1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* memcontrol.h - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  */
10 
11 #ifndef _LINUX_MEMCONTROL_H
12 #define _LINUX_MEMCONTROL_H
13 #include <linux/cgroup.h>
14 #include <linux/vm_event_item.h>
15 #include <linux/hardirq.h>
16 #include <linux/jump_label.h>
17 #include <linux/kernel.h>
18 #include <linux/page_counter.h>
19 #include <linux/vmpressure.h>
20 #include <linux/eventfd.h>
21 #include <linux/mm.h>
22 #include <linux/vmstat.h>
23 #include <linux/writeback.h>
24 #include <linux/page-flags.h>
25 #include <linux/shrinker.h>
26 
27 struct mem_cgroup;
28 struct obj_cgroup;
29 struct page;
30 struct mm_struct;
31 struct kmem_cache;
32 
33 /* Cgroup-specific page state, on top of universal node page state */
34 enum memcg_stat_item {
35 	MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
36 	MEMCG_SOCK,
37 	MEMCG_PERCPU_B,
38 	MEMCG_VMALLOC,
39 	MEMCG_KMEM,
40 	MEMCG_ZSWAP_B,
41 	MEMCG_ZSWAPPED,
42 	MEMCG_NR_STAT,
43 };
44 
45 enum memcg_memory_event {
46 	MEMCG_LOW,
47 	MEMCG_HIGH,
48 	MEMCG_MAX,
49 	MEMCG_OOM,
50 	MEMCG_OOM_KILL,
51 	MEMCG_OOM_GROUP_KILL,
52 	MEMCG_SWAP_HIGH,
53 	MEMCG_SWAP_MAX,
54 	MEMCG_SWAP_FAIL,
55 	MEMCG_NR_MEMORY_EVENTS,
56 };
57 
58 struct mem_cgroup_reclaim_cookie {
59 	pg_data_t *pgdat;
60 	int generation;
61 };
62 
63 #ifdef CONFIG_MEMCG
64 
65 #define MEM_CGROUP_ID_SHIFT	16
66 
67 struct mem_cgroup_id {
68 	int id;
69 	refcount_t ref;
70 };
71 
72 struct memcg_vmstats_percpu;
73 struct memcg1_events_percpu;
74 struct memcg_vmstats;
75 struct lruvec_stats_percpu;
76 struct lruvec_stats;
77 
78 struct mem_cgroup_reclaim_iter {
79 	struct mem_cgroup *position;
80 	/* scan generation, increased every round-trip */
81 	atomic_t generation;
82 };
83 
84 /*
85  * per-node information in memory controller.
86  */
87 struct mem_cgroup_per_node {
88 	/* Keep the read-only fields at the start */
89 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
90 						/* use container_of	   */
91 
92 	struct lruvec_stats_percpu __percpu	*lruvec_stats_percpu;
93 	struct lruvec_stats			*lruvec_stats;
94 	struct shrinker_info __rcu	*shrinker_info;
95 
96 #ifdef CONFIG_MEMCG_V1
97 	/*
98 	 * Memcg-v1 only stuff in middle as buffer between read mostly fields
99 	 * and update often fields to avoid false sharing. If v1 stuff is
100 	 * not present, an explicit padding is needed.
101 	 */
102 
103 	struct rb_node		tree_node;	/* RB tree node */
104 	unsigned long		usage_in_excess;/* Set to the value by which */
105 						/* the soft limit is exceeded*/
106 	bool			on_tree;
107 #else
108 	CACHELINE_PADDING(_pad1_);
109 #endif
110 
111 	/* Fields which get updated often at the end. */
112 	struct lruvec		lruvec;
113 	CACHELINE_PADDING(_pad2_);
114 	unsigned long		lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
115 	struct mem_cgroup_reclaim_iter	iter;
116 };
117 
118 struct mem_cgroup_threshold {
119 	struct eventfd_ctx *eventfd;
120 	unsigned long threshold;
121 };
122 
123 /* For threshold */
124 struct mem_cgroup_threshold_ary {
125 	/* An array index points to threshold just below or equal to usage. */
126 	int current_threshold;
127 	/* Size of entries[] */
128 	unsigned int size;
129 	/* Array of thresholds */
130 	struct mem_cgroup_threshold entries[] __counted_by(size);
131 };
132 
133 struct mem_cgroup_thresholds {
134 	/* Primary thresholds array */
135 	struct mem_cgroup_threshold_ary *primary;
136 	/*
137 	 * Spare threshold array.
138 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
139 	 * It must be able to store at least primary->size - 1 entries.
140 	 */
141 	struct mem_cgroup_threshold_ary *spare;
142 };
143 
144 /*
145  * Remember four most recent foreign writebacks with dirty pages in this
146  * cgroup.  Inode sharing is expected to be uncommon and, even if we miss
147  * one in a given round, we're likely to catch it later if it keeps
148  * foreign-dirtying, so a fairly low count should be enough.
149  *
150  * See mem_cgroup_track_foreign_dirty_slowpath() for details.
151  */
152 #define MEMCG_CGWB_FRN_CNT	4
153 
154 struct memcg_cgwb_frn {
155 	u64 bdi_id;			/* bdi->id of the foreign inode */
156 	int memcg_id;			/* memcg->css.id of foreign inode */
157 	u64 at;				/* jiffies_64 at the time of dirtying */
158 	struct wb_completion done;	/* tracks in-flight foreign writebacks */
159 };
160 
161 /*
162  * Bucket for arbitrarily byte-sized objects charged to a memory
163  * cgroup. The bucket can be reparented in one piece when the cgroup
164  * is destroyed, without having to round up the individual references
165  * of all live memory objects in the wild.
166  */
167 struct obj_cgroup {
168 	struct percpu_ref refcnt;
169 	struct mem_cgroup *memcg;
170 	atomic_t nr_charged_bytes;
171 	union {
172 		struct list_head list; /* protected by objcg_lock */
173 		struct rcu_head rcu;
174 	};
175 };
176 
177 /*
178  * The memory controller data structure. The memory controller controls both
179  * page cache and RSS per cgroup. We would eventually like to provide
180  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
181  * to help the administrator determine what knobs to tune.
182  */
183 struct mem_cgroup {
184 	struct cgroup_subsys_state css;
185 
186 	/* Private memcg ID. Used to ID objects that outlive the cgroup */
187 	struct mem_cgroup_id id;
188 
189 	/* Accounted resources */
190 	struct page_counter memory;		/* Both v1 & v2 */
191 
192 	union {
193 		struct page_counter swap;	/* v2 only */
194 		struct page_counter memsw;	/* v1 only */
195 	};
196 
197 	/* registered local peak watchers */
198 	struct list_head memory_peaks;
199 	struct list_head swap_peaks;
200 	spinlock_t	 peaks_lock;
201 
202 	/* Range enforcement for interrupt charges */
203 	struct work_struct high_work;
204 
205 #ifdef CONFIG_ZSWAP
206 	unsigned long zswap_max;
207 
208 	/*
209 	 * Prevent pages from this memcg from being written back from zswap to
210 	 * swap, and from being swapped out on zswap store failures.
211 	 */
212 	bool zswap_writeback;
213 #endif
214 
215 	/* vmpressure notifications */
216 	struct vmpressure vmpressure;
217 
218 	/*
219 	 * Should the OOM killer kill all belonging tasks, had it kill one?
220 	 */
221 	bool oom_group;
222 
223 	int swappiness;
224 
225 	/* memory.events and memory.events.local */
226 	struct cgroup_file events_file;
227 	struct cgroup_file events_local_file;
228 
229 	/* handle for "memory.swap.events" */
230 	struct cgroup_file swap_events_file;
231 
232 	/* memory.stat */
233 	struct memcg_vmstats	*vmstats;
234 
235 	/* memory.events */
236 	atomic_long_t		memory_events[MEMCG_NR_MEMORY_EVENTS];
237 	atomic_long_t		memory_events_local[MEMCG_NR_MEMORY_EVENTS];
238 
239 	/*
240 	 * Hint of reclaim pressure for socket memroy management. Note
241 	 * that this indicator should NOT be used in legacy cgroup mode
242 	 * where socket memory is accounted/charged separately.
243 	 */
244 	unsigned long		socket_pressure;
245 
246 	int kmemcg_id;
247 	/*
248 	 * memcg->objcg is wiped out as a part of the objcg repaprenting
249 	 * process. memcg->orig_objcg preserves a pointer (and a reference)
250 	 * to the original objcg until the end of live of memcg.
251 	 */
252 	struct obj_cgroup __rcu	*objcg;
253 	struct obj_cgroup	*orig_objcg;
254 	/* list of inherited objcgs, protected by objcg_lock */
255 	struct list_head objcg_list;
256 
257 	struct memcg_vmstats_percpu __percpu *vmstats_percpu;
258 
259 #ifdef CONFIG_CGROUP_WRITEBACK
260 	struct list_head cgwb_list;
261 	struct wb_domain cgwb_domain;
262 	struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
263 #endif
264 
265 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
266 	struct deferred_split deferred_split_queue;
267 #endif
268 
269 #ifdef CONFIG_LRU_GEN_WALKS_MMU
270 	/* per-memcg mm_struct list */
271 	struct lru_gen_mm_list mm_list;
272 #endif
273 
274 #ifdef CONFIG_MEMCG_V1
275 	/* Legacy consumer-oriented counters */
276 	struct page_counter kmem;		/* v1 only */
277 	struct page_counter tcpmem;		/* v1 only */
278 
279 	struct memcg1_events_percpu __percpu *events_percpu;
280 
281 	unsigned long soft_limit;
282 
283 	/* protected by memcg_oom_lock */
284 	bool oom_lock;
285 	int under_oom;
286 
287 	/* OOM-Killer disable */
288 	int oom_kill_disable;
289 
290 	/* protect arrays of thresholds */
291 	struct mutex thresholds_lock;
292 
293 	/* thresholds for memory usage. RCU-protected */
294 	struct mem_cgroup_thresholds thresholds;
295 
296 	/* thresholds for mem+swap usage. RCU-protected */
297 	struct mem_cgroup_thresholds memsw_thresholds;
298 
299 	/* For oom notifier event fd */
300 	struct list_head oom_notify;
301 
302 	/* Legacy tcp memory accounting */
303 	bool tcpmem_active;
304 	int tcpmem_pressure;
305 
306 	/* List of events which userspace want to receive */
307 	struct list_head event_list;
308 	spinlock_t event_list_lock;
309 #endif /* CONFIG_MEMCG_V1 */
310 
311 	struct mem_cgroup_per_node *nodeinfo[];
312 };
313 
314 /*
315  * size of first charge trial.
316  * TODO: maybe necessary to use big numbers in big irons or dynamic based of the
317  * workload.
318  */
319 #define MEMCG_CHARGE_BATCH 64U
320 
321 extern struct mem_cgroup *root_mem_cgroup;
322 
323 enum page_memcg_data_flags {
324 	/* page->memcg_data is a pointer to an slabobj_ext vector */
325 	MEMCG_DATA_OBJEXTS = (1UL << 0),
326 	/* page has been accounted as a non-slab kernel page */
327 	MEMCG_DATA_KMEM = (1UL << 1),
328 	/* the next bit after the last actual flag */
329 	__NR_MEMCG_DATA_FLAGS  = (1UL << 2),
330 };
331 
332 #define __FIRST_OBJEXT_FLAG	__NR_MEMCG_DATA_FLAGS
333 
334 #else /* CONFIG_MEMCG */
335 
336 #define __FIRST_OBJEXT_FLAG	(1UL << 0)
337 
338 #endif /* CONFIG_MEMCG */
339 
340 enum objext_flags {
341 	/* slabobj_ext vector failed to allocate */
342 	OBJEXTS_ALLOC_FAIL = __FIRST_OBJEXT_FLAG,
343 	/* the next bit after the last actual flag */
344 	__NR_OBJEXTS_FLAGS  = (__FIRST_OBJEXT_FLAG << 1),
345 };
346 
347 #define OBJEXTS_FLAGS_MASK (__NR_OBJEXTS_FLAGS - 1)
348 
349 #ifdef CONFIG_MEMCG
350 
351 static inline bool folio_memcg_kmem(struct folio *folio);
352 
353 /*
354  * After the initialization objcg->memcg is always pointing at
355  * a valid memcg, but can be atomically swapped to the parent memcg.
356  *
357  * The caller must ensure that the returned memcg won't be released.
358  */
obj_cgroup_memcg(struct obj_cgroup * objcg)359 static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
360 {
361 	lockdep_assert_once(rcu_read_lock_held() || lockdep_is_held(&cgroup_mutex));
362 	return READ_ONCE(objcg->memcg);
363 }
364 
365 /*
366  * __folio_memcg - Get the memory cgroup associated with a non-kmem folio
367  * @folio: Pointer to the folio.
368  *
369  * Returns a pointer to the memory cgroup associated with the folio,
370  * or NULL. This function assumes that the folio is known to have a
371  * proper memory cgroup pointer. It's not safe to call this function
372  * against some type of folios, e.g. slab folios or ex-slab folios or
373  * kmem folios.
374  */
__folio_memcg(struct folio * folio)375 static inline struct mem_cgroup *__folio_memcg(struct folio *folio)
376 {
377 	unsigned long memcg_data = folio->memcg_data;
378 
379 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
380 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJEXTS, folio);
381 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_KMEM, folio);
382 
383 	return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
384 }
385 
386 /*
387  * __folio_objcg - get the object cgroup associated with a kmem folio.
388  * @folio: Pointer to the folio.
389  *
390  * Returns a pointer to the object cgroup associated with the folio,
391  * or NULL. This function assumes that the folio is known to have a
392  * proper object cgroup pointer. It's not safe to call this function
393  * against some type of folios, e.g. slab folios or ex-slab folios or
394  * LRU folios.
395  */
__folio_objcg(struct folio * folio)396 static inline struct obj_cgroup *__folio_objcg(struct folio *folio)
397 {
398 	unsigned long memcg_data = folio->memcg_data;
399 
400 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
401 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJEXTS, folio);
402 	VM_BUG_ON_FOLIO(!(memcg_data & MEMCG_DATA_KMEM), folio);
403 
404 	return (struct obj_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
405 }
406 
407 /*
408  * folio_memcg - Get the memory cgroup associated with a folio.
409  * @folio: Pointer to the folio.
410  *
411  * Returns a pointer to the memory cgroup associated with the folio,
412  * or NULL. This function assumes that the folio is known to have a
413  * proper memory cgroup pointer. It's not safe to call this function
414  * against some type of folios, e.g. slab folios or ex-slab folios.
415  *
416  * For a non-kmem folio any of the following ensures folio and memcg binding
417  * stability:
418  *
419  * - the folio lock
420  * - LRU isolation
421  * - exclusive reference
422  *
423  * For a kmem folio a caller should hold an rcu read lock to protect memcg
424  * associated with a kmem folio from being released.
425  */
folio_memcg(struct folio * folio)426 static inline struct mem_cgroup *folio_memcg(struct folio *folio)
427 {
428 	if (folio_memcg_kmem(folio))
429 		return obj_cgroup_memcg(__folio_objcg(folio));
430 	return __folio_memcg(folio);
431 }
432 
433 /*
434  * folio_memcg_charged - If a folio is charged to a memory cgroup.
435  * @folio: Pointer to the folio.
436  *
437  * Returns true if folio is charged to a memory cgroup, otherwise returns false.
438  */
folio_memcg_charged(struct folio * folio)439 static inline bool folio_memcg_charged(struct folio *folio)
440 {
441 	return folio->memcg_data != 0;
442 }
443 
444 /*
445  * folio_memcg_check - Get the memory cgroup associated with a folio.
446  * @folio: Pointer to the folio.
447  *
448  * Returns a pointer to the memory cgroup associated with the folio,
449  * or NULL. This function unlike folio_memcg() can take any folio
450  * as an argument. It has to be used in cases when it's not known if a folio
451  * has an associated memory cgroup pointer or an object cgroups vector or
452  * an object cgroup.
453  *
454  * For a non-kmem folio any of the following ensures folio and memcg binding
455  * stability:
456  *
457  * - the folio lock
458  * - LRU isolation
459  * - exclusive reference
460  *
461  * For a kmem folio a caller should hold an rcu read lock to protect memcg
462  * associated with a kmem folio from being released.
463  */
folio_memcg_check(struct folio * folio)464 static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
465 {
466 	/*
467 	 * Because folio->memcg_data might be changed asynchronously
468 	 * for slabs, READ_ONCE() should be used here.
469 	 */
470 	unsigned long memcg_data = READ_ONCE(folio->memcg_data);
471 
472 	if (memcg_data & MEMCG_DATA_OBJEXTS)
473 		return NULL;
474 
475 	if (memcg_data & MEMCG_DATA_KMEM) {
476 		struct obj_cgroup *objcg;
477 
478 		objcg = (void *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
479 		return obj_cgroup_memcg(objcg);
480 	}
481 
482 	return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
483 }
484 
page_memcg_check(struct page * page)485 static inline struct mem_cgroup *page_memcg_check(struct page *page)
486 {
487 	if (PageTail(page))
488 		return NULL;
489 	return folio_memcg_check((struct folio *)page);
490 }
491 
get_mem_cgroup_from_objcg(struct obj_cgroup * objcg)492 static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
493 {
494 	struct mem_cgroup *memcg;
495 
496 	rcu_read_lock();
497 retry:
498 	memcg = obj_cgroup_memcg(objcg);
499 	if (unlikely(!css_tryget(&memcg->css)))
500 		goto retry;
501 	rcu_read_unlock();
502 
503 	return memcg;
504 }
505 
506 /*
507  * folio_memcg_kmem - Check if the folio has the memcg_kmem flag set.
508  * @folio: Pointer to the folio.
509  *
510  * Checks if the folio has MemcgKmem flag set. The caller must ensure
511  * that the folio has an associated memory cgroup. It's not safe to call
512  * this function against some types of folios, e.g. slab folios.
513  */
folio_memcg_kmem(struct folio * folio)514 static inline bool folio_memcg_kmem(struct folio *folio)
515 {
516 	VM_BUG_ON_PGFLAGS(PageTail(&folio->page), &folio->page);
517 	VM_BUG_ON_FOLIO(folio->memcg_data & MEMCG_DATA_OBJEXTS, folio);
518 	return folio->memcg_data & MEMCG_DATA_KMEM;
519 }
520 
PageMemcgKmem(struct page * page)521 static inline bool PageMemcgKmem(struct page *page)
522 {
523 	return folio_memcg_kmem(page_folio(page));
524 }
525 
mem_cgroup_is_root(struct mem_cgroup * memcg)526 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
527 {
528 	return (memcg == root_mem_cgroup);
529 }
530 
mem_cgroup_disabled(void)531 static inline bool mem_cgroup_disabled(void)
532 {
533 	return !cgroup_subsys_enabled(memory_cgrp_subsys);
534 }
535 
mem_cgroup_protection(struct mem_cgroup * root,struct mem_cgroup * memcg,unsigned long * min,unsigned long * low)536 static inline void mem_cgroup_protection(struct mem_cgroup *root,
537 					 struct mem_cgroup *memcg,
538 					 unsigned long *min,
539 					 unsigned long *low)
540 {
541 	*min = *low = 0;
542 
543 	if (mem_cgroup_disabled())
544 		return;
545 
546 	/*
547 	 * There is no reclaim protection applied to a targeted reclaim.
548 	 * We are special casing this specific case here because
549 	 * mem_cgroup_calculate_protection is not robust enough to keep
550 	 * the protection invariant for calculated effective values for
551 	 * parallel reclaimers with different reclaim target. This is
552 	 * especially a problem for tail memcgs (as they have pages on LRU)
553 	 * which would want to have effective values 0 for targeted reclaim
554 	 * but a different value for external reclaim.
555 	 *
556 	 * Example
557 	 * Let's have global and A's reclaim in parallel:
558 	 *  |
559 	 *  A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
560 	 *  |\
561 	 *  | C (low = 1G, usage = 2.5G)
562 	 *  B (low = 1G, usage = 0.5G)
563 	 *
564 	 * For the global reclaim
565 	 * A.elow = A.low
566 	 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
567 	 * C.elow = min(C.usage, C.low)
568 	 *
569 	 * With the effective values resetting we have A reclaim
570 	 * A.elow = 0
571 	 * B.elow = B.low
572 	 * C.elow = C.low
573 	 *
574 	 * If the global reclaim races with A's reclaim then
575 	 * B.elow = C.elow = 0 because children_low_usage > A.elow)
576 	 * is possible and reclaiming B would be violating the protection.
577 	 *
578 	 */
579 	if (root == memcg)
580 		return;
581 
582 	*min = READ_ONCE(memcg->memory.emin);
583 	*low = READ_ONCE(memcg->memory.elow);
584 }
585 
586 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
587 				     struct mem_cgroup *memcg);
588 
mem_cgroup_unprotected(struct mem_cgroup * target,struct mem_cgroup * memcg)589 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
590 					  struct mem_cgroup *memcg)
591 {
592 	/*
593 	 * The root memcg doesn't account charges, and doesn't support
594 	 * protection. The target memcg's protection is ignored, see
595 	 * mem_cgroup_calculate_protection() and mem_cgroup_protection()
596 	 */
597 	return mem_cgroup_disabled() || mem_cgroup_is_root(memcg) ||
598 		memcg == target;
599 }
600 
mem_cgroup_below_low(struct mem_cgroup * target,struct mem_cgroup * memcg)601 static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
602 					struct mem_cgroup *memcg)
603 {
604 	if (mem_cgroup_unprotected(target, memcg))
605 		return false;
606 
607 	return READ_ONCE(memcg->memory.elow) >=
608 		page_counter_read(&memcg->memory);
609 }
610 
mem_cgroup_below_min(struct mem_cgroup * target,struct mem_cgroup * memcg)611 static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
612 					struct mem_cgroup *memcg)
613 {
614 	if (mem_cgroup_unprotected(target, memcg))
615 		return false;
616 
617 	return READ_ONCE(memcg->memory.emin) >=
618 		page_counter_read(&memcg->memory);
619 }
620 
621 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp);
622 
623 /**
624  * mem_cgroup_charge - Charge a newly allocated folio to a cgroup.
625  * @folio: Folio to charge.
626  * @mm: mm context of the allocating task.
627  * @gfp: Reclaim mode.
628  *
629  * Try to charge @folio to the memcg that @mm belongs to, reclaiming
630  * pages according to @gfp if necessary.  If @mm is NULL, try to
631  * charge to the active memcg.
632  *
633  * Do not use this for folios allocated for swapin.
634  *
635  * Return: 0 on success. Otherwise, an error code is returned.
636  */
mem_cgroup_charge(struct folio * folio,struct mm_struct * mm,gfp_t gfp)637 static inline int mem_cgroup_charge(struct folio *folio, struct mm_struct *mm,
638 				    gfp_t gfp)
639 {
640 	if (mem_cgroup_disabled())
641 		return 0;
642 	return __mem_cgroup_charge(folio, mm, gfp);
643 }
644 
645 int mem_cgroup_charge_hugetlb(struct folio* folio, gfp_t gfp);
646 
647 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
648 				  gfp_t gfp, swp_entry_t entry);
649 
650 void __mem_cgroup_uncharge(struct folio *folio);
651 
652 /**
653  * mem_cgroup_uncharge - Uncharge a folio.
654  * @folio: Folio to uncharge.
655  *
656  * Uncharge a folio previously charged with mem_cgroup_charge().
657  */
mem_cgroup_uncharge(struct folio * folio)658 static inline void mem_cgroup_uncharge(struct folio *folio)
659 {
660 	if (mem_cgroup_disabled())
661 		return;
662 	__mem_cgroup_uncharge(folio);
663 }
664 
665 void __mem_cgroup_uncharge_folios(struct folio_batch *folios);
mem_cgroup_uncharge_folios(struct folio_batch * folios)666 static inline void mem_cgroup_uncharge_folios(struct folio_batch *folios)
667 {
668 	if (mem_cgroup_disabled())
669 		return;
670 	__mem_cgroup_uncharge_folios(folios);
671 }
672 
673 void mem_cgroup_replace_folio(struct folio *old, struct folio *new);
674 void mem_cgroup_migrate(struct folio *old, struct folio *new);
675 
676 /**
677  * mem_cgroup_lruvec - get the lru list vector for a memcg & node
678  * @memcg: memcg of the wanted lruvec
679  * @pgdat: pglist_data
680  *
681  * Returns the lru list vector holding pages for a given @memcg &
682  * @pgdat combination. This can be the node lruvec, if the memory
683  * controller is disabled.
684  */
mem_cgroup_lruvec(struct mem_cgroup * memcg,struct pglist_data * pgdat)685 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
686 					       struct pglist_data *pgdat)
687 {
688 	struct mem_cgroup_per_node *mz;
689 	struct lruvec *lruvec;
690 
691 	if (mem_cgroup_disabled()) {
692 		lruvec = &pgdat->__lruvec;
693 		goto out;
694 	}
695 
696 	if (!memcg)
697 		memcg = root_mem_cgroup;
698 
699 	mz = memcg->nodeinfo[pgdat->node_id];
700 	lruvec = &mz->lruvec;
701 out:
702 	/*
703 	 * Since a node can be onlined after the mem_cgroup was created,
704 	 * we have to be prepared to initialize lruvec->pgdat here;
705 	 * and if offlined then reonlined, we need to reinitialize it.
706 	 */
707 	if (unlikely(lruvec->pgdat != pgdat))
708 		lruvec->pgdat = pgdat;
709 	return lruvec;
710 }
711 
712 /**
713  * folio_lruvec - return lruvec for isolating/putting an LRU folio
714  * @folio: Pointer to the folio.
715  *
716  * This function relies on folio->mem_cgroup being stable.
717  */
folio_lruvec(struct folio * folio)718 static inline struct lruvec *folio_lruvec(struct folio *folio)
719 {
720 	struct mem_cgroup *memcg = folio_memcg(folio);
721 
722 	VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled(), folio);
723 	return mem_cgroup_lruvec(memcg, folio_pgdat(folio));
724 }
725 
726 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
727 
728 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
729 
730 struct mem_cgroup *get_mem_cgroup_from_current(void);
731 
732 struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio);
733 
734 struct lruvec *folio_lruvec_lock(struct folio *folio);
735 struct lruvec *folio_lruvec_lock_irq(struct folio *folio);
736 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
737 						unsigned long *flags);
738 
739 #ifdef CONFIG_DEBUG_VM
740 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio);
741 #else
742 static inline
lruvec_memcg_debug(struct lruvec * lruvec,struct folio * folio)743 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
744 {
745 }
746 #endif
747 
748 static inline
mem_cgroup_from_css(struct cgroup_subsys_state * css)749 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
750 	return css ? container_of(css, struct mem_cgroup, css) : NULL;
751 }
752 
obj_cgroup_tryget(struct obj_cgroup * objcg)753 static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
754 {
755 	return percpu_ref_tryget(&objcg->refcnt);
756 }
757 
obj_cgroup_get(struct obj_cgroup * objcg)758 static inline void obj_cgroup_get(struct obj_cgroup *objcg)
759 {
760 	percpu_ref_get(&objcg->refcnt);
761 }
762 
obj_cgroup_get_many(struct obj_cgroup * objcg,unsigned long nr)763 static inline void obj_cgroup_get_many(struct obj_cgroup *objcg,
764 				       unsigned long nr)
765 {
766 	percpu_ref_get_many(&objcg->refcnt, nr);
767 }
768 
obj_cgroup_put(struct obj_cgroup * objcg)769 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
770 {
771 	if (objcg)
772 		percpu_ref_put(&objcg->refcnt);
773 }
774 
mem_cgroup_tryget(struct mem_cgroup * memcg)775 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
776 {
777 	return !memcg || css_tryget(&memcg->css);
778 }
779 
mem_cgroup_tryget_online(struct mem_cgroup * memcg)780 static inline bool mem_cgroup_tryget_online(struct mem_cgroup *memcg)
781 {
782 	return !memcg || css_tryget_online(&memcg->css);
783 }
784 
mem_cgroup_put(struct mem_cgroup * memcg)785 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
786 {
787 	if (memcg)
788 		css_put(&memcg->css);
789 }
790 
791 #define mem_cgroup_from_counter(counter, member)	\
792 	container_of(counter, struct mem_cgroup, member)
793 
794 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
795 				   struct mem_cgroup *,
796 				   struct mem_cgroup_reclaim_cookie *);
797 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
798 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
799 			   int (*)(struct task_struct *, void *), void *arg);
800 
mem_cgroup_id(struct mem_cgroup * memcg)801 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
802 {
803 	if (mem_cgroup_disabled())
804 		return 0;
805 
806 	return memcg->id.id;
807 }
808 struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
809 
810 #ifdef CONFIG_SHRINKER_DEBUG
mem_cgroup_ino(struct mem_cgroup * memcg)811 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
812 {
813 	return memcg ? cgroup_ino(memcg->css.cgroup) : 0;
814 }
815 
816 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino);
817 #endif
818 
mem_cgroup_from_seq(struct seq_file * m)819 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
820 {
821 	return mem_cgroup_from_css(seq_css(m));
822 }
823 
lruvec_memcg(struct lruvec * lruvec)824 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
825 {
826 	struct mem_cgroup_per_node *mz;
827 
828 	if (mem_cgroup_disabled())
829 		return NULL;
830 
831 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
832 	return mz->memcg;
833 }
834 
835 /**
836  * parent_mem_cgroup - find the accounting parent of a memcg
837  * @memcg: memcg whose parent to find
838  *
839  * Returns the parent memcg, or NULL if this is the root.
840  */
parent_mem_cgroup(struct mem_cgroup * memcg)841 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
842 {
843 	return mem_cgroup_from_css(memcg->css.parent);
844 }
845 
mem_cgroup_is_descendant(struct mem_cgroup * memcg,struct mem_cgroup * root)846 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
847 			      struct mem_cgroup *root)
848 {
849 	if (root == memcg)
850 		return true;
851 	return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
852 }
853 
mm_match_cgroup(struct mm_struct * mm,struct mem_cgroup * memcg)854 static inline bool mm_match_cgroup(struct mm_struct *mm,
855 				   struct mem_cgroup *memcg)
856 {
857 	struct mem_cgroup *task_memcg;
858 	bool match = false;
859 
860 	rcu_read_lock();
861 	task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
862 	if (task_memcg)
863 		match = mem_cgroup_is_descendant(task_memcg, memcg);
864 	rcu_read_unlock();
865 	return match;
866 }
867 
868 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio);
869 ino_t page_cgroup_ino(struct page *page);
870 
mem_cgroup_online(struct mem_cgroup * memcg)871 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
872 {
873 	if (mem_cgroup_disabled())
874 		return true;
875 	return !!(memcg->css.flags & CSS_ONLINE);
876 }
877 
878 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
879 		int zid, int nr_pages);
880 
881 static inline
mem_cgroup_get_zone_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)882 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
883 		enum lru_list lru, int zone_idx)
884 {
885 	struct mem_cgroup_per_node *mz;
886 
887 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
888 	return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
889 }
890 
891 void mem_cgroup_handle_over_high(gfp_t gfp_mask);
892 
893 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
894 
895 unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
896 
897 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
898 				struct task_struct *p);
899 
900 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
901 
902 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
903 					    struct mem_cgroup *oom_domain);
904 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
905 
906 void __mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx,
907 		       int val);
908 
909 /* idx can be of type enum memcg_stat_item or node_stat_item */
mod_memcg_state(struct mem_cgroup * memcg,enum memcg_stat_item idx,int val)910 static inline void mod_memcg_state(struct mem_cgroup *memcg,
911 				   enum memcg_stat_item idx, int val)
912 {
913 	unsigned long flags;
914 
915 	local_irq_save(flags);
916 	__mod_memcg_state(memcg, idx, val);
917 	local_irq_restore(flags);
918 }
919 
mod_memcg_page_state(struct page * page,enum memcg_stat_item idx,int val)920 static inline void mod_memcg_page_state(struct page *page,
921 					enum memcg_stat_item idx, int val)
922 {
923 	struct mem_cgroup *memcg;
924 
925 	if (mem_cgroup_disabled())
926 		return;
927 
928 	rcu_read_lock();
929 	memcg = folio_memcg(page_folio(page));
930 	if (memcg)
931 		mod_memcg_state(memcg, idx, val);
932 	rcu_read_unlock();
933 }
934 
935 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx);
936 unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx);
937 unsigned long lruvec_page_state_local(struct lruvec *lruvec,
938 				      enum node_stat_item idx);
939 
940 void mem_cgroup_flush_stats(struct mem_cgroup *memcg);
941 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg);
942 
943 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val);
944 
mod_lruvec_kmem_state(void * p,enum node_stat_item idx,int val)945 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
946 					 int val)
947 {
948 	unsigned long flags;
949 
950 	local_irq_save(flags);
951 	__mod_lruvec_kmem_state(p, idx, val);
952 	local_irq_restore(flags);
953 }
954 
955 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
956 			  unsigned long count);
957 
count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)958 static inline void count_memcg_events(struct mem_cgroup *memcg,
959 				      enum vm_event_item idx,
960 				      unsigned long count)
961 {
962 	unsigned long flags;
963 
964 	local_irq_save(flags);
965 	__count_memcg_events(memcg, idx, count);
966 	local_irq_restore(flags);
967 }
968 
count_memcg_folio_events(struct folio * folio,enum vm_event_item idx,unsigned long nr)969 static inline void count_memcg_folio_events(struct folio *folio,
970 		enum vm_event_item idx, unsigned long nr)
971 {
972 	struct mem_cgroup *memcg = folio_memcg(folio);
973 
974 	if (memcg)
975 		count_memcg_events(memcg, idx, nr);
976 }
977 
count_memcg_events_mm(struct mm_struct * mm,enum vm_event_item idx,unsigned long count)978 static inline void count_memcg_events_mm(struct mm_struct *mm,
979 					enum vm_event_item idx, unsigned long count)
980 {
981 	struct mem_cgroup *memcg;
982 
983 	if (mem_cgroup_disabled())
984 		return;
985 
986 	rcu_read_lock();
987 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
988 	if (likely(memcg))
989 		count_memcg_events(memcg, idx, count);
990 	rcu_read_unlock();
991 }
992 
count_memcg_event_mm(struct mm_struct * mm,enum vm_event_item idx)993 static inline void count_memcg_event_mm(struct mm_struct *mm,
994 					enum vm_event_item idx)
995 {
996 	count_memcg_events_mm(mm, idx, 1);
997 }
998 
memcg_memory_event(struct mem_cgroup * memcg,enum memcg_memory_event event)999 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1000 				      enum memcg_memory_event event)
1001 {
1002 	bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
1003 			  event == MEMCG_SWAP_FAIL;
1004 
1005 	atomic_long_inc(&memcg->memory_events_local[event]);
1006 	if (!swap_event)
1007 		cgroup_file_notify(&memcg->events_local_file);
1008 
1009 	do {
1010 		atomic_long_inc(&memcg->memory_events[event]);
1011 		if (swap_event)
1012 			cgroup_file_notify(&memcg->swap_events_file);
1013 		else
1014 			cgroup_file_notify(&memcg->events_file);
1015 
1016 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1017 			break;
1018 		if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1019 			break;
1020 	} while ((memcg = parent_mem_cgroup(memcg)) &&
1021 		 !mem_cgroup_is_root(memcg));
1022 }
1023 
memcg_memory_event_mm(struct mm_struct * mm,enum memcg_memory_event event)1024 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1025 					 enum memcg_memory_event event)
1026 {
1027 	struct mem_cgroup *memcg;
1028 
1029 	if (mem_cgroup_disabled())
1030 		return;
1031 
1032 	rcu_read_lock();
1033 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1034 	if (likely(memcg))
1035 		memcg_memory_event(memcg, event);
1036 	rcu_read_unlock();
1037 }
1038 
1039 void split_page_memcg(struct page *first, unsigned order);
1040 void folio_split_memcg_refs(struct folio *folio, unsigned old_order,
1041 		unsigned new_order);
1042 
cgroup_id_from_mm(struct mm_struct * mm)1043 static inline u64 cgroup_id_from_mm(struct mm_struct *mm)
1044 {
1045 	struct mem_cgroup *memcg;
1046 	u64 id;
1047 
1048 	if (mem_cgroup_disabled())
1049 		return 0;
1050 
1051 	rcu_read_lock();
1052 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1053 	if (!memcg)
1054 		memcg = root_mem_cgroup;
1055 	id = cgroup_id(memcg->css.cgroup);
1056 	rcu_read_unlock();
1057 	return id;
1058 }
1059 
1060 #else /* CONFIG_MEMCG */
1061 
1062 #define MEM_CGROUP_ID_SHIFT	0
1063 
folio_memcg(struct folio * folio)1064 static inline struct mem_cgroup *folio_memcg(struct folio *folio)
1065 {
1066 	return NULL;
1067 }
1068 
folio_memcg_charged(struct folio * folio)1069 static inline bool folio_memcg_charged(struct folio *folio)
1070 {
1071 	return false;
1072 }
1073 
folio_memcg_check(struct folio * folio)1074 static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
1075 {
1076 	return NULL;
1077 }
1078 
page_memcg_check(struct page * page)1079 static inline struct mem_cgroup *page_memcg_check(struct page *page)
1080 {
1081 	return NULL;
1082 }
1083 
get_mem_cgroup_from_objcg(struct obj_cgroup * objcg)1084 static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
1085 {
1086 	return NULL;
1087 }
1088 
folio_memcg_kmem(struct folio * folio)1089 static inline bool folio_memcg_kmem(struct folio *folio)
1090 {
1091 	return false;
1092 }
1093 
PageMemcgKmem(struct page * page)1094 static inline bool PageMemcgKmem(struct page *page)
1095 {
1096 	return false;
1097 }
1098 
mem_cgroup_is_root(struct mem_cgroup * memcg)1099 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1100 {
1101 	return true;
1102 }
1103 
mem_cgroup_disabled(void)1104 static inline bool mem_cgroup_disabled(void)
1105 {
1106 	return true;
1107 }
1108 
memcg_memory_event(struct mem_cgroup * memcg,enum memcg_memory_event event)1109 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1110 				      enum memcg_memory_event event)
1111 {
1112 }
1113 
memcg_memory_event_mm(struct mm_struct * mm,enum memcg_memory_event event)1114 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1115 					 enum memcg_memory_event event)
1116 {
1117 }
1118 
mem_cgroup_protection(struct mem_cgroup * root,struct mem_cgroup * memcg,unsigned long * min,unsigned long * low)1119 static inline void mem_cgroup_protection(struct mem_cgroup *root,
1120 					 struct mem_cgroup *memcg,
1121 					 unsigned long *min,
1122 					 unsigned long *low)
1123 {
1124 	*min = *low = 0;
1125 }
1126 
mem_cgroup_calculate_protection(struct mem_cgroup * root,struct mem_cgroup * memcg)1127 static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
1128 						   struct mem_cgroup *memcg)
1129 {
1130 }
1131 
mem_cgroup_unprotected(struct mem_cgroup * target,struct mem_cgroup * memcg)1132 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
1133 					  struct mem_cgroup *memcg)
1134 {
1135 	return true;
1136 }
mem_cgroup_below_low(struct mem_cgroup * target,struct mem_cgroup * memcg)1137 static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
1138 					struct mem_cgroup *memcg)
1139 {
1140 	return false;
1141 }
1142 
mem_cgroup_below_min(struct mem_cgroup * target,struct mem_cgroup * memcg)1143 static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
1144 					struct mem_cgroup *memcg)
1145 {
1146 	return false;
1147 }
1148 
mem_cgroup_charge(struct folio * folio,struct mm_struct * mm,gfp_t gfp)1149 static inline int mem_cgroup_charge(struct folio *folio,
1150 		struct mm_struct *mm, gfp_t gfp)
1151 {
1152 	return 0;
1153 }
1154 
mem_cgroup_charge_hugetlb(struct folio * folio,gfp_t gfp)1155 static inline int mem_cgroup_charge_hugetlb(struct folio* folio, gfp_t gfp)
1156 {
1157         return 0;
1158 }
1159 
mem_cgroup_swapin_charge_folio(struct folio * folio,struct mm_struct * mm,gfp_t gfp,swp_entry_t entry)1160 static inline int mem_cgroup_swapin_charge_folio(struct folio *folio,
1161 			struct mm_struct *mm, gfp_t gfp, swp_entry_t entry)
1162 {
1163 	return 0;
1164 }
1165 
mem_cgroup_uncharge(struct folio * folio)1166 static inline void mem_cgroup_uncharge(struct folio *folio)
1167 {
1168 }
1169 
mem_cgroup_uncharge_folios(struct folio_batch * folios)1170 static inline void mem_cgroup_uncharge_folios(struct folio_batch *folios)
1171 {
1172 }
1173 
mem_cgroup_replace_folio(struct folio * old,struct folio * new)1174 static inline void mem_cgroup_replace_folio(struct folio *old,
1175 		struct folio *new)
1176 {
1177 }
1178 
mem_cgroup_migrate(struct folio * old,struct folio * new)1179 static inline void mem_cgroup_migrate(struct folio *old, struct folio *new)
1180 {
1181 }
1182 
mem_cgroup_lruvec(struct mem_cgroup * memcg,struct pglist_data * pgdat)1183 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1184 					       struct pglist_data *pgdat)
1185 {
1186 	return &pgdat->__lruvec;
1187 }
1188 
folio_lruvec(struct folio * folio)1189 static inline struct lruvec *folio_lruvec(struct folio *folio)
1190 {
1191 	struct pglist_data *pgdat = folio_pgdat(folio);
1192 	return &pgdat->__lruvec;
1193 }
1194 
1195 static inline
lruvec_memcg_debug(struct lruvec * lruvec,struct folio * folio)1196 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1197 {
1198 }
1199 
parent_mem_cgroup(struct mem_cgroup * memcg)1200 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1201 {
1202 	return NULL;
1203 }
1204 
mm_match_cgroup(struct mm_struct * mm,struct mem_cgroup * memcg)1205 static inline bool mm_match_cgroup(struct mm_struct *mm,
1206 		struct mem_cgroup *memcg)
1207 {
1208 	return true;
1209 }
1210 
get_mem_cgroup_from_mm(struct mm_struct * mm)1211 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1212 {
1213 	return NULL;
1214 }
1215 
get_mem_cgroup_from_current(void)1216 static inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1217 {
1218 	return NULL;
1219 }
1220 
get_mem_cgroup_from_folio(struct folio * folio)1221 static inline struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio)
1222 {
1223 	return NULL;
1224 }
1225 
1226 static inline
mem_cgroup_from_css(struct cgroup_subsys_state * css)1227 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css)
1228 {
1229 	return NULL;
1230 }
1231 
obj_cgroup_get(struct obj_cgroup * objcg)1232 static inline void obj_cgroup_get(struct obj_cgroup *objcg)
1233 {
1234 }
1235 
obj_cgroup_put(struct obj_cgroup * objcg)1236 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
1237 {
1238 }
1239 
mem_cgroup_tryget(struct mem_cgroup * memcg)1240 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
1241 {
1242 	return true;
1243 }
1244 
mem_cgroup_tryget_online(struct mem_cgroup * memcg)1245 static inline bool mem_cgroup_tryget_online(struct mem_cgroup *memcg)
1246 {
1247 	return true;
1248 }
1249 
mem_cgroup_put(struct mem_cgroup * memcg)1250 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1251 {
1252 }
1253 
folio_lruvec_lock(struct folio * folio)1254 static inline struct lruvec *folio_lruvec_lock(struct folio *folio)
1255 {
1256 	struct pglist_data *pgdat = folio_pgdat(folio);
1257 
1258 	spin_lock(&pgdat->__lruvec.lru_lock);
1259 	return &pgdat->__lruvec;
1260 }
1261 
folio_lruvec_lock_irq(struct folio * folio)1262 static inline struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1263 {
1264 	struct pglist_data *pgdat = folio_pgdat(folio);
1265 
1266 	spin_lock_irq(&pgdat->__lruvec.lru_lock);
1267 	return &pgdat->__lruvec;
1268 }
1269 
folio_lruvec_lock_irqsave(struct folio * folio,unsigned long * flagsp)1270 static inline struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1271 		unsigned long *flagsp)
1272 {
1273 	struct pglist_data *pgdat = folio_pgdat(folio);
1274 
1275 	spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp);
1276 	return &pgdat->__lruvec;
1277 }
1278 
1279 static inline struct mem_cgroup *
mem_cgroup_iter(struct mem_cgroup * root,struct mem_cgroup * prev,struct mem_cgroup_reclaim_cookie * reclaim)1280 mem_cgroup_iter(struct mem_cgroup *root,
1281 		struct mem_cgroup *prev,
1282 		struct mem_cgroup_reclaim_cookie *reclaim)
1283 {
1284 	return NULL;
1285 }
1286 
mem_cgroup_iter_break(struct mem_cgroup * root,struct mem_cgroup * prev)1287 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1288 					 struct mem_cgroup *prev)
1289 {
1290 }
1291 
mem_cgroup_scan_tasks(struct mem_cgroup * memcg,int (* fn)(struct task_struct *,void *),void * arg)1292 static inline void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1293 		int (*fn)(struct task_struct *, void *), void *arg)
1294 {
1295 }
1296 
mem_cgroup_id(struct mem_cgroup * memcg)1297 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
1298 {
1299 	return 0;
1300 }
1301 
mem_cgroup_from_id(unsigned short id)1302 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1303 {
1304 	WARN_ON_ONCE(id);
1305 	/* XXX: This should always return root_mem_cgroup */
1306 	return NULL;
1307 }
1308 
1309 #ifdef CONFIG_SHRINKER_DEBUG
mem_cgroup_ino(struct mem_cgroup * memcg)1310 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
1311 {
1312 	return 0;
1313 }
1314 
mem_cgroup_get_from_ino(unsigned long ino)1315 static inline struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
1316 {
1317 	return NULL;
1318 }
1319 #endif
1320 
mem_cgroup_from_seq(struct seq_file * m)1321 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1322 {
1323 	return NULL;
1324 }
1325 
lruvec_memcg(struct lruvec * lruvec)1326 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1327 {
1328 	return NULL;
1329 }
1330 
mem_cgroup_online(struct mem_cgroup * memcg)1331 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1332 {
1333 	return true;
1334 }
1335 
1336 static inline
mem_cgroup_get_zone_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)1337 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1338 		enum lru_list lru, int zone_idx)
1339 {
1340 	return 0;
1341 }
1342 
mem_cgroup_get_max(struct mem_cgroup * memcg)1343 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1344 {
1345 	return 0;
1346 }
1347 
mem_cgroup_size(struct mem_cgroup * memcg)1348 static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1349 {
1350 	return 0;
1351 }
1352 
1353 static inline void
mem_cgroup_print_oom_context(struct mem_cgroup * memcg,struct task_struct * p)1354 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1355 {
1356 }
1357 
1358 static inline void
mem_cgroup_print_oom_meminfo(struct mem_cgroup * memcg)1359 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1360 {
1361 }
1362 
mem_cgroup_handle_over_high(gfp_t gfp_mask)1363 static inline void mem_cgroup_handle_over_high(gfp_t gfp_mask)
1364 {
1365 }
1366 
mem_cgroup_get_oom_group(struct task_struct * victim,struct mem_cgroup * oom_domain)1367 static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1368 	struct task_struct *victim, struct mem_cgroup *oom_domain)
1369 {
1370 	return NULL;
1371 }
1372 
mem_cgroup_print_oom_group(struct mem_cgroup * memcg)1373 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1374 {
1375 }
1376 
__mod_memcg_state(struct mem_cgroup * memcg,enum memcg_stat_item idx,int nr)1377 static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1378 				     enum memcg_stat_item idx,
1379 				     int nr)
1380 {
1381 }
1382 
mod_memcg_state(struct mem_cgroup * memcg,enum memcg_stat_item idx,int nr)1383 static inline void mod_memcg_state(struct mem_cgroup *memcg,
1384 				   enum memcg_stat_item idx,
1385 				   int nr)
1386 {
1387 }
1388 
mod_memcg_page_state(struct page * page,enum memcg_stat_item idx,int val)1389 static inline void mod_memcg_page_state(struct page *page,
1390 					enum memcg_stat_item idx, int val)
1391 {
1392 }
1393 
memcg_page_state(struct mem_cgroup * memcg,int idx)1394 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1395 {
1396 	return 0;
1397 }
1398 
lruvec_page_state(struct lruvec * lruvec,enum node_stat_item idx)1399 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1400 					      enum node_stat_item idx)
1401 {
1402 	return node_page_state(lruvec_pgdat(lruvec), idx);
1403 }
1404 
lruvec_page_state_local(struct lruvec * lruvec,enum node_stat_item idx)1405 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1406 						    enum node_stat_item idx)
1407 {
1408 	return node_page_state(lruvec_pgdat(lruvec), idx);
1409 }
1410 
mem_cgroup_flush_stats(struct mem_cgroup * memcg)1411 static inline void mem_cgroup_flush_stats(struct mem_cgroup *memcg)
1412 {
1413 }
1414 
mem_cgroup_flush_stats_ratelimited(struct mem_cgroup * memcg)1415 static inline void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg)
1416 {
1417 }
1418 
__mod_lruvec_kmem_state(void * p,enum node_stat_item idx,int val)1419 static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1420 					   int val)
1421 {
1422 	struct page *page = virt_to_head_page(p);
1423 
1424 	__mod_node_page_state(page_pgdat(page), idx, val);
1425 }
1426 
mod_lruvec_kmem_state(void * p,enum node_stat_item idx,int val)1427 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1428 					 int val)
1429 {
1430 	struct page *page = virt_to_head_page(p);
1431 
1432 	mod_node_page_state(page_pgdat(page), idx, val);
1433 }
1434 
count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)1435 static inline void count_memcg_events(struct mem_cgroup *memcg,
1436 				      enum vm_event_item idx,
1437 				      unsigned long count)
1438 {
1439 }
1440 
__count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)1441 static inline void __count_memcg_events(struct mem_cgroup *memcg,
1442 					enum vm_event_item idx,
1443 					unsigned long count)
1444 {
1445 }
1446 
count_memcg_folio_events(struct folio * folio,enum vm_event_item idx,unsigned long nr)1447 static inline void count_memcg_folio_events(struct folio *folio,
1448 		enum vm_event_item idx, unsigned long nr)
1449 {
1450 }
1451 
count_memcg_events_mm(struct mm_struct * mm,enum vm_event_item idx,unsigned long count)1452 static inline void count_memcg_events_mm(struct mm_struct *mm,
1453 					enum vm_event_item idx, unsigned long count)
1454 {
1455 }
1456 
1457 static inline
count_memcg_event_mm(struct mm_struct * mm,enum vm_event_item idx)1458 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1459 {
1460 }
1461 
split_page_memcg(struct page * first,unsigned order)1462 static inline void split_page_memcg(struct page *first, unsigned order)
1463 {
1464 }
1465 
folio_split_memcg_refs(struct folio * folio,unsigned old_order,unsigned new_order)1466 static inline void folio_split_memcg_refs(struct folio *folio,
1467 		unsigned old_order, unsigned new_order)
1468 {
1469 }
1470 
cgroup_id_from_mm(struct mm_struct * mm)1471 static inline u64 cgroup_id_from_mm(struct mm_struct *mm)
1472 {
1473 	return 0;
1474 }
1475 #endif /* CONFIG_MEMCG */
1476 
1477 /*
1478  * Extended information for slab objects stored as an array in page->memcg_data
1479  * if MEMCG_DATA_OBJEXTS is set.
1480  */
1481 struct slabobj_ext {
1482 #ifdef CONFIG_MEMCG
1483 	struct obj_cgroup *objcg;
1484 #endif
1485 #ifdef CONFIG_MEM_ALLOC_PROFILING
1486 	union codetag_ref ref;
1487 #endif
1488 } __aligned(8);
1489 
__inc_lruvec_kmem_state(void * p,enum node_stat_item idx)1490 static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx)
1491 {
1492 	__mod_lruvec_kmem_state(p, idx, 1);
1493 }
1494 
__dec_lruvec_kmem_state(void * p,enum node_stat_item idx)1495 static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx)
1496 {
1497 	__mod_lruvec_kmem_state(p, idx, -1);
1498 }
1499 
parent_lruvec(struct lruvec * lruvec)1500 static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1501 {
1502 	struct mem_cgroup *memcg;
1503 
1504 	memcg = lruvec_memcg(lruvec);
1505 	if (!memcg)
1506 		return NULL;
1507 	memcg = parent_mem_cgroup(memcg);
1508 	if (!memcg)
1509 		return NULL;
1510 	return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1511 }
1512 
unlock_page_lruvec(struct lruvec * lruvec)1513 static inline void unlock_page_lruvec(struct lruvec *lruvec)
1514 {
1515 	spin_unlock(&lruvec->lru_lock);
1516 }
1517 
unlock_page_lruvec_irq(struct lruvec * lruvec)1518 static inline void unlock_page_lruvec_irq(struct lruvec *lruvec)
1519 {
1520 	spin_unlock_irq(&lruvec->lru_lock);
1521 }
1522 
unlock_page_lruvec_irqrestore(struct lruvec * lruvec,unsigned long flags)1523 static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec,
1524 		unsigned long flags)
1525 {
1526 	spin_unlock_irqrestore(&lruvec->lru_lock, flags);
1527 }
1528 
1529 /* Test requires a stable folio->memcg binding, see folio_memcg() */
folio_matches_lruvec(struct folio * folio,struct lruvec * lruvec)1530 static inline bool folio_matches_lruvec(struct folio *folio,
1531 		struct lruvec *lruvec)
1532 {
1533 	return lruvec_pgdat(lruvec) == folio_pgdat(folio) &&
1534 	       lruvec_memcg(lruvec) == folio_memcg(folio);
1535 }
1536 
1537 /* Don't lock again iff page's lruvec locked */
folio_lruvec_relock_irq(struct folio * folio,struct lruvec * locked_lruvec)1538 static inline struct lruvec *folio_lruvec_relock_irq(struct folio *folio,
1539 		struct lruvec *locked_lruvec)
1540 {
1541 	if (locked_lruvec) {
1542 		if (folio_matches_lruvec(folio, locked_lruvec))
1543 			return locked_lruvec;
1544 
1545 		unlock_page_lruvec_irq(locked_lruvec);
1546 	}
1547 
1548 	return folio_lruvec_lock_irq(folio);
1549 }
1550 
1551 /* Don't lock again iff folio's lruvec locked */
folio_lruvec_relock_irqsave(struct folio * folio,struct lruvec ** lruvecp,unsigned long * flags)1552 static inline void folio_lruvec_relock_irqsave(struct folio *folio,
1553 		struct lruvec **lruvecp, unsigned long *flags)
1554 {
1555 	if (*lruvecp) {
1556 		if (folio_matches_lruvec(folio, *lruvecp))
1557 			return;
1558 
1559 		unlock_page_lruvec_irqrestore(*lruvecp, *flags);
1560 	}
1561 
1562 	*lruvecp = folio_lruvec_lock_irqsave(folio, flags);
1563 }
1564 
1565 #ifdef CONFIG_CGROUP_WRITEBACK
1566 
1567 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1568 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1569 			 unsigned long *pheadroom, unsigned long *pdirty,
1570 			 unsigned long *pwriteback);
1571 
1572 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
1573 					     struct bdi_writeback *wb);
1574 
mem_cgroup_track_foreign_dirty(struct folio * folio,struct bdi_writeback * wb)1575 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1576 						  struct bdi_writeback *wb)
1577 {
1578 	struct mem_cgroup *memcg;
1579 
1580 	if (mem_cgroup_disabled())
1581 		return;
1582 
1583 	memcg = folio_memcg(folio);
1584 	if (unlikely(memcg && &memcg->css != wb->memcg_css))
1585 		mem_cgroup_track_foreign_dirty_slowpath(folio, wb);
1586 }
1587 
1588 void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1589 
1590 #else	/* CONFIG_CGROUP_WRITEBACK */
1591 
mem_cgroup_wb_domain(struct bdi_writeback * wb)1592 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1593 {
1594 	return NULL;
1595 }
1596 
mem_cgroup_wb_stats(struct bdi_writeback * wb,unsigned long * pfilepages,unsigned long * pheadroom,unsigned long * pdirty,unsigned long * pwriteback)1597 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1598 				       unsigned long *pfilepages,
1599 				       unsigned long *pheadroom,
1600 				       unsigned long *pdirty,
1601 				       unsigned long *pwriteback)
1602 {
1603 }
1604 
mem_cgroup_track_foreign_dirty(struct folio * folio,struct bdi_writeback * wb)1605 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1606 						  struct bdi_writeback *wb)
1607 {
1608 }
1609 
mem_cgroup_flush_foreign(struct bdi_writeback * wb)1610 static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1611 {
1612 }
1613 
1614 #endif	/* CONFIG_CGROUP_WRITEBACK */
1615 
1616 struct sock;
1617 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
1618 			     gfp_t gfp_mask);
1619 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1620 #ifdef CONFIG_MEMCG
1621 extern struct static_key_false memcg_sockets_enabled_key;
1622 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1623 void mem_cgroup_sk_alloc(struct sock *sk);
1624 void mem_cgroup_sk_free(struct sock *sk);
mem_cgroup_under_socket_pressure(struct mem_cgroup * memcg)1625 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1626 {
1627 #ifdef CONFIG_MEMCG_V1
1628 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1629 		return !!memcg->tcpmem_pressure;
1630 #endif /* CONFIG_MEMCG_V1 */
1631 	do {
1632 		if (time_before(jiffies, READ_ONCE(memcg->socket_pressure)))
1633 			return true;
1634 	} while ((memcg = parent_mem_cgroup(memcg)));
1635 	return false;
1636 }
1637 
1638 int alloc_shrinker_info(struct mem_cgroup *memcg);
1639 void free_shrinker_info(struct mem_cgroup *memcg);
1640 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id);
1641 void reparent_shrinker_deferred(struct mem_cgroup *memcg);
1642 #else
1643 #define mem_cgroup_sockets_enabled 0
mem_cgroup_sk_alloc(struct sock * sk)1644 static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
mem_cgroup_sk_free(struct sock * sk)1645 static inline void mem_cgroup_sk_free(struct sock *sk) { };
mem_cgroup_under_socket_pressure(struct mem_cgroup * memcg)1646 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1647 {
1648 	return false;
1649 }
1650 
set_shrinker_bit(struct mem_cgroup * memcg,int nid,int shrinker_id)1651 static inline void set_shrinker_bit(struct mem_cgroup *memcg,
1652 				    int nid, int shrinker_id)
1653 {
1654 }
1655 #endif
1656 
1657 #ifdef CONFIG_MEMCG
1658 bool mem_cgroup_kmem_disabled(void);
1659 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1660 void __memcg_kmem_uncharge_page(struct page *page, int order);
1661 
1662 /*
1663  * The returned objcg pointer is safe to use without additional
1664  * protection within a scope. The scope is defined either by
1665  * the current task (similar to the "current" global variable)
1666  * or by set_active_memcg() pair.
1667  * Please, use obj_cgroup_get() to get a reference if the pointer
1668  * needs to be used outside of the local scope.
1669  */
1670 struct obj_cgroup *current_obj_cgroup(void);
1671 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio);
1672 
get_obj_cgroup_from_current(void)1673 static inline struct obj_cgroup *get_obj_cgroup_from_current(void)
1674 {
1675 	struct obj_cgroup *objcg = current_obj_cgroup();
1676 
1677 	if (objcg)
1678 		obj_cgroup_get(objcg);
1679 
1680 	return objcg;
1681 }
1682 
1683 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1684 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1685 
1686 extern struct static_key_false memcg_bpf_enabled_key;
memcg_bpf_enabled(void)1687 static inline bool memcg_bpf_enabled(void)
1688 {
1689 	return static_branch_likely(&memcg_bpf_enabled_key);
1690 }
1691 
1692 extern struct static_key_false memcg_kmem_online_key;
1693 
memcg_kmem_online(void)1694 static inline bool memcg_kmem_online(void)
1695 {
1696 	return static_branch_likely(&memcg_kmem_online_key);
1697 }
1698 
memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)1699 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1700 					 int order)
1701 {
1702 	if (memcg_kmem_online())
1703 		return __memcg_kmem_charge_page(page, gfp, order);
1704 	return 0;
1705 }
1706 
memcg_kmem_uncharge_page(struct page * page,int order)1707 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1708 {
1709 	if (memcg_kmem_online())
1710 		__memcg_kmem_uncharge_page(page, order);
1711 }
1712 
1713 /*
1714  * A helper for accessing memcg's kmem_id, used for getting
1715  * corresponding LRU lists.
1716  */
memcg_kmem_id(struct mem_cgroup * memcg)1717 static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1718 {
1719 	return memcg ? memcg->kmemcg_id : -1;
1720 }
1721 
1722 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p);
1723 
count_objcg_events(struct obj_cgroup * objcg,enum vm_event_item idx,unsigned long count)1724 static inline void count_objcg_events(struct obj_cgroup *objcg,
1725 				      enum vm_event_item idx,
1726 				      unsigned long count)
1727 {
1728 	struct mem_cgroup *memcg;
1729 
1730 	if (!memcg_kmem_online())
1731 		return;
1732 
1733 	rcu_read_lock();
1734 	memcg = obj_cgroup_memcg(objcg);
1735 	count_memcg_events(memcg, idx, count);
1736 	rcu_read_unlock();
1737 }
1738 
1739 #else
mem_cgroup_kmem_disabled(void)1740 static inline bool mem_cgroup_kmem_disabled(void)
1741 {
1742 	return true;
1743 }
1744 
memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)1745 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1746 					 int order)
1747 {
1748 	return 0;
1749 }
1750 
memcg_kmem_uncharge_page(struct page * page,int order)1751 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1752 {
1753 }
1754 
__memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)1755 static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1756 					   int order)
1757 {
1758 	return 0;
1759 }
1760 
__memcg_kmem_uncharge_page(struct page * page,int order)1761 static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1762 {
1763 }
1764 
get_obj_cgroup_from_folio(struct folio * folio)1765 static inline struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
1766 {
1767 	return NULL;
1768 }
1769 
memcg_bpf_enabled(void)1770 static inline bool memcg_bpf_enabled(void)
1771 {
1772 	return false;
1773 }
1774 
memcg_kmem_online(void)1775 static inline bool memcg_kmem_online(void)
1776 {
1777 	return false;
1778 }
1779 
memcg_kmem_id(struct mem_cgroup * memcg)1780 static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1781 {
1782 	return -1;
1783 }
1784 
mem_cgroup_from_slab_obj(void * p)1785 static inline struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
1786 {
1787 	return NULL;
1788 }
1789 
count_objcg_events(struct obj_cgroup * objcg,enum vm_event_item idx,unsigned long count)1790 static inline void count_objcg_events(struct obj_cgroup *objcg,
1791 				      enum vm_event_item idx,
1792 				      unsigned long count)
1793 {
1794 }
1795 
1796 #endif /* CONFIG_MEMCG */
1797 
1798 #if defined(CONFIG_MEMCG) && defined(CONFIG_ZSWAP)
1799 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg);
1800 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size);
1801 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size);
1802 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg);
1803 #else
obj_cgroup_may_zswap(struct obj_cgroup * objcg)1804 static inline bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
1805 {
1806 	return true;
1807 }
obj_cgroup_charge_zswap(struct obj_cgroup * objcg,size_t size)1808 static inline void obj_cgroup_charge_zswap(struct obj_cgroup *objcg,
1809 					   size_t size)
1810 {
1811 }
obj_cgroup_uncharge_zswap(struct obj_cgroup * objcg,size_t size)1812 static inline void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg,
1813 					     size_t size)
1814 {
1815 }
mem_cgroup_zswap_writeback_enabled(struct mem_cgroup * memcg)1816 static inline bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg)
1817 {
1818 	/* if zswap is disabled, do not block pages going to the swapping device */
1819 	return true;
1820 }
1821 #endif
1822 
1823 
1824 /* Cgroup v1-related declarations */
1825 
1826 #ifdef CONFIG_MEMCG_V1
1827 unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order,
1828 					gfp_t gfp_mask,
1829 					unsigned long *total_scanned);
1830 
1831 bool mem_cgroup_oom_synchronize(bool wait);
1832 
task_in_memcg_oom(struct task_struct * p)1833 static inline bool task_in_memcg_oom(struct task_struct *p)
1834 {
1835 	return p->memcg_in_oom;
1836 }
1837 
mem_cgroup_enter_user_fault(void)1838 static inline void mem_cgroup_enter_user_fault(void)
1839 {
1840 	WARN_ON(current->in_user_fault);
1841 	current->in_user_fault = 1;
1842 }
1843 
mem_cgroup_exit_user_fault(void)1844 static inline void mem_cgroup_exit_user_fault(void)
1845 {
1846 	WARN_ON(!current->in_user_fault);
1847 	current->in_user_fault = 0;
1848 }
1849 
1850 void memcg1_swapout(struct folio *folio, swp_entry_t entry);
1851 void memcg1_swapin(swp_entry_t entry, unsigned int nr_pages);
1852 
1853 #else /* CONFIG_MEMCG_V1 */
1854 static inline
memcg1_soft_limit_reclaim(pg_data_t * pgdat,int order,gfp_t gfp_mask,unsigned long * total_scanned)1855 unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order,
1856 					gfp_t gfp_mask,
1857 					unsigned long *total_scanned)
1858 {
1859 	return 0;
1860 }
1861 
task_in_memcg_oom(struct task_struct * p)1862 static inline bool task_in_memcg_oom(struct task_struct *p)
1863 {
1864 	return false;
1865 }
1866 
mem_cgroup_oom_synchronize(bool wait)1867 static inline bool mem_cgroup_oom_synchronize(bool wait)
1868 {
1869 	return false;
1870 }
1871 
mem_cgroup_enter_user_fault(void)1872 static inline void mem_cgroup_enter_user_fault(void)
1873 {
1874 }
1875 
mem_cgroup_exit_user_fault(void)1876 static inline void mem_cgroup_exit_user_fault(void)
1877 {
1878 }
1879 
memcg1_swapout(struct folio * folio,swp_entry_t entry)1880 static inline void memcg1_swapout(struct folio *folio, swp_entry_t entry)
1881 {
1882 }
1883 
memcg1_swapin(swp_entry_t entry,unsigned int nr_pages)1884 static inline void memcg1_swapin(swp_entry_t entry, unsigned int nr_pages)
1885 {
1886 }
1887 
1888 #endif /* CONFIG_MEMCG_V1 */
1889 
1890 #endif /* _LINUX_MEMCONTROL_H */
1891