1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_PGTABLE_H
3 #define _LINUX_PGTABLE_H
4
5 #include <linux/pfn.h>
6 #include <asm/pgtable.h>
7
8 #define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT)
9 #define PUD_ORDER (PUD_SHIFT - PAGE_SHIFT)
10
11 #ifndef __ASSEMBLY__
12 #ifdef CONFIG_MMU
13
14 #include <linux/mm_types.h>
15 #include <linux/bug.h>
16 #include <linux/errno.h>
17 #include <asm-generic/pgtable_uffd.h>
18 #include <linux/page_table_check.h>
19
20 #if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
21 defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
22 #error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
23 #endif
24
25 /*
26 * On almost all architectures and configurations, 0 can be used as the
27 * upper ceiling to free_pgtables(): on many architectures it has the same
28 * effect as using TASK_SIZE. However, there is one configuration which
29 * must impose a more careful limit, to avoid freeing kernel pgtables.
30 */
31 #ifndef USER_PGTABLES_CEILING
32 #define USER_PGTABLES_CEILING 0UL
33 #endif
34
35 /*
36 * This defines the first usable user address. Platforms
37 * can override its value with custom FIRST_USER_ADDRESS
38 * defined in their respective <asm/pgtable.h>.
39 */
40 #ifndef FIRST_USER_ADDRESS
41 #define FIRST_USER_ADDRESS 0UL
42 #endif
43
44 /*
45 * This defines the generic helper for accessing PMD page
46 * table page. Although platforms can still override this
47 * via their respective <asm/pgtable.h>.
48 */
49 #ifndef pmd_pgtable
50 #define pmd_pgtable(pmd) pmd_page(pmd)
51 #endif
52
53 /*
54 * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD]
55 *
56 * The pXx_index() functions return the index of the entry in the page
57 * table page which would control the given virtual address
58 *
59 * As these functions may be used by the same code for different levels of
60 * the page table folding, they are always available, regardless of
61 * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0
62 * because in such cases PTRS_PER_PxD equals 1.
63 */
64
pte_index(unsigned long address)65 static inline unsigned long pte_index(unsigned long address)
66 {
67 return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
68 }
69
70 #ifndef pmd_index
pmd_index(unsigned long address)71 static inline unsigned long pmd_index(unsigned long address)
72 {
73 return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
74 }
75 #define pmd_index pmd_index
76 #endif
77
78 #ifndef pud_index
pud_index(unsigned long address)79 static inline unsigned long pud_index(unsigned long address)
80 {
81 return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
82 }
83 #define pud_index pud_index
84 #endif
85
86 #ifndef pgd_index
87 /* Must be a compile-time constant, so implement it as a macro */
88 #define pgd_index(a) (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
89 #endif
90
91 #ifndef pte_offset_kernel
pte_offset_kernel(pmd_t * pmd,unsigned long address)92 static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
93 {
94 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
95 }
96 #define pte_offset_kernel pte_offset_kernel
97 #endif
98
99 #ifdef CONFIG_HIGHPTE
100 #define __pte_map(pmd, address) \
101 ((pte_t *)kmap_local_page(pmd_page(*(pmd))) + pte_index((address)))
102 #define pte_unmap(pte) do { \
103 kunmap_local((pte)); \
104 rcu_read_unlock(); \
105 } while (0)
106 #else
__pte_map(pmd_t * pmd,unsigned long address)107 static inline pte_t *__pte_map(pmd_t *pmd, unsigned long address)
108 {
109 return pte_offset_kernel(pmd, address);
110 }
pte_unmap(pte_t * pte)111 static inline void pte_unmap(pte_t *pte)
112 {
113 rcu_read_unlock();
114 }
115 #endif
116
117 void pte_free_defer(struct mm_struct *mm, pgtable_t pgtable);
118
119 /* Find an entry in the second-level page table.. */
120 #ifndef pmd_offset
pmd_offset(pud_t * pud,unsigned long address)121 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
122 {
123 return pud_pgtable(*pud) + pmd_index(address);
124 }
125 #define pmd_offset pmd_offset
126 #endif
127
128 #ifndef pud_offset
pud_offset(p4d_t * p4d,unsigned long address)129 static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
130 {
131 return p4d_pgtable(*p4d) + pud_index(address);
132 }
133 #define pud_offset pud_offset
134 #endif
135
pgd_offset_pgd(pgd_t * pgd,unsigned long address)136 static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address)
137 {
138 return (pgd + pgd_index(address));
139 };
140
141 /*
142 * a shortcut to get a pgd_t in a given mm
143 */
144 #ifndef pgd_offset
145 #define pgd_offset(mm, address) pgd_offset_pgd((mm)->pgd, (address))
146 #endif
147
148 /*
149 * a shortcut which implies the use of the kernel's pgd, instead
150 * of a process's
151 */
152 #ifndef pgd_offset_k
153 #define pgd_offset_k(address) pgd_offset(&init_mm, (address))
154 #endif
155
156 /*
157 * In many cases it is known that a virtual address is mapped at PMD or PTE
158 * level, so instead of traversing all the page table levels, we can get a
159 * pointer to the PMD entry in user or kernel page table or translate a virtual
160 * address to the pointer in the PTE in the kernel page tables with simple
161 * helpers.
162 */
pmd_off(struct mm_struct * mm,unsigned long va)163 static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va)
164 {
165 return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va);
166 }
167
pmd_off_k(unsigned long va)168 static inline pmd_t *pmd_off_k(unsigned long va)
169 {
170 return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va);
171 }
172
virt_to_kpte(unsigned long vaddr)173 static inline pte_t *virt_to_kpte(unsigned long vaddr)
174 {
175 pmd_t *pmd = pmd_off_k(vaddr);
176
177 return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr);
178 }
179
180 #ifndef pmd_young
pmd_young(pmd_t pmd)181 static inline int pmd_young(pmd_t pmd)
182 {
183 return 0;
184 }
185 #endif
186
187 #ifndef pmd_dirty
pmd_dirty(pmd_t pmd)188 static inline int pmd_dirty(pmd_t pmd)
189 {
190 return 0;
191 }
192 #endif
193
194 /*
195 * A facility to provide lazy MMU batching. This allows PTE updates and
196 * page invalidations to be delayed until a call to leave lazy MMU mode
197 * is issued. Some architectures may benefit from doing this, and it is
198 * beneficial for both shadow and direct mode hypervisors, which may batch
199 * the PTE updates which happen during this window. Note that using this
200 * interface requires that read hazards be removed from the code. A read
201 * hazard could result in the direct mode hypervisor case, since the actual
202 * write to the page tables may not yet have taken place, so reads though
203 * a raw PTE pointer after it has been modified are not guaranteed to be
204 * up to date. This mode can only be entered and left under the protection of
205 * the page table locks for all page tables which may be modified. In the UP
206 * case, this is required so that preemption is disabled, and in the SMP case,
207 * it must synchronize the delayed page table writes properly on other CPUs.
208 */
209 #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
210 #define arch_enter_lazy_mmu_mode() do {} while (0)
211 #define arch_leave_lazy_mmu_mode() do {} while (0)
212 #define arch_flush_lazy_mmu_mode() do {} while (0)
213 #endif
214
215 #ifndef set_ptes
216
217 #ifndef pte_next_pfn
pte_next_pfn(pte_t pte)218 static inline pte_t pte_next_pfn(pte_t pte)
219 {
220 return __pte(pte_val(pte) + (1UL << PFN_PTE_SHIFT));
221 }
222 #endif
223
224 /**
225 * set_ptes - Map consecutive pages to a contiguous range of addresses.
226 * @mm: Address space to map the pages into.
227 * @addr: Address to map the first page at.
228 * @ptep: Page table pointer for the first entry.
229 * @pte: Page table entry for the first page.
230 * @nr: Number of pages to map.
231 *
232 * May be overridden by the architecture, or the architecture can define
233 * set_pte() and PFN_PTE_SHIFT.
234 *
235 * Context: The caller holds the page table lock. The pages all belong
236 * to the same folio. The PTEs are all in the same PMD.
237 */
set_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte,unsigned int nr)238 static inline void set_ptes(struct mm_struct *mm, unsigned long addr,
239 pte_t *ptep, pte_t pte, unsigned int nr)
240 {
241 page_table_check_ptes_set(mm, ptep, pte, nr);
242
243 arch_enter_lazy_mmu_mode();
244 for (;;) {
245 set_pte(ptep, pte);
246 if (--nr == 0)
247 break;
248 ptep++;
249 pte = pte_next_pfn(pte);
250 }
251 arch_leave_lazy_mmu_mode();
252 }
253 #endif
254 #define set_pte_at(mm, addr, ptep, pte) set_ptes(mm, addr, ptep, pte, 1)
255
256 #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
257 extern int ptep_set_access_flags(struct vm_area_struct *vma,
258 unsigned long address, pte_t *ptep,
259 pte_t entry, int dirty);
260 #endif
261
262 #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
263 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
264 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
265 unsigned long address, pmd_t *pmdp,
266 pmd_t entry, int dirty);
267 extern int pudp_set_access_flags(struct vm_area_struct *vma,
268 unsigned long address, pud_t *pudp,
269 pud_t entry, int dirty);
270 #else
pmdp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t entry,int dirty)271 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
272 unsigned long address, pmd_t *pmdp,
273 pmd_t entry, int dirty)
274 {
275 BUILD_BUG();
276 return 0;
277 }
pudp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pud_t * pudp,pud_t entry,int dirty)278 static inline int pudp_set_access_flags(struct vm_area_struct *vma,
279 unsigned long address, pud_t *pudp,
280 pud_t entry, int dirty)
281 {
282 BUILD_BUG();
283 return 0;
284 }
285 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
286 #endif
287
288 #ifndef ptep_get
ptep_get(pte_t * ptep)289 static inline pte_t ptep_get(pte_t *ptep)
290 {
291 return READ_ONCE(*ptep);
292 }
293 #endif
294
295 #ifndef pmdp_get
pmdp_get(pmd_t * pmdp)296 static inline pmd_t pmdp_get(pmd_t *pmdp)
297 {
298 return READ_ONCE(*pmdp);
299 }
300 #endif
301
302 #ifndef pudp_get
pudp_get(pud_t * pudp)303 static inline pud_t pudp_get(pud_t *pudp)
304 {
305 return READ_ONCE(*pudp);
306 }
307 #endif
308
309 #ifndef p4dp_get
p4dp_get(p4d_t * p4dp)310 static inline p4d_t p4dp_get(p4d_t *p4dp)
311 {
312 return READ_ONCE(*p4dp);
313 }
314 #endif
315
316 #ifndef pgdp_get
pgdp_get(pgd_t * pgdp)317 static inline pgd_t pgdp_get(pgd_t *pgdp)
318 {
319 return READ_ONCE(*pgdp);
320 }
321 #endif
322
323 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)324 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
325 unsigned long address,
326 pte_t *ptep)
327 {
328 pte_t pte = ptep_get(ptep);
329 int r = 1;
330 if (!pte_young(pte))
331 r = 0;
332 else
333 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
334 return r;
335 }
336 #endif
337
338 #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
339 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)340 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
341 unsigned long address,
342 pmd_t *pmdp)
343 {
344 pmd_t pmd = *pmdp;
345 int r = 1;
346 if (!pmd_young(pmd))
347 r = 0;
348 else
349 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
350 return r;
351 }
352 #else
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)353 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
354 unsigned long address,
355 pmd_t *pmdp)
356 {
357 BUILD_BUG();
358 return 0;
359 }
360 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG */
361 #endif
362
363 #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
364 int ptep_clear_flush_young(struct vm_area_struct *vma,
365 unsigned long address, pte_t *ptep);
366 #endif
367
368 #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
369 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
370 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
371 unsigned long address, pmd_t *pmdp);
372 #else
373 /*
374 * Despite relevant to THP only, this API is called from generic rmap code
375 * under PageTransHuge(), hence needs a dummy implementation for !THP
376 */
pmdp_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)377 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
378 unsigned long address, pmd_t *pmdp)
379 {
380 BUILD_BUG();
381 return 0;
382 }
383 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
384 #endif
385
386 #ifndef arch_has_hw_nonleaf_pmd_young
387 /*
388 * Return whether the accessed bit in non-leaf PMD entries is supported on the
389 * local CPU.
390 */
arch_has_hw_nonleaf_pmd_young(void)391 static inline bool arch_has_hw_nonleaf_pmd_young(void)
392 {
393 return IS_ENABLED(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG);
394 }
395 #endif
396
397 #ifndef arch_has_hw_pte_young
398 /*
399 * Return whether the accessed bit is supported on the local CPU.
400 *
401 * This stub assumes accessing through an old PTE triggers a page fault.
402 * Architectures that automatically set the access bit should overwrite it.
403 */
arch_has_hw_pte_young(void)404 static inline bool arch_has_hw_pte_young(void)
405 {
406 return IS_ENABLED(CONFIG_ARCH_HAS_HW_PTE_YOUNG);
407 }
408 #endif
409
410 #ifndef arch_check_zapped_pte
arch_check_zapped_pte(struct vm_area_struct * vma,pte_t pte)411 static inline void arch_check_zapped_pte(struct vm_area_struct *vma,
412 pte_t pte)
413 {
414 }
415 #endif
416
417 #ifndef arch_check_zapped_pmd
arch_check_zapped_pmd(struct vm_area_struct * vma,pmd_t pmd)418 static inline void arch_check_zapped_pmd(struct vm_area_struct *vma,
419 pmd_t pmd)
420 {
421 }
422 #endif
423
424 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long address,pte_t * ptep)425 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
426 unsigned long address,
427 pte_t *ptep)
428 {
429 pte_t pte = ptep_get(ptep);
430 pte_clear(mm, address, ptep);
431 page_table_check_pte_clear(mm, pte);
432 return pte;
433 }
434 #endif
435
ptep_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)436 static inline void ptep_clear(struct mm_struct *mm, unsigned long addr,
437 pte_t *ptep)
438 {
439 ptep_get_and_clear(mm, addr, ptep);
440 }
441
442 #ifdef CONFIG_GUP_GET_PXX_LOW_HIGH
443 /*
444 * For walking the pagetables without holding any locks. Some architectures
445 * (eg x86-32 PAE) cannot load the entries atomically without using expensive
446 * instructions. We are guaranteed that a PTE will only either go from not
447 * present to present, or present to not present -- it will not switch to a
448 * completely different present page without a TLB flush inbetween; which we
449 * are blocking by holding interrupts off.
450 *
451 * Setting ptes from not present to present goes:
452 *
453 * ptep->pte_high = h;
454 * smp_wmb();
455 * ptep->pte_low = l;
456 *
457 * And present to not present goes:
458 *
459 * ptep->pte_low = 0;
460 * smp_wmb();
461 * ptep->pte_high = 0;
462 *
463 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
464 * We load pte_high *after* loading pte_low, which ensures we don't see an older
465 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't
466 * picked up a changed pte high. We might have gotten rubbish values from
467 * pte_low and pte_high, but we are guaranteed that pte_low will not have the
468 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
469 * operates on present ptes we're safe.
470 */
ptep_get_lockless(pte_t * ptep)471 static inline pte_t ptep_get_lockless(pte_t *ptep)
472 {
473 pte_t pte;
474
475 do {
476 pte.pte_low = ptep->pte_low;
477 smp_rmb();
478 pte.pte_high = ptep->pte_high;
479 smp_rmb();
480 } while (unlikely(pte.pte_low != ptep->pte_low));
481
482 return pte;
483 }
484 #define ptep_get_lockless ptep_get_lockless
485
486 #if CONFIG_PGTABLE_LEVELS > 2
pmdp_get_lockless(pmd_t * pmdp)487 static inline pmd_t pmdp_get_lockless(pmd_t *pmdp)
488 {
489 pmd_t pmd;
490
491 do {
492 pmd.pmd_low = pmdp->pmd_low;
493 smp_rmb();
494 pmd.pmd_high = pmdp->pmd_high;
495 smp_rmb();
496 } while (unlikely(pmd.pmd_low != pmdp->pmd_low));
497
498 return pmd;
499 }
500 #define pmdp_get_lockless pmdp_get_lockless
501 #define pmdp_get_lockless_sync() tlb_remove_table_sync_one()
502 #endif /* CONFIG_PGTABLE_LEVELS > 2 */
503 #endif /* CONFIG_GUP_GET_PXX_LOW_HIGH */
504
505 /*
506 * We require that the PTE can be read atomically.
507 */
508 #ifndef ptep_get_lockless
ptep_get_lockless(pte_t * ptep)509 static inline pte_t ptep_get_lockless(pte_t *ptep)
510 {
511 return ptep_get(ptep);
512 }
513 #endif
514
515 #ifndef pmdp_get_lockless
pmdp_get_lockless(pmd_t * pmdp)516 static inline pmd_t pmdp_get_lockless(pmd_t *pmdp)
517 {
518 return pmdp_get(pmdp);
519 }
pmdp_get_lockless_sync(void)520 static inline void pmdp_get_lockless_sync(void)
521 {
522 }
523 #endif
524
525 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
526 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)527 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
528 unsigned long address,
529 pmd_t *pmdp)
530 {
531 pmd_t pmd = *pmdp;
532
533 pmd_clear(pmdp);
534 page_table_check_pmd_clear(mm, pmd);
535
536 return pmd;
537 }
538 #endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
539 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
pudp_huge_get_and_clear(struct mm_struct * mm,unsigned long address,pud_t * pudp)540 static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
541 unsigned long address,
542 pud_t *pudp)
543 {
544 pud_t pud = *pudp;
545
546 pud_clear(pudp);
547 page_table_check_pud_clear(mm, pud);
548
549 return pud;
550 }
551 #endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
552 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
553
554 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
555 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
pmdp_huge_get_and_clear_full(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,int full)556 static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
557 unsigned long address, pmd_t *pmdp,
558 int full)
559 {
560 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
561 }
562 #endif
563
564 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
pudp_huge_get_and_clear_full(struct vm_area_struct * vma,unsigned long address,pud_t * pudp,int full)565 static inline pud_t pudp_huge_get_and_clear_full(struct vm_area_struct *vma,
566 unsigned long address, pud_t *pudp,
567 int full)
568 {
569 return pudp_huge_get_and_clear(vma->vm_mm, address, pudp);
570 }
571 #endif
572 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
573
574 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
ptep_get_and_clear_full(struct mm_struct * mm,unsigned long address,pte_t * ptep,int full)575 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
576 unsigned long address, pte_t *ptep,
577 int full)
578 {
579 return ptep_get_and_clear(mm, address, ptep);
580 }
581 #endif
582
583
584 /*
585 * If two threads concurrently fault at the same page, the thread that
586 * won the race updates the PTE and its local TLB/Cache. The other thread
587 * gives up, simply does nothing, and continues; on architectures where
588 * software can update TLB, local TLB can be updated here to avoid next page
589 * fault. This function updates TLB only, do nothing with cache or others.
590 * It is the difference with function update_mmu_cache.
591 */
592 #ifndef __HAVE_ARCH_UPDATE_MMU_TLB
update_mmu_tlb(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)593 static inline void update_mmu_tlb(struct vm_area_struct *vma,
594 unsigned long address, pte_t *ptep)
595 {
596 }
597 #define __HAVE_ARCH_UPDATE_MMU_TLB
598 #endif
599
600 /*
601 * Some architectures may be able to avoid expensive synchronization
602 * primitives when modifications are made to PTE's which are already
603 * not present, or in the process of an address space destruction.
604 */
605 #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
pte_clear_not_present_full(struct mm_struct * mm,unsigned long address,pte_t * ptep,int full)606 static inline void pte_clear_not_present_full(struct mm_struct *mm,
607 unsigned long address,
608 pte_t *ptep,
609 int full)
610 {
611 pte_clear(mm, address, ptep);
612 }
613 #endif
614
615 #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
616 extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
617 unsigned long address,
618 pte_t *ptep);
619 #endif
620
621 #ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
622 extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
623 unsigned long address,
624 pmd_t *pmdp);
625 extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
626 unsigned long address,
627 pud_t *pudp);
628 #endif
629
630 #ifndef pte_mkwrite
pte_mkwrite(pte_t pte,struct vm_area_struct * vma)631 static inline pte_t pte_mkwrite(pte_t pte, struct vm_area_struct *vma)
632 {
633 return pte_mkwrite_novma(pte);
634 }
635 #endif
636
637 #if defined(CONFIG_ARCH_WANT_PMD_MKWRITE) && !defined(pmd_mkwrite)
pmd_mkwrite(pmd_t pmd,struct vm_area_struct * vma)638 static inline pmd_t pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
639 {
640 return pmd_mkwrite_novma(pmd);
641 }
642 #endif
643
644 #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
645 struct mm_struct;
ptep_set_wrprotect(struct mm_struct * mm,unsigned long address,pte_t * ptep)646 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
647 {
648 pte_t old_pte = ptep_get(ptep);
649 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
650 }
651 #endif
652
653 /*
654 * On some architectures hardware does not set page access bit when accessing
655 * memory page, it is responsibility of software setting this bit. It brings
656 * out extra page fault penalty to track page access bit. For optimization page
657 * access bit can be set during all page fault flow on these arches.
658 * To be differentiate with macro pte_mkyoung, this macro is used on platforms
659 * where software maintains page access bit.
660 */
661 #ifndef pte_sw_mkyoung
pte_sw_mkyoung(pte_t pte)662 static inline pte_t pte_sw_mkyoung(pte_t pte)
663 {
664 return pte;
665 }
666 #define pte_sw_mkyoung pte_sw_mkyoung
667 #endif
668
669 #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
670 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)671 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
672 unsigned long address, pmd_t *pmdp)
673 {
674 pmd_t old_pmd = *pmdp;
675 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
676 }
677 #else
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)678 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
679 unsigned long address, pmd_t *pmdp)
680 {
681 BUILD_BUG();
682 }
683 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
684 #endif
685 #ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
686 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
687 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pudp_set_wrprotect(struct mm_struct * mm,unsigned long address,pud_t * pudp)688 static inline void pudp_set_wrprotect(struct mm_struct *mm,
689 unsigned long address, pud_t *pudp)
690 {
691 pud_t old_pud = *pudp;
692
693 set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
694 }
695 #else
pudp_set_wrprotect(struct mm_struct * mm,unsigned long address,pud_t * pudp)696 static inline void pudp_set_wrprotect(struct mm_struct *mm,
697 unsigned long address, pud_t *pudp)
698 {
699 BUILD_BUG();
700 }
701 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
702 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
703 #endif
704
705 #ifndef pmdp_collapse_flush
706 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
707 extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
708 unsigned long address, pmd_t *pmdp);
709 #else
pmdp_collapse_flush(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)710 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
711 unsigned long address,
712 pmd_t *pmdp)
713 {
714 BUILD_BUG();
715 return *pmdp;
716 }
717 #define pmdp_collapse_flush pmdp_collapse_flush
718 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
719 #endif
720
721 #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
722 extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
723 pgtable_t pgtable);
724 #endif
725
726 #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
727 extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
728 #endif
729
730 #ifndef arch_needs_pgtable_deposit
731 #define arch_needs_pgtable_deposit() (false)
732 #endif
733
734 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
735 /*
736 * This is an implementation of pmdp_establish() that is only suitable for an
737 * architecture that doesn't have hardware dirty/accessed bits. In this case we
738 * can't race with CPU which sets these bits and non-atomic approach is fine.
739 */
generic_pmdp_establish(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t pmd)740 static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
741 unsigned long address, pmd_t *pmdp, pmd_t pmd)
742 {
743 pmd_t old_pmd = *pmdp;
744 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
745 return old_pmd;
746 }
747 #endif
748
749 #ifndef __HAVE_ARCH_PMDP_INVALIDATE
750 extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
751 pmd_t *pmdp);
752 #endif
753
754 #ifndef __HAVE_ARCH_PMDP_INVALIDATE_AD
755
756 /*
757 * pmdp_invalidate_ad() invalidates the PMD while changing a transparent
758 * hugepage mapping in the page tables. This function is similar to
759 * pmdp_invalidate(), but should only be used if the access and dirty bits would
760 * not be cleared by the software in the new PMD value. The function ensures
761 * that hardware changes of the access and dirty bits updates would not be lost.
762 *
763 * Doing so can allow in certain architectures to avoid a TLB flush in most
764 * cases. Yet, another TLB flush might be necessary later if the PMD update
765 * itself requires such flush (e.g., if protection was set to be stricter). Yet,
766 * even when a TLB flush is needed because of the update, the caller may be able
767 * to batch these TLB flushing operations, so fewer TLB flush operations are
768 * needed.
769 */
770 extern pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma,
771 unsigned long address, pmd_t *pmdp);
772 #endif
773
774 #ifndef __HAVE_ARCH_PTE_SAME
pte_same(pte_t pte_a,pte_t pte_b)775 static inline int pte_same(pte_t pte_a, pte_t pte_b)
776 {
777 return pte_val(pte_a) == pte_val(pte_b);
778 }
779 #endif
780
781 #ifndef __HAVE_ARCH_PTE_UNUSED
782 /*
783 * Some architectures provide facilities to virtualization guests
784 * so that they can flag allocated pages as unused. This allows the
785 * host to transparently reclaim unused pages. This function returns
786 * whether the pte's page is unused.
787 */
pte_unused(pte_t pte)788 static inline int pte_unused(pte_t pte)
789 {
790 return 0;
791 }
792 #endif
793
794 #ifndef pte_access_permitted
795 #define pte_access_permitted(pte, write) \
796 (pte_present(pte) && (!(write) || pte_write(pte)))
797 #endif
798
799 #ifndef pmd_access_permitted
800 #define pmd_access_permitted(pmd, write) \
801 (pmd_present(pmd) && (!(write) || pmd_write(pmd)))
802 #endif
803
804 #ifndef pud_access_permitted
805 #define pud_access_permitted(pud, write) \
806 (pud_present(pud) && (!(write) || pud_write(pud)))
807 #endif
808
809 #ifndef p4d_access_permitted
810 #define p4d_access_permitted(p4d, write) \
811 (p4d_present(p4d) && (!(write) || p4d_write(p4d)))
812 #endif
813
814 #ifndef pgd_access_permitted
815 #define pgd_access_permitted(pgd, write) \
816 (pgd_present(pgd) && (!(write) || pgd_write(pgd)))
817 #endif
818
819 #ifndef __HAVE_ARCH_PMD_SAME
pmd_same(pmd_t pmd_a,pmd_t pmd_b)820 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
821 {
822 return pmd_val(pmd_a) == pmd_val(pmd_b);
823 }
824 #endif
825
826 #ifndef pud_same
pud_same(pud_t pud_a,pud_t pud_b)827 static inline int pud_same(pud_t pud_a, pud_t pud_b)
828 {
829 return pud_val(pud_a) == pud_val(pud_b);
830 }
831 #define pud_same pud_same
832 #endif
833
834 #ifndef __HAVE_ARCH_P4D_SAME
p4d_same(p4d_t p4d_a,p4d_t p4d_b)835 static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b)
836 {
837 return p4d_val(p4d_a) == p4d_val(p4d_b);
838 }
839 #endif
840
841 #ifndef __HAVE_ARCH_PGD_SAME
pgd_same(pgd_t pgd_a,pgd_t pgd_b)842 static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b)
843 {
844 return pgd_val(pgd_a) == pgd_val(pgd_b);
845 }
846 #endif
847
848 /*
849 * Use set_p*_safe(), and elide TLB flushing, when confident that *no*
850 * TLB flush will be required as a result of the "set". For example, use
851 * in scenarios where it is known ahead of time that the routine is
852 * setting non-present entries, or re-setting an existing entry to the
853 * same value. Otherwise, use the typical "set" helpers and flush the
854 * TLB.
855 */
856 #define set_pte_safe(ptep, pte) \
857 ({ \
858 WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \
859 set_pte(ptep, pte); \
860 })
861
862 #define set_pmd_safe(pmdp, pmd) \
863 ({ \
864 WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \
865 set_pmd(pmdp, pmd); \
866 })
867
868 #define set_pud_safe(pudp, pud) \
869 ({ \
870 WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \
871 set_pud(pudp, pud); \
872 })
873
874 #define set_p4d_safe(p4dp, p4d) \
875 ({ \
876 WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \
877 set_p4d(p4dp, p4d); \
878 })
879
880 #define set_pgd_safe(pgdp, pgd) \
881 ({ \
882 WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \
883 set_pgd(pgdp, pgd); \
884 })
885
886 #ifndef __HAVE_ARCH_DO_SWAP_PAGE
887 /*
888 * Some architectures support metadata associated with a page. When a
889 * page is being swapped out, this metadata must be saved so it can be
890 * restored when the page is swapped back in. SPARC M7 and newer
891 * processors support an ADI (Application Data Integrity) tag for the
892 * page as metadata for the page. arch_do_swap_page() can restore this
893 * metadata when a page is swapped back in.
894 */
arch_do_swap_page(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t pte,pte_t oldpte)895 static inline void arch_do_swap_page(struct mm_struct *mm,
896 struct vm_area_struct *vma,
897 unsigned long addr,
898 pte_t pte, pte_t oldpte)
899 {
900
901 }
902 #endif
903
904 #ifndef __HAVE_ARCH_UNMAP_ONE
905 /*
906 * Some architectures support metadata associated with a page. When a
907 * page is being swapped out, this metadata must be saved so it can be
908 * restored when the page is swapped back in. SPARC M7 and newer
909 * processors support an ADI (Application Data Integrity) tag for the
910 * page as metadata for the page. arch_unmap_one() can save this
911 * metadata on a swap-out of a page.
912 */
arch_unmap_one(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t orig_pte)913 static inline int arch_unmap_one(struct mm_struct *mm,
914 struct vm_area_struct *vma,
915 unsigned long addr,
916 pte_t orig_pte)
917 {
918 return 0;
919 }
920 #endif
921
922 /*
923 * Allow architectures to preserve additional metadata associated with
924 * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function
925 * prototypes must be defined in the arch-specific asm/pgtable.h file.
926 */
927 #ifndef __HAVE_ARCH_PREPARE_TO_SWAP
arch_prepare_to_swap(struct page * page)928 static inline int arch_prepare_to_swap(struct page *page)
929 {
930 return 0;
931 }
932 #endif
933
934 #ifndef __HAVE_ARCH_SWAP_INVALIDATE
arch_swap_invalidate_page(int type,pgoff_t offset)935 static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
936 {
937 }
938
arch_swap_invalidate_area(int type)939 static inline void arch_swap_invalidate_area(int type)
940 {
941 }
942 #endif
943
944 #ifndef __HAVE_ARCH_SWAP_RESTORE
arch_swap_restore(swp_entry_t entry,struct folio * folio)945 static inline void arch_swap_restore(swp_entry_t entry, struct folio *folio)
946 {
947 }
948 #endif
949
950 #ifndef __HAVE_ARCH_PGD_OFFSET_GATE
951 #define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
952 #endif
953
954 #ifndef __HAVE_ARCH_MOVE_PTE
955 #define move_pte(pte, prot, old_addr, new_addr) (pte)
956 #endif
957
958 #ifndef pte_accessible
959 # define pte_accessible(mm, pte) ((void)(pte), 1)
960 #endif
961
962 #ifndef flush_tlb_fix_spurious_fault
963 #define flush_tlb_fix_spurious_fault(vma, address, ptep) flush_tlb_page(vma, address)
964 #endif
965
966 /*
967 * When walking page tables, get the address of the next boundary,
968 * or the end address of the range if that comes earlier. Although no
969 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
970 */
971
972 #define pgd_addr_end(addr, end) \
973 ({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
974 (__boundary - 1 < (end) - 1)? __boundary: (end); \
975 })
976
977 #ifndef p4d_addr_end
978 #define p4d_addr_end(addr, end) \
979 ({ unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK; \
980 (__boundary - 1 < (end) - 1)? __boundary: (end); \
981 })
982 #endif
983
984 #ifndef pud_addr_end
985 #define pud_addr_end(addr, end) \
986 ({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
987 (__boundary - 1 < (end) - 1)? __boundary: (end); \
988 })
989 #endif
990
991 #ifndef pmd_addr_end
992 #define pmd_addr_end(addr, end) \
993 ({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
994 (__boundary - 1 < (end) - 1)? __boundary: (end); \
995 })
996 #endif
997
998 /*
999 * When walking page tables, we usually want to skip any p?d_none entries;
1000 * and any p?d_bad entries - reporting the error before resetting to none.
1001 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
1002 */
1003 void pgd_clear_bad(pgd_t *);
1004
1005 #ifndef __PAGETABLE_P4D_FOLDED
1006 void p4d_clear_bad(p4d_t *);
1007 #else
1008 #define p4d_clear_bad(p4d) do { } while (0)
1009 #endif
1010
1011 #ifndef __PAGETABLE_PUD_FOLDED
1012 void pud_clear_bad(pud_t *);
1013 #else
1014 #define pud_clear_bad(p4d) do { } while (0)
1015 #endif
1016
1017 void pmd_clear_bad(pmd_t *);
1018
pgd_none_or_clear_bad(pgd_t * pgd)1019 static inline int pgd_none_or_clear_bad(pgd_t *pgd)
1020 {
1021 if (pgd_none(*pgd))
1022 return 1;
1023 if (unlikely(pgd_bad(*pgd))) {
1024 pgd_clear_bad(pgd);
1025 return 1;
1026 }
1027 return 0;
1028 }
1029
p4d_none_or_clear_bad(p4d_t * p4d)1030 static inline int p4d_none_or_clear_bad(p4d_t *p4d)
1031 {
1032 if (p4d_none(*p4d))
1033 return 1;
1034 if (unlikely(p4d_bad(*p4d))) {
1035 p4d_clear_bad(p4d);
1036 return 1;
1037 }
1038 return 0;
1039 }
1040
pud_none_or_clear_bad(pud_t * pud)1041 static inline int pud_none_or_clear_bad(pud_t *pud)
1042 {
1043 if (pud_none(*pud))
1044 return 1;
1045 if (unlikely(pud_bad(*pud))) {
1046 pud_clear_bad(pud);
1047 return 1;
1048 }
1049 return 0;
1050 }
1051
pmd_none_or_clear_bad(pmd_t * pmd)1052 static inline int pmd_none_or_clear_bad(pmd_t *pmd)
1053 {
1054 if (pmd_none(*pmd))
1055 return 1;
1056 if (unlikely(pmd_bad(*pmd))) {
1057 pmd_clear_bad(pmd);
1058 return 1;
1059 }
1060 return 0;
1061 }
1062
__ptep_modify_prot_start(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1063 static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma,
1064 unsigned long addr,
1065 pte_t *ptep)
1066 {
1067 /*
1068 * Get the current pte state, but zero it out to make it
1069 * non-present, preventing the hardware from asynchronously
1070 * updating it.
1071 */
1072 return ptep_get_and_clear(vma->vm_mm, addr, ptep);
1073 }
1074
__ptep_modify_prot_commit(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t pte)1075 static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma,
1076 unsigned long addr,
1077 pte_t *ptep, pte_t pte)
1078 {
1079 /*
1080 * The pte is non-present, so there's no hardware state to
1081 * preserve.
1082 */
1083 set_pte_at(vma->vm_mm, addr, ptep, pte);
1084 }
1085
1086 #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1087 /*
1088 * Start a pte protection read-modify-write transaction, which
1089 * protects against asynchronous hardware modifications to the pte.
1090 * The intention is not to prevent the hardware from making pte
1091 * updates, but to prevent any updates it may make from being lost.
1092 *
1093 * This does not protect against other software modifications of the
1094 * pte; the appropriate pte lock must be held over the transaction.
1095 *
1096 * Note that this interface is intended to be batchable, meaning that
1097 * ptep_modify_prot_commit may not actually update the pte, but merely
1098 * queue the update to be done at some later time. The update must be
1099 * actually committed before the pte lock is released, however.
1100 */
ptep_modify_prot_start(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1101 static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
1102 unsigned long addr,
1103 pte_t *ptep)
1104 {
1105 return __ptep_modify_prot_start(vma, addr, ptep);
1106 }
1107
1108 /*
1109 * Commit an update to a pte, leaving any hardware-controlled bits in
1110 * the PTE unmodified.
1111 */
ptep_modify_prot_commit(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t old_pte,pte_t pte)1112 static inline void ptep_modify_prot_commit(struct vm_area_struct *vma,
1113 unsigned long addr,
1114 pte_t *ptep, pte_t old_pte, pte_t pte)
1115 {
1116 __ptep_modify_prot_commit(vma, addr, ptep, pte);
1117 }
1118 #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
1119 #endif /* CONFIG_MMU */
1120
1121 /*
1122 * No-op macros that just return the current protection value. Defined here
1123 * because these macros can be used even if CONFIG_MMU is not defined.
1124 */
1125
1126 #ifndef pgprot_nx
1127 #define pgprot_nx(prot) (prot)
1128 #endif
1129
1130 #ifndef pgprot_noncached
1131 #define pgprot_noncached(prot) (prot)
1132 #endif
1133
1134 #ifndef pgprot_writecombine
1135 #define pgprot_writecombine pgprot_noncached
1136 #endif
1137
1138 #ifndef pgprot_writethrough
1139 #define pgprot_writethrough pgprot_noncached
1140 #endif
1141
1142 #ifndef pgprot_device
1143 #define pgprot_device pgprot_noncached
1144 #endif
1145
1146 #ifndef pgprot_mhp
1147 #define pgprot_mhp(prot) (prot)
1148 #endif
1149
1150 #ifdef CONFIG_MMU
1151 #ifndef pgprot_modify
1152 #define pgprot_modify pgprot_modify
pgprot_modify(pgprot_t oldprot,pgprot_t newprot)1153 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
1154 {
1155 if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
1156 newprot = pgprot_noncached(newprot);
1157 if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
1158 newprot = pgprot_writecombine(newprot);
1159 if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
1160 newprot = pgprot_device(newprot);
1161 return newprot;
1162 }
1163 #endif
1164 #endif /* CONFIG_MMU */
1165
1166 #ifndef pgprot_encrypted
1167 #define pgprot_encrypted(prot) (prot)
1168 #endif
1169
1170 #ifndef pgprot_decrypted
1171 #define pgprot_decrypted(prot) (prot)
1172 #endif
1173
1174 /*
1175 * A facility to provide batching of the reload of page tables and
1176 * other process state with the actual context switch code for
1177 * paravirtualized guests. By convention, only one of the batched
1178 * update (lazy) modes (CPU, MMU) should be active at any given time,
1179 * entry should never be nested, and entry and exits should always be
1180 * paired. This is for sanity of maintaining and reasoning about the
1181 * kernel code. In this case, the exit (end of the context switch) is
1182 * in architecture-specific code, and so doesn't need a generic
1183 * definition.
1184 */
1185 #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
1186 #define arch_start_context_switch(prev) do {} while (0)
1187 #endif
1188
1189 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1190 #ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
pmd_swp_mksoft_dirty(pmd_t pmd)1191 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1192 {
1193 return pmd;
1194 }
1195
pmd_swp_soft_dirty(pmd_t pmd)1196 static inline int pmd_swp_soft_dirty(pmd_t pmd)
1197 {
1198 return 0;
1199 }
1200
pmd_swp_clear_soft_dirty(pmd_t pmd)1201 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1202 {
1203 return pmd;
1204 }
1205 #endif
1206 #else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
pte_soft_dirty(pte_t pte)1207 static inline int pte_soft_dirty(pte_t pte)
1208 {
1209 return 0;
1210 }
1211
pmd_soft_dirty(pmd_t pmd)1212 static inline int pmd_soft_dirty(pmd_t pmd)
1213 {
1214 return 0;
1215 }
1216
pte_mksoft_dirty(pte_t pte)1217 static inline pte_t pte_mksoft_dirty(pte_t pte)
1218 {
1219 return pte;
1220 }
1221
pmd_mksoft_dirty(pmd_t pmd)1222 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
1223 {
1224 return pmd;
1225 }
1226
pte_clear_soft_dirty(pte_t pte)1227 static inline pte_t pte_clear_soft_dirty(pte_t pte)
1228 {
1229 return pte;
1230 }
1231
pmd_clear_soft_dirty(pmd_t pmd)1232 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
1233 {
1234 return pmd;
1235 }
1236
pte_swp_mksoft_dirty(pte_t pte)1237 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
1238 {
1239 return pte;
1240 }
1241
pte_swp_soft_dirty(pte_t pte)1242 static inline int pte_swp_soft_dirty(pte_t pte)
1243 {
1244 return 0;
1245 }
1246
pte_swp_clear_soft_dirty(pte_t pte)1247 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
1248 {
1249 return pte;
1250 }
1251
pmd_swp_mksoft_dirty(pmd_t pmd)1252 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1253 {
1254 return pmd;
1255 }
1256
pmd_swp_soft_dirty(pmd_t pmd)1257 static inline int pmd_swp_soft_dirty(pmd_t pmd)
1258 {
1259 return 0;
1260 }
1261
pmd_swp_clear_soft_dirty(pmd_t pmd)1262 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1263 {
1264 return pmd;
1265 }
1266 #endif
1267
1268 #ifndef __HAVE_PFNMAP_TRACKING
1269 /*
1270 * Interfaces that can be used by architecture code to keep track of
1271 * memory type of pfn mappings specified by the remap_pfn_range,
1272 * vmf_insert_pfn.
1273 */
1274
1275 /*
1276 * track_pfn_remap is called when a _new_ pfn mapping is being established
1277 * by remap_pfn_range() for physical range indicated by pfn and size.
1278 */
track_pfn_remap(struct vm_area_struct * vma,pgprot_t * prot,unsigned long pfn,unsigned long addr,unsigned long size)1279 static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1280 unsigned long pfn, unsigned long addr,
1281 unsigned long size)
1282 {
1283 return 0;
1284 }
1285
1286 /*
1287 * track_pfn_insert is called when a _new_ single pfn is established
1288 * by vmf_insert_pfn().
1289 */
track_pfn_insert(struct vm_area_struct * vma,pgprot_t * prot,pfn_t pfn)1290 static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1291 pfn_t pfn)
1292 {
1293 }
1294
1295 /*
1296 * track_pfn_copy is called when vma that is covering the pfnmap gets
1297 * copied through copy_page_range().
1298 */
track_pfn_copy(struct vm_area_struct * vma)1299 static inline int track_pfn_copy(struct vm_area_struct *vma)
1300 {
1301 return 0;
1302 }
1303
1304 /*
1305 * untrack_pfn is called while unmapping a pfnmap for a region.
1306 * untrack can be called for a specific region indicated by pfn and size or
1307 * can be for the entire vma (in which case pfn, size are zero).
1308 */
untrack_pfn(struct vm_area_struct * vma,unsigned long pfn,unsigned long size,bool mm_wr_locked)1309 static inline void untrack_pfn(struct vm_area_struct *vma,
1310 unsigned long pfn, unsigned long size,
1311 bool mm_wr_locked)
1312 {
1313 }
1314
1315 /*
1316 * untrack_pfn_clear is called while mremapping a pfnmap for a new region
1317 * or fails to copy pgtable during duplicate vm area.
1318 */
untrack_pfn_clear(struct vm_area_struct * vma)1319 static inline void untrack_pfn_clear(struct vm_area_struct *vma)
1320 {
1321 }
1322 #else
1323 extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1324 unsigned long pfn, unsigned long addr,
1325 unsigned long size);
1326 extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1327 pfn_t pfn);
1328 extern int track_pfn_copy(struct vm_area_struct *vma);
1329 extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1330 unsigned long size, bool mm_wr_locked);
1331 extern void untrack_pfn_clear(struct vm_area_struct *vma);
1332 #endif
1333
1334 #ifdef CONFIG_MMU
1335 #ifdef __HAVE_COLOR_ZERO_PAGE
is_zero_pfn(unsigned long pfn)1336 static inline int is_zero_pfn(unsigned long pfn)
1337 {
1338 extern unsigned long zero_pfn;
1339 unsigned long offset_from_zero_pfn = pfn - zero_pfn;
1340 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
1341 }
1342
1343 #define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr))
1344
1345 #else
is_zero_pfn(unsigned long pfn)1346 static inline int is_zero_pfn(unsigned long pfn)
1347 {
1348 extern unsigned long zero_pfn;
1349 return pfn == zero_pfn;
1350 }
1351
my_zero_pfn(unsigned long addr)1352 static inline unsigned long my_zero_pfn(unsigned long addr)
1353 {
1354 extern unsigned long zero_pfn;
1355 return zero_pfn;
1356 }
1357 #endif
1358 #else
is_zero_pfn(unsigned long pfn)1359 static inline int is_zero_pfn(unsigned long pfn)
1360 {
1361 return 0;
1362 }
1363
my_zero_pfn(unsigned long addr)1364 static inline unsigned long my_zero_pfn(unsigned long addr)
1365 {
1366 return 0;
1367 }
1368 #endif /* CONFIG_MMU */
1369
1370 #ifdef CONFIG_MMU
1371
1372 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
pmd_trans_huge(pmd_t pmd)1373 static inline int pmd_trans_huge(pmd_t pmd)
1374 {
1375 return 0;
1376 }
1377 #ifndef pmd_write
pmd_write(pmd_t pmd)1378 static inline int pmd_write(pmd_t pmd)
1379 {
1380 BUG();
1381 return 0;
1382 }
1383 #endif /* pmd_write */
1384 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1385
1386 #ifndef pud_write
pud_write(pud_t pud)1387 static inline int pud_write(pud_t pud)
1388 {
1389 BUG();
1390 return 0;
1391 }
1392 #endif /* pud_write */
1393
1394 #if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
pmd_devmap(pmd_t pmd)1395 static inline int pmd_devmap(pmd_t pmd)
1396 {
1397 return 0;
1398 }
pud_devmap(pud_t pud)1399 static inline int pud_devmap(pud_t pud)
1400 {
1401 return 0;
1402 }
pgd_devmap(pgd_t pgd)1403 static inline int pgd_devmap(pgd_t pgd)
1404 {
1405 return 0;
1406 }
1407 #endif
1408
1409 #if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
1410 !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
pud_trans_huge(pud_t pud)1411 static inline int pud_trans_huge(pud_t pud)
1412 {
1413 return 0;
1414 }
1415 #endif
1416
pud_trans_unstable(pud_t * pud)1417 static inline int pud_trans_unstable(pud_t *pud)
1418 {
1419 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1420 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1421 pud_t pudval = READ_ONCE(*pud);
1422
1423 if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval))
1424 return 1;
1425 if (unlikely(pud_bad(pudval))) {
1426 pud_clear_bad(pud);
1427 return 1;
1428 }
1429 #endif
1430 return 0;
1431 }
1432
1433 #ifndef CONFIG_NUMA_BALANCING
1434 /*
1435 * In an inaccessible (PROT_NONE) VMA, pte_protnone() may indicate "yes". It is
1436 * perfectly valid to indicate "no" in that case, which is why our default
1437 * implementation defaults to "always no".
1438 *
1439 * In an accessible VMA, however, pte_protnone() reliably indicates PROT_NONE
1440 * page protection due to NUMA hinting. NUMA hinting faults only apply in
1441 * accessible VMAs.
1442 *
1443 * So, to reliably identify PROT_NONE PTEs that require a NUMA hinting fault,
1444 * looking at the VMA accessibility is sufficient.
1445 */
pte_protnone(pte_t pte)1446 static inline int pte_protnone(pte_t pte)
1447 {
1448 return 0;
1449 }
1450
pmd_protnone(pmd_t pmd)1451 static inline int pmd_protnone(pmd_t pmd)
1452 {
1453 return 0;
1454 }
1455 #endif /* CONFIG_NUMA_BALANCING */
1456
1457 #endif /* CONFIG_MMU */
1458
1459 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
1460
1461 #ifndef __PAGETABLE_P4D_FOLDED
1462 int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
1463 void p4d_clear_huge(p4d_t *p4d);
1464 #else
p4d_set_huge(p4d_t * p4d,phys_addr_t addr,pgprot_t prot)1465 static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1466 {
1467 return 0;
1468 }
p4d_clear_huge(p4d_t * p4d)1469 static inline void p4d_clear_huge(p4d_t *p4d) { }
1470 #endif /* !__PAGETABLE_P4D_FOLDED */
1471
1472 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
1473 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
1474 int pud_clear_huge(pud_t *pud);
1475 int pmd_clear_huge(pmd_t *pmd);
1476 int p4d_free_pud_page(p4d_t *p4d, unsigned long addr);
1477 int pud_free_pmd_page(pud_t *pud, unsigned long addr);
1478 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
1479 #else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */
p4d_set_huge(p4d_t * p4d,phys_addr_t addr,pgprot_t prot)1480 static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1481 {
1482 return 0;
1483 }
pud_set_huge(pud_t * pud,phys_addr_t addr,pgprot_t prot)1484 static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1485 {
1486 return 0;
1487 }
pmd_set_huge(pmd_t * pmd,phys_addr_t addr,pgprot_t prot)1488 static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1489 {
1490 return 0;
1491 }
p4d_clear_huge(p4d_t * p4d)1492 static inline void p4d_clear_huge(p4d_t *p4d) { }
pud_clear_huge(pud_t * pud)1493 static inline int pud_clear_huge(pud_t *pud)
1494 {
1495 return 0;
1496 }
pmd_clear_huge(pmd_t * pmd)1497 static inline int pmd_clear_huge(pmd_t *pmd)
1498 {
1499 return 0;
1500 }
p4d_free_pud_page(p4d_t * p4d,unsigned long addr)1501 static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
1502 {
1503 return 0;
1504 }
pud_free_pmd_page(pud_t * pud,unsigned long addr)1505 static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1506 {
1507 return 0;
1508 }
pmd_free_pte_page(pmd_t * pmd,unsigned long addr)1509 static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1510 {
1511 return 0;
1512 }
1513 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
1514
1515 #ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
1516 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1517 /*
1518 * ARCHes with special requirements for evicting THP backing TLB entries can
1519 * implement this. Otherwise also, it can help optimize normal TLB flush in
1520 * THP regime. Stock flush_tlb_range() typically has optimization to nuke the
1521 * entire TLB if flush span is greater than a threshold, which will
1522 * likely be true for a single huge page. Thus a single THP flush will
1523 * invalidate the entire TLB which is not desirable.
1524 * e.g. see arch/arc: flush_pmd_tlb_range
1525 */
1526 #define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1527 #define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1528 #else
1529 #define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG()
1530 #define flush_pud_tlb_range(vma, addr, end) BUILD_BUG()
1531 #endif
1532 #endif
1533
1534 struct file;
1535 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
1536 unsigned long size, pgprot_t *vma_prot);
1537
1538 #ifndef CONFIG_X86_ESPFIX64
init_espfix_bsp(void)1539 static inline void init_espfix_bsp(void) { }
1540 #endif
1541
1542 extern void __init pgtable_cache_init(void);
1543
1544 #ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
pfn_modify_allowed(unsigned long pfn,pgprot_t prot)1545 static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
1546 {
1547 return true;
1548 }
1549
arch_has_pfn_modify_check(void)1550 static inline bool arch_has_pfn_modify_check(void)
1551 {
1552 return false;
1553 }
1554 #endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
1555
1556 /*
1557 * Architecture PAGE_KERNEL_* fallbacks
1558 *
1559 * Some architectures don't define certain PAGE_KERNEL_* flags. This is either
1560 * because they really don't support them, or the port needs to be updated to
1561 * reflect the required functionality. Below are a set of relatively safe
1562 * fallbacks, as best effort, which we can count on in lieu of the architectures
1563 * not defining them on their own yet.
1564 */
1565
1566 #ifndef PAGE_KERNEL_RO
1567 # define PAGE_KERNEL_RO PAGE_KERNEL
1568 #endif
1569
1570 #ifndef PAGE_KERNEL_EXEC
1571 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1572 #endif
1573
1574 /*
1575 * Page Table Modification bits for pgtbl_mod_mask.
1576 *
1577 * These are used by the p?d_alloc_track*() set of functions an in the generic
1578 * vmalloc/ioremap code to track at which page-table levels entries have been
1579 * modified. Based on that the code can better decide when vmalloc and ioremap
1580 * mapping changes need to be synchronized to other page-tables in the system.
1581 */
1582 #define __PGTBL_PGD_MODIFIED 0
1583 #define __PGTBL_P4D_MODIFIED 1
1584 #define __PGTBL_PUD_MODIFIED 2
1585 #define __PGTBL_PMD_MODIFIED 3
1586 #define __PGTBL_PTE_MODIFIED 4
1587
1588 #define PGTBL_PGD_MODIFIED BIT(__PGTBL_PGD_MODIFIED)
1589 #define PGTBL_P4D_MODIFIED BIT(__PGTBL_P4D_MODIFIED)
1590 #define PGTBL_PUD_MODIFIED BIT(__PGTBL_PUD_MODIFIED)
1591 #define PGTBL_PMD_MODIFIED BIT(__PGTBL_PMD_MODIFIED)
1592 #define PGTBL_PTE_MODIFIED BIT(__PGTBL_PTE_MODIFIED)
1593
1594 /* Page-Table Modification Mask */
1595 typedef unsigned int pgtbl_mod_mask;
1596
1597 #endif /* !__ASSEMBLY__ */
1598
1599 #if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT)
1600 #ifdef CONFIG_PHYS_ADDR_T_64BIT
1601 /*
1602 * ZSMALLOC needs to know the highest PFN on 32-bit architectures
1603 * with physical address space extension, but falls back to
1604 * BITS_PER_LONG otherwise.
1605 */
1606 #error Missing MAX_POSSIBLE_PHYSMEM_BITS definition
1607 #else
1608 #define MAX_POSSIBLE_PHYSMEM_BITS 32
1609 #endif
1610 #endif
1611
1612 #ifndef has_transparent_hugepage
1613 #define has_transparent_hugepage() IS_BUILTIN(CONFIG_TRANSPARENT_HUGEPAGE)
1614 #endif
1615
1616 #ifndef has_transparent_pud_hugepage
1617 #define has_transparent_pud_hugepage() IS_BUILTIN(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1618 #endif
1619 /*
1620 * On some architectures it depends on the mm if the p4d/pud or pmd
1621 * layer of the page table hierarchy is folded or not.
1622 */
1623 #ifndef mm_p4d_folded
1624 #define mm_p4d_folded(mm) __is_defined(__PAGETABLE_P4D_FOLDED)
1625 #endif
1626
1627 #ifndef mm_pud_folded
1628 #define mm_pud_folded(mm) __is_defined(__PAGETABLE_PUD_FOLDED)
1629 #endif
1630
1631 #ifndef mm_pmd_folded
1632 #define mm_pmd_folded(mm) __is_defined(__PAGETABLE_PMD_FOLDED)
1633 #endif
1634
1635 #ifndef p4d_offset_lockless
1636 #define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address)
1637 #endif
1638 #ifndef pud_offset_lockless
1639 #define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address)
1640 #endif
1641 #ifndef pmd_offset_lockless
1642 #define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address)
1643 #endif
1644
1645 /*
1646 * p?d_leaf() - true if this entry is a final mapping to a physical address.
1647 * This differs from p?d_huge() by the fact that they are always available (if
1648 * the architecture supports large pages at the appropriate level) even
1649 * if CONFIG_HUGETLB_PAGE is not defined.
1650 * Only meaningful when called on a valid entry.
1651 */
1652 #ifndef pgd_leaf
1653 #define pgd_leaf(x) 0
1654 #endif
1655 #ifndef p4d_leaf
1656 #define p4d_leaf(x) 0
1657 #endif
1658 #ifndef pud_leaf
1659 #define pud_leaf(x) 0
1660 #endif
1661 #ifndef pmd_leaf
1662 #define pmd_leaf(x) 0
1663 #endif
1664
1665 #ifndef pgd_leaf_size
1666 #define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT)
1667 #endif
1668 #ifndef p4d_leaf_size
1669 #define p4d_leaf_size(x) P4D_SIZE
1670 #endif
1671 #ifndef pud_leaf_size
1672 #define pud_leaf_size(x) PUD_SIZE
1673 #endif
1674 #ifndef pmd_leaf_size
1675 #define pmd_leaf_size(x) PMD_SIZE
1676 #endif
1677 #ifndef pte_leaf_size
1678 #define pte_leaf_size(x) PAGE_SIZE
1679 #endif
1680
1681 /*
1682 * Some architectures have MMUs that are configurable or selectable at boot
1683 * time. These lead to variable PTRS_PER_x. For statically allocated arrays it
1684 * helps to have a static maximum value.
1685 */
1686
1687 #ifndef MAX_PTRS_PER_PTE
1688 #define MAX_PTRS_PER_PTE PTRS_PER_PTE
1689 #endif
1690
1691 #ifndef MAX_PTRS_PER_PMD
1692 #define MAX_PTRS_PER_PMD PTRS_PER_PMD
1693 #endif
1694
1695 #ifndef MAX_PTRS_PER_PUD
1696 #define MAX_PTRS_PER_PUD PTRS_PER_PUD
1697 #endif
1698
1699 #ifndef MAX_PTRS_PER_P4D
1700 #define MAX_PTRS_PER_P4D PTRS_PER_P4D
1701 #endif
1702
1703 /* description of effects of mapping type and prot in current implementation.
1704 * this is due to the limited x86 page protection hardware. The expected
1705 * behavior is in parens:
1706 *
1707 * map_type prot
1708 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
1709 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
1710 * w: (no) no w: (no) no w: (yes) yes w: (no) no
1711 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
1712 *
1713 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
1714 * w: (no) no w: (no) no w: (copy) copy w: (no) no
1715 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
1716 *
1717 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
1718 * MAP_PRIVATE (with Enhanced PAN supported):
1719 * r: (no) no
1720 * w: (no) no
1721 * x: (yes) yes
1722 */
1723 #define DECLARE_VM_GET_PAGE_PROT \
1724 pgprot_t vm_get_page_prot(unsigned long vm_flags) \
1725 { \
1726 return protection_map[vm_flags & \
1727 (VM_READ | VM_WRITE | VM_EXEC | VM_SHARED)]; \
1728 } \
1729 EXPORT_SYMBOL(vm_get_page_prot);
1730
1731 #endif /* _LINUX_PGTABLE_H */
1732