1 /*
2 * AArch64 specific helpers
3 *
4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de>
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/units.h"
22 #include "cpu.h"
23 #include "gdbstub/helpers.h"
24 #include "exec/helper-proto.h"
25 #include "qemu/host-utils.h"
26 #include "qemu/log.h"
27 #include "qemu/main-loop.h"
28 #include "qemu/bitops.h"
29 #include "internals.h"
30 #include "qemu/crc32c.h"
31 #include "exec/cpu-common.h"
32 #include "accel/tcg/cpu-ldst.h"
33 #include "accel/tcg/helper-retaddr.h"
34 #include "accel/tcg/probe.h"
35 #include "exec/target_page.h"
36 #include "exec/tlb-flags.h"
37 #include "qemu/int128.h"
38 #include "qemu/atomic128.h"
39 #include "fpu/softfloat.h"
40 #include <zlib.h> /* for crc32 */
41 #ifdef CONFIG_USER_ONLY
42 #include "user/page-protection.h"
43 #endif
44 #include "vec_internal.h"
45
46 /* C2.4.7 Multiply and divide */
47 /* special cases for 0 and LLONG_MIN are mandated by the standard */
HELPER(udiv64)48 uint64_t HELPER(udiv64)(uint64_t num, uint64_t den)
49 {
50 if (den == 0) {
51 return 0;
52 }
53 return num / den;
54 }
55
HELPER(sdiv64)56 int64_t HELPER(sdiv64)(int64_t num, int64_t den)
57 {
58 if (den == 0) {
59 return 0;
60 }
61 if (num == LLONG_MIN && den == -1) {
62 return LLONG_MIN;
63 }
64 return num / den;
65 }
66
HELPER(rbit64)67 uint64_t HELPER(rbit64)(uint64_t x)
68 {
69 return revbit64(x);
70 }
71
HELPER(msr_i_spsel)72 void HELPER(msr_i_spsel)(CPUARMState *env, uint32_t imm)
73 {
74 update_spsel(env, imm);
75 }
76
HELPER(msr_set_allint_el1)77 void HELPER(msr_set_allint_el1)(CPUARMState *env)
78 {
79 /* ALLINT update to PSTATE. */
80 if (arm_hcrx_el2_eff(env) & HCRX_TALLINT) {
81 raise_exception_ra(env, EXCP_UDEF,
82 syn_aa64_sysregtrap(0, 1, 0, 4, 1, 0x1f, 0), 2,
83 GETPC());
84 }
85
86 env->pstate |= PSTATE_ALLINT;
87 }
88
daif_check(CPUARMState * env,uint32_t op,uint32_t imm,uintptr_t ra)89 static void daif_check(CPUARMState *env, uint32_t op,
90 uint32_t imm, uintptr_t ra)
91 {
92 /* DAIF update to PSTATE. This is OK from EL0 only if UMA is set. */
93 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
94 raise_exception_ra(env, EXCP_UDEF,
95 syn_aa64_sysregtrap(0, extract32(op, 0, 3),
96 extract32(op, 3, 3), 4,
97 imm, 0x1f, 0),
98 exception_target_el(env), ra);
99 }
100 }
101
HELPER(msr_i_daifset)102 void HELPER(msr_i_daifset)(CPUARMState *env, uint32_t imm)
103 {
104 daif_check(env, 0x1e, imm, GETPC());
105 env->daif |= (imm << 6) & PSTATE_DAIF;
106 arm_rebuild_hflags(env);
107 }
108
HELPER(msr_i_daifclear)109 void HELPER(msr_i_daifclear)(CPUARMState *env, uint32_t imm)
110 {
111 daif_check(env, 0x1f, imm, GETPC());
112 env->daif &= ~((imm << 6) & PSTATE_DAIF);
113 arm_rebuild_hflags(env);
114 }
115
116 /* Convert a softfloat float_relation_ (as returned by
117 * the float*_compare functions) to the correct ARM
118 * NZCV flag state.
119 */
float_rel_to_flags(int res)120 static inline uint32_t float_rel_to_flags(int res)
121 {
122 uint64_t flags;
123 switch (res) {
124 case float_relation_equal:
125 flags = PSTATE_Z | PSTATE_C;
126 break;
127 case float_relation_less:
128 flags = PSTATE_N;
129 break;
130 case float_relation_greater:
131 flags = PSTATE_C;
132 break;
133 case float_relation_unordered:
134 default:
135 flags = PSTATE_C | PSTATE_V;
136 break;
137 }
138 return flags;
139 }
140
HELPER(vfp_cmph_a64)141 uint64_t HELPER(vfp_cmph_a64)(uint32_t x, uint32_t y, float_status *fp_status)
142 {
143 return float_rel_to_flags(float16_compare_quiet(x, y, fp_status));
144 }
145
HELPER(vfp_cmpeh_a64)146 uint64_t HELPER(vfp_cmpeh_a64)(uint32_t x, uint32_t y, float_status *fp_status)
147 {
148 return float_rel_to_flags(float16_compare(x, y, fp_status));
149 }
150
HELPER(vfp_cmps_a64)151 uint64_t HELPER(vfp_cmps_a64)(float32 x, float32 y, float_status *fp_status)
152 {
153 return float_rel_to_flags(float32_compare_quiet(x, y, fp_status));
154 }
155
HELPER(vfp_cmpes_a64)156 uint64_t HELPER(vfp_cmpes_a64)(float32 x, float32 y, float_status *fp_status)
157 {
158 return float_rel_to_flags(float32_compare(x, y, fp_status));
159 }
160
HELPER(vfp_cmpd_a64)161 uint64_t HELPER(vfp_cmpd_a64)(float64 x, float64 y, float_status *fp_status)
162 {
163 return float_rel_to_flags(float64_compare_quiet(x, y, fp_status));
164 }
165
HELPER(vfp_cmped_a64)166 uint64_t HELPER(vfp_cmped_a64)(float64 x, float64 y, float_status *fp_status)
167 {
168 return float_rel_to_flags(float64_compare(x, y, fp_status));
169 }
170
HELPER(vfp_mulxs)171 float32 HELPER(vfp_mulxs)(float32 a, float32 b, float_status *fpst)
172 {
173 a = float32_squash_input_denormal(a, fpst);
174 b = float32_squash_input_denormal(b, fpst);
175
176 if ((float32_is_zero(a) && float32_is_infinity(b)) ||
177 (float32_is_infinity(a) && float32_is_zero(b))) {
178 /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
179 return make_float32((1U << 30) |
180 ((float32_val(a) ^ float32_val(b)) & (1U << 31)));
181 }
182 return float32_mul(a, b, fpst);
183 }
184
HELPER(vfp_mulxd)185 float64 HELPER(vfp_mulxd)(float64 a, float64 b, float_status *fpst)
186 {
187 a = float64_squash_input_denormal(a, fpst);
188 b = float64_squash_input_denormal(b, fpst);
189
190 if ((float64_is_zero(a) && float64_is_infinity(b)) ||
191 (float64_is_infinity(a) && float64_is_zero(b))) {
192 /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
193 return make_float64((1ULL << 62) |
194 ((float64_val(a) ^ float64_val(b)) & (1ULL << 63)));
195 }
196 return float64_mul(a, b, fpst);
197 }
198
199 /* 64bit/double versions of the neon float compare functions */
HELPER(neon_ceq_f64)200 uint64_t HELPER(neon_ceq_f64)(float64 a, float64 b, float_status *fpst)
201 {
202 return -float64_eq_quiet(a, b, fpst);
203 }
204
HELPER(neon_cge_f64)205 uint64_t HELPER(neon_cge_f64)(float64 a, float64 b, float_status *fpst)
206 {
207 return -float64_le(b, a, fpst);
208 }
209
HELPER(neon_cgt_f64)210 uint64_t HELPER(neon_cgt_f64)(float64 a, float64 b, float_status *fpst)
211 {
212 return -float64_lt(b, a, fpst);
213 }
214
215 /*
216 * Reciprocal step and sqrt step. Note that unlike the A32/T32
217 * versions, these do a fully fused multiply-add or
218 * multiply-add-and-halve.
219 * The FPCR.AH == 1 versions need to avoid flipping the sign of NaN.
220 */
221 #define DO_RECPS(NAME, CTYPE, FLOATTYPE, CHSFN) \
222 CTYPE HELPER(NAME)(CTYPE a, CTYPE b, float_status *fpst) \
223 { \
224 a = FLOATTYPE ## _squash_input_denormal(a, fpst); \
225 b = FLOATTYPE ## _squash_input_denormal(b, fpst); \
226 a = FLOATTYPE ## _ ## CHSFN(a); \
227 if ((FLOATTYPE ## _is_infinity(a) && FLOATTYPE ## _is_zero(b)) || \
228 (FLOATTYPE ## _is_infinity(b) && FLOATTYPE ## _is_zero(a))) { \
229 return FLOATTYPE ## _two; \
230 } \
231 return FLOATTYPE ## _muladd(a, b, FLOATTYPE ## _two, 0, fpst); \
232 }
233
DO_RECPS(recpsf_f16,uint32_t,float16,chs)234 DO_RECPS(recpsf_f16, uint32_t, float16, chs)
235 DO_RECPS(recpsf_f32, float32, float32, chs)
236 DO_RECPS(recpsf_f64, float64, float64, chs)
237 DO_RECPS(recpsf_ah_f16, uint32_t, float16, ah_chs)
238 DO_RECPS(recpsf_ah_f32, float32, float32, ah_chs)
239 DO_RECPS(recpsf_ah_f64, float64, float64, ah_chs)
240
241 #define DO_RSQRTSF(NAME, CTYPE, FLOATTYPE, CHSFN) \
242 CTYPE HELPER(NAME)(CTYPE a, CTYPE b, float_status *fpst) \
243 { \
244 a = FLOATTYPE ## _squash_input_denormal(a, fpst); \
245 b = FLOATTYPE ## _squash_input_denormal(b, fpst); \
246 a = FLOATTYPE ## _ ## CHSFN(a); \
247 if ((FLOATTYPE ## _is_infinity(a) && FLOATTYPE ## _is_zero(b)) || \
248 (FLOATTYPE ## _is_infinity(b) && FLOATTYPE ## _is_zero(a))) { \
249 return FLOATTYPE ## _one_point_five; \
250 } \
251 return FLOATTYPE ## _muladd_scalbn(a, b, FLOATTYPE ## _three, \
252 -1, 0, fpst); \
253 } \
254
255 DO_RSQRTSF(rsqrtsf_f16, uint32_t, float16, chs)
256 DO_RSQRTSF(rsqrtsf_f32, float32, float32, chs)
257 DO_RSQRTSF(rsqrtsf_f64, float64, float64, chs)
258 DO_RSQRTSF(rsqrtsf_ah_f16, uint32_t, float16, ah_chs)
259 DO_RSQRTSF(rsqrtsf_ah_f32, float32, float32, ah_chs)
260 DO_RSQRTSF(rsqrtsf_ah_f64, float64, float64, ah_chs)
261
262 /* Floating-point reciprocal exponent - see FPRecpX in ARM ARM */
263 uint32_t HELPER(frecpx_f16)(uint32_t a, float_status *fpst)
264 {
265 uint16_t val16, sbit;
266 int16_t exp;
267
268 if (float16_is_any_nan(a)) {
269 float16 nan = a;
270 if (float16_is_signaling_nan(a, fpst)) {
271 float_raise(float_flag_invalid, fpst);
272 if (!fpst->default_nan_mode) {
273 nan = float16_silence_nan(a, fpst);
274 }
275 }
276 if (fpst->default_nan_mode) {
277 nan = float16_default_nan(fpst);
278 }
279 return nan;
280 }
281
282 a = float16_squash_input_denormal(a, fpst);
283
284 val16 = float16_val(a);
285 sbit = 0x8000 & val16;
286 exp = extract32(val16, 10, 5);
287
288 if (exp == 0) {
289 return make_float16(deposit32(sbit, 10, 5, 0x1e));
290 } else {
291 return make_float16(deposit32(sbit, 10, 5, ~exp));
292 }
293 }
294
HELPER(frecpx_f32)295 float32 HELPER(frecpx_f32)(float32 a, float_status *fpst)
296 {
297 uint32_t val32, sbit;
298 int32_t exp;
299
300 if (float32_is_any_nan(a)) {
301 float32 nan = a;
302 if (float32_is_signaling_nan(a, fpst)) {
303 float_raise(float_flag_invalid, fpst);
304 if (!fpst->default_nan_mode) {
305 nan = float32_silence_nan(a, fpst);
306 }
307 }
308 if (fpst->default_nan_mode) {
309 nan = float32_default_nan(fpst);
310 }
311 return nan;
312 }
313
314 a = float32_squash_input_denormal(a, fpst);
315
316 val32 = float32_val(a);
317 sbit = 0x80000000ULL & val32;
318 exp = extract32(val32, 23, 8);
319
320 if (exp == 0) {
321 return make_float32(sbit | (0xfe << 23));
322 } else {
323 return make_float32(sbit | (~exp & 0xff) << 23);
324 }
325 }
326
HELPER(frecpx_f64)327 float64 HELPER(frecpx_f64)(float64 a, float_status *fpst)
328 {
329 uint64_t val64, sbit;
330 int64_t exp;
331
332 if (float64_is_any_nan(a)) {
333 float64 nan = a;
334 if (float64_is_signaling_nan(a, fpst)) {
335 float_raise(float_flag_invalid, fpst);
336 if (!fpst->default_nan_mode) {
337 nan = float64_silence_nan(a, fpst);
338 }
339 }
340 if (fpst->default_nan_mode) {
341 nan = float64_default_nan(fpst);
342 }
343 return nan;
344 }
345
346 a = float64_squash_input_denormal(a, fpst);
347
348 val64 = float64_val(a);
349 sbit = 0x8000000000000000ULL & val64;
350 exp = extract64(float64_val(a), 52, 11);
351
352 if (exp == 0) {
353 return make_float64(sbit | (0x7feULL << 52));
354 } else {
355 return make_float64(sbit | (~exp & 0x7ffULL) << 52);
356 }
357 }
358
HELPER(fcvtx_f64_to_f32)359 float32 HELPER(fcvtx_f64_to_f32)(float64 a, float_status *fpst)
360 {
361 float32 r;
362 int old = get_float_rounding_mode(fpst);
363
364 set_float_rounding_mode(float_round_to_odd, fpst);
365 r = float64_to_float32(a, fpst);
366 set_float_rounding_mode(old, fpst);
367 return r;
368 }
369
370 /*
371 * AH=1 min/max have some odd special cases:
372 * comparing two zeroes (regardless of sign), (NaN, anything),
373 * or (anything, NaN) should return the second argument (possibly
374 * squashed to zero).
375 * Also, denormal outputs are not squashed to zero regardless of FZ or FZ16.
376 */
377 #define AH_MINMAX_HELPER(NAME, CTYPE, FLOATTYPE, MINMAX) \
378 CTYPE HELPER(NAME)(CTYPE a, CTYPE b, float_status *fpst) \
379 { \
380 bool save; \
381 CTYPE r; \
382 a = FLOATTYPE ## _squash_input_denormal(a, fpst); \
383 b = FLOATTYPE ## _squash_input_denormal(b, fpst); \
384 if (FLOATTYPE ## _is_zero(a) && FLOATTYPE ## _is_zero(b)) { \
385 return b; \
386 } \
387 if (FLOATTYPE ## _is_any_nan(a) || \
388 FLOATTYPE ## _is_any_nan(b)) { \
389 float_raise(float_flag_invalid, fpst); \
390 return b; \
391 } \
392 save = get_flush_to_zero(fpst); \
393 set_flush_to_zero(false, fpst); \
394 r = FLOATTYPE ## _ ## MINMAX(a, b, fpst); \
395 set_flush_to_zero(save, fpst); \
396 return r; \
397 }
398
AH_MINMAX_HELPER(vfp_ah_minh,dh_ctype_f16,float16,min)399 AH_MINMAX_HELPER(vfp_ah_minh, dh_ctype_f16, float16, min)
400 AH_MINMAX_HELPER(vfp_ah_mins, float32, float32, min)
401 AH_MINMAX_HELPER(vfp_ah_mind, float64, float64, min)
402 AH_MINMAX_HELPER(vfp_ah_maxh, dh_ctype_f16, float16, max)
403 AH_MINMAX_HELPER(vfp_ah_maxs, float32, float32, max)
404 AH_MINMAX_HELPER(vfp_ah_maxd, float64, float64, max)
405
406 /* 64-bit versions of the CRC helpers. Note that although the operation
407 * (and the prototypes of crc32c() and crc32() mean that only the bottom
408 * 32 bits of the accumulator and result are used, we pass and return
409 * uint64_t for convenience of the generated code. Unlike the 32-bit
410 * instruction set versions, val may genuinely have 64 bits of data in it.
411 * The upper bytes of val (above the number specified by 'bytes') must have
412 * been zeroed out by the caller.
413 */
414 uint64_t HELPER(crc32_64)(uint64_t acc, uint64_t val, uint32_t bytes)
415 {
416 uint8_t buf[8];
417
418 stq_le_p(buf, val);
419
420 /* zlib crc32 converts the accumulator and output to one's complement. */
421 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
422 }
423
HELPER(crc32c_64)424 uint64_t HELPER(crc32c_64)(uint64_t acc, uint64_t val, uint32_t bytes)
425 {
426 uint8_t buf[8];
427
428 stq_le_p(buf, val);
429
430 /* Linux crc32c converts the output to one's complement. */
431 return crc32c(acc, buf, bytes) ^ 0xffffffff;
432 }
433
434 /*
435 * AdvSIMD half-precision
436 */
437
438 #define ADVSIMD_HELPER(name, suffix) HELPER(glue(glue(advsimd_, name), suffix))
439
440 #define ADVSIMD_HALFOP(name) \
441 uint32_t ADVSIMD_HELPER(name, h)(uint32_t a, uint32_t b, float_status *fpst) \
442 { \
443 return float16_ ## name(a, b, fpst); \
444 }
445
446 #define ADVSIMD_TWOHALFOP(name) \
447 uint32_t ADVSIMD_HELPER(name, 2h)(uint32_t two_a, uint32_t two_b, \
448 float_status *fpst) \
449 { \
450 float16 a1, a2, b1, b2; \
451 uint32_t r1, r2; \
452 a1 = extract32(two_a, 0, 16); \
453 a2 = extract32(two_a, 16, 16); \
454 b1 = extract32(two_b, 0, 16); \
455 b2 = extract32(two_b, 16, 16); \
456 r1 = float16_ ## name(a1, b1, fpst); \
457 r2 = float16_ ## name(a2, b2, fpst); \
458 return deposit32(r1, 16, 16, r2); \
459 }
460
461 ADVSIMD_TWOHALFOP(add)
ADVSIMD_TWOHALFOP(sub)462 ADVSIMD_TWOHALFOP(sub)
463 ADVSIMD_TWOHALFOP(mul)
464 ADVSIMD_TWOHALFOP(div)
465 ADVSIMD_TWOHALFOP(min)
466 ADVSIMD_TWOHALFOP(max)
467 ADVSIMD_TWOHALFOP(minnum)
468 ADVSIMD_TWOHALFOP(maxnum)
469
470 /* Data processing - scalar floating-point and advanced SIMD */
471 static float16 float16_mulx(float16 a, float16 b, float_status *fpst)
472 {
473 a = float16_squash_input_denormal(a, fpst);
474 b = float16_squash_input_denormal(b, fpst);
475
476 if ((float16_is_zero(a) && float16_is_infinity(b)) ||
477 (float16_is_infinity(a) && float16_is_zero(b))) {
478 /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
479 return make_float16((1U << 14) |
480 ((float16_val(a) ^ float16_val(b)) & (1U << 15)));
481 }
482 return float16_mul(a, b, fpst);
483 }
484
485 ADVSIMD_HALFOP(mulx)
ADVSIMD_TWOHALFOP(mulx)486 ADVSIMD_TWOHALFOP(mulx)
487
488 /* fused multiply-accumulate */
489 uint32_t HELPER(advsimd_muladdh)(uint32_t a, uint32_t b, uint32_t c,
490 float_status *fpst)
491 {
492 return float16_muladd(a, b, c, 0, fpst);
493 }
494
HELPER(advsimd_muladd2h)495 uint32_t HELPER(advsimd_muladd2h)(uint32_t two_a, uint32_t two_b,
496 uint32_t two_c, float_status *fpst)
497 {
498 float16 a1, a2, b1, b2, c1, c2;
499 uint32_t r1, r2;
500 a1 = extract32(two_a, 0, 16);
501 a2 = extract32(two_a, 16, 16);
502 b1 = extract32(two_b, 0, 16);
503 b2 = extract32(two_b, 16, 16);
504 c1 = extract32(two_c, 0, 16);
505 c2 = extract32(two_c, 16, 16);
506 r1 = float16_muladd(a1, b1, c1, 0, fpst);
507 r2 = float16_muladd(a2, b2, c2, 0, fpst);
508 return deposit32(r1, 16, 16, r2);
509 }
510
511 /*
512 * Floating point comparisons produce an integer result. Softfloat
513 * routines return float_relation types which we convert to the 0/-1
514 * Neon requires.
515 */
516
517 #define ADVSIMD_CMPRES(test) (test) ? 0xffff : 0
518
HELPER(advsimd_ceq_f16)519 uint32_t HELPER(advsimd_ceq_f16)(uint32_t a, uint32_t b, float_status *fpst)
520 {
521 int compare = float16_compare_quiet(a, b, fpst);
522 return ADVSIMD_CMPRES(compare == float_relation_equal);
523 }
524
HELPER(advsimd_cge_f16)525 uint32_t HELPER(advsimd_cge_f16)(uint32_t a, uint32_t b, float_status *fpst)
526 {
527 int compare = float16_compare(a, b, fpst);
528 return ADVSIMD_CMPRES(compare == float_relation_greater ||
529 compare == float_relation_equal);
530 }
531
HELPER(advsimd_cgt_f16)532 uint32_t HELPER(advsimd_cgt_f16)(uint32_t a, uint32_t b, float_status *fpst)
533 {
534 int compare = float16_compare(a, b, fpst);
535 return ADVSIMD_CMPRES(compare == float_relation_greater);
536 }
537
HELPER(advsimd_acge_f16)538 uint32_t HELPER(advsimd_acge_f16)(uint32_t a, uint32_t b, float_status *fpst)
539 {
540 float16 f0 = float16_abs(a);
541 float16 f1 = float16_abs(b);
542 int compare = float16_compare(f0, f1, fpst);
543 return ADVSIMD_CMPRES(compare == float_relation_greater ||
544 compare == float_relation_equal);
545 }
546
HELPER(advsimd_acgt_f16)547 uint32_t HELPER(advsimd_acgt_f16)(uint32_t a, uint32_t b, float_status *fpst)
548 {
549 float16 f0 = float16_abs(a);
550 float16 f1 = float16_abs(b);
551 int compare = float16_compare(f0, f1, fpst);
552 return ADVSIMD_CMPRES(compare == float_relation_greater);
553 }
554
555 /* round to integral */
HELPER(advsimd_rinth_exact)556 uint32_t HELPER(advsimd_rinth_exact)(uint32_t x, float_status *fp_status)
557 {
558 return float16_round_to_int(x, fp_status);
559 }
560
HELPER(advsimd_rinth)561 uint32_t HELPER(advsimd_rinth)(uint32_t x, float_status *fp_status)
562 {
563 int old_flags = get_float_exception_flags(fp_status), new_flags;
564 float16 ret;
565
566 ret = float16_round_to_int(x, fp_status);
567
568 /* Suppress any inexact exceptions the conversion produced */
569 if (!(old_flags & float_flag_inexact)) {
570 new_flags = get_float_exception_flags(fp_status);
571 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
572 }
573
574 return ret;
575 }
576
el_from_spsr(uint32_t spsr)577 static int el_from_spsr(uint32_t spsr)
578 {
579 /* Return the exception level that this SPSR is requesting a return to,
580 * or -1 if it is invalid (an illegal return)
581 */
582 if (spsr & PSTATE_nRW) {
583 switch (spsr & CPSR_M) {
584 case ARM_CPU_MODE_USR:
585 return 0;
586 case ARM_CPU_MODE_HYP:
587 return 2;
588 case ARM_CPU_MODE_FIQ:
589 case ARM_CPU_MODE_IRQ:
590 case ARM_CPU_MODE_SVC:
591 case ARM_CPU_MODE_ABT:
592 case ARM_CPU_MODE_UND:
593 case ARM_CPU_MODE_SYS:
594 return 1;
595 case ARM_CPU_MODE_MON:
596 /* Returning to Mon from AArch64 is never possible,
597 * so this is an illegal return.
598 */
599 default:
600 return -1;
601 }
602 } else {
603 if (extract32(spsr, 1, 1)) {
604 /* Return with reserved M[1] bit set */
605 return -1;
606 }
607 if (extract32(spsr, 0, 4) == 1) {
608 /* return to EL0 with M[0] bit set */
609 return -1;
610 }
611 return extract32(spsr, 2, 2);
612 }
613 }
614
cpsr_write_from_spsr_elx(CPUARMState * env,uint32_t val)615 static void cpsr_write_from_spsr_elx(CPUARMState *env,
616 uint32_t val)
617 {
618 uint32_t mask;
619
620 /* Save SPSR_ELx.SS into PSTATE. */
621 env->pstate = (env->pstate & ~PSTATE_SS) | (val & PSTATE_SS);
622 val &= ~PSTATE_SS;
623
624 /* Move DIT to the correct location for CPSR */
625 if (val & PSTATE_DIT) {
626 val &= ~PSTATE_DIT;
627 val |= CPSR_DIT;
628 }
629
630 mask = aarch32_cpsr_valid_mask(env->features, \
631 &env_archcpu(env)->isar);
632 cpsr_write(env, val, mask, CPSRWriteRaw);
633 }
634
HELPER(exception_return)635 void HELPER(exception_return)(CPUARMState *env, uint64_t new_pc)
636 {
637 ARMCPU *cpu = env_archcpu(env);
638 int cur_el = arm_current_el(env);
639 unsigned int spsr_idx = aarch64_banked_spsr_index(cur_el);
640 uint32_t spsr = env->banked_spsr[spsr_idx];
641 int new_el;
642 bool return_to_aa64 = (spsr & PSTATE_nRW) == 0;
643
644 aarch64_save_sp(env, cur_el);
645
646 arm_clear_exclusive(env);
647
648 /* We must squash the PSTATE.SS bit to zero unless both of the
649 * following hold:
650 * 1. debug exceptions are currently disabled
651 * 2. singlestep will be active in the EL we return to
652 * We check 1 here and 2 after we've done the pstate/cpsr write() to
653 * transition to the EL we're going to.
654 */
655 if (arm_generate_debug_exceptions(env)) {
656 spsr &= ~PSTATE_SS;
657 }
658
659 /*
660 * FEAT_RME forbids return from EL3 with an invalid security state.
661 * We don't need an explicit check for FEAT_RME here because we enforce
662 * in scr_write() that you can't set the NSE bit without it.
663 */
664 if (cur_el == 3 && (env->cp15.scr_el3 & (SCR_NS | SCR_NSE)) == SCR_NSE) {
665 goto illegal_return;
666 }
667
668 new_el = el_from_spsr(spsr);
669 if (new_el == -1) {
670 goto illegal_return;
671 }
672 if (new_el > cur_el || (new_el == 2 && !arm_is_el2_enabled(env))) {
673 /* Disallow return to an EL which is unimplemented or higher
674 * than the current one.
675 */
676 goto illegal_return;
677 }
678
679 if (new_el != 0 && arm_el_is_aa64(env, new_el) != return_to_aa64) {
680 /* Return to an EL which is configured for a different register width */
681 goto illegal_return;
682 }
683
684 if (!return_to_aa64 && !cpu_isar_feature(aa64_aa32, cpu)) {
685 /* Return to AArch32 when CPU is AArch64-only */
686 goto illegal_return;
687 }
688
689 if (new_el == 1 && (arm_hcr_el2_eff(env) & HCR_TGE)) {
690 goto illegal_return;
691 }
692
693 bql_lock();
694 arm_call_pre_el_change_hook(cpu);
695 bql_unlock();
696
697 if (!return_to_aa64) {
698 env->aarch64 = false;
699 /* We do a raw CPSR write because aarch64_sync_64_to_32()
700 * will sort the register banks out for us, and we've already
701 * caught all the bad-mode cases in el_from_spsr().
702 */
703 cpsr_write_from_spsr_elx(env, spsr);
704 if (!arm_singlestep_active(env)) {
705 env->pstate &= ~PSTATE_SS;
706 }
707 aarch64_sync_64_to_32(env);
708
709 if (spsr & CPSR_T) {
710 env->regs[15] = new_pc & ~0x1;
711 } else {
712 env->regs[15] = new_pc & ~0x3;
713 }
714 helper_rebuild_hflags_a32(env, new_el);
715 qemu_log_mask(CPU_LOG_INT, "Exception return from AArch64 EL%d to "
716 "AArch32 EL%d PC 0x%" PRIx32 "\n",
717 cur_el, new_el, env->regs[15]);
718 } else {
719 int tbii;
720
721 env->aarch64 = true;
722 spsr &= aarch64_pstate_valid_mask(&cpu->isar);
723 pstate_write(env, spsr);
724 if (!arm_singlestep_active(env)) {
725 env->pstate &= ~PSTATE_SS;
726 }
727 aarch64_restore_sp(env, new_el);
728 helper_rebuild_hflags_a64(env, new_el);
729
730 /*
731 * Apply TBI to the exception return address. We had to delay this
732 * until after we selected the new EL, so that we could select the
733 * correct TBI+TBID bits. This is made easier by waiting until after
734 * the hflags rebuild, since we can pull the composite TBII field
735 * from there.
736 */
737 tbii = EX_TBFLAG_A64(env->hflags, TBII);
738 if ((tbii >> extract64(new_pc, 55, 1)) & 1) {
739 /* TBI is enabled. */
740 int core_mmu_idx = arm_env_mmu_index(env);
741 if (regime_has_2_ranges(core_to_aa64_mmu_idx(core_mmu_idx))) {
742 new_pc = sextract64(new_pc, 0, 56);
743 } else {
744 new_pc = extract64(new_pc, 0, 56);
745 }
746 }
747 env->pc = new_pc;
748
749 qemu_log_mask(CPU_LOG_INT, "Exception return from AArch64 EL%d to "
750 "AArch64 EL%d PC 0x%" PRIx64 "\n",
751 cur_el, new_el, env->pc);
752 }
753
754 /*
755 * Note that cur_el can never be 0. If new_el is 0, then
756 * el0_a64 is return_to_aa64, else el0_a64 is ignored.
757 */
758 aarch64_sve_change_el(env, cur_el, new_el, return_to_aa64);
759
760 bql_lock();
761 arm_call_el_change_hook(cpu);
762 bql_unlock();
763
764 return;
765
766 illegal_return:
767 /* Illegal return events of various kinds have architecturally
768 * mandated behaviour:
769 * restore NZCV and DAIF from SPSR_ELx
770 * set PSTATE.IL
771 * restore PC from ELR_ELx
772 * no change to exception level, execution state or stack pointer
773 */
774 env->pstate |= PSTATE_IL;
775 env->pc = new_pc;
776 spsr &= PSTATE_NZCV | PSTATE_DAIF | PSTATE_ALLINT;
777 spsr |= pstate_read(env) & ~(PSTATE_NZCV | PSTATE_DAIF | PSTATE_ALLINT);
778 pstate_write(env, spsr);
779 if (!arm_singlestep_active(env)) {
780 env->pstate &= ~PSTATE_SS;
781 }
782 helper_rebuild_hflags_a64(env, cur_el);
783 qemu_log_mask(LOG_GUEST_ERROR, "Illegal exception return at EL%d: "
784 "resuming execution at 0x%" PRIx64 "\n", cur_el, env->pc);
785 }
786
HELPER(dc_zva)787 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
788 {
789 uintptr_t ra = GETPC();
790
791 /*
792 * Implement DC ZVA, which zeroes a fixed-length block of memory.
793 * Note that we do not implement the (architecturally mandated)
794 * alignment fault for attempts to use this on Device memory
795 * (which matches the usual QEMU behaviour of not implementing either
796 * alignment faults or any memory attribute handling).
797 */
798 int blocklen = 4 << env_archcpu(env)->dcz_blocksize;
799 uint64_t vaddr = vaddr_in & ~(blocklen - 1);
800 int mmu_idx = arm_env_mmu_index(env);
801 void *mem;
802
803 /*
804 * Trapless lookup. In addition to actual invalid page, may
805 * return NULL for I/O, watchpoints, clean pages, etc.
806 */
807 mem = tlb_vaddr_to_host(env, vaddr, MMU_DATA_STORE, mmu_idx);
808
809 #ifndef CONFIG_USER_ONLY
810 if (unlikely(!mem)) {
811 /*
812 * Trap if accessing an invalid page. DC_ZVA requires that we supply
813 * the original pointer for an invalid page. But watchpoints require
814 * that we probe the actual space. So do both.
815 */
816 (void) probe_write(env, vaddr_in, 1, mmu_idx, ra);
817 mem = probe_write(env, vaddr, blocklen, mmu_idx, ra);
818
819 if (unlikely(!mem)) {
820 /*
821 * The only remaining reason for mem == NULL is I/O.
822 * Just do a series of byte writes as the architecture demands.
823 */
824 for (int i = 0; i < blocklen; i++) {
825 cpu_stb_mmuidx_ra(env, vaddr + i, 0, mmu_idx, ra);
826 }
827 return;
828 }
829 }
830 #endif
831
832 set_helper_retaddr(ra);
833 memset(mem, 0, blocklen);
834 clear_helper_retaddr();
835 }
836
HELPER(unaligned_access)837 void HELPER(unaligned_access)(CPUARMState *env, uint64_t addr,
838 uint32_t access_type, uint32_t mmu_idx)
839 {
840 arm_cpu_do_unaligned_access(env_cpu(env), addr, access_type,
841 mmu_idx, GETPC());
842 }
843
844 /* Memory operations (memset, memmove, memcpy) */
845
846 /*
847 * Return true if the CPY* and SET* insns can execute; compare
848 * pseudocode CheckMOPSEnabled(), though we refactor it a little.
849 */
mops_enabled(CPUARMState * env)850 static bool mops_enabled(CPUARMState *env)
851 {
852 int el = arm_current_el(env);
853
854 if (el < 2 &&
855 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE) &&
856 !(arm_hcrx_el2_eff(env) & HCRX_MSCEN)) {
857 return false;
858 }
859
860 if (el == 0) {
861 if (!el_is_in_host(env, 0)) {
862 return env->cp15.sctlr_el[1] & SCTLR_MSCEN;
863 } else {
864 return env->cp15.sctlr_el[2] & SCTLR_MSCEN;
865 }
866 }
867 return true;
868 }
869
check_mops_enabled(CPUARMState * env,uintptr_t ra)870 static void check_mops_enabled(CPUARMState *env, uintptr_t ra)
871 {
872 if (!mops_enabled(env)) {
873 raise_exception_ra(env, EXCP_UDEF, syn_uncategorized(),
874 exception_target_el(env), ra);
875 }
876 }
877
878 /*
879 * Return the target exception level for an exception due
880 * to mismatched arguments in a FEAT_MOPS copy or set.
881 * Compare pseudocode MismatchedCpySetTargetEL()
882 */
mops_mismatch_exception_target_el(CPUARMState * env)883 static int mops_mismatch_exception_target_el(CPUARMState *env)
884 {
885 int el = arm_current_el(env);
886
887 if (el > 1) {
888 return el;
889 }
890 if (el == 0 && (arm_hcr_el2_eff(env) & HCR_TGE)) {
891 return 2;
892 }
893 if (el == 1 && (arm_hcrx_el2_eff(env) & HCRX_MCE2)) {
894 return 2;
895 }
896 return 1;
897 }
898
899 /*
900 * Check whether an M or E instruction was executed with a CF value
901 * indicating the wrong option for this implementation.
902 * Assumes we are always Option A.
903 */
check_mops_wrong_option(CPUARMState * env,uint32_t syndrome,uintptr_t ra)904 static void check_mops_wrong_option(CPUARMState *env, uint32_t syndrome,
905 uintptr_t ra)
906 {
907 if (env->CF != 0) {
908 syndrome |= 1 << 17; /* Set the wrong-option bit */
909 raise_exception_ra(env, EXCP_UDEF, syndrome,
910 mops_mismatch_exception_target_el(env), ra);
911 }
912 }
913
914 /*
915 * Return the maximum number of bytes we can transfer starting at addr
916 * without crossing a page boundary.
917 */
page_limit(uint64_t addr)918 static uint64_t page_limit(uint64_t addr)
919 {
920 return TARGET_PAGE_ALIGN(addr + 1) - addr;
921 }
922
923 /*
924 * Return the number of bytes we can copy starting from addr and working
925 * backwards without crossing a page boundary.
926 */
page_limit_rev(uint64_t addr)927 static uint64_t page_limit_rev(uint64_t addr)
928 {
929 return (addr & ~TARGET_PAGE_MASK) + 1;
930 }
931
932 /*
933 * Perform part of a memory set on an area of guest memory starting at
934 * toaddr (a dirty address) and extending for setsize bytes.
935 *
936 * Returns the number of bytes actually set, which might be less than
937 * setsize; the caller should loop until the whole set has been done.
938 * The caller should ensure that the guest registers are correct
939 * for the possibility that the first byte of the set encounters
940 * an exception or watchpoint. We guarantee not to take any faults
941 * for bytes other than the first.
942 */
set_step(CPUARMState * env,uint64_t toaddr,uint64_t setsize,uint32_t data,int memidx,uint32_t * mtedesc,uintptr_t ra)943 static uint64_t set_step(CPUARMState *env, uint64_t toaddr,
944 uint64_t setsize, uint32_t data, int memidx,
945 uint32_t *mtedesc, uintptr_t ra)
946 {
947 void *mem;
948
949 setsize = MIN(setsize, page_limit(toaddr));
950 if (*mtedesc) {
951 uint64_t mtesize = mte_mops_probe(env, toaddr, setsize, *mtedesc);
952 if (mtesize == 0) {
953 /* Trap, or not. All CPU state is up to date */
954 mte_check_fail(env, *mtedesc, toaddr, ra);
955 /* Continue, with no further MTE checks required */
956 *mtedesc = 0;
957 } else {
958 /* Advance to the end, or to the tag mismatch */
959 setsize = MIN(setsize, mtesize);
960 }
961 }
962
963 toaddr = useronly_clean_ptr(toaddr);
964 /*
965 * Trapless lookup: returns NULL for invalid page, I/O,
966 * watchpoints, clean pages, etc.
967 */
968 mem = tlb_vaddr_to_host(env, toaddr, MMU_DATA_STORE, memidx);
969
970 #ifndef CONFIG_USER_ONLY
971 if (unlikely(!mem)) {
972 /*
973 * Slow-path: just do one byte write. This will handle the
974 * watchpoint, invalid page, etc handling correctly.
975 * For clean code pages, the next iteration will see
976 * the page dirty and will use the fast path.
977 */
978 cpu_stb_mmuidx_ra(env, toaddr, data, memidx, ra);
979 return 1;
980 }
981 #endif
982 /* Easy case: just memset the host memory */
983 set_helper_retaddr(ra);
984 memset(mem, data, setsize);
985 clear_helper_retaddr();
986 return setsize;
987 }
988
989 /*
990 * Similar, but setting tags. The architecture requires us to do this
991 * in 16-byte chunks. SETP accesses are not tag checked; they set
992 * the tags.
993 */
set_step_tags(CPUARMState * env,uint64_t toaddr,uint64_t setsize,uint32_t data,int memidx,uint32_t * mtedesc,uintptr_t ra)994 static uint64_t set_step_tags(CPUARMState *env, uint64_t toaddr,
995 uint64_t setsize, uint32_t data, int memidx,
996 uint32_t *mtedesc, uintptr_t ra)
997 {
998 void *mem;
999 uint64_t cleanaddr;
1000
1001 setsize = MIN(setsize, page_limit(toaddr));
1002
1003 cleanaddr = useronly_clean_ptr(toaddr);
1004 /*
1005 * Trapless lookup: returns NULL for invalid page, I/O,
1006 * watchpoints, clean pages, etc.
1007 */
1008 mem = tlb_vaddr_to_host(env, cleanaddr, MMU_DATA_STORE, memidx);
1009
1010 #ifndef CONFIG_USER_ONLY
1011 if (unlikely(!mem)) {
1012 /*
1013 * Slow-path: just do one write. This will handle the
1014 * watchpoint, invalid page, etc handling correctly.
1015 * The architecture requires that we do 16 bytes at a time,
1016 * and we know both ptr and size are 16 byte aligned.
1017 * For clean code pages, the next iteration will see
1018 * the page dirty and will use the fast path.
1019 */
1020 uint64_t repldata = data * 0x0101010101010101ULL;
1021 MemOpIdx oi16 = make_memop_idx(MO_TE | MO_128, memidx);
1022 cpu_st16_mmu(env, toaddr, int128_make128(repldata, repldata), oi16, ra);
1023 mte_mops_set_tags(env, toaddr, 16, *mtedesc);
1024 return 16;
1025 }
1026 #endif
1027 /* Easy case: just memset the host memory */
1028 set_helper_retaddr(ra);
1029 memset(mem, data, setsize);
1030 clear_helper_retaddr();
1031 mte_mops_set_tags(env, toaddr, setsize, *mtedesc);
1032 return setsize;
1033 }
1034
1035 typedef uint64_t StepFn(CPUARMState *env, uint64_t toaddr,
1036 uint64_t setsize, uint32_t data,
1037 int memidx, uint32_t *mtedesc, uintptr_t ra);
1038
1039 /* Extract register numbers from a MOPS exception syndrome value */
mops_destreg(uint32_t syndrome)1040 static int mops_destreg(uint32_t syndrome)
1041 {
1042 return extract32(syndrome, 10, 5);
1043 }
1044
mops_srcreg(uint32_t syndrome)1045 static int mops_srcreg(uint32_t syndrome)
1046 {
1047 return extract32(syndrome, 5, 5);
1048 }
1049
mops_sizereg(uint32_t syndrome)1050 static int mops_sizereg(uint32_t syndrome)
1051 {
1052 return extract32(syndrome, 0, 5);
1053 }
1054
1055 /*
1056 * Return true if TCMA and TBI bits mean we need to do MTE checks.
1057 * We only need to do this once per MOPS insn, not for every page.
1058 */
mte_checks_needed(uint64_t ptr,uint32_t desc)1059 static bool mte_checks_needed(uint64_t ptr, uint32_t desc)
1060 {
1061 int bit55 = extract64(ptr, 55, 1);
1062
1063 /*
1064 * Note that tbi_check() returns true for "access checked" but
1065 * tcma_check() returns true for "access unchecked".
1066 */
1067 if (!tbi_check(desc, bit55)) {
1068 return false;
1069 }
1070 return !tcma_check(desc, bit55, allocation_tag_from_addr(ptr));
1071 }
1072
1073 /* Take an exception if the SETG addr/size are not granule aligned */
check_setg_alignment(CPUARMState * env,uint64_t ptr,uint64_t size,uint32_t memidx,uintptr_t ra)1074 static void check_setg_alignment(CPUARMState *env, uint64_t ptr, uint64_t size,
1075 uint32_t memidx, uintptr_t ra)
1076 {
1077 if ((size != 0 && !QEMU_IS_ALIGNED(ptr, TAG_GRANULE)) ||
1078 !QEMU_IS_ALIGNED(size, TAG_GRANULE)) {
1079 arm_cpu_do_unaligned_access(env_cpu(env), ptr, MMU_DATA_STORE,
1080 memidx, ra);
1081
1082 }
1083 }
1084
arm_reg_or_xzr(CPUARMState * env,int reg)1085 static uint64_t arm_reg_or_xzr(CPUARMState *env, int reg)
1086 {
1087 /*
1088 * Runtime equivalent of cpu_reg() -- return the CPU register value,
1089 * for contexts when index 31 means XZR (not SP).
1090 */
1091 return reg == 31 ? 0 : env->xregs[reg];
1092 }
1093
1094 /*
1095 * For the Memory Set operation, our implementation chooses
1096 * always to use "option A", where we update Xd to the final
1097 * address in the SETP insn, and set Xn to be -(bytes remaining).
1098 * On SETM and SETE insns we only need update Xn.
1099 *
1100 * @env: CPU
1101 * @syndrome: syndrome value for mismatch exceptions
1102 * (also contains the register numbers we need to use)
1103 * @mtedesc: MTE descriptor word
1104 * @stepfn: function which does a single part of the set operation
1105 * @is_setg: true if this is the tag-setting SETG variant
1106 */
do_setp(CPUARMState * env,uint32_t syndrome,uint32_t mtedesc,StepFn * stepfn,bool is_setg,uintptr_t ra)1107 static void do_setp(CPUARMState *env, uint32_t syndrome, uint32_t mtedesc,
1108 StepFn *stepfn, bool is_setg, uintptr_t ra)
1109 {
1110 /* Prologue: we choose to do up to the next page boundary */
1111 int rd = mops_destreg(syndrome);
1112 int rs = mops_srcreg(syndrome);
1113 int rn = mops_sizereg(syndrome);
1114 uint8_t data = arm_reg_or_xzr(env, rs);
1115 uint32_t memidx = FIELD_EX32(mtedesc, MTEDESC, MIDX);
1116 uint64_t toaddr = env->xregs[rd];
1117 uint64_t setsize = env->xregs[rn];
1118 uint64_t stagesetsize, step;
1119
1120 check_mops_enabled(env, ra);
1121
1122 if (setsize > INT64_MAX) {
1123 setsize = INT64_MAX;
1124 if (is_setg) {
1125 setsize &= ~0xf;
1126 }
1127 }
1128
1129 if (unlikely(is_setg)) {
1130 check_setg_alignment(env, toaddr, setsize, memidx, ra);
1131 } else if (!mte_checks_needed(toaddr, mtedesc)) {
1132 mtedesc = 0;
1133 }
1134
1135 stagesetsize = MIN(setsize, page_limit(toaddr));
1136 while (stagesetsize) {
1137 env->xregs[rd] = toaddr;
1138 env->xregs[rn] = setsize;
1139 step = stepfn(env, toaddr, stagesetsize, data, memidx, &mtedesc, ra);
1140 toaddr += step;
1141 setsize -= step;
1142 stagesetsize -= step;
1143 }
1144 /* Insn completed, so update registers to the Option A format */
1145 env->xregs[rd] = toaddr + setsize;
1146 env->xregs[rn] = -setsize;
1147
1148 /* Set NZCV = 0000 to indicate we are an Option A implementation */
1149 env->NF = 0;
1150 env->ZF = 1; /* our env->ZF encoding is inverted */
1151 env->CF = 0;
1152 env->VF = 0;
1153 }
1154
HELPER(setp)1155 void HELPER(setp)(CPUARMState *env, uint32_t syndrome, uint32_t mtedesc)
1156 {
1157 do_setp(env, syndrome, mtedesc, set_step, false, GETPC());
1158 }
1159
HELPER(setgp)1160 void HELPER(setgp)(CPUARMState *env, uint32_t syndrome, uint32_t mtedesc)
1161 {
1162 do_setp(env, syndrome, mtedesc, set_step_tags, true, GETPC());
1163 }
1164
do_setm(CPUARMState * env,uint32_t syndrome,uint32_t mtedesc,StepFn * stepfn,bool is_setg,uintptr_t ra)1165 static void do_setm(CPUARMState *env, uint32_t syndrome, uint32_t mtedesc,
1166 StepFn *stepfn, bool is_setg, uintptr_t ra)
1167 {
1168 /* Main: we choose to do all the full-page chunks */
1169 CPUState *cs = env_cpu(env);
1170 int rd = mops_destreg(syndrome);
1171 int rs = mops_srcreg(syndrome);
1172 int rn = mops_sizereg(syndrome);
1173 uint8_t data = arm_reg_or_xzr(env, rs);
1174 uint64_t toaddr = env->xregs[rd] + env->xregs[rn];
1175 uint64_t setsize = -env->xregs[rn];
1176 uint32_t memidx = FIELD_EX32(mtedesc, MTEDESC, MIDX);
1177 uint64_t step, stagesetsize;
1178
1179 check_mops_enabled(env, ra);
1180
1181 /*
1182 * We're allowed to NOP out "no data to copy" before the consistency
1183 * checks; we choose to do so.
1184 */
1185 if (env->xregs[rn] == 0) {
1186 return;
1187 }
1188
1189 check_mops_wrong_option(env, syndrome, ra);
1190
1191 /*
1192 * Our implementation will work fine even if we have an unaligned
1193 * destination address, and because we update Xn every time around
1194 * the loop below and the return value from stepfn() may be less
1195 * than requested, we might find toaddr is unaligned. So we don't
1196 * have an IMPDEF check for alignment here.
1197 */
1198
1199 if (unlikely(is_setg)) {
1200 check_setg_alignment(env, toaddr, setsize, memidx, ra);
1201 } else if (!mte_checks_needed(toaddr, mtedesc)) {
1202 mtedesc = 0;
1203 }
1204
1205 /* Do the actual memset: we leave the last partial page to SETE */
1206 stagesetsize = setsize & TARGET_PAGE_MASK;
1207 while (stagesetsize > 0) {
1208 step = stepfn(env, toaddr, stagesetsize, data, memidx, &mtedesc, ra);
1209 toaddr += step;
1210 setsize -= step;
1211 stagesetsize -= step;
1212 env->xregs[rn] = -setsize;
1213 if (stagesetsize > 0 && unlikely(cpu_loop_exit_requested(cs))) {
1214 cpu_loop_exit_restore(cs, ra);
1215 }
1216 }
1217 }
1218
HELPER(setm)1219 void HELPER(setm)(CPUARMState *env, uint32_t syndrome, uint32_t mtedesc)
1220 {
1221 do_setm(env, syndrome, mtedesc, set_step, false, GETPC());
1222 }
1223
HELPER(setgm)1224 void HELPER(setgm)(CPUARMState *env, uint32_t syndrome, uint32_t mtedesc)
1225 {
1226 do_setm(env, syndrome, mtedesc, set_step_tags, true, GETPC());
1227 }
1228
do_sete(CPUARMState * env,uint32_t syndrome,uint32_t mtedesc,StepFn * stepfn,bool is_setg,uintptr_t ra)1229 static void do_sete(CPUARMState *env, uint32_t syndrome, uint32_t mtedesc,
1230 StepFn *stepfn, bool is_setg, uintptr_t ra)
1231 {
1232 /* Epilogue: do the last partial page */
1233 int rd = mops_destreg(syndrome);
1234 int rs = mops_srcreg(syndrome);
1235 int rn = mops_sizereg(syndrome);
1236 uint8_t data = arm_reg_or_xzr(env, rs);
1237 uint64_t toaddr = env->xregs[rd] + env->xregs[rn];
1238 uint64_t setsize = -env->xregs[rn];
1239 uint32_t memidx = FIELD_EX32(mtedesc, MTEDESC, MIDX);
1240 uint64_t step;
1241
1242 check_mops_enabled(env, ra);
1243
1244 /*
1245 * We're allowed to NOP out "no data to copy" before the consistency
1246 * checks; we choose to do so.
1247 */
1248 if (setsize == 0) {
1249 return;
1250 }
1251
1252 check_mops_wrong_option(env, syndrome, ra);
1253
1254 /*
1255 * Our implementation has no address alignment requirements, but
1256 * we do want to enforce the "less than a page" size requirement,
1257 * so we don't need to have the "check for interrupts" here.
1258 */
1259 if (setsize >= TARGET_PAGE_SIZE) {
1260 raise_exception_ra(env, EXCP_UDEF, syndrome,
1261 mops_mismatch_exception_target_el(env), ra);
1262 }
1263
1264 if (unlikely(is_setg)) {
1265 check_setg_alignment(env, toaddr, setsize, memidx, ra);
1266 } else if (!mte_checks_needed(toaddr, mtedesc)) {
1267 mtedesc = 0;
1268 }
1269
1270 /* Do the actual memset */
1271 while (setsize > 0) {
1272 step = stepfn(env, toaddr, setsize, data, memidx, &mtedesc, ra);
1273 toaddr += step;
1274 setsize -= step;
1275 env->xregs[rn] = -setsize;
1276 }
1277 }
1278
HELPER(sete)1279 void HELPER(sete)(CPUARMState *env, uint32_t syndrome, uint32_t mtedesc)
1280 {
1281 do_sete(env, syndrome, mtedesc, set_step, false, GETPC());
1282 }
1283
HELPER(setge)1284 void HELPER(setge)(CPUARMState *env, uint32_t syndrome, uint32_t mtedesc)
1285 {
1286 do_sete(env, syndrome, mtedesc, set_step_tags, true, GETPC());
1287 }
1288
1289 /*
1290 * Perform part of a memory copy from the guest memory at fromaddr
1291 * and extending for copysize bytes, to the guest memory at
1292 * toaddr. Both addresses are dirty.
1293 *
1294 * Returns the number of bytes actually set, which might be less than
1295 * copysize; the caller should loop until the whole copy has been done.
1296 * The caller should ensure that the guest registers are correct
1297 * for the possibility that the first byte of the copy encounters
1298 * an exception or watchpoint. We guarantee not to take any faults
1299 * for bytes other than the first.
1300 */
copy_step(CPUARMState * env,uint64_t toaddr,uint64_t fromaddr,uint64_t copysize,int wmemidx,int rmemidx,uint32_t * wdesc,uint32_t * rdesc,uintptr_t ra)1301 static uint64_t copy_step(CPUARMState *env, uint64_t toaddr, uint64_t fromaddr,
1302 uint64_t copysize, int wmemidx, int rmemidx,
1303 uint32_t *wdesc, uint32_t *rdesc, uintptr_t ra)
1304 {
1305 void *rmem;
1306 void *wmem;
1307
1308 /* Don't cross a page boundary on either source or destination */
1309 copysize = MIN(copysize, page_limit(toaddr));
1310 copysize = MIN(copysize, page_limit(fromaddr));
1311 /*
1312 * Handle MTE tag checks: either handle the tag mismatch for byte 0,
1313 * or else copy up to but not including the byte with the mismatch.
1314 */
1315 if (*rdesc) {
1316 uint64_t mtesize = mte_mops_probe(env, fromaddr, copysize, *rdesc);
1317 if (mtesize == 0) {
1318 mte_check_fail(env, *rdesc, fromaddr, ra);
1319 *rdesc = 0;
1320 } else {
1321 copysize = MIN(copysize, mtesize);
1322 }
1323 }
1324 if (*wdesc) {
1325 uint64_t mtesize = mte_mops_probe(env, toaddr, copysize, *wdesc);
1326 if (mtesize == 0) {
1327 mte_check_fail(env, *wdesc, toaddr, ra);
1328 *wdesc = 0;
1329 } else {
1330 copysize = MIN(copysize, mtesize);
1331 }
1332 }
1333
1334 toaddr = useronly_clean_ptr(toaddr);
1335 fromaddr = useronly_clean_ptr(fromaddr);
1336 /* Trapless lookup of whether we can get a host memory pointer */
1337 wmem = tlb_vaddr_to_host(env, toaddr, MMU_DATA_STORE, wmemidx);
1338 rmem = tlb_vaddr_to_host(env, fromaddr, MMU_DATA_LOAD, rmemidx);
1339
1340 #ifndef CONFIG_USER_ONLY
1341 /*
1342 * If we don't have host memory for both source and dest then just
1343 * do a single byte copy. This will handle watchpoints, invalid pages,
1344 * etc correctly. For clean code pages, the next iteration will see
1345 * the page dirty and will use the fast path.
1346 */
1347 if (unlikely(!rmem || !wmem)) {
1348 uint8_t byte;
1349 if (rmem) {
1350 byte = *(uint8_t *)rmem;
1351 } else {
1352 byte = cpu_ldub_mmuidx_ra(env, fromaddr, rmemidx, ra);
1353 }
1354 if (wmem) {
1355 *(uint8_t *)wmem = byte;
1356 } else {
1357 cpu_stb_mmuidx_ra(env, toaddr, byte, wmemidx, ra);
1358 }
1359 return 1;
1360 }
1361 #endif
1362 /* Easy case: just memmove the host memory */
1363 set_helper_retaddr(ra);
1364 memmove(wmem, rmem, copysize);
1365 clear_helper_retaddr();
1366 return copysize;
1367 }
1368
1369 /*
1370 * Do part of a backwards memory copy. Here toaddr and fromaddr point
1371 * to the *last* byte to be copied.
1372 */
copy_step_rev(CPUARMState * env,uint64_t toaddr,uint64_t fromaddr,uint64_t copysize,int wmemidx,int rmemidx,uint32_t * wdesc,uint32_t * rdesc,uintptr_t ra)1373 static uint64_t copy_step_rev(CPUARMState *env, uint64_t toaddr,
1374 uint64_t fromaddr,
1375 uint64_t copysize, int wmemidx, int rmemidx,
1376 uint32_t *wdesc, uint32_t *rdesc, uintptr_t ra)
1377 {
1378 void *rmem;
1379 void *wmem;
1380
1381 /* Don't cross a page boundary on either source or destination */
1382 copysize = MIN(copysize, page_limit_rev(toaddr));
1383 copysize = MIN(copysize, page_limit_rev(fromaddr));
1384
1385 /*
1386 * Handle MTE tag checks: either handle the tag mismatch for byte 0,
1387 * or else copy up to but not including the byte with the mismatch.
1388 */
1389 if (*rdesc) {
1390 uint64_t mtesize = mte_mops_probe_rev(env, fromaddr, copysize, *rdesc);
1391 if (mtesize == 0) {
1392 mte_check_fail(env, *rdesc, fromaddr, ra);
1393 *rdesc = 0;
1394 } else {
1395 copysize = MIN(copysize, mtesize);
1396 }
1397 }
1398 if (*wdesc) {
1399 uint64_t mtesize = mte_mops_probe_rev(env, toaddr, copysize, *wdesc);
1400 if (mtesize == 0) {
1401 mte_check_fail(env, *wdesc, toaddr, ra);
1402 *wdesc = 0;
1403 } else {
1404 copysize = MIN(copysize, mtesize);
1405 }
1406 }
1407
1408 toaddr = useronly_clean_ptr(toaddr);
1409 fromaddr = useronly_clean_ptr(fromaddr);
1410 /* Trapless lookup of whether we can get a host memory pointer */
1411 wmem = tlb_vaddr_to_host(env, toaddr, MMU_DATA_STORE, wmemidx);
1412 rmem = tlb_vaddr_to_host(env, fromaddr, MMU_DATA_LOAD, rmemidx);
1413
1414 #ifndef CONFIG_USER_ONLY
1415 /*
1416 * If we don't have host memory for both source and dest then just
1417 * do a single byte copy. This will handle watchpoints, invalid pages,
1418 * etc correctly. For clean code pages, the next iteration will see
1419 * the page dirty and will use the fast path.
1420 */
1421 if (unlikely(!rmem || !wmem)) {
1422 uint8_t byte;
1423 if (rmem) {
1424 byte = *(uint8_t *)rmem;
1425 } else {
1426 byte = cpu_ldub_mmuidx_ra(env, fromaddr, rmemidx, ra);
1427 }
1428 if (wmem) {
1429 *(uint8_t *)wmem = byte;
1430 } else {
1431 cpu_stb_mmuidx_ra(env, toaddr, byte, wmemidx, ra);
1432 }
1433 return 1;
1434 }
1435 #endif
1436 /*
1437 * Easy case: just memmove the host memory. Note that wmem and
1438 * rmem here point to the *last* byte to copy.
1439 */
1440 set_helper_retaddr(ra);
1441 memmove(wmem - (copysize - 1), rmem - (copysize - 1), copysize);
1442 clear_helper_retaddr();
1443 return copysize;
1444 }
1445
1446 /*
1447 * for the Memory Copy operation, our implementation chooses always
1448 * to use "option A", where we update Xd and Xs to the final addresses
1449 * in the CPYP insn, and then in CPYM and CPYE only need to update Xn.
1450 *
1451 * @env: CPU
1452 * @syndrome: syndrome value for mismatch exceptions
1453 * (also contains the register numbers we need to use)
1454 * @wdesc: MTE descriptor for the writes (destination)
1455 * @rdesc: MTE descriptor for the reads (source)
1456 * @move: true if this is CPY (memmove), false for CPYF (memcpy forwards)
1457 */
do_cpyp(CPUARMState * env,uint32_t syndrome,uint32_t wdesc,uint32_t rdesc,uint32_t move,uintptr_t ra)1458 static void do_cpyp(CPUARMState *env, uint32_t syndrome, uint32_t wdesc,
1459 uint32_t rdesc, uint32_t move, uintptr_t ra)
1460 {
1461 int rd = mops_destreg(syndrome);
1462 int rs = mops_srcreg(syndrome);
1463 int rn = mops_sizereg(syndrome);
1464 uint32_t rmemidx = FIELD_EX32(rdesc, MTEDESC, MIDX);
1465 uint32_t wmemidx = FIELD_EX32(wdesc, MTEDESC, MIDX);
1466 bool forwards = true;
1467 uint64_t toaddr = env->xregs[rd];
1468 uint64_t fromaddr = env->xregs[rs];
1469 uint64_t copysize = env->xregs[rn];
1470 uint64_t stagecopysize, step;
1471
1472 check_mops_enabled(env, ra);
1473
1474
1475 if (move) {
1476 /*
1477 * Copy backwards if necessary. The direction for a non-overlapping
1478 * copy is IMPDEF; we choose forwards.
1479 */
1480 if (copysize > 0x007FFFFFFFFFFFFFULL) {
1481 copysize = 0x007FFFFFFFFFFFFFULL;
1482 }
1483 uint64_t fs = extract64(fromaddr, 0, 56);
1484 uint64_t ts = extract64(toaddr, 0, 56);
1485 uint64_t fe = extract64(fromaddr + copysize, 0, 56);
1486
1487 if (fs < ts && fe > ts) {
1488 forwards = false;
1489 }
1490 } else {
1491 if (copysize > INT64_MAX) {
1492 copysize = INT64_MAX;
1493 }
1494 }
1495
1496 if (!mte_checks_needed(fromaddr, rdesc)) {
1497 rdesc = 0;
1498 }
1499 if (!mte_checks_needed(toaddr, wdesc)) {
1500 wdesc = 0;
1501 }
1502
1503 if (forwards) {
1504 stagecopysize = MIN(copysize, page_limit(toaddr));
1505 stagecopysize = MIN(stagecopysize, page_limit(fromaddr));
1506 while (stagecopysize) {
1507 env->xregs[rd] = toaddr;
1508 env->xregs[rs] = fromaddr;
1509 env->xregs[rn] = copysize;
1510 step = copy_step(env, toaddr, fromaddr, stagecopysize,
1511 wmemidx, rmemidx, &wdesc, &rdesc, ra);
1512 toaddr += step;
1513 fromaddr += step;
1514 copysize -= step;
1515 stagecopysize -= step;
1516 }
1517 /* Insn completed, so update registers to the Option A format */
1518 env->xregs[rd] = toaddr + copysize;
1519 env->xregs[rs] = fromaddr + copysize;
1520 env->xregs[rn] = -copysize;
1521 } else {
1522 /*
1523 * In a reverse copy the to and from addrs in Xs and Xd are the start
1524 * of the range, but it's more convenient for us to work with pointers
1525 * to the last byte being copied.
1526 */
1527 toaddr += copysize - 1;
1528 fromaddr += copysize - 1;
1529 stagecopysize = MIN(copysize, page_limit_rev(toaddr));
1530 stagecopysize = MIN(stagecopysize, page_limit_rev(fromaddr));
1531 while (stagecopysize) {
1532 env->xregs[rn] = copysize;
1533 step = copy_step_rev(env, toaddr, fromaddr, stagecopysize,
1534 wmemidx, rmemidx, &wdesc, &rdesc, ra);
1535 copysize -= step;
1536 stagecopysize -= step;
1537 toaddr -= step;
1538 fromaddr -= step;
1539 }
1540 /*
1541 * Insn completed, so update registers to the Option A format.
1542 * For a reverse copy this is no different to the CPYP input format.
1543 */
1544 env->xregs[rn] = copysize;
1545 }
1546
1547 /* Set NZCV = 0000 to indicate we are an Option A implementation */
1548 env->NF = 0;
1549 env->ZF = 1; /* our env->ZF encoding is inverted */
1550 env->CF = 0;
1551 env->VF = 0;
1552 }
1553
HELPER(cpyp)1554 void HELPER(cpyp)(CPUARMState *env, uint32_t syndrome, uint32_t wdesc,
1555 uint32_t rdesc)
1556 {
1557 do_cpyp(env, syndrome, wdesc, rdesc, true, GETPC());
1558 }
1559
HELPER(cpyfp)1560 void HELPER(cpyfp)(CPUARMState *env, uint32_t syndrome, uint32_t wdesc,
1561 uint32_t rdesc)
1562 {
1563 do_cpyp(env, syndrome, wdesc, rdesc, false, GETPC());
1564 }
1565
do_cpym(CPUARMState * env,uint32_t syndrome,uint32_t wdesc,uint32_t rdesc,uint32_t move,uintptr_t ra)1566 static void do_cpym(CPUARMState *env, uint32_t syndrome, uint32_t wdesc,
1567 uint32_t rdesc, uint32_t move, uintptr_t ra)
1568 {
1569 /* Main: we choose to copy until less than a page remaining */
1570 CPUState *cs = env_cpu(env);
1571 int rd = mops_destreg(syndrome);
1572 int rs = mops_srcreg(syndrome);
1573 int rn = mops_sizereg(syndrome);
1574 uint32_t rmemidx = FIELD_EX32(rdesc, MTEDESC, MIDX);
1575 uint32_t wmemidx = FIELD_EX32(wdesc, MTEDESC, MIDX);
1576 bool forwards = true;
1577 uint64_t toaddr, fromaddr, copysize, step;
1578
1579 check_mops_enabled(env, ra);
1580
1581 /* We choose to NOP out "no data to copy" before consistency checks */
1582 if (env->xregs[rn] == 0) {
1583 return;
1584 }
1585
1586 check_mops_wrong_option(env, syndrome, ra);
1587
1588 if (move) {
1589 forwards = (int64_t)env->xregs[rn] < 0;
1590 }
1591
1592 if (forwards) {
1593 toaddr = env->xregs[rd] + env->xregs[rn];
1594 fromaddr = env->xregs[rs] + env->xregs[rn];
1595 copysize = -env->xregs[rn];
1596 } else {
1597 copysize = env->xregs[rn];
1598 /* This toaddr and fromaddr point to the *last* byte to copy */
1599 toaddr = env->xregs[rd] + copysize - 1;
1600 fromaddr = env->xregs[rs] + copysize - 1;
1601 }
1602
1603 if (!mte_checks_needed(fromaddr, rdesc)) {
1604 rdesc = 0;
1605 }
1606 if (!mte_checks_needed(toaddr, wdesc)) {
1607 wdesc = 0;
1608 }
1609
1610 /* Our implementation has no particular parameter requirements for CPYM */
1611
1612 /* Do the actual memmove */
1613 if (forwards) {
1614 while (copysize >= TARGET_PAGE_SIZE) {
1615 step = copy_step(env, toaddr, fromaddr, copysize,
1616 wmemidx, rmemidx, &wdesc, &rdesc, ra);
1617 toaddr += step;
1618 fromaddr += step;
1619 copysize -= step;
1620 env->xregs[rn] = -copysize;
1621 if (copysize >= TARGET_PAGE_SIZE &&
1622 unlikely(cpu_loop_exit_requested(cs))) {
1623 cpu_loop_exit_restore(cs, ra);
1624 }
1625 }
1626 } else {
1627 while (copysize >= TARGET_PAGE_SIZE) {
1628 step = copy_step_rev(env, toaddr, fromaddr, copysize,
1629 wmemidx, rmemidx, &wdesc, &rdesc, ra);
1630 toaddr -= step;
1631 fromaddr -= step;
1632 copysize -= step;
1633 env->xregs[rn] = copysize;
1634 if (copysize >= TARGET_PAGE_SIZE &&
1635 unlikely(cpu_loop_exit_requested(cs))) {
1636 cpu_loop_exit_restore(cs, ra);
1637 }
1638 }
1639 }
1640 }
1641
HELPER(cpym)1642 void HELPER(cpym)(CPUARMState *env, uint32_t syndrome, uint32_t wdesc,
1643 uint32_t rdesc)
1644 {
1645 do_cpym(env, syndrome, wdesc, rdesc, true, GETPC());
1646 }
1647
HELPER(cpyfm)1648 void HELPER(cpyfm)(CPUARMState *env, uint32_t syndrome, uint32_t wdesc,
1649 uint32_t rdesc)
1650 {
1651 do_cpym(env, syndrome, wdesc, rdesc, false, GETPC());
1652 }
1653
do_cpye(CPUARMState * env,uint32_t syndrome,uint32_t wdesc,uint32_t rdesc,uint32_t move,uintptr_t ra)1654 static void do_cpye(CPUARMState *env, uint32_t syndrome, uint32_t wdesc,
1655 uint32_t rdesc, uint32_t move, uintptr_t ra)
1656 {
1657 /* Epilogue: do the last partial page */
1658 int rd = mops_destreg(syndrome);
1659 int rs = mops_srcreg(syndrome);
1660 int rn = mops_sizereg(syndrome);
1661 uint32_t rmemidx = FIELD_EX32(rdesc, MTEDESC, MIDX);
1662 uint32_t wmemidx = FIELD_EX32(wdesc, MTEDESC, MIDX);
1663 bool forwards = true;
1664 uint64_t toaddr, fromaddr, copysize, step;
1665
1666 check_mops_enabled(env, ra);
1667
1668 /* We choose to NOP out "no data to copy" before consistency checks */
1669 if (env->xregs[rn] == 0) {
1670 return;
1671 }
1672
1673 check_mops_wrong_option(env, syndrome, ra);
1674
1675 if (move) {
1676 forwards = (int64_t)env->xregs[rn] < 0;
1677 }
1678
1679 if (forwards) {
1680 toaddr = env->xregs[rd] + env->xregs[rn];
1681 fromaddr = env->xregs[rs] + env->xregs[rn];
1682 copysize = -env->xregs[rn];
1683 } else {
1684 copysize = env->xregs[rn];
1685 /* This toaddr and fromaddr point to the *last* byte to copy */
1686 toaddr = env->xregs[rd] + copysize - 1;
1687 fromaddr = env->xregs[rs] + copysize - 1;
1688 }
1689
1690 if (!mte_checks_needed(fromaddr, rdesc)) {
1691 rdesc = 0;
1692 }
1693 if (!mte_checks_needed(toaddr, wdesc)) {
1694 wdesc = 0;
1695 }
1696
1697 /* Check the size; we don't want to have do a check-for-interrupts */
1698 if (copysize >= TARGET_PAGE_SIZE) {
1699 raise_exception_ra(env, EXCP_UDEF, syndrome,
1700 mops_mismatch_exception_target_el(env), ra);
1701 }
1702
1703 /* Do the actual memmove */
1704 if (forwards) {
1705 while (copysize > 0) {
1706 step = copy_step(env, toaddr, fromaddr, copysize,
1707 wmemidx, rmemidx, &wdesc, &rdesc, ra);
1708 toaddr += step;
1709 fromaddr += step;
1710 copysize -= step;
1711 env->xregs[rn] = -copysize;
1712 }
1713 } else {
1714 while (copysize > 0) {
1715 step = copy_step_rev(env, toaddr, fromaddr, copysize,
1716 wmemidx, rmemidx, &wdesc, &rdesc, ra);
1717 toaddr -= step;
1718 fromaddr -= step;
1719 copysize -= step;
1720 env->xregs[rn] = copysize;
1721 }
1722 }
1723 }
1724
HELPER(cpye)1725 void HELPER(cpye)(CPUARMState *env, uint32_t syndrome, uint32_t wdesc,
1726 uint32_t rdesc)
1727 {
1728 do_cpye(env, syndrome, wdesc, rdesc, true, GETPC());
1729 }
1730
HELPER(cpyfe)1731 void HELPER(cpyfe)(CPUARMState *env, uint32_t syndrome, uint32_t wdesc,
1732 uint32_t rdesc)
1733 {
1734 do_cpye(env, syndrome, wdesc, rdesc, false, GETPC());
1735 }
1736
is_guarded_page(CPUARMState * env,target_ulong addr,uintptr_t ra)1737 static bool is_guarded_page(CPUARMState *env, target_ulong addr, uintptr_t ra)
1738 {
1739 #ifdef CONFIG_USER_ONLY
1740 return page_get_flags(addr) & PAGE_BTI;
1741 #else
1742 CPUTLBEntryFull *full;
1743 void *host;
1744 int mmu_idx = cpu_mmu_index(env_cpu(env), true);
1745 int flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx,
1746 false, &host, &full, ra);
1747
1748 assert(!(flags & TLB_INVALID_MASK));
1749 return full->extra.arm.guarded;
1750 #endif
1751 }
1752
HELPER(guarded_page_check)1753 void HELPER(guarded_page_check)(CPUARMState *env)
1754 {
1755 /*
1756 * We have already verified that bti is enabled, and that the
1757 * instruction at PC is not ok for BTYPE. This is always at
1758 * the beginning of a block, so PC is always up-to-date and
1759 * no unwind is required.
1760 */
1761 if (is_guarded_page(env, env->pc, 0)) {
1762 raise_exception(env, EXCP_UDEF, syn_btitrap(env->btype),
1763 exception_target_el(env));
1764 }
1765 }
1766
HELPER(guarded_page_br)1767 void HELPER(guarded_page_br)(CPUARMState *env, target_ulong pc)
1768 {
1769 /*
1770 * We have already checked for branch via x16 and x17.
1771 * What remains for choosing BTYPE is checking for a guarded page.
1772 */
1773 env->btype = is_guarded_page(env, pc, GETPC()) ? 3 : 1;
1774 }
1775