hlock->read = 1;
5484 	hlock->acquire_ip = ip;
5485 
5486 	if (reacquire_held_locks(curr, depth, i, &merged))
5487 		return 0;
5488 
5489 	/* Merging can't happen with unchanged classes.. */
5490 	if (DEBUG_LOCKS_WARN_ON(merged))
5491 		return 0;
5492 
5493 	/*
5494 	 * I took it apart and put it back together again, except now I have
5495 	 * these 'spare' parts.. where shall I put them.
5496 	 */
5497 	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
5498 		return 0;
5499 
5500 	return 1;
5501 }
5502 
5503 /*
5504  * Remove the lock from the list of currently held locks - this gets
5505  * called on mutex_unlock()/spin_unlock*() (or on a failed
5506  * mutex_lock_interruptible()).
5507  */
5508 static int
__lock_release(struct lockdep_map * lock,unsigned long ip)5509 __lock_release(struct lockdep_map *lock, unsigned long ip)
5510 {
5511 	struct task_struct *curr = current;
5512 	unsigned int depth, merged = 1;
5513 	struct held_lock *hlock;
5514 	int i;
5515 
5516 	if (unlikely(!debug_locks))
5517 		return 0;
5518 
5519 	depth = curr->lockdep_depth;
5520 	/*
5521 	 * So we're all set to release this lock.. wait what lock? We don't
5522 	 * own any locks, you've been drinking again?
5523 	 */
5524 	if (depth <= 0) {
5525 		print_unlock_imbalance_bug(curr, lock, ip);
5526 		return 0;
5527 	}
5528 
5529 	/*
5530 	 * Check whether the lock exists in the current stack
5531 	 * of held locks:
5532 	 */
5533 	hlock = find_held_lock(curr, lock, depth, &i);
5534 	if (!hlock) {
5535 		print_unlock_imbalance_bug(curr, lock, ip);
5536 		return 0;
5537 	}
5538 
5539 	if (hlock->instance == lock)
5540 		lock_release_holdtime(hlock);
5541 
5542 	WARN(hlock->pin_count, "releasing a pinned lock\n");
5543 
5544 	if (hlock->references) {
5545 		hlock->references--;
5546 		if (hlock->references) {
5547 			/*
5548 			 * We had, and after removing one, still have
5549 			 * references, the current lock stack is still
5550 			 * valid. We're done!
5551 			 */
5552 			return 1;
5553 		}
5554 	}
5555 
5556 	/*
5557 	 * We have the right lock to unlock, 'hlock' points to it.
5558 	 * Now we remove it from the stack, and add back the other
5559 	 * entries (if any), recalculating the hash along the way:
5560 	 */
5561 
5562 	curr->lockdep_depth = i;
5563 	curr->curr_chain_key = hlock->prev_chain_key;
5564 
5565 	/*
5566 	 * The most likely case is when the unlock is on the innermost
5567 	 * lock. In this case, we are done!
5568 	 */
5569 	if (i == depth-1)
5570 		return 1;
5571 
5572 	if (reacquire_held_locks(curr, depth, i + 1, &merged))
5573 		return 0;
5574 
5575 	/*
5576 	 * We had N bottles of beer on the wall, we drank one, but now
5577 	 * there's not N-1 bottles of beer left on the wall...
5578 	 * Pouring two of the bottles together is acceptable.
5579 	 */
5580 	DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged);
5581 
5582 	/*
5583 	 * Since reacquire_held_locks() would have called check_chain_key()
5584 	 * indirectly via __lock_acquire(), we don't need to do it again
5585 	 * on return.
5586 	 */
5587 	return 0;
5588 }
5589 
5590 static __always_inline
__lock_is_held(const struct lockdep_map * lock,int read)5591 int __lock_is_held(const struct lockdep_map *lock, int read)
5592 {
5593 	struct task_struct *curr = current;
5594 	int i;
5595 
5596 	for (i = 0; i < curr->lockdep_depth; i++) {
5597 		struct held_lock *hlock = curr->held_locks + i;
5598 
5599 		if (match_held_lock(hlock, lock)) {
5600 			if (read == -1 || !!hlock->read == read)
5601 				return LOCK_STATE_HELD;
5602 
5603 			return LOCK_STATE_NOT_HELD;
5604 		}
5605 	}
5606 
5607 	return LOCK_STATE_NOT_HELD;
5608 }
5609 
__lock_pin_lock(struct lockdep_map * lock)5610 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock)
5611 {
5612 	struct pin_cookie cookie = NIL_COOKIE;
5613 	struct task_struct *curr = current;
5614 	int i;
5615 
5616 	if (unlikely(!debug_locks))
5617 		return cookie;
5618 
5619 	for (i = 0; i < curr->lockdep_depth; i++) {
5620 		struct held_lock *hlock = curr->held_locks + i;
5621 
5622 		if (match_held_lock(hlock, lock)) {
5623 			/*
5624 			 * Grab 16bits of randomness; this is sufficient to not
5625 			 * be guessable and still allows some pin nesting in
5626 			 * our u32 pin_count.
5627 			 */
5628 			cookie.val = 1 + (sched_clock() & 0xffff);
5629 			hlock->pin_count += cookie.val;
5630 			return cookie;
5631 		}
5632 	}
5633 
5634 	WARN(1, "pinning an unheld lock\n");
5635 	return cookie;
5636 }
5637 
__lock_repin_lock(struct lockdep_map * lock,struct pin_cookie cookie)5638 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5639 {
5640 	struct task_struct *curr = current;
5641 	int i;
5642 
5643 	if (unlikely(!debug_locks))
5644 		return;
5645 
5646 	for (i = 0; i < curr->lockdep_depth; i++) {
5647 		struct held_lock *hlock = curr->held_locks + i;
5648 
5649 		if (match_held_lock(hlock, lock)) {
5650 			hlock->pin_count += cookie.val;
5651 			return;
5652 		}
5653 	}
5654 
5655 	WARN(1, "pinning an unheld lock\n");
5656 }
5657 
__lock_unpin_lock(struct lockdep_map * lock,struct pin_cookie cookie)5658 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5659 {
5660 	struct task_struct *curr = current;
5661 	int i;
5662 
5663 	if (unlikely(!debug_locks))
5664 		return;
5665 
5666 	for (i = 0; i < curr->lockdep_depth; i++) {
5667 		struct held_lock *hlock = curr->held_locks + i;
5668 
5669 		if (match_held_lock(hlock, lock)) {
5670 			if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n"))
5671 				return;
5672 
5673 			hlock->pin_count -= cookie.val;
5674 
5675 			if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n"))
5676 				hlock->pin_count = 0;
5677 
5678 			return;
5679 		}
5680 	}
5681 
5682 	WARN(1, "unpinning an unheld lock\n");
5683 }
5684 
5685 /*
5686  * Check whether we follow the irq-flags state precisely:
5687  */
check_flags(unsigned long flags)5688 static noinstr void check_flags(unsigned long flags)
5689 {
5690 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP)
5691 	if (!debug_locks)
5692 		return;
5693 
5694 	/* Get the warning out..  */
5695 	instrumentation_begin();
5696 
5697 	if (irqs_disabled_flags(flags)) {
5698 		if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) {
5699 			printk("possible reason: unannotated irqs-off.\n");
5700 		}
5701 	} else {
5702 		if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) {
5703 			printk("possible reason: unannotated irqs-on.\n");
5704 		}
5705 	}
5706 
5707 #ifndef CONFIG_PREEMPT_RT
5708 	/*
5709 	 * We dont accurately track softirq state in e.g.
5710 	 * hardirq contexts (such as on 4KSTACKS), so only
5711 	 * check if not in hardirq contexts:
5712 	 */
5713 	if (!hardirq_count()) {
5714 		if (softirq_count()) {
5715 			/* like the above, but with softirqs */
5716 			DEBUG_LOCKS_WARN_ON(current->softirqs_enabled);
5717 		} else {
5718 			/* lick the above, does it taste good? */
5719 			DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled);
5720 		}
5721 	}
5722 #endif
5723 
5724 	if (!debug_locks)
5725 		print_irqtrace_events(current);
5726 
5727 	instrumentation_end();
5728 #endif
5729 }
5730 
lock_set_class(struct lockdep_map * lock,const char * name,struct lock_class_key * key,unsigned int subclass,unsigned long ip)5731 void lock_set_class(struct lockdep_map *lock, const char *name,
5732 		    struct lock_class_key *key, unsigned int subclass,
5733 		    unsigned long ip)
5734 {
5735 	unsigned long flags;
5736 
5737 	if (unlikely(!lockdep_enabled()))
5738 		return;
5739 
5740 	raw_local_irq_save(flags);
5741 	lockdep_recursion_inc();
5742 	check_flags(flags);
5743 	if (__lock_set_class(lock, name, key, subclass, ip))
5744 		check_chain_key(current);
5745 	lockdep_recursion_finish();
5746 	raw_local_irq_restore(flags);
5747 }
5748 EXPORT_SYMBOL_GPL(lock_set_class);
5749 
lock_downgrade(struct lockdep_map * lock,unsigned long ip)5750 void lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5751 {
5752 	unsigned long flags;
5753 
5754 	if (unlikely(!lockdep_enabled()))
5755 		return;
5756 
5757 	raw_local_irq_save(flags);
5758 	lockdep_recursion_inc();
5759 	check_flags(flags);
5760 	if (__lock_downgrade(lock, ip))
5761 		check_chain_key(current);
5762 	lockdep_recursion_finish();
5763 	raw_local_irq_restore(flags);
5764 }
5765 EXPORT_SYMBOL_GPL(lock_downgrade);
5766 
5767 /* NMI context !!! */
verify_lock_unused(struct lockdep_map * lock,struct held_lock * hlock,int subclass)5768 static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass)
5769 {
5770 #ifdef CONFIG_PROVE_LOCKING
5771 	struct lock_class *class = look_up_lock_class(lock, subclass);
5772 	unsigned long mask = LOCKF_USED;
5773 
5774 	/* if it doesn't have a class (yet), it certainly hasn't been used yet */
5775 	if (!class)
5776 		return;
5777 
5778 	/*
5779 	 * READ locks only conflict with USED, such that if we only ever use
5780 	 * READ locks, there is no deadlock possible -- RCU.
5781 	 */
5782 	if (!hlock->read)
5783 		mask |= LOCKF_USED_READ;
5784 
5785 	if (!(class->usage_mask & mask))
5786 		return;
5787 
5788 	hlock->class_idx = class - lock_classes;
5789 
5790 	print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES);
5791 #endif
5792 }
5793 
lockdep_nmi(void)5794 static bool lockdep_nmi(void)
5795 {
5796 	if (raw_cpu_read(lockdep_recursion))
5797 		return false;
5798 
5799 	if (!in_nmi())
5800 		return false;
5801 
5802 	return true;
5803 }
5804 
5805 /*
5806  * read_lock() is recursive if:
5807  * 1. We force lockdep think this way in selftests or
5808  * 2. The implementation is not queued read/write lock or
5809  * 3. The locker is at an in_interrupt() context.
5810  */
read_lock_is_recursive(void)5811 bool read_lock_is_recursive(void)
5812 {
5813 	return force_read_lock_recursive ||
5814 	       !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) ||
5815 	       in_interrupt();
5816 }
5817 EXPORT_SYMBOL_GPL(read_lock_is_recursive);
5818 
5819 /*
5820  * We are not always called with irqs disabled - do that here,
5821  * and also avoid lockdep recursion:
5822  */
lock_acquire(struct lockdep_map * lock,unsigned int subclass,int trylock,int read,int check,struct lockdep_map * nest_lock,unsigned long ip)5823 void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
5824 			  int trylock, int read, int check,
5825 			  struct lockdep_map *nest_lock, unsigned long ip)
5826 {
5827 	unsigned long flags;
5828 
5829 	trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip);
5830 
5831 	if (!debug_locks)
5832 		return;
5833 
5834 	/*
5835 	 * As KASAN instrumentation is disabled and lock_acquire() is usually
5836 	 * the first lockdep call when a task tries to acquire a lock, add
5837 	 * kasan_check_byte() here to check for use-after-free and other
5838 	 * memory errors.
5839 	 */
5840 	kasan_check_byte(lock);
5841 
5842 	if (unlikely(!lockdep_enabled())) {
5843 		/* XXX allow trylock from NMI ?!? */
5844 		if (lockdep_nmi() && !trylock) {
5845 			struct held_lock hlock;
5846 
5847 			hlock.acquire_ip = ip;
5848 			hlock.instance = lock;
5849 			hlock.nest_lock = nest_lock;
5850 			hlock.irq_context = 2; // XXX
5851 			hlock.trylock = trylock;
5852 			hlock.read = read;
5853 			hlock.check = check;
5854 			hlock.hardirqs_off = true;
5855 			hlock.references = 0;
5856 
5857 			verify_lock_unused(lock, &hlock, subclass);
5858 		}
5859 		return;
5860 	}
5861 
5862 	raw_local_irq_save(flags);
5863 	check_flags(flags);
5864 
5865 	lockdep_recursion_inc();
5866 	__lock_acquire(lock, subclass, trylock, read, check,
5867 		       irqs_disabled_flags(flags), nest_lock, ip, 0, 0, 0);
5868 	lockdep_recursion_finish();
5869 	raw_local_irq_restore(flags);
5870 }
5871 EXPORT_SYMBOL_GPL(lock_acquire);
5872 
lock_release(struct lockdep_map * lock,unsigned long ip)5873 void lock_release(struct lockdep_map *lock, unsigned long ip)
5874 {
5875 	unsigned long flags;
5876 
5877 	trace_lock_release(lock, ip);
5878 
5879 	if (unlikely(!lockdep_enabled() ||
5880 		     lock->key == &__lockdep_no_track__))
5881 		return;
5882 
5883 	raw_local_irq_save(flags);
5884 	check_flags(flags);
5885 
5886 	lockdep_recursion_inc();
5887 	if (__lock_release(lock, ip))
5888 		check_chain_key(current);
5889 	lockdep_recursion_finish();
5890 	raw_local_irq_restore(flags);
5891 }
5892 EXPORT_SYMBOL_GPL(lock_release);
5893 
5894 /*
5895  * lock_sync() - A special annotation for synchronize_{s,}rcu()-like API.
5896  *
5897  * No actual critical section is created by the APIs annotated with this: these
5898  * APIs are used to wait for one or multiple critical sections (on other CPUs
5899  * or threads), and it means that calling these APIs inside these critical
5900  * sections is potential deadlock.
5901  */
lock_sync(struct lockdep_map * lock,unsigned subclass,int read,int check,struct lockdep_map * nest_lock,unsigned long ip)5902 void lock_sync(struct lockdep_map *lock, unsigned subclass, int read,
5903 	       int check, struct lockdep_map *nest_lock, unsigned long ip)
5904 {
5905 	unsigned long flags;
5906 
5907 	if (unlikely(!lockdep_enabled()))
5908 		return;
5909 
5910 	raw_local_irq_save(flags);
5911 	check_flags(flags);
5912 
5913 	lockdep_recursion_inc();
5914 	__lock_acquire(lock, subclass, 0, read, check,
5915 		       irqs_disabled_flags(flags), nest_lock, ip, 0, 0, 1);
5916 	check_chain_key(current);
5917 	lockdep_recursion_finish();
5918 	raw_local_irq_restore(flags);
5919 }
5920 EXPORT_SYMBOL_GPL(lock_sync);
5921 
lock_is_held_type(const struct lockdep_map * lock,int read)5922 noinstr int lock_is_held_type(const struct lockdep_map *lock, int read)
5923 {
5924 	unsigned long flags;
5925 	int ret = LOCK_STATE_NOT_HELD;
5926 
5927 	/*
5928 	 * Avoid false negative lockdep_assert_held() and
5929 	 * lockdep_assert_not_held().
5930 	 */
5931 	if (unlikely(!lockdep_enabled()))
5932 		return LOCK_STATE_UNKNOWN;
5933 
5934 	raw_local_irq_save(flags);
5935 	check_flags(flags);
5936 
5937 	lockdep_recursion_inc();
5938 	ret = __lock_is_held(lock, read);
5939 	lockdep_recursion_finish();
5940 	raw_local_irq_restore(flags);
5941 
5942 	return ret;
5943 }
5944 EXPORT_SYMBOL_GPL(lock_is_held_type);
5945 NOKPROBE_SYMBOL(lock_is_held_type);
5946 
lock_pin_lock(struct lockdep_map * lock)5947 struct pin_cookie lock_pin_lock(struct lockdep_map *lock)
5948 {
5949 	struct pin_cookie cookie = NIL_COOKIE;
5950 	unsigned long flags;
5951 
5952 	if (unlikely(!lockdep_enabled()))
5953 		return cookie;
5954 
5955 	raw_local_irq_save(flags);
5956 	check_flags(flags);
5957 
5958 	lockdep_recursion_inc();
5959 	cookie = __lock_pin_lock(lock);
5960 	lockdep_recursion_finish();
5961 	raw_local_irq_restore(flags);
5962 
5963 	return cookie;
5964 }
5965 EXPORT_SYMBOL_GPL(lock_pin_lock);
5966 
lock_repin_lock(struct lockdep_map * lock,struct pin_cookie cookie)5967 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5968 {
5969 	unsigned long flags;
5970 
5971 	if (unlikely(!lockdep_enabled()))
5972 		return;
5973 
5974 	raw_local_irq_save(flags);
5975 	check_flags(flags);
5976 
5977 	lockdep_recursion_inc();
5978 	__lock_repin_lock(lock, cookie);
5979 	lockdep_recursion_finish();
5980 	raw_local_irq_restore(flags);
5981 }
5982 EXPORT_SYMBOL_GPL(lock_repin_lock);
5983 
lock_unpin_lock(struct lockdep_map * lock,struct pin_cookie cookie)5984 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5985 {
5986 	unsigned long flags;
5987 
5988 	if (unlikely(!lockdep_enabled()))
5989 		return;
5990 
5991 	raw_local_irq_save(flags);
5992 	check_flags(flags);
5993 
5994 	lockdep_recursion_inc();
5995 	__lock_unpin_lock(lock, cookie);
5996 	lockdep_recursion_finish();
5997 	raw_local_irq_restore(flags);
5998 }
5999 EXPORT_SYMBOL_GPL(lock_unpin_lock);
6000 
6001 #ifdef CONFIG_LOCK_STAT
print_lock_contention_bug(struct task_struct * curr,struct lockdep_map * lock,unsigned long ip)6002 static void print_lock_contention_bug(struct task_struct *curr,
6003 				      struct lockdep_map *lock,
6004 				      unsigned long ip)
6005 {
6006 	if (!debug_locks_off())
6007 		return;
6008 	if (debug_locks_silent)
6009 		return;
6010 
6011 	nbcon_cpu_emergency_enter();
6012 
6013 	pr_warn("\n");
6014 	pr_warn("=================================\n");
6015 	pr_warn("WARNING: bad contention detected!\n");
6016 	print_kernel_ident();
6017 	pr_warn("---------------------------------\n");
6018 	pr_warn("%s/%d is trying to contend lock (",
6019 		curr->comm, task_pid_nr(curr));
6020 	print_lockdep_cache(lock);
6021 	pr_cont(") at:\n");
6022 	print_ip_sym(KERN_WARNING, ip);
6023 	pr_warn("but there are no locks held!\n");
6024 	pr_warn("\nother info that might help us debug this:\n");
6025 	lockdep_print_held_locks(curr);
6026 
6027 	pr_warn("\nstack backtrace:\n");
6028 	dump_stack();
6029 
6030 	nbcon_cpu_emergency_exit();
6031 }
6032 
6033 static void
__lock_contended(struct lockdep_map * lock,unsigned long ip)6034 __lock_contended(struct lockdep_map *lock, unsigned long ip)
6035 {
6036 	struct task_struct *curr = current;
6037 	struct held_lock *hlock;
6038 	struct lock_class_stats *stats;
6039 	unsigned int depth;
6040 	int i, contention_point, contending_point;
6041 
6042 	depth = curr->lockdep_depth;
6043 	/*
6044 	 * Whee, we contended on this lock, except it seems we're not
6045 	 * actually trying to acquire anything much at all..
6046 	 */
6047 	if (DEBUG_LOCKS_WARN_ON(!depth))
6048 		return;
6049 
6050 	if (unlikely(lock->key == &__lockdep_no_track__))
6051 		return;
6052 
6053 	hlock = find_held_lock(curr, lock, depth, &i);
6054 	if (!hlock) {
6055 		print_lock_contention_bug(curr, lock, ip);
6056 		return;
6057 	}
6058 
6059 	if (hlock->instance != lock)
6060 		return;
6061 
6062 	hlock->waittime_stamp = lockstat_clock();
6063 
6064 	contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
6065 	contending_point = lock_point(hlock_class(hlock)->contending_point,
6066 				      lock->ip);
6067 
6068 	stats = get_lock_stats(hlock_class(hlock));
6069 	if (contention_point < LOCKSTAT_POINTS)
6070 		stats->contention_point[contention_point]++;
6071 	if (contending_point < LOCKSTAT_POINTS)
6072 		stats->contending_point[contending_point]++;
6073 	if (lock->cpu != smp_processor_id())
6074 		stats->bounces[bounce_contended + !!hlock->read]++;
6075 }
6076 
6077 static void
__lock_acquired(struct lockdep_map * lock,unsigned long ip)6078 __lock_acquired(struct lockdep_map *lock, unsigned long ip)
6079 {
6080 	struct task_struct *curr = current;
6081 	struct held_lock *hlock;
6082 	struct lock_class_stats *stats;
6083 	unsigned int depth;
6084 	u64 now, waittime = 0;
6085 	int i, cpu;
6086 
6087 	depth = curr->lockdep_depth;
6088 	/*
6089 	 * Yay, we acquired ownership of this lock we didn't try to
6090 	 * acquire, how the heck did that happen?
6091 	 */
6092 	if (DEBUG_LOCKS_WARN_ON(!depth))
6093 		return;
6094 
6095 	if (unlikely(lock->key == &__lockdep_no_track__))
6096 		return;
6097 
6098 	hlock = find_held_lock(curr, lock, depth, &i);
6099 	if (!hlock) {
6100 		print_lock_contention_bug(curr, lock, _RET_IP_);
6101 		return;
6102 	}
6103 
6104 	if (hlock->instance != lock)
6105 		return;
6106 
6107 	cpu = smp_processor_id();
6108 	if (hlock->waittime_stamp) {
6109 		now = lockstat_clock();
6110 		waittime = now - hlock->waittime_stamp;
6111 		hlock->holdtime_stamp = now;
6112 	}
6113 
6114 	stats = get_lock_stats(hlock_class(hlock));
6115 	if (waittime) {
6116 		if (hlock->read)
6117 			lock_time_inc(&stats->read_waittime, waittime);
6118 		else
6119 			lock_time_inc(&stats->write_waittime, waittime);
6120 	}
6121 	if (lock->cpu != cpu)
6122 		stats->bounces[bounce_acquired + !!hlock->read]++;
6123 
6124 	lock->cpu = cpu;
6125 	lock->ip = ip;
6126 }
6127 
lock_contended(struct lockdep_map * lock,unsigned long ip)6128 void lock_contended(struct lockdep_map *lock, unsigned long ip)
6129 {
6130 	unsigned long flags;
6131 
6132 	trace_lock_contended(lock, ip);
6133 
6134 	if (unlikely(!lock_stat || !lockdep_enabled()))
6135 		return;
6136 
6137 	raw_local_irq_save(flags);
6138 	check_flags(flags);
6139 	lockdep_recursion_inc();
6140 	__lock_contended(lock, ip);
6141 	lockdep_recursion_finish();
6142 	raw_local_irq_restore(flags);
6143 }
6144 EXPORT_SYMBOL_GPL(lock_contended);
6145 
lock_acquired(struct lockdep_map * lock,unsigned long ip)6146 void lock_acquired(struct lockdep_map *lock, unsigned long ip)
6147 {
6148 	unsigned long flags;
6149 
6150 	trace_lock_acquired(lock, ip);
6151 
6152 	if (unlikely(!lock_stat || !lockdep_enabled()))
6153 		return;
6154 
6155 	raw_local_irq_save(flags);
6156 	check_flags(flags);
6157 	lockdep_recursion_inc();
6158 	__lock_acquired(lock, ip);
6159 	lockdep_recursion_finish();
6160 	raw_local_irq_restore(flags);
6161 }
6162 EXPORT_SYMBOL_GPL(lock_acquired);
6163 #endif
6164 
6165 /*
6166  * Used by the testsuite, sanitize the validator state
6167  * after a simulated failure:
6168  */
6169 
lockdep_reset(void)6170 void lockdep_reset(void)
6171 {
6172 	unsigned long flags;
6173 	int i;
6174 
6175 	raw_local_irq_save(flags);
6176 	lockdep_init_task(current);
6177 	memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock));
6178 	nr_hardirq_chains = 0;
6179 	nr_softirq_chains = 0;
6180 	nr_process_chains = 0;
6181 	debug_locks = 1;
6182 	for (i = 0; i < CHAINHASH_SIZE; i++)
6183 		INIT_HLIST_HEAD(chainhash_table + i);
6184 	raw_local_irq_restore(flags);
6185 }
6186 
6187 /* Remove a class from a lock chain. Must be called with the graph lock held. */
remove_class_from_lock_chain(struct pending_free * pf,struct lock_chain * chain,struct lock_class * class)6188 static void remove_class_from_lock_chain(struct pending_free *pf,
6189 					 struct lock_chain *chain,
6190 					 struct lock_class *class)
6191 {
6192 #ifdef CONFIG_PROVE_LOCKING
6193 	int i;
6194 
6195 	for (i = chain->base; i < chain->base + chain->depth; i++) {
6196 		if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes)
6197 			continue;
6198 		/*
6199 		 * Each lock class occurs at most once in a lock chain so once
6200 		 * we found a match we can break out of this loop.
6201 		 */
6202 		goto free_lock_chain;
6203 	}
6204 	/* Since the chain has not been modified, return. */
6205 	return;
6206 
6207 free_lock_chain:
6208 	free_chain_hlocks(chain->base, chain->depth);
6209 	/* Overwrite the chain key for concurrent RCU readers. */
6210 	WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY);
6211 	dec_chains(chain->irq_context);
6212 
6213 	/*
6214 	 * Note: calling hlist_del_rcu() from inside a
6215 	 * hlist_for_each_entry_rcu() loop is safe.
6216 	 */
6217 	hlist_del_rcu(&chain->entry);
6218 	__set_bit(chain - lock_chains, pf->lock_chains_being_freed);
6219 	nr_zapped_lock_chains++;
6220 #endif
6221 }
6222 
6223 /* Must be called with the graph lock held. */
remove_class_from_lock_chains(struct pending_free * pf,struct lock_class * class)6224 static void remove_class_from_lock_chains(struct pending_free *pf,
6225 					  struct lock_class *class)
6226 {
6227 	struct lock_chain *chain;
6228 	struct hlist_head *head;
6229 	int i;
6230 
6231 	for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
6232 		head = chainhash_table + i;
6233 		hlist_for_each_entry_rcu(chain, head, entry) {
6234 			remove_class_from_lock_chain(pf, chain, class);
6235 		}
6236 	}
6237 }
6238 
6239 /*
6240  * Remove all references to a lock class. The caller must hold the graph lock.
6241  */
zap_class(struct pending_free * pf,struct lock_class * class)6242 static void zap_class(struct pending_free *pf, struct lock_class *class)
6243 {
6244 	struct lock_list *entry;
6245 	int i;
6246 
6247 	WARN_ON_ONCE(!class->key);
6248 
6249 	/*
6250 	 * Remove all dependencies this lock is
6251 	 * involved in:
6252 	 */
6253 	for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
6254 		entry = list_entries + i;
6255 		if (entry->class != class && entry->links_to != class)
6256 			continue;
6257 		__clear_bit(i, list_entries_in_use);
6258 		nr_list_entries--;
6259 		list_del_rcu(&entry->entry);
6260 	}
6261 	if (list_empty(&class->locks_after) &&
6262 	    list_empty(&class->locks_before)) {
6263 		list_move_tail(&class->lock_entry, &pf->zapped);
6264 		hlist_del_rcu(&class->hash_entry);
6265 		WRITE_ONCE(class->key, NULL);
6266 		WRITE_ONCE(class->name, NULL);
6267 		/* Class allocated but not used, -1 in nr_unused_locks */
6268 		if (class->usage_mask == 0)
6269 			debug_atomic_dec(nr_unused_locks);
6270 		nr_lock_classes--;
6271 		__clear_bit(class - lock_classes, lock_classes_in_use);
6272 		if (class - lock_classes == max_lock_class_idx)
6273 			max_lock_class_idx--;
6274 	} else {
6275 		WARN_ONCE(true, "%s() failed for class %s\n", __func__,
6276 			  class->name);
6277 	}
6278 
6279 	remove_class_from_lock_chains(pf, class);
6280 	nr_zapped_classes++;
6281 }
6282 
reinit_class(struct lock_class * class)6283 static void reinit_class(struct lock_class *class)
6284 {
6285 	WARN_ON_ONCE(!class->lock_entry.next);
6286 	WARN_ON_ONCE(!list_empty(&class->locks_after));
6287 	WARN_ON_ONCE(!list_empty(&class->locks_before));
6288 	memset_startat(class, 0, key);
6289 	WARN_ON_ONCE(!class->lock_entry.next);
6290 	WARN_ON_ONCE(!list_empty(&class->locks_after));
6291 	WARN_ON_ONCE(!list_empty(&class->locks_before));
6292 }
6293 
within(const void * addr,void * start,unsigned long size)6294 static inline int within(const void *addr, void *start, unsigned long size)
6295 {
6296 	return addr >= start && addr < start + size;
6297 }
6298 
inside_selftest(void)6299 static bool inside_selftest(void)
6300 {
6301 	return current == lockdep_selftest_task_struct;
6302 }
6303 
6304 /* The caller must hold the graph lock. */
get_pending_free(void)6305 static struct pending_free *get_pending_free(void)
6306 {
6307 	return delayed_free.pf + delayed_free.index;
6308 }
6309 
6310 static void free_zapped_rcu(struct rcu_head *cb);
6311 
6312 /*
6313 * See if we need to queue an RCU callback, must called with
6314 * the lockdep lock held, returns false if either we don't have
6315 * any pending free or the callback is already scheduled.
6316 * Otherwise, a call_rcu() must follow this function call.
6317 */
prepare_call_rcu_zapped(struct pending_free * pf)6318 static bool prepare_call_rcu_zapped(struct pending_free *pf)
6319 {
6320 	WARN_ON_ONCE(inside_selftest());
6321 
6322 	if (list_empty(&pf->zapped))
6323 		return false;
6324 
6325 	if (delayed_free.scheduled)
6326 		return false;
6327 
6328 	delayed_free.scheduled = true;
6329 
6330 	WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf);
6331 	delayed_free.index ^= 1;
6332 
6333 	return true;
6334 }
6335 
6336 /* The caller must hold the graph lock. May be called from RCU context. */
__free_zapped_classes(struct pending_free * pf)6337 static void __free_zapped_classes(struct pending_free *pf)
6338 {
6339 	struct lock_class *class;
6340 
6341 	check_data_structures();
6342 
6343 	list_for_each_entry(class, &pf->zapped, lock_entry)
6344 		reinit_class(class);
6345 
6346 	list_splice_init(&pf->zapped, &free_lock_classes);
6347 
6348 #ifdef CONFIG_PROVE_LOCKING
6349 	bitmap_andnot(lock_chains_in_use, lock_chains_in_use,
6350 		      pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains));
6351 	bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains));
6352 #endif
6353 }
6354 
free_zapped_rcu(struct rcu_head * ch)6355 static void free_zapped_rcu(struct rcu_head *ch)
6356 {
6357 	struct pending_free *pf;
6358 	unsigned long flags;
6359 	bool need_callback;
6360 
6361 	if (WARN_ON_ONCE(ch != &delayed_free.rcu_head))
6362 		return;
6363 
6364 	raw_local_irq_save(flags);
6365 	lockdep_lock();
6366 
6367 	/* closed head */
6368 	pf = delayed_free.pf + (delayed_free.index ^ 1);
6369 	__free_zapped_classes(pf);
6370 	delayed_free.scheduled = false;
6371 	need_callback =
6372 		prepare_call_rcu_zapped(delayed_free.pf + delayed_free.index);
6373 	lockdep_unlock();
6374 	raw_local_irq_restore(flags);
6375 
6376 	/*
6377 	* If there's pending free and its callback has not been scheduled,
6378 	* queue an RCU callback.
6379 	*/
6380 	if (need_callback)
6381 		call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
6382 
6383 }
6384 
6385 /*
6386  * Remove all lock classes from the class hash table and from the
6387  * all_lock_classes list whose key or name is in the address range [start,
6388  * start + size). Move these lock classes to the zapped_classes list. Must
6389  * be called with the graph lock held.
6390  */
__lockdep_free_key_range(struct pending_free * pf,void * start,unsigned long size)6391 static void __lockdep_free_key_range(struct pending_free *pf, void *start,
6392 				     unsigned long size)
6393 {
6394 	struct lock_class *class;
6395 	struct hlist_head *head;
6396 	int i;
6397 
6398 	/* Unhash all classes that were created by a module. */
6399 	for (i = 0; i < CLASSHASH_SIZE; i++) {
6400 		head = classhash_table + i;
6401 		hlist_for_each_entry_rcu(class, head, hash_entry) {
6402 			if (!within(class->key, start, size) &&
6403 			    !within(class->name, start, size))
6404 				continue;
6405 			zap_class(pf, class);
6406 		}
6407 	}
6408 }
6409 
6410 /*
6411  * Used in module.c to remove lock classes from memory that is going to be
6412  * freed; and possibly re-used by other modules.
6413  *
6414  * We will have had one synchronize_rcu() before getting here, so we're
6415  * guaranteed nobody will look up these exact classes -- they're properly dead
6416  * but still allocated.
6417  */
lockdep_free_key_range_reg(void * start,unsigned long size)6418 static void lockdep_free_key_range_reg(void *start, unsigned long size)
6419 {
6420 	struct pending_free *pf;
6421 	unsigned long flags;
6422 	bool need_callback;
6423 
6424 	init_data_structures_once();
6425 
6426 	raw_local_irq_save(flags);
6427 	lockdep_lock();
6428 	pf = get_pending_free();
6429 	__lockdep_free_key_range(pf, start, size);
6430 	need_callback = prepare_call_rcu_zapped(pf);
6431 	lockdep_unlock();
6432 	raw_local_irq_restore(flags);
6433 	if (need_callback)
6434 		call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
6435 	/*
6436 	 * Wait for any possible iterators from look_up_lock_class() to pass
6437 	 * before continuing to free the memory they refer to.
6438 	 */
6439 	synchronize_rcu();
6440 }
6441 
6442 /*
6443  * Free all lockdep keys in the range [start, start+size). Does not sleep.
6444  * Ignores debug_locks. Must only be used by the lockdep selftests.
6445  */
lockdep_free_key_range_imm(void * start,unsigned long size)6446 static void lockdep_free_key_range_imm(void *start, unsigned long size)
6447 {
6448 	struct pending_free *pf = delayed_free.pf;
6449 	unsigned long flags;
6450 
6451 	init_data_structures_once();
6452 
6453 	raw_local_irq_save(flags);
6454 	lockdep_lock();
6455 	__lockdep_free_key_range(pf, start, size);
6456 	__free_zapped_classes(pf);
6457 	lockdep_unlock();
6458 	raw_local_irq_restore(flags);
6459 }
6460 
lockdep_free_key_range(void * start,unsigned long size)6461 void lockdep_free_key_range(void *start, unsigned long size)
6462 {
6463 	init_data_structures_once();
6464 
6465 	if (inside_selftest())
6466 		lockdep_free_key_range_imm(start, size);
6467 	else
6468 		lockdep_free_key_range_reg(start, size);
6469 }
6470 
6471 /*
6472  * Check whether any element of the @lock->class_cache[] array refers to a
6473  * registered lock class. The caller must hold either the graph lock or the
6474  * RCU read lock.
6475  */
lock_class_cache_is_registered(struct lockdep_map * lock)6476 static bool lock_class_cache_is_registered(struct lockdep_map *lock)
6477 {
6478 	struct lock_class *class;
6479 	struct hlist_head *head;
6480 	int i, j;
6481 
6482 	for (i = 0; i < CLASSHASH_SIZE; i++) {
6483 		head = classhash_table + i;
6484 		hlist_for_each_entry_rcu(class, head, hash_entry) {
6485 			for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++)
6486 				if (lock->class_cache[j] == class)
6487 					return true;
6488 		}
6489 	}
6490 	return false;
6491 }
6492 
6493 /* The caller must hold the graph lock. Does not sleep. */
__lockdep_reset_lock(struct pending_free * pf,struct lockdep_map * lock)6494 static void __lockdep_reset_lock(struct pending_free *pf,
6495 				 struct lockdep_map *lock)
6496 {
6497 	struct lock_class *class;
6498 	int j;
6499 
6500 	/*
6501 	 * Remove all classes this lock might have:
6502 	 */
6503 	for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) {
6504 		/*
6505 		 * If the class exists we look it up and zap it:
6506 		 */
6507 		class = look_up_lock_class(lock, j);
6508 		if (class)
6509 			zap_class(pf, class);
6510 	}
6511 	/*
6512 	 * Debug check: in the end all mapped classes should
6513 	 * be gone.
6514 	 */
6515 	if (WARN_ON_ONCE(lock_class_cache_is_registered(lock)))
6516 		debug_locks_off();
6517 }
6518 
6519 /*
6520  * Remove all information lockdep has about a lock if debug_locks == 1. Free
6521  * released data structures from RCU context.
6522  */
lockdep_reset_lock_reg(struct lockdep_map * lock)6523 static void lockdep_reset_lock_reg(struct lockdep_map *lock)
6524 {
6525 	struct pending_free *pf;
6526 	unsigned long flags;
6527 	int locked;
6528 	bool need_callback = false;
6529 
6530 	raw_local_irq_save(flags);
6531 	locked = graph_lock();
6532 	if (!locked)
6533 		goto out_irq;
6534 
6535 	pf = get_pending_free();
6536 	__lockdep_reset_lock(pf, lock);
6537 	need_callback = prepare_call_rcu_zapped(pf);
6538 
6539 	graph_unlock();
6540 out_irq:
6541 	raw_local_irq_restore(flags);
6542 	if (need_callback)
6543 		call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
6544 }
6545 
6546 /*
6547  * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the
6548  * lockdep selftests.
6549  */
lockdep_reset_lock_imm(struct lockdep_map * lock)6550 static void lockdep_reset_lock_imm(struct lockdep_map *lock)
6551 {
6552 	struct pending_free *pf = delayed_free.pf;
6553 	unsigned long flags;
6554 
6555 	raw_local_irq_save(flags);
6556 	lockdep_lock();
6557 	__lockdep_reset_lock(pf, lock);
6558 	__free_zapped_classes(pf);
6559 	lockdep_unlock();
6560 	raw_local_irq_restore(flags);
6561 }
6562 
lockdep_reset_lock(struct lockdep_map * lock)6563 void lockdep_reset_lock(struct lockdep_map *lock)
6564 {
6565 	init_data_structures_once();
6566 
6567 	if (inside_selftest())
6568 		lockdep_reset_lock_imm(lock);
6569 	else
6570 		lockdep_reset_lock_reg(lock);
6571 }
6572 
6573 /*
6574  * Unregister a dynamically allocated key.
6575  *
6576  * Unlike lockdep_register_key(), a search is always done to find a matching
6577  * key irrespective of debug_locks to avoid potential invalid access to freed
6578  * memory in lock_class entry.
6579  */
lockdep_unregister_key(struct lock_class_key * key)6580 void lockdep_unregister_key(struct lock_class_key *key)
6581 {
6582 	struct hlist_head *hash_head = keyhashentry(key);
6583 	struct lock_class_key *k;
6584 	struct pending_free *pf;
6585 	unsigned long flags;
6586 	bool found = false;
6587 	bool need_callback = false;
6588 
6589 	might_sleep();
6590 
6591 	if (WARN_ON_ONCE(static_obj(key)))
6592 		return;
6593 
6594 	raw_local_irq_save(flags);
6595 	lockdep_lock();
6596 
6597 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
6598 		if (k == key) {
6599 			hlist_del_rcu(&k->hash_entry);
6600 			found = true;
6601 			break;
6602 		}
6603 	}
6604 	WARN_ON_ONCE(!found && debug_locks);
6605 	if (found) {
6606 		pf = get_pending_free();
6607 		__lockdep_free_key_range(pf, key, 1);
6608 		need_callback = prepare_call_rcu_zapped(pf);
6609 	}
6610 	lockdep_unlock();
6611 	raw_local_irq_restore(flags);
6612 
6613 	if (need_callback)
6614 		call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
6615 
6616 	/* Wait until is_dynamic_key() has finished accessing k->hash_entry. */
6617 	synchronize_rcu();
6618 }
6619 EXPORT_SYMBOL_GPL(lockdep_unregister_key);
6620 
lockdep_init(void)6621 void __init lockdep_init(void)
6622 {
6623 	pr_info("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
6624 
6625 	pr_info("... MAX_LOCKDEP_SUBCLASSES:  %lu\n", MAX_LOCKDEP_SUBCLASSES);
6626 	pr_info("... MAX_LOCK_DEPTH:          %lu\n", MAX_LOCK_DEPTH);
6627 	pr_info("... MAX_LOCKDEP_KEYS:        %lu\n", MAX_LOCKDEP_KEYS);
6628 	pr_info("... CLASSHASH_SIZE:          %lu\n", CLASSHASH_SIZE);
6629 	pr_info("... MAX_LOCKDEP_ENTRIES:     %lu\n", MAX_LOCKDEP_ENTRIES);
6630 	pr_info("... MAX_LOCKDEP_CHAINS:      %lu\n", MAX_LOCKDEP_CHAINS);
6631 	pr_info("... CHAINHASH_SIZE:          %lu\n", CHAINHASH_SIZE);
6632 
6633 	pr_info(" memory used by lock dependency info: %zu kB\n",
6634 	       (sizeof(lock_classes) +
6635 		sizeof(lock_classes_in_use) +
6636 		sizeof(classhash_table) +
6637 		sizeof(list_entries) +
6638 		sizeof(list_entries_in_use) +
6639 		sizeof(chainhash_table) +
6640 		sizeof(delayed_free)
6641 #ifdef CONFIG_PROVE_LOCKING
6642 		+ sizeof(lock_cq)
6643 		+ sizeof(lock_chains)
6644 		+ sizeof(lock_chains_in_use)
6645 		+ sizeof(chain_hlocks)
6646 #endif
6647 		) / 1024
6648 		);
6649 
6650 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
6651 	pr_info(" memory used for stack traces: %zu kB\n",
6652 	       (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024
6653 	       );
6654 #endif
6655 
6656 	pr_info(" per task-struct memory footprint: %zu bytes\n",
6657 	       sizeof(((struct task_struct *)NULL)->held_locks));
6658 }
6659 
6660 static void
print_freed_lock_bug(struct task_struct * curr,const void * mem_from,const void * mem_to,struct held_lock * hlock)6661 print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
6662 		     const void *mem_to, struct held_lock *hlock)
6663 {
6664 	if (!debug_locks_off())
6665 		return;
6666 	if (debug_locks_silent)
6667 		return;
6668 
6669 	nbcon_cpu_emergency_enter();
6670 
6671 	pr_warn("\n");
6672 	pr_warn("=========================\n");
6673 	pr_warn("WARNING: held lock freed!\n");
6674 	print_kernel_ident();
6675 	pr_warn("-------------------------\n");
6676 	pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n",
6677 		curr->comm, task_pid_nr(curr), mem_from, mem_to-1);
6678 	print_lock(hlock);
6679 	lockdep_print_held_locks(curr);
6680 
6681 	pr_warn("\nstack backtrace:\n");
6682 	dump_stack();
6683 
6684 	nbcon_cpu_emergency_exit();
6685 }
6686 
not_in_range(const void * mem_from,unsigned long mem_len,const void * lock_from,unsigned long lock_len)6687 static inline int not_in_range(const void* mem_from, unsigned long mem_len,
6688 				const void* lock_from, unsigned long lock_len)
6689 {
6690 	return lock_from + lock_len <= mem_from ||
6691 		mem_from + mem_len <= lock_from;
6692 }
6693 
6694 /*
6695  * Called when kernel memory is freed (or unmapped), or if a lock
6696  * is destroyed or reinitialized - this code checks whether there is
6697  * any held lock in the memory range of <from> to <to>:
6698  */
debug_check_no_locks_freed(const void * mem_from,unsigned long mem_len)6699 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
6700 {
6701 	struct task_struct *curr = current;
6702 	struct held_lock *hlock;
6703 	unsigned long flags;
6704 	int i;
6705 
6706 	if (unlikely(!debug_locks))
6707 		return;
6708 
6709 	raw_local_irq_save(flags);
6710 	for (i = 0; i < curr->lockdep_depth; i++) {
6711 		hlock = curr->held_locks + i;
6712 
6713 		if (not_in_range(mem_from, mem_len, hlock->instance,
6714 					sizeof(*hlock->instance)))
6715 			continue;
6716 
6717 		print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock);
6718 		break;
6719 	}
6720 	raw_local_irq_restore(flags);
6721 }
6722 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed);
6723 
print_held_locks_bug(void)6724 static void print_held_locks_bug(void)
6725 {
6726 	if (!debug_locks_off())
6727 		return;
6728 	if (debug_locks_silent)
6729 		return;
6730 
6731 	nbcon_cpu_emergency_enter();
6732 
6733 	pr_warn("\n");
6734 	pr_warn("====================================\n");
6735 	pr_warn("WARNING: %s/%d still has locks held!\n",
6736 	       current->comm, task_pid_nr(current));
6737 	print_kernel_ident();
6738 	pr_warn("------------------------------------\n");
6739 	lockdep_print_held_locks(current);
6740 	pr_warn("\nstack backtrace:\n");
6741 	dump_stack();
6742 
6743 	nbcon_cpu_emergency_exit();
6744 }
6745 
debug_check_no_locks_held(void)6746 void debug_check_no_locks_held(void)
6747 {
6748 	if (unlikely(current->lockdep_depth > 0))
6749 		print_held_locks_bug();
6750 }
6751 EXPORT_SYMBOL_GPL(debug_check_no_locks_held);
6752 
6753 #ifdef __KERNEL__
debug_show_all_locks(void)6754 void debug_show_all_locks(void)
6755 {
6756 	struct task_struct *g, *p;
6757 
6758 	if (unlikely(!debug_locks)) {
6759 		pr_warn("INFO: lockdep is turned off.\n");
6760 		return;
6761 	}
6762 	pr_warn("\nShowing all locks held in the system:\n");
6763 
6764 	rcu_read_lock();
6765 	for_each_process_thread(g, p) {
6766 		if (!p->lockdep_depth)
6767 			continue;
6768 		lockdep_print_held_locks(p);
6769 		touch_nmi_watchdog();
6770 		touch_all_softlockup_watchdogs();
6771 	}
6772 	rcu_read_unlock();
6773 
6774 	pr_warn("\n");
6775 	pr_warn("=============================================\n\n");
6776 }
6777 EXPORT_SYMBOL_GPL(debug_show_all_locks);
6778 #endif
6779 
6780 /*
6781  * Careful: only use this function if you are sure that
6782  * the task cannot run in parallel!
6783  */
debug_show_held_locks(struct task_struct * task)6784 void debug_show_held_locks(struct task_struct *task)
6785 {
6786 	if (unlikely(!debug_locks)) {
6787 		printk("INFO: lockdep is turned off.\n");
6788 		return;
6789 	}
6790 	lockdep_print_held_locks(task);
6791 }
6792 EXPORT_SYMBOL_GPL(debug_show_held_locks);
6793 
lockdep_sys_exit(void)6794 asmlinkage __visible void lockdep_sys_exit(void)
6795 {
6796 	struct task_struct *curr = current;
6797 
6798 	if (unlikely(curr->lockdep_depth)) {
6799 		if (!debug_locks_off())
6800 			return;
6801 		nbcon_cpu_emergency_enter();
6802 		pr_warn("\n");
6803 		pr_warn("================================================\n");
6804 		pr_warn("WARNING: lock held when returning to user space!\n");
6805 		print_kernel_ident();
6806 		pr_warn("------------------------------------------------\n");
6807 		pr_warn("%s/%d is leaving the kernel with locks still held!\n",
6808 				curr->comm, curr->pid);
6809 		lockdep_print_held_locks(curr);
6810 		nbcon_cpu_emergency_exit();
6811 	}
6812 
6813 	/*
6814 	 * The lock history for each syscall should be independent. So wipe the
6815 	 * slate clean on return to userspace.
6816 	 */
6817 	lockdep_invariant_state(false);
6818 }
6819 
lockdep_rcu_suspicious(const char * file,const int line,const char * s)6820 void lockdep_rcu_suspicious(const char *file, const int line, const char *s)
6821 {
6822 	struct task_struct *curr = current;
6823 	int dl = READ_ONCE(debug_locks);
6824 	bool rcu = warn_rcu_enter();
6825 
6826 	/* Note: the following can be executed concurrently, so be careful. */
6827 	nbcon_cpu_emergency_enter();
6828 	pr_warn("\n");
6829 	pr_warn("=============================\n");
6830 	pr_warn("WARNING: suspicious RCU usage\n");
6831 	print_kernel_ident();
6832 	pr_warn("-----------------------------\n");
6833 	pr_warn("%s:%d %s!\n", file, line, s);
6834 	pr_warn("\nother info that might help us debug this:\n\n");
6835 	pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n%s",
6836 	       !rcu_lockdep_current_cpu_online()
6837 			? "RCU used illegally from offline CPU!\n"
6838 			: "",
6839 	       rcu_scheduler_active, dl,
6840 	       dl ? "" : "Possible false positive due to lockdep disabling via debug_locks = 0\n");
6841 
6842 	/*
6843 	 * If a CPU is in the RCU-free window in idle (ie: in the section
6844 	 * between ct_idle_enter() and ct_idle_exit(), then RCU
6845 	 * considers that CPU to be in an "extended quiescent state",
6846 	 * which means that RCU will be completely ignoring that CPU.
6847 	 * Therefore, rcu_read_lock() and friends have absolutely no
6848 	 * effect on a CPU running in that state. In other words, even if
6849 	 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well
6850 	 * delete data structures out from under it.  RCU really has no
6851 	 * choice here: we need to keep an RCU-free window in idle where
6852 	 * the CPU may possibly enter into low power mode. This way we can
6853 	 * notice an extended quiescent state to other CPUs that started a grace
6854 	 * period. Otherwise we would delay any grace period as long as we run
6855 	 * in the idle task.
6856 	 *
6857 	 * So complain bitterly if someone does call rcu_read_lock(),
6858 	 * rcu_read_lock_bh() and so on from extended quiescent states.
6859 	 */
6860 	if (!rcu_is_watching())
6861 		pr_warn("RCU used illegally from extended quiescent state!\n");
6862 
6863 	lockdep_print_held_locks(curr);
6864 	pr_warn("\nstack backtrace:\n");
6865 	dump_stack();
6866 	nbcon_cpu_emergency_exit();
6867 	warn_rcu_exit(rcu);
6868 }
6869 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious);
6870