1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * PowerPC64 port by Mike Corrigan and Dave Engebretsen
4  *   {mikejc|engebret}@us.ibm.com
5  *
6  *    Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
7  *
8  * SMP scalability work:
9  *    Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
10  *
11  *    Module name: htab.c
12  *
13  *    Description:
14  *      PowerPC Hashed Page Table functions
15  */
16 
17 #undef DEBUG
18 #undef DEBUG_LOW
19 
20 #define pr_fmt(fmt) "hash-mmu: " fmt
21 #include <linux/spinlock.h>
22 #include <linux/errno.h>
23 #include <linux/sched/mm.h>
24 #include <linux/proc_fs.h>
25 #include <linux/stat.h>
26 #include <linux/sysctl.h>
27 #include <linux/export.h>
28 #include <linux/ctype.h>
29 #include <linux/cache.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/memblock.h>
33 #include <linux/context_tracking.h>
34 #include <linux/libfdt.h>
35 #include <linux/pkeys.h>
36 #include <linux/hugetlb.h>
37 #include <linux/cpu.h>
38 #include <linux/pgtable.h>
39 #include <linux/debugfs.h>
40 #include <linux/random.h>
41 #include <linux/elf-randomize.h>
42 #include <linux/of_fdt.h>
43 #include <linux/kfence.h>
44 
45 #include <asm/interrupt.h>
46 #include <asm/processor.h>
47 #include <asm/mmu.h>
48 #include <asm/mmu_context.h>
49 #include <asm/page.h>
50 #include <asm/types.h>
51 #include <linux/uaccess.h>
52 #include <asm/machdep.h>
53 #include <asm/io.h>
54 #include <asm/eeh.h>
55 #include <asm/tlb.h>
56 #include <asm/cacheflush.h>
57 #include <asm/cputable.h>
58 #include <asm/sections.h>
59 #include <asm/spu.h>
60 #include <asm/udbg.h>
61 #include <asm/text-patching.h>
62 #include <asm/fadump.h>
63 #include <asm/firmware.h>
64 #include <asm/tm.h>
65 #include <asm/trace.h>
66 #include <asm/ps3.h>
67 #include <asm/pte-walk.h>
68 #include <asm/asm-prototypes.h>
69 #include <asm/ultravisor.h>
70 #include <asm/kfence.h>
71 
72 #include <mm/mmu_decl.h>
73 
74 #include "internal.h"
75 
76 
77 #ifdef DEBUG
78 #define DBG(fmt...) udbg_printf(fmt)
79 #else
80 #define DBG(fmt...)
81 #endif
82 
83 #ifdef DEBUG_LOW
84 #define DBG_LOW(fmt...) udbg_printf(fmt)
85 #else
86 #define DBG_LOW(fmt...)
87 #endif
88 
89 #define KB (1024)
90 #define MB (1024*KB)
91 #define GB (1024L*MB)
92 
93 /*
94  * Note:  pte   --> Linux PTE
95  *        HPTE  --> PowerPC Hashed Page Table Entry
96  *
97  * Execution context:
98  *   htab_initialize is called with the MMU off (of course), but
99  *   the kernel has been copied down to zero so it can directly
100  *   reference global data.  At this point it is very difficult
101  *   to print debug info.
102  *
103  */
104 
105 static unsigned long _SDR1;
106 
107 u8 hpte_page_sizes[1 << LP_BITS];
108 EXPORT_SYMBOL_GPL(hpte_page_sizes);
109 
110 struct hash_pte *htab_address;
111 unsigned long htab_size_bytes;
112 unsigned long htab_hash_mask;
113 EXPORT_SYMBOL_GPL(htab_hash_mask);
114 int mmu_linear_psize = MMU_PAGE_4K;
115 EXPORT_SYMBOL_GPL(mmu_linear_psize);
116 int mmu_virtual_psize = MMU_PAGE_4K;
117 int mmu_vmalloc_psize = MMU_PAGE_4K;
118 EXPORT_SYMBOL_GPL(mmu_vmalloc_psize);
119 int mmu_io_psize = MMU_PAGE_4K;
120 int mmu_kernel_ssize = MMU_SEGSIZE_256M;
121 EXPORT_SYMBOL_GPL(mmu_kernel_ssize);
122 int mmu_highuser_ssize = MMU_SEGSIZE_256M;
123 u16 mmu_slb_size = 64;
124 EXPORT_SYMBOL_GPL(mmu_slb_size);
125 #ifdef CONFIG_PPC_64K_PAGES
126 int mmu_ci_restrictions;
127 #endif
128 struct mmu_hash_ops mmu_hash_ops __ro_after_init;
129 EXPORT_SYMBOL(mmu_hash_ops);
130 
131 /*
132  * These are definitions of page sizes arrays to be used when none
133  * is provided by the firmware.
134  */
135 
136 /*
137  * Fallback (4k pages only)
138  */
139 static struct mmu_psize_def mmu_psize_defaults[] = {
140 	[MMU_PAGE_4K] = {
141 		.shift	= 12,
142 		.sllp	= 0,
143 		.penc   = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
144 		.avpnm	= 0,
145 		.tlbiel = 0,
146 	},
147 };
148 
149 /*
150  * POWER4, GPUL, POWER5
151  *
152  * Support for 16Mb large pages
153  */
154 static struct mmu_psize_def mmu_psize_defaults_gp[] = {
155 	[MMU_PAGE_4K] = {
156 		.shift	= 12,
157 		.sllp	= 0,
158 		.penc   = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
159 		.avpnm	= 0,
160 		.tlbiel = 1,
161 	},
162 	[MMU_PAGE_16M] = {
163 		.shift	= 24,
164 		.sllp	= SLB_VSID_L,
165 		.penc   = {[0 ... MMU_PAGE_16M - 1] = -1, [MMU_PAGE_16M] = 0,
166 			    [MMU_PAGE_16M + 1 ... MMU_PAGE_COUNT - 1] = -1 },
167 		.avpnm	= 0x1UL,
168 		.tlbiel = 0,
169 	},
170 };
171 
tlbiel_hash_set_isa206(unsigned int set,unsigned int is)172 static inline void tlbiel_hash_set_isa206(unsigned int set, unsigned int is)
173 {
174 	unsigned long rb;
175 
176 	rb = (set << PPC_BITLSHIFT(51)) | (is << PPC_BITLSHIFT(53));
177 
178 	asm volatile("tlbiel %0" : : "r" (rb));
179 }
180 
181 /*
182  * tlbiel instruction for hash, set invalidation
183  * i.e., r=1 and is=01 or is=10 or is=11
184  */
tlbiel_hash_set_isa300(unsigned int set,unsigned int is,unsigned int pid,unsigned int ric,unsigned int prs)185 static __always_inline void tlbiel_hash_set_isa300(unsigned int set, unsigned int is,
186 					unsigned int pid,
187 					unsigned int ric, unsigned int prs)
188 {
189 	unsigned long rb;
190 	unsigned long rs;
191 	unsigned int r = 0; /* hash format */
192 
193 	rb = (set << PPC_BITLSHIFT(51)) | (is << PPC_BITLSHIFT(53));
194 	rs = ((unsigned long)pid << PPC_BITLSHIFT(31));
195 
196 	asm volatile(PPC_TLBIEL(%0, %1, %2, %3, %4)
197 		     : : "r"(rb), "r"(rs), "i"(ric), "i"(prs), "i"(r)
198 		     : "memory");
199 }
200 
201 
tlbiel_all_isa206(unsigned int num_sets,unsigned int is)202 static void tlbiel_all_isa206(unsigned int num_sets, unsigned int is)
203 {
204 	unsigned int set;
205 
206 	asm volatile("ptesync": : :"memory");
207 
208 	for (set = 0; set < num_sets; set++)
209 		tlbiel_hash_set_isa206(set, is);
210 
211 	ppc_after_tlbiel_barrier();
212 }
213 
tlbiel_all_isa300(unsigned int num_sets,unsigned int is)214 static void tlbiel_all_isa300(unsigned int num_sets, unsigned int is)
215 {
216 	unsigned int set;
217 
218 	asm volatile("ptesync": : :"memory");
219 
220 	/*
221 	 * Flush the partition table cache if this is HV mode.
222 	 */
223 	if (early_cpu_has_feature(CPU_FTR_HVMODE))
224 		tlbiel_hash_set_isa300(0, is, 0, 2, 0);
225 
226 	/*
227 	 * Now invalidate the process table cache. UPRT=0 HPT modes (what
228 	 * current hardware implements) do not use the process table, but
229 	 * add the flushes anyway.
230 	 *
231 	 * From ISA v3.0B p. 1078:
232 	 *     The following forms are invalid.
233 	 *      * PRS=1, R=0, and RIC!=2 (The only process-scoped
234 	 *        HPT caching is of the Process Table.)
235 	 */
236 	tlbiel_hash_set_isa300(0, is, 0, 2, 1);
237 
238 	/*
239 	 * Then flush the sets of the TLB proper. Hash mode uses
240 	 * partition scoped TLB translations, which may be flushed
241 	 * in !HV mode.
242 	 */
243 	for (set = 0; set < num_sets; set++)
244 		tlbiel_hash_set_isa300(set, is, 0, 0, 0);
245 
246 	ppc_after_tlbiel_barrier();
247 
248 	asm volatile(PPC_ISA_3_0_INVALIDATE_ERAT "; isync" : : :"memory");
249 }
250 
hash__tlbiel_all(unsigned int action)251 void hash__tlbiel_all(unsigned int action)
252 {
253 	unsigned int is;
254 
255 	switch (action) {
256 	case TLB_INVAL_SCOPE_GLOBAL:
257 		is = 3;
258 		break;
259 	case TLB_INVAL_SCOPE_LPID:
260 		is = 2;
261 		break;
262 	default:
263 		BUG();
264 	}
265 
266 	if (early_cpu_has_feature(CPU_FTR_ARCH_300))
267 		tlbiel_all_isa300(POWER9_TLB_SETS_HASH, is);
268 	else if (early_cpu_has_feature(CPU_FTR_ARCH_207S))
269 		tlbiel_all_isa206(POWER8_TLB_SETS, is);
270 	else if (early_cpu_has_feature(CPU_FTR_ARCH_206))
271 		tlbiel_all_isa206(POWER7_TLB_SETS, is);
272 	else
273 		WARN(1, "%s called on pre-POWER7 CPU\n", __func__);
274 }
275 
276 #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_KFENCE)
kernel_map_linear_page(unsigned long vaddr,unsigned long idx,u8 * slots,raw_spinlock_t * lock)277 static void kernel_map_linear_page(unsigned long vaddr, unsigned long idx,
278 				   u8 *slots, raw_spinlock_t *lock)
279 {
280 	unsigned long hash;
281 	unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
282 	unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
283 	unsigned long mode = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL), HPTE_USE_KERNEL_KEY);
284 	long ret;
285 
286 	hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
287 
288 	/* Don't create HPTE entries for bad address */
289 	if (!vsid)
290 		return;
291 
292 	if (slots[idx] & 0x80)
293 		return;
294 
295 	ret = hpte_insert_repeating(hash, vpn, __pa(vaddr), mode,
296 				    HPTE_V_BOLTED,
297 				    mmu_linear_psize, mmu_kernel_ssize);
298 
299 	BUG_ON (ret < 0);
300 	raw_spin_lock(lock);
301 	BUG_ON(slots[idx] & 0x80);
302 	slots[idx] = ret | 0x80;
303 	raw_spin_unlock(lock);
304 }
305 
kernel_unmap_linear_page(unsigned long vaddr,unsigned long idx,u8 * slots,raw_spinlock_t * lock)306 static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long idx,
307 				     u8 *slots, raw_spinlock_t *lock)
308 {
309 	unsigned long hash, hslot, slot;
310 	unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
311 	unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
312 
313 	hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
314 	raw_spin_lock(lock);
315 	if (!(slots[idx] & 0x80)) {
316 		raw_spin_unlock(lock);
317 		return;
318 	}
319 	hslot = slots[idx] & 0x7f;
320 	slots[idx] = 0;
321 	raw_spin_unlock(lock);
322 	if (hslot & _PTEIDX_SECONDARY)
323 		hash = ~hash;
324 	slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
325 	slot += hslot & _PTEIDX_GROUP_IX;
326 	mmu_hash_ops.hpte_invalidate(slot, vpn, mmu_linear_psize,
327 				     mmu_linear_psize,
328 				     mmu_kernel_ssize, 0);
329 }
330 #endif
331 
hash_supports_debug_pagealloc(void)332 static inline bool hash_supports_debug_pagealloc(void)
333 {
334 	unsigned long max_hash_count = ppc64_rma_size / 4;
335 	unsigned long linear_map_count = memblock_end_of_DRAM() >> PAGE_SHIFT;
336 
337 	if (!debug_pagealloc_enabled() || linear_map_count > max_hash_count)
338 		return false;
339 	return true;
340 }
341 
342 #ifdef CONFIG_DEBUG_PAGEALLOC
343 static u8 *linear_map_hash_slots;
344 static unsigned long linear_map_hash_count;
345 static DEFINE_RAW_SPINLOCK(linear_map_hash_lock);
hash_debug_pagealloc_alloc_slots(void)346 static void hash_debug_pagealloc_alloc_slots(void)
347 {
348 	if (!hash_supports_debug_pagealloc())
349 		return;
350 
351 	linear_map_hash_count = memblock_end_of_DRAM() >> PAGE_SHIFT;
352 	linear_map_hash_slots = memblock_alloc_try_nid(
353 			linear_map_hash_count, 1, MEMBLOCK_LOW_LIMIT,
354 			ppc64_rma_size,	NUMA_NO_NODE);
355 	if (!linear_map_hash_slots)
356 		panic("%s: Failed to allocate %lu bytes max_addr=%pa\n",
357 		      __func__, linear_map_hash_count, &ppc64_rma_size);
358 }
359 
hash_debug_pagealloc_add_slot(phys_addr_t paddr,int slot)360 static inline void hash_debug_pagealloc_add_slot(phys_addr_t paddr,
361 							int slot)
362 {
363 	if (!debug_pagealloc_enabled() || !linear_map_hash_count)
364 		return;
365 	if ((paddr >> PAGE_SHIFT) < linear_map_hash_count)
366 		linear_map_hash_slots[paddr >> PAGE_SHIFT] = slot | 0x80;
367 }
368 
hash_debug_pagealloc_map_pages(struct page * page,int numpages,int enable)369 static int hash_debug_pagealloc_map_pages(struct page *page, int numpages,
370 					  int enable)
371 {
372 	unsigned long flags, vaddr, lmi;
373 	int i;
374 
375 	if (!debug_pagealloc_enabled() || !linear_map_hash_count)
376 		return 0;
377 
378 	local_irq_save(flags);
379 	for (i = 0; i < numpages; i++, page++) {
380 		vaddr = (unsigned long)page_address(page);
381 		lmi = __pa(vaddr) >> PAGE_SHIFT;
382 		if (lmi >= linear_map_hash_count)
383 			continue;
384 		if (enable)
385 			kernel_map_linear_page(vaddr, lmi,
386 				linear_map_hash_slots, &linear_map_hash_lock);
387 		else
388 			kernel_unmap_linear_page(vaddr, lmi,
389 				linear_map_hash_slots, &linear_map_hash_lock);
390 	}
391 	local_irq_restore(flags);
392 	return 0;
393 }
394 
395 #else /* CONFIG_DEBUG_PAGEALLOC */
hash_debug_pagealloc_alloc_slots(void)396 static inline void hash_debug_pagealloc_alloc_slots(void) {}
hash_debug_pagealloc_add_slot(phys_addr_t paddr,int slot)397 static inline void hash_debug_pagealloc_add_slot(phys_addr_t paddr, int slot) {}
398 static int __maybe_unused
hash_debug_pagealloc_map_pages(struct page * page,int numpages,int enable)399 hash_debug_pagealloc_map_pages(struct page *page, int numpages, int enable)
400 {
401 	return 0;
402 }
403 #endif /* CONFIG_DEBUG_PAGEALLOC */
404 
405 #ifdef CONFIG_KFENCE
406 static u8 *linear_map_kf_hash_slots;
407 static unsigned long linear_map_kf_hash_count;
408 static DEFINE_RAW_SPINLOCK(linear_map_kf_hash_lock);
409 
410 static phys_addr_t kfence_pool;
411 
hash_kfence_alloc_pool(void)412 static inline void hash_kfence_alloc_pool(void)
413 {
414 	if (!kfence_early_init_enabled())
415 		goto err;
416 
417 	/* allocate linear map for kfence within RMA region */
418 	linear_map_kf_hash_count = KFENCE_POOL_SIZE >> PAGE_SHIFT;
419 	linear_map_kf_hash_slots = memblock_alloc_try_nid(
420 					linear_map_kf_hash_count, 1,
421 					MEMBLOCK_LOW_LIMIT, ppc64_rma_size,
422 					NUMA_NO_NODE);
423 	if (!linear_map_kf_hash_slots) {
424 		pr_err("%s: memblock for linear map (%lu) failed\n", __func__,
425 				linear_map_kf_hash_count);
426 		goto err;
427 	}
428 
429 	/* allocate kfence pool early */
430 	kfence_pool = memblock_phys_alloc_range(KFENCE_POOL_SIZE, PAGE_SIZE,
431 				MEMBLOCK_LOW_LIMIT, MEMBLOCK_ALLOC_ANYWHERE);
432 	if (!kfence_pool) {
433 		pr_err("%s: memblock for kfence pool (%lu) failed\n", __func__,
434 				KFENCE_POOL_SIZE);
435 		memblock_free(linear_map_kf_hash_slots,
436 				linear_map_kf_hash_count);
437 		linear_map_kf_hash_count = 0;
438 		goto err;
439 	}
440 	memblock_mark_nomap(kfence_pool, KFENCE_POOL_SIZE);
441 
442 	return;
443 err:
444 	pr_info("Disabling kfence\n");
445 	disable_kfence();
446 }
447 
hash_kfence_map_pool(void)448 static inline void hash_kfence_map_pool(void)
449 {
450 	unsigned long kfence_pool_start, kfence_pool_end;
451 	unsigned long prot = pgprot_val(PAGE_KERNEL);
452 
453 	if (!kfence_pool)
454 		return;
455 
456 	kfence_pool_start = (unsigned long) __va(kfence_pool);
457 	kfence_pool_end = kfence_pool_start + KFENCE_POOL_SIZE;
458 	__kfence_pool = (char *) kfence_pool_start;
459 	BUG_ON(htab_bolt_mapping(kfence_pool_start, kfence_pool_end,
460 				    kfence_pool, prot, mmu_linear_psize,
461 				    mmu_kernel_ssize));
462 	memblock_clear_nomap(kfence_pool, KFENCE_POOL_SIZE);
463 }
464 
hash_kfence_add_slot(phys_addr_t paddr,int slot)465 static inline void hash_kfence_add_slot(phys_addr_t paddr, int slot)
466 {
467 	unsigned long vaddr = (unsigned long) __va(paddr);
468 	unsigned long lmi = (vaddr - (unsigned long)__kfence_pool)
469 					>> PAGE_SHIFT;
470 
471 	if (!kfence_pool)
472 		return;
473 	BUG_ON(!is_kfence_address((void *)vaddr));
474 	BUG_ON(lmi >= linear_map_kf_hash_count);
475 	linear_map_kf_hash_slots[lmi] = slot | 0x80;
476 }
477 
hash_kfence_map_pages(struct page * page,int numpages,int enable)478 static int hash_kfence_map_pages(struct page *page, int numpages, int enable)
479 {
480 	unsigned long flags, vaddr, lmi;
481 	int i;
482 
483 	WARN_ON_ONCE(!linear_map_kf_hash_count);
484 	local_irq_save(flags);
485 	for (i = 0; i < numpages; i++, page++) {
486 		vaddr = (unsigned long)page_address(page);
487 		lmi = (vaddr - (unsigned long)__kfence_pool) >> PAGE_SHIFT;
488 
489 		/* Ideally this should never happen */
490 		if (lmi >= linear_map_kf_hash_count) {
491 			WARN_ON_ONCE(1);
492 			continue;
493 		}
494 
495 		if (enable)
496 			kernel_map_linear_page(vaddr, lmi,
497 					       linear_map_kf_hash_slots,
498 					       &linear_map_kf_hash_lock);
499 		else
500 			kernel_unmap_linear_page(vaddr, lmi,
501 						 linear_map_kf_hash_slots,
502 						 &linear_map_kf_hash_lock);
503 	}
504 	local_irq_restore(flags);
505 	return 0;
506 }
507 #else
hash_kfence_alloc_pool(void)508 static inline void hash_kfence_alloc_pool(void) {}
hash_kfence_map_pool(void)509 static inline void hash_kfence_map_pool(void) {}
hash_kfence_add_slot(phys_addr_t paddr,int slot)510 static inline void hash_kfence_add_slot(phys_addr_t paddr, int slot) {}
511 static int __maybe_unused
hash_kfence_map_pages(struct page * page,int numpages,int enable)512 hash_kfence_map_pages(struct page *page, int numpages, int enable)
513 {
514 	return 0;
515 }
516 #endif
517 
518 #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_KFENCE)
hash__kernel_map_pages(struct page * page,int numpages,int enable)519 int hash__kernel_map_pages(struct page *page, int numpages, int enable)
520 {
521 	void *vaddr = page_address(page);
522 
523 	if (is_kfence_address(vaddr))
524 		return hash_kfence_map_pages(page, numpages, enable);
525 	else
526 		return hash_debug_pagealloc_map_pages(page, numpages, enable);
527 }
528 
hash_linear_map_add_slot(phys_addr_t paddr,int slot)529 static void hash_linear_map_add_slot(phys_addr_t paddr, int slot)
530 {
531 	if (is_kfence_address(__va(paddr)))
532 		hash_kfence_add_slot(paddr, slot);
533 	else
534 		hash_debug_pagealloc_add_slot(paddr, slot);
535 }
536 #else
hash_linear_map_add_slot(phys_addr_t paddr,int slot)537 static void hash_linear_map_add_slot(phys_addr_t paddr, int slot) {}
538 #endif
539 
540 /*
541  * 'R' and 'C' update notes:
542  *  - Under pHyp or KVM, the updatepp path will not set C, thus it *will*
543  *     create writeable HPTEs without C set, because the hcall H_PROTECT
544  *     that we use in that case will not update C
545  *  - The above is however not a problem, because we also don't do that
546  *     fancy "no flush" variant of eviction and we use H_REMOVE which will
547  *     do the right thing and thus we don't have the race I described earlier
548  *
549  *    - Under bare metal,  we do have the race, so we need R and C set
550  *    - We make sure R is always set and never lost
551  *    - C is _PAGE_DIRTY, and *should* always be set for a writeable mapping
552  */
htab_convert_pte_flags(unsigned long pteflags,unsigned long flags)553 unsigned long htab_convert_pte_flags(unsigned long pteflags, unsigned long flags)
554 {
555 	unsigned long rflags = 0;
556 
557 	/* _PAGE_EXEC -> NOEXEC */
558 	if ((pteflags & _PAGE_EXEC) == 0)
559 		rflags |= HPTE_R_N;
560 	/*
561 	 * PPP bits:
562 	 * Linux uses slb key 0 for kernel and 1 for user.
563 	 * kernel RW areas are mapped with PPP=0b000
564 	 * User area is mapped with PPP=0b010 for read/write
565 	 * or PPP=0b011 for read-only (including writeable but clean pages).
566 	 */
567 	if (pteflags & _PAGE_PRIVILEGED) {
568 		/*
569 		 * Kernel read only mapped with ppp bits 0b110
570 		 */
571 		if (!(pteflags & _PAGE_WRITE)) {
572 			if (mmu_has_feature(MMU_FTR_KERNEL_RO))
573 				rflags |= (HPTE_R_PP0 | 0x2);
574 			else
575 				rflags |= 0x3;
576 		}
577 		VM_WARN_ONCE(!(pteflags & _PAGE_RWX), "no-access mapping request");
578 	} else {
579 		if (pteflags & _PAGE_RWX)
580 			rflags |= 0x2;
581 		/*
582 		 * We should never hit this in normal fault handling because
583 		 * a permission check (check_pte_access()) will bubble this
584 		 * to higher level linux handler even for PAGE_NONE.
585 		 */
586 		VM_WARN_ONCE(!(pteflags & _PAGE_RWX), "no-access mapping request");
587 		if (!((pteflags & _PAGE_WRITE) && (pteflags & _PAGE_DIRTY)))
588 			rflags |= 0x1;
589 	}
590 	/*
591 	 * We can't allow hardware to update hpte bits. Hence always
592 	 * set 'R' bit and set 'C' if it is a write fault
593 	 */
594 	rflags |=  HPTE_R_R;
595 
596 	if (pteflags & _PAGE_DIRTY)
597 		rflags |= HPTE_R_C;
598 	/*
599 	 * Add in WIG bits
600 	 */
601 
602 	if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_TOLERANT)
603 		rflags |= HPTE_R_I;
604 	else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_NON_IDEMPOTENT)
605 		rflags |= (HPTE_R_I | HPTE_R_G);
606 	else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_SAO)
607 		rflags |= (HPTE_R_W | HPTE_R_I | HPTE_R_M);
608 	else
609 		/*
610 		 * Add memory coherence if cache inhibited is not set
611 		 */
612 		rflags |= HPTE_R_M;
613 
614 	rflags |= pte_to_hpte_pkey_bits(pteflags, flags);
615 	return rflags;
616 }
617 
htab_bolt_mapping(unsigned long vstart,unsigned long vend,unsigned long pstart,unsigned long prot,int psize,int ssize)618 int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
619 		      unsigned long pstart, unsigned long prot,
620 		      int psize, int ssize)
621 {
622 	unsigned long vaddr, paddr;
623 	unsigned int step, shift;
624 	int ret = 0;
625 
626 	shift = mmu_psize_defs[psize].shift;
627 	step = 1 << shift;
628 
629 	prot = htab_convert_pte_flags(prot, HPTE_USE_KERNEL_KEY);
630 
631 	DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
632 	    vstart, vend, pstart, prot, psize, ssize);
633 
634 	/* Carefully map only the possible range */
635 	vaddr = ALIGN(vstart, step);
636 	paddr = ALIGN(pstart, step);
637 	vend  = ALIGN_DOWN(vend, step);
638 
639 	for (; vaddr < vend; vaddr += step, paddr += step) {
640 		unsigned long hash, hpteg;
641 		unsigned long vsid = get_kernel_vsid(vaddr, ssize);
642 		unsigned long vpn  = hpt_vpn(vaddr, vsid, ssize);
643 		unsigned long tprot = prot;
644 		bool secondary_hash = false;
645 
646 		/*
647 		 * If we hit a bad address return error.
648 		 */
649 		if (!vsid)
650 			return -1;
651 		/* Make kernel text executable */
652 		if (overlaps_kernel_text(vaddr, vaddr + step))
653 			tprot &= ~HPTE_R_N;
654 
655 		/*
656 		 * If relocatable, check if it overlaps interrupt vectors that
657 		 * are copied down to real 0. For relocatable kernel
658 		 * (e.g. kdump case) we copy interrupt vectors down to real
659 		 * address 0. Mark that region as executable. This is
660 		 * because on p8 system with relocation on exception feature
661 		 * enabled, exceptions are raised with MMU (IR=DR=1) ON. Hence
662 		 * in order to execute the interrupt handlers in virtual
663 		 * mode the vector region need to be marked as executable.
664 		 */
665 		if ((PHYSICAL_START > MEMORY_START) &&
666 			overlaps_interrupt_vector_text(vaddr, vaddr + step))
667 				tprot &= ~HPTE_R_N;
668 
669 		hash = hpt_hash(vpn, shift, ssize);
670 		hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
671 
672 		BUG_ON(!mmu_hash_ops.hpte_insert);
673 repeat:
674 		ret = mmu_hash_ops.hpte_insert(hpteg, vpn, paddr, tprot,
675 					       HPTE_V_BOLTED, psize, psize,
676 					       ssize);
677 		if (ret == -1) {
678 			/*
679 			 * Try to keep bolted entries in primary.
680 			 * Remove non bolted entries and try insert again
681 			 */
682 			ret = mmu_hash_ops.hpte_remove(hpteg);
683 			if (ret != -1)
684 				ret = mmu_hash_ops.hpte_insert(hpteg, vpn, paddr, tprot,
685 							       HPTE_V_BOLTED, psize, psize,
686 							       ssize);
687 			if (ret == -1 && !secondary_hash) {
688 				secondary_hash = true;
689 				hpteg = ((~hash & htab_hash_mask) * HPTES_PER_GROUP);
690 				goto repeat;
691 			}
692 		}
693 
694 		if (ret < 0)
695 			break;
696 
697 		cond_resched();
698 		/* add slot info in debug_pagealloc / kfence linear map */
699 		hash_linear_map_add_slot(paddr, ret);
700 	}
701 	return ret < 0 ? ret : 0;
702 }
703 
htab_remove_mapping(unsigned long vstart,unsigned long vend,int psize,int ssize)704 int htab_remove_mapping(unsigned long vstart, unsigned long vend,
705 		      int psize, int ssize)
706 {
707 	unsigned long vaddr, time_limit;
708 	unsigned int step, shift;
709 	int rc;
710 	int ret = 0;
711 
712 	shift = mmu_psize_defs[psize].shift;
713 	step = 1 << shift;
714 
715 	if (!mmu_hash_ops.hpte_removebolted)
716 		return -ENODEV;
717 
718 	/* Unmap the full range specificied */
719 	vaddr = ALIGN_DOWN(vstart, step);
720 	time_limit = jiffies + HZ;
721 
722 	for (;vaddr < vend; vaddr += step) {
723 		rc = mmu_hash_ops.hpte_removebolted(vaddr, psize, ssize);
724 
725 		/*
726 		 * For large number of mappings introduce a cond_resched()
727 		 * to prevent softlockup warnings.
728 		 */
729 		if (time_after(jiffies, time_limit)) {
730 			cond_resched();
731 			time_limit = jiffies + HZ;
732 		}
733 		if (rc == -ENOENT) {
734 			ret = -ENOENT;
735 			continue;
736 		}
737 		if (rc < 0)
738 			return rc;
739 	}
740 
741 	return ret;
742 }
743 
744 static bool disable_1tb_segments __ro_after_init;
745 
parse_disable_1tb_segments(char * p)746 static int __init parse_disable_1tb_segments(char *p)
747 {
748 	disable_1tb_segments = true;
749 	return 0;
750 }
751 early_param("disable_1tb_segments", parse_disable_1tb_segments);
752 
753 bool stress_hpt_enabled __initdata;
754 
parse_stress_hpt(char * p)755 static int __init parse_stress_hpt(char *p)
756 {
757 	stress_hpt_enabled = true;
758 	return 0;
759 }
760 early_param("stress_hpt", parse_stress_hpt);
761 
762 __ro_after_init DEFINE_STATIC_KEY_FALSE(stress_hpt_key);
763 
764 /*
765  * per-CPU array allocated if we enable stress_hpt.
766  */
767 #define STRESS_MAX_GROUPS 16
768 struct stress_hpt_struct {
769 	unsigned long last_group[STRESS_MAX_GROUPS];
770 };
771 
stress_nr_groups(void)772 static inline int stress_nr_groups(void)
773 {
774 	/*
775 	 * LPAR H_REMOVE flushes TLB, so need some number > 1 of entries
776 	 * to allow practical forward progress. Bare metal returns 1, which
777 	 * seems to help uncover more bugs.
778 	 */
779 	if (firmware_has_feature(FW_FEATURE_LPAR))
780 		return STRESS_MAX_GROUPS;
781 	else
782 		return 1;
783 }
784 
785 static struct stress_hpt_struct *stress_hpt_struct;
786 
htab_dt_scan_seg_sizes(unsigned long node,const char * uname,int depth,void * data)787 static int __init htab_dt_scan_seg_sizes(unsigned long node,
788 					 const char *uname, int depth,
789 					 void *data)
790 {
791 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
792 	const __be32 *prop;
793 	int size = 0;
794 
795 	/* We are scanning "cpu" nodes only */
796 	if (type == NULL || strcmp(type, "cpu") != 0)
797 		return 0;
798 
799 	prop = of_get_flat_dt_prop(node, "ibm,processor-segment-sizes", &size);
800 	if (prop == NULL)
801 		return 0;
802 	for (; size >= 4; size -= 4, ++prop) {
803 		if (be32_to_cpu(prop[0]) == 40) {
804 			DBG("1T segment support detected\n");
805 
806 			if (disable_1tb_segments) {
807 				DBG("1T segments disabled by command line\n");
808 				break;
809 			}
810 
811 			cur_cpu_spec->mmu_features |= MMU_FTR_1T_SEGMENT;
812 			return 1;
813 		}
814 	}
815 	cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
816 	return 0;
817 }
818 
get_idx_from_shift(unsigned int shift)819 static int __init get_idx_from_shift(unsigned int shift)
820 {
821 	int idx = -1;
822 
823 	switch (shift) {
824 	case 0xc:
825 		idx = MMU_PAGE_4K;
826 		break;
827 	case 0x10:
828 		idx = MMU_PAGE_64K;
829 		break;
830 	case 0x14:
831 		idx = MMU_PAGE_1M;
832 		break;
833 	case 0x18:
834 		idx = MMU_PAGE_16M;
835 		break;
836 	case 0x22:
837 		idx = MMU_PAGE_16G;
838 		break;
839 	}
840 	return idx;
841 }
842 
htab_dt_scan_page_sizes(unsigned long node,const char * uname,int depth,void * data)843 static int __init htab_dt_scan_page_sizes(unsigned long node,
844 					  const char *uname, int depth,
845 					  void *data)
846 {
847 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
848 	const __be32 *prop;
849 	int size = 0;
850 
851 	/* We are scanning "cpu" nodes only */
852 	if (type == NULL || strcmp(type, "cpu") != 0)
853 		return 0;
854 
855 	prop = of_get_flat_dt_prop(node, "ibm,segment-page-sizes", &size);
856 	if (!prop)
857 		return 0;
858 
859 	pr_info("Page sizes from device-tree:\n");
860 	size /= 4;
861 	cur_cpu_spec->mmu_features &= ~(MMU_FTR_16M_PAGE);
862 	while(size > 0) {
863 		unsigned int base_shift = be32_to_cpu(prop[0]);
864 		unsigned int slbenc = be32_to_cpu(prop[1]);
865 		unsigned int lpnum = be32_to_cpu(prop[2]);
866 		struct mmu_psize_def *def;
867 		int idx, base_idx;
868 
869 		size -= 3; prop += 3;
870 		base_idx = get_idx_from_shift(base_shift);
871 		if (base_idx < 0) {
872 			/* skip the pte encoding also */
873 			prop += lpnum * 2; size -= lpnum * 2;
874 			continue;
875 		}
876 		def = &mmu_psize_defs[base_idx];
877 		if (base_idx == MMU_PAGE_16M)
878 			cur_cpu_spec->mmu_features |= MMU_FTR_16M_PAGE;
879 
880 		def->shift = base_shift;
881 		if (base_shift <= 23)
882 			def->avpnm = 0;
883 		else
884 			def->avpnm = (1 << (base_shift - 23)) - 1;
885 		def->sllp = slbenc;
886 		/*
887 		 * We don't know for sure what's up with tlbiel, so
888 		 * for now we only set it for 4K and 64K pages
889 		 */
890 		if (base_idx == MMU_PAGE_4K || base_idx == MMU_PAGE_64K)
891 			def->tlbiel = 1;
892 		else
893 			def->tlbiel = 0;
894 
895 		while (size > 0 && lpnum) {
896 			unsigned int shift = be32_to_cpu(prop[0]);
897 			int penc  = be32_to_cpu(prop[1]);
898 
899 			prop += 2; size -= 2;
900 			lpnum--;
901 
902 			idx = get_idx_from_shift(shift);
903 			if (idx < 0)
904 				continue;
905 
906 			if (penc == -1)
907 				pr_err("Invalid penc for base_shift=%d "
908 				       "shift=%d\n", base_shift, shift);
909 
910 			def->penc[idx] = penc;
911 			pr_info("base_shift=%d: shift=%d, sllp=0x%04lx,"
912 				" avpnm=0x%08lx, tlbiel=%d, penc=%d\n",
913 				base_shift, shift, def->sllp,
914 				def->avpnm, def->tlbiel, def->penc[idx]);
915 		}
916 	}
917 
918 	return 1;
919 }
920 
921 #ifdef CONFIG_HUGETLB_PAGE
922 /*
923  * Scan for 16G memory blocks that have been set aside for huge pages
924  * and reserve those blocks for 16G huge pages.
925  */
htab_dt_scan_hugepage_blocks(unsigned long node,const char * uname,int depth,void * data)926 static int __init htab_dt_scan_hugepage_blocks(unsigned long node,
927 					const char *uname, int depth,
928 					void *data) {
929 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
930 	const __be64 *addr_prop;
931 	const __be32 *page_count_prop;
932 	unsigned int expected_pages;
933 	long unsigned int phys_addr;
934 	long unsigned int block_size;
935 
936 	/* We are scanning "memory" nodes only */
937 	if (type == NULL || strcmp(type, "memory") != 0)
938 		return 0;
939 
940 	/*
941 	 * This property is the log base 2 of the number of virtual pages that
942 	 * will represent this memory block.
943 	 */
944 	page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL);
945 	if (page_count_prop == NULL)
946 		return 0;
947 	expected_pages = (1 << be32_to_cpu(page_count_prop[0]));
948 	addr_prop = of_get_flat_dt_prop(node, "reg", NULL);
949 	if (addr_prop == NULL)
950 		return 0;
951 	phys_addr = be64_to_cpu(addr_prop[0]);
952 	block_size = be64_to_cpu(addr_prop[1]);
953 	if (block_size != (16 * GB))
954 		return 0;
955 	printk(KERN_INFO "Huge page(16GB) memory: "
956 			"addr = 0x%lX size = 0x%lX pages = %d\n",
957 			phys_addr, block_size, expected_pages);
958 	if (phys_addr + block_size * expected_pages <= memblock_end_of_DRAM()) {
959 		memblock_reserve(phys_addr, block_size * expected_pages);
960 		pseries_add_gpage(phys_addr, block_size, expected_pages);
961 	}
962 	return 0;
963 }
964 #endif /* CONFIG_HUGETLB_PAGE */
965 
mmu_psize_set_default_penc(void)966 static void __init mmu_psize_set_default_penc(void)
967 {
968 	int bpsize, apsize;
969 	for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++)
970 		for (apsize = 0; apsize < MMU_PAGE_COUNT; apsize++)
971 			mmu_psize_defs[bpsize].penc[apsize] = -1;
972 }
973 
974 #ifdef CONFIG_PPC_64K_PAGES
975 
might_have_hea(void)976 static bool __init might_have_hea(void)
977 {
978 	/*
979 	 * The HEA ethernet adapter requires awareness of the
980 	 * GX bus. Without that awareness we can easily assume
981 	 * we will never see an HEA ethernet device.
982 	 */
983 #ifdef CONFIG_IBMEBUS
984 	return !cpu_has_feature(CPU_FTR_ARCH_207S) &&
985 		firmware_has_feature(FW_FEATURE_SPLPAR);
986 #else
987 	return false;
988 #endif
989 }
990 
991 #endif /* #ifdef CONFIG_PPC_64K_PAGES */
992 
htab_scan_page_sizes(void)993 static void __init htab_scan_page_sizes(void)
994 {
995 	int rc;
996 
997 	/* se the invalid penc to -1 */
998 	mmu_psize_set_default_penc();
999 
1000 	/* Default to 4K pages only */
1001 	memcpy(mmu_psize_defs, mmu_psize_defaults,
1002 	       sizeof(mmu_psize_defaults));
1003 
1004 	/*
1005 	 * Try to find the available page sizes in the device-tree
1006 	 */
1007 	rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL);
1008 	if (rc == 0 && early_mmu_has_feature(MMU_FTR_16M_PAGE)) {
1009 		/*
1010 		 * Nothing in the device-tree, but the CPU supports 16M pages,
1011 		 * so let's fallback on a known size list for 16M capable CPUs.
1012 		 */
1013 		memcpy(mmu_psize_defs, mmu_psize_defaults_gp,
1014 		       sizeof(mmu_psize_defaults_gp));
1015 	}
1016 
1017 #ifdef CONFIG_HUGETLB_PAGE
1018 	if (!hugetlb_disabled && !early_radix_enabled() ) {
1019 		/* Reserve 16G huge page memory sections for huge pages */
1020 		of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL);
1021 	}
1022 #endif /* CONFIG_HUGETLB_PAGE */
1023 }
1024 
1025 /*
1026  * Fill in the hpte_page_sizes[] array.
1027  * We go through the mmu_psize_defs[] array looking for all the
1028  * supported base/actual page size combinations.  Each combination
1029  * has a unique pagesize encoding (penc) value in the low bits of
1030  * the LP field of the HPTE.  For actual page sizes less than 1MB,
1031  * some of the upper LP bits are used for RPN bits, meaning that
1032  * we need to fill in several entries in hpte_page_sizes[].
1033  *
1034  * In diagrammatic form, with r = RPN bits and z = page size bits:
1035  *        PTE LP     actual page size
1036  *    rrrr rrrz		>=8KB
1037  *    rrrr rrzz		>=16KB
1038  *    rrrr rzzz		>=32KB
1039  *    rrrr zzzz		>=64KB
1040  *    ...
1041  *
1042  * The zzzz bits are implementation-specific but are chosen so that
1043  * no encoding for a larger page size uses the same value in its
1044  * low-order N bits as the encoding for the 2^(12+N) byte page size
1045  * (if it exists).
1046  */
init_hpte_page_sizes(void)1047 static void __init init_hpte_page_sizes(void)
1048 {
1049 	long int ap, bp;
1050 	long int shift, penc;
1051 
1052 	for (bp = 0; bp < MMU_PAGE_COUNT; ++bp) {
1053 		if (!mmu_psize_defs[bp].shift)
1054 			continue;	/* not a supported page size */
1055 		for (ap = bp; ap < MMU_PAGE_COUNT; ++ap) {
1056 			penc = mmu_psize_defs[bp].penc[ap];
1057 			if (penc == -1 || !mmu_psize_defs[ap].shift)
1058 				continue;
1059 			shift = mmu_psize_defs[ap].shift - LP_SHIFT;
1060 			if (shift <= 0)
1061 				continue;	/* should never happen */
1062 			/*
1063 			 * For page sizes less than 1MB, this loop
1064 			 * replicates the entry for all possible values
1065 			 * of the rrrr bits.
1066 			 */
1067 			while (penc < (1 << LP_BITS)) {
1068 				hpte_page_sizes[penc] = (ap << 4) | bp;
1069 				penc += 1 << shift;
1070 			}
1071 		}
1072 	}
1073 }
1074 
htab_init_page_sizes(void)1075 static void __init htab_init_page_sizes(void)
1076 {
1077 	bool aligned = true;
1078 	init_hpte_page_sizes();
1079 
1080 	if (!hash_supports_debug_pagealloc() && !kfence_early_init_enabled()) {
1081 		/*
1082 		 * Pick a size for the linear mapping. Currently, we only
1083 		 * support 16M, 1M and 4K which is the default
1084 		 */
1085 		if (IS_ENABLED(CONFIG_STRICT_KERNEL_RWX) &&
1086 		    (unsigned long)_stext % 0x1000000) {
1087 			if (mmu_psize_defs[MMU_PAGE_16M].shift)
1088 				pr_warn("Kernel not 16M aligned, disabling 16M linear map alignment\n");
1089 			aligned = false;
1090 		}
1091 
1092 		if (mmu_psize_defs[MMU_PAGE_16M].shift && aligned)
1093 			mmu_linear_psize = MMU_PAGE_16M;
1094 		else if (mmu_psize_defs[MMU_PAGE_1M].shift)
1095 			mmu_linear_psize = MMU_PAGE_1M;
1096 	}
1097 
1098 #ifdef CONFIG_PPC_64K_PAGES
1099 	/*
1100 	 * Pick a size for the ordinary pages. Default is 4K, we support
1101 	 * 64K for user mappings and vmalloc if supported by the processor.
1102 	 * We only use 64k for ioremap if the processor
1103 	 * (and firmware) support cache-inhibited large pages.
1104 	 * If not, we use 4k and set mmu_ci_restrictions so that
1105 	 * hash_page knows to switch processes that use cache-inhibited
1106 	 * mappings to 4k pages.
1107 	 */
1108 	if (mmu_psize_defs[MMU_PAGE_64K].shift) {
1109 		mmu_virtual_psize = MMU_PAGE_64K;
1110 		mmu_vmalloc_psize = MMU_PAGE_64K;
1111 		if (mmu_linear_psize == MMU_PAGE_4K)
1112 			mmu_linear_psize = MMU_PAGE_64K;
1113 		if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE)) {
1114 			/*
1115 			 * When running on pSeries using 64k pages for ioremap
1116 			 * would stop us accessing the HEA ethernet. So if we
1117 			 * have the chance of ever seeing one, stay at 4k.
1118 			 */
1119 			if (!might_have_hea())
1120 				mmu_io_psize = MMU_PAGE_64K;
1121 		} else
1122 			mmu_ci_restrictions = 1;
1123 	}
1124 #endif /* CONFIG_PPC_64K_PAGES */
1125 
1126 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1127 	/*
1128 	 * We try to use 16M pages for vmemmap if that is supported
1129 	 * and we have at least 1G of RAM at boot
1130 	 */
1131 	if (mmu_psize_defs[MMU_PAGE_16M].shift &&
1132 	    memblock_phys_mem_size() >= 0x40000000)
1133 		mmu_vmemmap_psize = MMU_PAGE_16M;
1134 	else
1135 		mmu_vmemmap_psize = mmu_virtual_psize;
1136 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
1137 
1138 	printk(KERN_DEBUG "Page orders: linear mapping = %d, "
1139 	       "virtual = %d, io = %d"
1140 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1141 	       ", vmemmap = %d"
1142 #endif
1143 	       "\n",
1144 	       mmu_psize_defs[mmu_linear_psize].shift,
1145 	       mmu_psize_defs[mmu_virtual_psize].shift,
1146 	       mmu_psize_defs[mmu_io_psize].shift
1147 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1148 	       ,mmu_psize_defs[mmu_vmemmap_psize].shift
1149 #endif
1150 	       );
1151 }
1152 
htab_dt_scan_pftsize(unsigned long node,const char * uname,int depth,void * data)1153 static int __init htab_dt_scan_pftsize(unsigned long node,
1154 				       const char *uname, int depth,
1155 				       void *data)
1156 {
1157 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
1158 	const __be32 *prop;
1159 
1160 	/* We are scanning "cpu" nodes only */
1161 	if (type == NULL || strcmp(type, "cpu") != 0)
1162 		return 0;
1163 
1164 	prop = of_get_flat_dt_prop(node, "ibm,pft-size", NULL);
1165 	if (prop != NULL) {
1166 		/* pft_size[0] is the NUMA CEC cookie */
1167 		ppc64_pft_size = be32_to_cpu(prop[1]);
1168 		return 1;
1169 	}
1170 	return 0;
1171 }
1172 
htab_shift_for_mem_size(unsigned long mem_size)1173 unsigned htab_shift_for_mem_size(unsigned long mem_size)
1174 {
1175 	unsigned memshift = __ilog2(mem_size);
1176 	unsigned pshift = mmu_psize_defs[mmu_virtual_psize].shift;
1177 	unsigned pteg_shift;
1178 
1179 	/* round mem_size up to next power of 2 */
1180 	if ((1UL << memshift) < mem_size)
1181 		memshift += 1;
1182 
1183 	/* aim for 2 pages / pteg */
1184 	pteg_shift = memshift - (pshift + 1);
1185 
1186 	/*
1187 	 * 2^11 PTEGS of 128 bytes each, ie. 2^18 bytes is the minimum htab
1188 	 * size permitted by the architecture.
1189 	 */
1190 	return max(pteg_shift + 7, 18U);
1191 }
1192 
htab_get_table_size(void)1193 static unsigned long __init htab_get_table_size(void)
1194 {
1195 	/*
1196 	 * If hash size isn't already provided by the platform, we try to
1197 	 * retrieve it from the device-tree. If it's not there neither, we
1198 	 * calculate it now based on the total RAM size
1199 	 */
1200 	if (ppc64_pft_size == 0)
1201 		of_scan_flat_dt(htab_dt_scan_pftsize, NULL);
1202 	if (ppc64_pft_size)
1203 		return 1UL << ppc64_pft_size;
1204 
1205 	return 1UL << htab_shift_for_mem_size(memblock_phys_mem_size());
1206 }
1207 
1208 #ifdef CONFIG_MEMORY_HOTPLUG
resize_hpt_for_hotplug(unsigned long new_mem_size)1209 static int resize_hpt_for_hotplug(unsigned long new_mem_size)
1210 {
1211 	unsigned target_hpt_shift;
1212 
1213 	if (!mmu_hash_ops.resize_hpt)
1214 		return 0;
1215 
1216 	target_hpt_shift = htab_shift_for_mem_size(new_mem_size);
1217 
1218 	/*
1219 	 * To avoid lots of HPT resizes if memory size is fluctuating
1220 	 * across a boundary, we deliberately have some hysterisis
1221 	 * here: we immediately increase the HPT size if the target
1222 	 * shift exceeds the current shift, but we won't attempt to
1223 	 * reduce unless the target shift is at least 2 below the
1224 	 * current shift
1225 	 */
1226 	if (target_hpt_shift > ppc64_pft_size ||
1227 	    target_hpt_shift < ppc64_pft_size - 1)
1228 		return mmu_hash_ops.resize_hpt(target_hpt_shift);
1229 
1230 	return 0;
1231 }
1232 
hash__create_section_mapping(unsigned long start,unsigned long end,int nid,pgprot_t prot)1233 int hash__create_section_mapping(unsigned long start, unsigned long end,
1234 				 int nid, pgprot_t prot)
1235 {
1236 	int rc;
1237 
1238 	if (end >= H_VMALLOC_START) {
1239 		pr_warn("Outside the supported range\n");
1240 		return -1;
1241 	}
1242 
1243 	resize_hpt_for_hotplug(memblock_phys_mem_size());
1244 
1245 	rc = htab_bolt_mapping(start, end, __pa(start),
1246 			       pgprot_val(prot), mmu_linear_psize,
1247 			       mmu_kernel_ssize);
1248 
1249 	if (rc < 0) {
1250 		int rc2 = htab_remove_mapping(start, end, mmu_linear_psize,
1251 					      mmu_kernel_ssize);
1252 		BUG_ON(rc2 && (rc2 != -ENOENT));
1253 	}
1254 	return rc;
1255 }
1256 
hash__remove_section_mapping(unsigned long start,unsigned long end)1257 int hash__remove_section_mapping(unsigned long start, unsigned long end)
1258 {
1259 	int rc = htab_remove_mapping(start, end, mmu_linear_psize,
1260 				     mmu_kernel_ssize);
1261 
1262 	if (resize_hpt_for_hotplug(memblock_phys_mem_size()) == -ENOSPC)
1263 		pr_warn("Hash collision while resizing HPT\n");
1264 
1265 	return rc;
1266 }
1267 #endif /* CONFIG_MEMORY_HOTPLUG */
1268 
hash_init_partition_table(phys_addr_t hash_table,unsigned long htab_size)1269 static void __init hash_init_partition_table(phys_addr_t hash_table,
1270 					     unsigned long htab_size)
1271 {
1272 	mmu_partition_table_init();
1273 
1274 	/*
1275 	 * PS field (VRMA page size) is not used for LPID 0, hence set to 0.
1276 	 * For now, UPRT is 0 and we have no segment table.
1277 	 */
1278 	htab_size =  __ilog2(htab_size) - 18;
1279 	mmu_partition_table_set_entry(0, hash_table | htab_size, 0, false);
1280 	pr_info("Partition table %p\n", partition_tb);
1281 }
1282 
1283 void hpt_clear_stress(void);
1284 static struct timer_list stress_hpt_timer;
stress_hpt_timer_fn(struct timer_list * timer)1285 static void stress_hpt_timer_fn(struct timer_list *timer)
1286 {
1287 	int next_cpu;
1288 
1289 	hpt_clear_stress();
1290 	if (!firmware_has_feature(FW_FEATURE_LPAR))
1291 		tlbiel_all();
1292 
1293 	next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
1294 	if (next_cpu >= nr_cpu_ids)
1295 		next_cpu = cpumask_first(cpu_online_mask);
1296 	stress_hpt_timer.expires = jiffies + msecs_to_jiffies(10);
1297 	add_timer_on(&stress_hpt_timer, next_cpu);
1298 }
1299 
htab_initialize(void)1300 static void __init htab_initialize(void)
1301 {
1302 	unsigned long table;
1303 	unsigned long pteg_count;
1304 	unsigned long prot;
1305 	phys_addr_t base = 0, size = 0, end;
1306 	u64 i;
1307 
1308 	DBG(" -> htab_initialize()\n");
1309 
1310 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
1311 		mmu_kernel_ssize = MMU_SEGSIZE_1T;
1312 		mmu_highuser_ssize = MMU_SEGSIZE_1T;
1313 		printk(KERN_INFO "Using 1TB segments\n");
1314 	}
1315 
1316 	if (stress_slb_enabled)
1317 		static_branch_enable(&stress_slb_key);
1318 
1319 	if (stress_hpt_enabled) {
1320 		unsigned long tmp;
1321 		static_branch_enable(&stress_hpt_key);
1322 		// Too early to use nr_cpu_ids, so use NR_CPUS
1323 		tmp = memblock_phys_alloc_range(sizeof(struct stress_hpt_struct) * NR_CPUS,
1324 						__alignof__(struct stress_hpt_struct),
1325 						0, MEMBLOCK_ALLOC_ANYWHERE);
1326 		memset((void *)tmp, 0xff, sizeof(struct stress_hpt_struct) * NR_CPUS);
1327 		stress_hpt_struct = __va(tmp);
1328 
1329 		timer_setup(&stress_hpt_timer, stress_hpt_timer_fn, 0);
1330 		stress_hpt_timer.expires = jiffies + msecs_to_jiffies(10);
1331 		add_timer(&stress_hpt_timer);
1332 	}
1333 
1334 	/*
1335 	 * Calculate the required size of the htab.  We want the number of
1336 	 * PTEGs to equal one half the number of real pages.
1337 	 */
1338 	htab_size_bytes = htab_get_table_size();
1339 	pteg_count = htab_size_bytes >> 7;
1340 
1341 	htab_hash_mask = pteg_count - 1;
1342 
1343 	if (firmware_has_feature(FW_FEATURE_LPAR) ||
1344 	    firmware_has_feature(FW_FEATURE_PS3_LV1)) {
1345 		/* Using a hypervisor which owns the htab */
1346 		htab_address = NULL;
1347 		_SDR1 = 0;
1348 #ifdef CONFIG_FA_DUMP
1349 		/*
1350 		 * If firmware assisted dump is active firmware preserves
1351 		 * the contents of htab along with entire partition memory.
1352 		 * Clear the htab if firmware assisted dump is active so
1353 		 * that we dont end up using old mappings.
1354 		 */
1355 		if (is_fadump_active() && mmu_hash_ops.hpte_clear_all)
1356 			mmu_hash_ops.hpte_clear_all();
1357 #endif
1358 	} else {
1359 		unsigned long limit = MEMBLOCK_ALLOC_ANYWHERE;
1360 
1361 		table = memblock_phys_alloc_range(htab_size_bytes,
1362 						  htab_size_bytes,
1363 						  0, limit);
1364 		if (!table)
1365 			panic("ERROR: Failed to allocate %pa bytes below %pa\n",
1366 			      &htab_size_bytes, &limit);
1367 
1368 		DBG("Hash table allocated at %lx, size: %lx\n", table,
1369 		    htab_size_bytes);
1370 
1371 		htab_address = __va(table);
1372 
1373 		/* htab absolute addr + encoded htabsize */
1374 		_SDR1 = table + __ilog2(htab_size_bytes) - 18;
1375 
1376 		/* Initialize the HPT with no entries */
1377 		memset((void *)table, 0, htab_size_bytes);
1378 
1379 		if (!cpu_has_feature(CPU_FTR_ARCH_300))
1380 			/* Set SDR1 */
1381 			mtspr(SPRN_SDR1, _SDR1);
1382 		else
1383 			hash_init_partition_table(table, htab_size_bytes);
1384 	}
1385 
1386 	prot = pgprot_val(PAGE_KERNEL);
1387 
1388 	hash_debug_pagealloc_alloc_slots();
1389 	hash_kfence_alloc_pool();
1390 	/* create bolted the linear mapping in the hash table */
1391 	for_each_mem_range(i, &base, &end) {
1392 		size = end - base;
1393 		base = (unsigned long)__va(base);
1394 
1395 		DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
1396 		    base, size, prot);
1397 
1398 		if ((base + size) >= H_VMALLOC_START) {
1399 			pr_warn("Outside the supported range\n");
1400 			continue;
1401 		}
1402 
1403 		BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
1404 				prot, mmu_linear_psize, mmu_kernel_ssize));
1405 	}
1406 	hash_kfence_map_pool();
1407 	memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
1408 
1409 	/*
1410 	 * If we have a memory_limit and we've allocated TCEs then we need to
1411 	 * explicitly map the TCE area at the top of RAM. We also cope with the
1412 	 * case that the TCEs start below memory_limit.
1413 	 * tce_alloc_start/end are 16MB aligned so the mapping should work
1414 	 * for either 4K or 16MB pages.
1415 	 */
1416 	if (tce_alloc_start) {
1417 		tce_alloc_start = (unsigned long)__va(tce_alloc_start);
1418 		tce_alloc_end = (unsigned long)__va(tce_alloc_end);
1419 
1420 		if (base + size >= tce_alloc_start)
1421 			tce_alloc_start = base + size + 1;
1422 
1423 		BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end,
1424 					 __pa(tce_alloc_start), prot,
1425 					 mmu_linear_psize, mmu_kernel_ssize));
1426 	}
1427 
1428 
1429 	DBG(" <- htab_initialize()\n");
1430 }
1431 #undef KB
1432 #undef MB
1433 
hash__early_init_devtree(void)1434 void __init hash__early_init_devtree(void)
1435 {
1436 	/* Initialize segment sizes */
1437 	of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL);
1438 
1439 	/* Initialize page sizes */
1440 	htab_scan_page_sizes();
1441 }
1442 
1443 static struct hash_mm_context init_hash_mm_context;
hash__early_init_mmu(void)1444 void __init hash__early_init_mmu(void)
1445 {
1446 #ifndef CONFIG_PPC_64K_PAGES
1447 	/*
1448 	 * We have code in __hash_page_4K() and elsewhere, which assumes it can
1449 	 * do the following:
1450 	 *   new_pte |= (slot << H_PAGE_F_GIX_SHIFT) & (H_PAGE_F_SECOND | H_PAGE_F_GIX);
1451 	 *
1452 	 * Where the slot number is between 0-15, and values of 8-15 indicate
1453 	 * the secondary bucket. For that code to work H_PAGE_F_SECOND and
1454 	 * H_PAGE_F_GIX must occupy four contiguous bits in the PTE, and
1455 	 * H_PAGE_F_SECOND must be placed above H_PAGE_F_GIX. Assert that here
1456 	 * with a BUILD_BUG_ON().
1457 	 */
1458 	BUILD_BUG_ON(H_PAGE_F_SECOND != (1ul  << (H_PAGE_F_GIX_SHIFT + 3)));
1459 #endif /* CONFIG_PPC_64K_PAGES */
1460 
1461 	htab_init_page_sizes();
1462 
1463 	/*
1464 	 * initialize page table size
1465 	 */
1466 	__pte_frag_nr = H_PTE_FRAG_NR;
1467 	__pte_frag_size_shift = H_PTE_FRAG_SIZE_SHIFT;
1468 	__pmd_frag_nr = H_PMD_FRAG_NR;
1469 	__pmd_frag_size_shift = H_PMD_FRAG_SIZE_SHIFT;
1470 
1471 	__pte_index_size = H_PTE_INDEX_SIZE;
1472 	__pmd_index_size = H_PMD_INDEX_SIZE;
1473 	__pud_index_size = H_PUD_INDEX_SIZE;
1474 	__pgd_index_size = H_PGD_INDEX_SIZE;
1475 	__pud_cache_index = H_PUD_CACHE_INDEX;
1476 	__pte_table_size = H_PTE_TABLE_SIZE;
1477 	__pmd_table_size = H_PMD_TABLE_SIZE;
1478 	__pud_table_size = H_PUD_TABLE_SIZE;
1479 	__pgd_table_size = H_PGD_TABLE_SIZE;
1480 	__pmd_val_bits = HASH_PMD_VAL_BITS;
1481 	__pud_val_bits = HASH_PUD_VAL_BITS;
1482 	__pgd_val_bits = HASH_PGD_VAL_BITS;
1483 
1484 	__kernel_virt_start = H_KERN_VIRT_START;
1485 	__vmalloc_start = H_VMALLOC_START;
1486 	__vmalloc_end = H_VMALLOC_END;
1487 	__kernel_io_start = H_KERN_IO_START;
1488 	__kernel_io_end = H_KERN_IO_END;
1489 	vmemmap = (struct page *)H_VMEMMAP_START;
1490 	ioremap_bot = IOREMAP_BASE;
1491 
1492 #ifdef CONFIG_PCI
1493 	pci_io_base = ISA_IO_BASE;
1494 #endif
1495 
1496 	/* Select appropriate backend */
1497 	if (firmware_has_feature(FW_FEATURE_PS3_LV1))
1498 		ps3_early_mm_init();
1499 	else if (firmware_has_feature(FW_FEATURE_LPAR))
1500 		hpte_init_pseries();
1501 	else if (IS_ENABLED(CONFIG_PPC_HASH_MMU_NATIVE))
1502 		hpte_init_native();
1503 
1504 	if (!mmu_hash_ops.hpte_insert)
1505 		panic("hash__early_init_mmu: No MMU hash ops defined!\n");
1506 
1507 	/*
1508 	 * Initialize the MMU Hash table and create the linear mapping
1509 	 * of memory. Has to be done before SLB initialization as this is
1510 	 * currently where the page size encoding is obtained.
1511 	 */
1512 	htab_initialize();
1513 
1514 	init_mm.context.hash_context = &init_hash_mm_context;
1515 	mm_ctx_set_slb_addr_limit(&init_mm.context, SLB_ADDR_LIMIT_DEFAULT);
1516 
1517 	pr_info("Initializing hash mmu with SLB\n");
1518 	/* Initialize SLB management */
1519 	slb_initialize();
1520 
1521 	if (cpu_has_feature(CPU_FTR_ARCH_206)
1522 			&& cpu_has_feature(CPU_FTR_HVMODE))
1523 		tlbiel_all();
1524 }
1525 
1526 #ifdef CONFIG_SMP
hash__early_init_mmu_secondary(void)1527 void hash__early_init_mmu_secondary(void)
1528 {
1529 	/* Initialize hash table for that CPU */
1530 	if (!firmware_has_feature(FW_FEATURE_LPAR)) {
1531 
1532 		if (!cpu_has_feature(CPU_FTR_ARCH_300))
1533 			mtspr(SPRN_SDR1, _SDR1);
1534 		else
1535 			set_ptcr_when_no_uv(__pa(partition_tb) |
1536 					    (PATB_SIZE_SHIFT - 12));
1537 	}
1538 	/* Initialize SLB */
1539 	slb_initialize();
1540 
1541 	if (cpu_has_feature(CPU_FTR_ARCH_206)
1542 			&& cpu_has_feature(CPU_FTR_HVMODE))
1543 		tlbiel_all();
1544 
1545 #ifdef CONFIG_PPC_MEM_KEYS
1546 	if (mmu_has_feature(MMU_FTR_PKEY))
1547 		mtspr(SPRN_UAMOR, default_uamor);
1548 #endif
1549 }
1550 #endif /* CONFIG_SMP */
1551 
1552 /*
1553  * Called by asm hashtable.S for doing lazy icache flush
1554  */
hash_page_do_lazy_icache(unsigned int pp,pte_t pte,int trap)1555 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap)
1556 {
1557 	struct folio *folio;
1558 
1559 	if (!pfn_valid(pte_pfn(pte)))
1560 		return pp;
1561 
1562 	folio = page_folio(pte_page(pte));
1563 
1564 	/* page is dirty */
1565 	if (!test_bit(PG_dcache_clean, &folio->flags) &&
1566 	    !folio_test_reserved(folio)) {
1567 		if (trap == INTERRUPT_INST_STORAGE) {
1568 			flush_dcache_icache_folio(folio);
1569 			set_bit(PG_dcache_clean, &folio->flags);
1570 		} else
1571 			pp |= HPTE_R_N;
1572 	}
1573 	return pp;
1574 }
1575 
get_paca_psize(unsigned long addr)1576 static unsigned int get_paca_psize(unsigned long addr)
1577 {
1578 	unsigned char *psizes;
1579 	unsigned long index, mask_index;
1580 
1581 	if (addr < SLICE_LOW_TOP) {
1582 		psizes = get_paca()->mm_ctx_low_slices_psize;
1583 		index = GET_LOW_SLICE_INDEX(addr);
1584 	} else {
1585 		psizes = get_paca()->mm_ctx_high_slices_psize;
1586 		index = GET_HIGH_SLICE_INDEX(addr);
1587 	}
1588 	mask_index = index & 0x1;
1589 	return (psizes[index >> 1] >> (mask_index * 4)) & 0xF;
1590 }
1591 
1592 
1593 /*
1594  * Demote a segment to using 4k pages.
1595  * For now this makes the whole process use 4k pages.
1596  */
1597 #ifdef CONFIG_PPC_64K_PAGES
demote_segment_4k(struct mm_struct * mm,unsigned long addr)1598 void demote_segment_4k(struct mm_struct *mm, unsigned long addr)
1599 {
1600 	if (get_slice_psize(mm, addr) == MMU_PAGE_4K)
1601 		return;
1602 	slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K);
1603 #ifdef CONFIG_SPU_BASE
1604 	spu_flush_all_slbs(mm);
1605 #endif
1606 	if ((get_paca_psize(addr) != MMU_PAGE_4K) && (current->mm == mm)) {
1607 
1608 		copy_mm_to_paca(mm);
1609 		slb_flush_and_restore_bolted();
1610 	}
1611 }
1612 #endif /* CONFIG_PPC_64K_PAGES */
1613 
1614 #ifdef CONFIG_PPC_SUBPAGE_PROT
1615 /*
1616  * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
1617  * Userspace sets the subpage permissions using the subpage_prot system call.
1618  *
1619  * Result is 0: full permissions, _PAGE_RW: read-only,
1620  * _PAGE_RWX: no access.
1621  */
subpage_protection(struct mm_struct * mm,unsigned long ea)1622 static int subpage_protection(struct mm_struct *mm, unsigned long ea)
1623 {
1624 	struct subpage_prot_table *spt = mm_ctx_subpage_prot(&mm->context);
1625 	u32 spp = 0;
1626 	u32 **sbpm, *sbpp;
1627 
1628 	if (!spt)
1629 		return 0;
1630 
1631 	if (ea >= spt->maxaddr)
1632 		return 0;
1633 	if (ea < 0x100000000UL) {
1634 		/* addresses below 4GB use spt->low_prot */
1635 		sbpm = spt->low_prot;
1636 	} else {
1637 		sbpm = spt->protptrs[ea >> SBP_L3_SHIFT];
1638 		if (!sbpm)
1639 			return 0;
1640 	}
1641 	sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)];
1642 	if (!sbpp)
1643 		return 0;
1644 	spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)];
1645 
1646 	/* extract 2-bit bitfield for this 4k subpage */
1647 	spp >>= 30 - 2 * ((ea >> 12) & 0xf);
1648 
1649 	/*
1650 	 * 0 -> full permission
1651 	 * 1 -> Read only
1652 	 * 2 -> no access.
1653 	 * We return the flag that need to be cleared.
1654 	 */
1655 	spp = ((spp & 2) ? _PAGE_RWX : 0) | ((spp & 1) ? _PAGE_WRITE : 0);
1656 	return spp;
1657 }
1658 
1659 #else /* CONFIG_PPC_SUBPAGE_PROT */
subpage_protection(struct mm_struct * mm,unsigned long ea)1660 static inline int subpage_protection(struct mm_struct *mm, unsigned long ea)
1661 {
1662 	return 0;
1663 }
1664 #endif
1665 
hash_failure_debug(unsigned long ea,unsigned long access,unsigned long vsid,unsigned long trap,int ssize,int psize,int lpsize,unsigned long pte)1666 void hash_failure_debug(unsigned long ea, unsigned long access,
1667 			unsigned long vsid, unsigned long trap,
1668 			int ssize, int psize, int lpsize, unsigned long pte)
1669 {
1670 	if (!printk_ratelimit())
1671 		return;
1672 	pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
1673 		ea, access, current->comm);
1674 	pr_info("    trap=0x%lx vsid=0x%lx ssize=%d base psize=%d psize %d pte=0x%lx\n",
1675 		trap, vsid, ssize, psize, lpsize, pte);
1676 }
1677 
check_paca_psize(unsigned long ea,struct mm_struct * mm,int psize,bool user_region)1678 static void check_paca_psize(unsigned long ea, struct mm_struct *mm,
1679 			     int psize, bool user_region)
1680 {
1681 	if (user_region) {
1682 		if (psize != get_paca_psize(ea)) {
1683 			copy_mm_to_paca(mm);
1684 			slb_flush_and_restore_bolted();
1685 		}
1686 	} else if (get_paca()->vmalloc_sllp !=
1687 		   mmu_psize_defs[mmu_vmalloc_psize].sllp) {
1688 		get_paca()->vmalloc_sllp =
1689 			mmu_psize_defs[mmu_vmalloc_psize].sllp;
1690 		slb_vmalloc_update();
1691 	}
1692 }
1693 
1694 /*
1695  * Result code is:
1696  *  0 - handled
1697  *  1 - normal page fault
1698  * -1 - critical hash insertion error
1699  * -2 - access not permitted by subpage protection mechanism
1700  */
hash_page_mm(struct mm_struct * mm,unsigned long ea,unsigned long access,unsigned long trap,unsigned long flags)1701 int hash_page_mm(struct mm_struct *mm, unsigned long ea,
1702 		 unsigned long access, unsigned long trap,
1703 		 unsigned long flags)
1704 {
1705 	bool is_thp;
1706 	pgd_t *pgdir;
1707 	unsigned long vsid;
1708 	pte_t *ptep;
1709 	unsigned hugeshift;
1710 	int rc, user_region = 0;
1711 	int psize, ssize;
1712 
1713 	DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
1714 		ea, access, trap);
1715 	trace_hash_fault(ea, access, trap);
1716 
1717 	/* Get region & vsid */
1718 	switch (get_region_id(ea)) {
1719 	case USER_REGION_ID:
1720 		user_region = 1;
1721 		if (! mm) {
1722 			DBG_LOW(" user region with no mm !\n");
1723 			rc = 1;
1724 			goto bail;
1725 		}
1726 		psize = get_slice_psize(mm, ea);
1727 		ssize = user_segment_size(ea);
1728 		vsid = get_user_vsid(&mm->context, ea, ssize);
1729 		break;
1730 	case VMALLOC_REGION_ID:
1731 		vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
1732 		psize = mmu_vmalloc_psize;
1733 		ssize = mmu_kernel_ssize;
1734 		flags |= HPTE_USE_KERNEL_KEY;
1735 		break;
1736 
1737 	case IO_REGION_ID:
1738 		vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
1739 		psize = mmu_io_psize;
1740 		ssize = mmu_kernel_ssize;
1741 		flags |= HPTE_USE_KERNEL_KEY;
1742 		break;
1743 	default:
1744 		/*
1745 		 * Not a valid range
1746 		 * Send the problem up to do_page_fault()
1747 		 */
1748 		rc = 1;
1749 		goto bail;
1750 	}
1751 	DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
1752 
1753 	/* Bad address. */
1754 	if (!vsid) {
1755 		DBG_LOW("Bad address!\n");
1756 		rc = 1;
1757 		goto bail;
1758 	}
1759 	/* Get pgdir */
1760 	pgdir = mm->pgd;
1761 	if (pgdir == NULL) {
1762 		rc = 1;
1763 		goto bail;
1764 	}
1765 
1766 	/* Check CPU locality */
1767 	if (user_region && mm_is_thread_local(mm))
1768 		flags |= HPTE_LOCAL_UPDATE;
1769 
1770 #ifndef CONFIG_PPC_64K_PAGES
1771 	/*
1772 	 * If we use 4K pages and our psize is not 4K, then we might
1773 	 * be hitting a special driver mapping, and need to align the
1774 	 * address before we fetch the PTE.
1775 	 *
1776 	 * It could also be a hugepage mapping, in which case this is
1777 	 * not necessary, but it's not harmful, either.
1778 	 */
1779 	if (psize != MMU_PAGE_4K)
1780 		ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1);
1781 #endif /* CONFIG_PPC_64K_PAGES */
1782 
1783 	/* Get PTE and page size from page tables */
1784 	ptep = find_linux_pte(pgdir, ea, &is_thp, &hugeshift);
1785 	if (ptep == NULL || !pte_present(*ptep)) {
1786 		DBG_LOW(" no PTE !\n");
1787 		rc = 1;
1788 		goto bail;
1789 	}
1790 
1791 	if (IS_ENABLED(CONFIG_PPC_4K_PAGES) && !radix_enabled()) {
1792 		if (hugeshift == PMD_SHIFT && psize == MMU_PAGE_16M)
1793 			hugeshift = mmu_psize_defs[MMU_PAGE_16M].shift;
1794 		if (hugeshift == PUD_SHIFT && psize == MMU_PAGE_16G)
1795 			hugeshift = mmu_psize_defs[MMU_PAGE_16G].shift;
1796 	}
1797 
1798 	/*
1799 	 * Add _PAGE_PRESENT to the required access perm. If there are parallel
1800 	 * updates to the pte that can possibly clear _PAGE_PTE, catch that too.
1801 	 *
1802 	 * We can safely use the return pte address in rest of the function
1803 	 * because we do set H_PAGE_BUSY which prevents further updates to pte
1804 	 * from generic code.
1805 	 */
1806 	access |= _PAGE_PRESENT | _PAGE_PTE;
1807 
1808 	/*
1809 	 * Pre-check access permissions (will be re-checked atomically
1810 	 * in __hash_page_XX but this pre-check is a fast path
1811 	 */
1812 	if (!check_pte_access(access, pte_val(*ptep))) {
1813 		DBG_LOW(" no access !\n");
1814 		rc = 1;
1815 		goto bail;
1816 	}
1817 
1818 	if (hugeshift) {
1819 		if (is_thp)
1820 			rc = __hash_page_thp(ea, access, vsid, (pmd_t *)ptep,
1821 					     trap, flags, ssize, psize);
1822 #ifdef CONFIG_HUGETLB_PAGE
1823 		else
1824 			rc = __hash_page_huge(ea, access, vsid, ptep, trap,
1825 					      flags, ssize, hugeshift, psize);
1826 #else
1827 		else {
1828 			/*
1829 			 * if we have hugeshift, and is not transhuge with
1830 			 * hugetlb disabled, something is really wrong.
1831 			 */
1832 			rc = 1;
1833 			WARN_ON(1);
1834 		}
1835 #endif
1836 		if (current->mm == mm)
1837 			check_paca_psize(ea, mm, psize, user_region);
1838 
1839 		goto bail;
1840 	}
1841 
1842 #ifndef CONFIG_PPC_64K_PAGES
1843 	DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep));
1844 #else
1845 	DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep),
1846 		pte_val(*(ptep + PTRS_PER_PTE)));
1847 #endif
1848 	/* Do actual hashing */
1849 #ifdef CONFIG_PPC_64K_PAGES
1850 	/* If H_PAGE_4K_PFN is set, make sure this is a 4k segment */
1851 	if ((pte_val(*ptep) & H_PAGE_4K_PFN) && psize == MMU_PAGE_64K) {
1852 		demote_segment_4k(mm, ea);
1853 		psize = MMU_PAGE_4K;
1854 	}
1855 
1856 	/*
1857 	 * If this PTE is non-cacheable and we have restrictions on
1858 	 * using non cacheable large pages, then we switch to 4k
1859 	 */
1860 	if (mmu_ci_restrictions && psize == MMU_PAGE_64K && pte_ci(*ptep)) {
1861 		if (user_region) {
1862 			demote_segment_4k(mm, ea);
1863 			psize = MMU_PAGE_4K;
1864 		} else if (ea < VMALLOC_END) {
1865 			/*
1866 			 * some driver did a non-cacheable mapping
1867 			 * in vmalloc space, so switch vmalloc
1868 			 * to 4k pages
1869 			 */
1870 			printk(KERN_ALERT "Reducing vmalloc segment "
1871 			       "to 4kB pages because of "
1872 			       "non-cacheable mapping\n");
1873 			psize = mmu_vmalloc_psize = MMU_PAGE_4K;
1874 #ifdef CONFIG_SPU_BASE
1875 			spu_flush_all_slbs(mm);
1876 #endif
1877 		}
1878 	}
1879 
1880 #endif /* CONFIG_PPC_64K_PAGES */
1881 
1882 	if (current->mm == mm)
1883 		check_paca_psize(ea, mm, psize, user_region);
1884 
1885 #ifdef CONFIG_PPC_64K_PAGES
1886 	if (psize == MMU_PAGE_64K)
1887 		rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1888 				     flags, ssize);
1889 	else
1890 #endif /* CONFIG_PPC_64K_PAGES */
1891 	{
1892 		int spp = subpage_protection(mm, ea);
1893 		if (access & spp)
1894 			rc = -2;
1895 		else
1896 			rc = __hash_page_4K(ea, access, vsid, ptep, trap,
1897 					    flags, ssize, spp);
1898 	}
1899 
1900 	/*
1901 	 * Dump some info in case of hash insertion failure, they should
1902 	 * never happen so it is really useful to know if/when they do
1903 	 */
1904 	if (rc == -1)
1905 		hash_failure_debug(ea, access, vsid, trap, ssize, psize,
1906 				   psize, pte_val(*ptep));
1907 #ifndef CONFIG_PPC_64K_PAGES
1908 	DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep));
1909 #else
1910 	DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep),
1911 		pte_val(*(ptep + PTRS_PER_PTE)));
1912 #endif
1913 	DBG_LOW(" -> rc=%d\n", rc);
1914 
1915 bail:
1916 	return rc;
1917 }
1918 EXPORT_SYMBOL_GPL(hash_page_mm);
1919 
hash_page(unsigned long ea,unsigned long access,unsigned long trap,unsigned long dsisr)1920 int hash_page(unsigned long ea, unsigned long access, unsigned long trap,
1921 	      unsigned long dsisr)
1922 {
1923 	unsigned long flags = 0;
1924 	struct mm_struct *mm = current->mm;
1925 
1926 	if ((get_region_id(ea) == VMALLOC_REGION_ID) ||
1927 	    (get_region_id(ea) == IO_REGION_ID))
1928 		mm = &init_mm;
1929 
1930 	if (dsisr & DSISR_NOHPTE)
1931 		flags |= HPTE_NOHPTE_UPDATE;
1932 
1933 	return hash_page_mm(mm, ea, access, trap, flags);
1934 }
1935 EXPORT_SYMBOL_GPL(hash_page);
1936 
DEFINE_INTERRUPT_HANDLER(do_hash_fault)1937 DEFINE_INTERRUPT_HANDLER(do_hash_fault)
1938 {
1939 	unsigned long ea = regs->dar;
1940 	unsigned long dsisr = regs->dsisr;
1941 	unsigned long access = _PAGE_PRESENT | _PAGE_READ;
1942 	unsigned long flags = 0;
1943 	struct mm_struct *mm;
1944 	unsigned int region_id;
1945 	long err;
1946 
1947 	if (unlikely(dsisr & (DSISR_BAD_FAULT_64S | DSISR_KEYFAULT))) {
1948 		hash__do_page_fault(regs);
1949 		return;
1950 	}
1951 
1952 	region_id = get_region_id(ea);
1953 	if ((region_id == VMALLOC_REGION_ID) || (region_id == IO_REGION_ID))
1954 		mm = &init_mm;
1955 	else
1956 		mm = current->mm;
1957 
1958 	if (dsisr & DSISR_NOHPTE)
1959 		flags |= HPTE_NOHPTE_UPDATE;
1960 
1961 	if (dsisr & DSISR_ISSTORE)
1962 		access |= _PAGE_WRITE;
1963 	/*
1964 	 * We set _PAGE_PRIVILEGED only when
1965 	 * kernel mode access kernel space.
1966 	 *
1967 	 * _PAGE_PRIVILEGED is NOT set
1968 	 * 1) when kernel mode access user space
1969 	 * 2) user space access kernel space.
1970 	 */
1971 	access |= _PAGE_PRIVILEGED;
1972 	if (user_mode(regs) || (region_id == USER_REGION_ID))
1973 		access &= ~_PAGE_PRIVILEGED;
1974 
1975 	if (TRAP(regs) == INTERRUPT_INST_STORAGE)
1976 		access |= _PAGE_EXEC;
1977 
1978 	err = hash_page_mm(mm, ea, access, TRAP(regs), flags);
1979 	if (unlikely(err < 0)) {
1980 		// failed to insert a hash PTE due to an hypervisor error
1981 		if (user_mode(regs)) {
1982 			if (IS_ENABLED(CONFIG_PPC_SUBPAGE_PROT) && err == -2)
1983 				_exception(SIGSEGV, regs, SEGV_ACCERR, ea);
1984 			else
1985 				_exception(SIGBUS, regs, BUS_ADRERR, ea);
1986 		} else {
1987 			bad_page_fault(regs, SIGBUS);
1988 		}
1989 		err = 0;
1990 
1991 	} else if (err) {
1992 		hash__do_page_fault(regs);
1993 	}
1994 }
1995 
should_hash_preload(struct mm_struct * mm,unsigned long ea)1996 static bool should_hash_preload(struct mm_struct *mm, unsigned long ea)
1997 {
1998 	int psize = get_slice_psize(mm, ea);
1999 
2000 	/* We only prefault standard pages for now */
2001 	if (unlikely(psize != mm_ctx_user_psize(&mm->context)))
2002 		return false;
2003 
2004 	/*
2005 	 * Don't prefault if subpage protection is enabled for the EA.
2006 	 */
2007 	if (unlikely((psize == MMU_PAGE_4K) && subpage_protection(mm, ea)))
2008 		return false;
2009 
2010 	return true;
2011 }
2012 
hash_preload(struct mm_struct * mm,pte_t * ptep,unsigned long ea,bool is_exec,unsigned long trap)2013 static void hash_preload(struct mm_struct *mm, pte_t *ptep, unsigned long ea,
2014 			 bool is_exec, unsigned long trap)
2015 {
2016 	unsigned long vsid;
2017 	pgd_t *pgdir;
2018 	int rc, ssize, update_flags = 0;
2019 	unsigned long access = _PAGE_PRESENT | _PAGE_READ | (is_exec ? _PAGE_EXEC : 0);
2020 	unsigned long flags;
2021 
2022 	BUG_ON(get_region_id(ea) != USER_REGION_ID);
2023 
2024 	if (!should_hash_preload(mm, ea))
2025 		return;
2026 
2027 	DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
2028 		" trap=%lx\n", mm, mm->pgd, ea, access, trap);
2029 
2030 	/* Get Linux PTE if available */
2031 	pgdir = mm->pgd;
2032 	if (pgdir == NULL)
2033 		return;
2034 
2035 	/* Get VSID */
2036 	ssize = user_segment_size(ea);
2037 	vsid = get_user_vsid(&mm->context, ea, ssize);
2038 	if (!vsid)
2039 		return;
2040 
2041 #ifdef CONFIG_PPC_64K_PAGES
2042 	/* If either H_PAGE_4K_PFN or cache inhibited is set (and we are on
2043 	 * a 64K kernel), then we don't preload, hash_page() will take
2044 	 * care of it once we actually try to access the page.
2045 	 * That way we don't have to duplicate all of the logic for segment
2046 	 * page size demotion here
2047 	 * Called with  PTL held, hence can be sure the value won't change in
2048 	 * between.
2049 	 */
2050 	if ((pte_val(*ptep) & H_PAGE_4K_PFN) || pte_ci(*ptep))
2051 		return;
2052 #endif /* CONFIG_PPC_64K_PAGES */
2053 
2054 	/*
2055 	 * __hash_page_* must run with interrupts off, including PMI interrupts
2056 	 * off, as it sets the H_PAGE_BUSY bit.
2057 	 *
2058 	 * It's otherwise possible for perf interrupts to hit at any time and
2059 	 * may take a hash fault reading the user stack, which could take a
2060 	 * hash miss and deadlock on the same H_PAGE_BUSY bit.
2061 	 *
2062 	 * Interrupts must also be off for the duration of the
2063 	 * mm_is_thread_local test and update, to prevent preempt running the
2064 	 * mm on another CPU (XXX: this may be racy vs kthread_use_mm).
2065 	 */
2066 	powerpc_local_irq_pmu_save(flags);
2067 
2068 	/* Is that local to this CPU ? */
2069 	if (mm_is_thread_local(mm))
2070 		update_flags |= HPTE_LOCAL_UPDATE;
2071 
2072 	/* Hash it in */
2073 #ifdef CONFIG_PPC_64K_PAGES
2074 	if (mm_ctx_user_psize(&mm->context) == MMU_PAGE_64K)
2075 		rc = __hash_page_64K(ea, access, vsid, ptep, trap,
2076 				     update_flags, ssize);
2077 	else
2078 #endif /* CONFIG_PPC_64K_PAGES */
2079 		rc = __hash_page_4K(ea, access, vsid, ptep, trap, update_flags,
2080 				    ssize, subpage_protection(mm, ea));
2081 
2082 	/* Dump some info in case of hash insertion failure, they should
2083 	 * never happen so it is really useful to know if/when they do
2084 	 */
2085 	if (rc == -1)
2086 		hash_failure_debug(ea, access, vsid, trap, ssize,
2087 				   mm_ctx_user_psize(&mm->context),
2088 				   mm_ctx_user_psize(&mm->context),
2089 				   pte_val(*ptep));
2090 
2091 	powerpc_local_irq_pmu_restore(flags);
2092 }
2093 
2094 /*
2095  * This is called at the end of handling a user page fault, when the
2096  * fault has been handled by updating a PTE in the linux page tables.
2097  * We use it to preload an HPTE into the hash table corresponding to
2098  * the updated linux PTE.
2099  *
2100  * This must always be called with the pte lock held.
2101  */
__update_mmu_cache(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)2102 void __update_mmu_cache(struct vm_area_struct *vma, unsigned long address,
2103 		      pte_t *ptep)
2104 {
2105 	/*
2106 	 * We don't need to worry about _PAGE_PRESENT here because we are
2107 	 * called with either mm->page_table_lock held or ptl lock held
2108 	 */
2109 	unsigned long trap;
2110 	bool is_exec;
2111 
2112 	/* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
2113 	if (!pte_young(*ptep) || address >= TASK_SIZE)
2114 		return;
2115 
2116 	/*
2117 	 * We try to figure out if we are coming from an instruction
2118 	 * access fault and pass that down to __hash_page so we avoid
2119 	 * double-faulting on execution of fresh text. We have to test
2120 	 * for regs NULL since init will get here first thing at boot.
2121 	 *
2122 	 * We also avoid filling the hash if not coming from a fault.
2123 	 */
2124 
2125 	trap = current->thread.regs ? TRAP(current->thread.regs) : 0UL;
2126 	switch (trap) {
2127 	case 0x300:
2128 		is_exec = false;
2129 		break;
2130 	case 0x400:
2131 		is_exec = true;
2132 		break;
2133 	default:
2134 		return;
2135 	}
2136 
2137 	hash_preload(vma->vm_mm, ptep, address, is_exec, trap);
2138 }
2139 
2140 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
tm_flush_hash_page(int local)2141 static inline void tm_flush_hash_page(int local)
2142 {
2143 	/*
2144 	 * Transactions are not aborted by tlbiel, only tlbie. Without, syncing a
2145 	 * page back to a block device w/PIO could pick up transactional data
2146 	 * (bad!) so we force an abort here. Before the sync the page will be
2147 	 * made read-only, which will flush_hash_page. BIG ISSUE here: if the
2148 	 * kernel uses a page from userspace without unmapping it first, it may
2149 	 * see the speculated version.
2150 	 */
2151 	if (local && cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
2152 	    MSR_TM_ACTIVE(current->thread.regs->msr)) {
2153 		tm_enable();
2154 		tm_abort(TM_CAUSE_TLBI);
2155 	}
2156 }
2157 #else
tm_flush_hash_page(int local)2158 static inline void tm_flush_hash_page(int local)
2159 {
2160 }
2161 #endif
2162 
2163 /*
2164  * Return the global hash slot, corresponding to the given PTE, which contains
2165  * the HPTE.
2166  */
pte_get_hash_gslot(unsigned long vpn,unsigned long shift,int ssize,real_pte_t rpte,unsigned int subpg_index)2167 unsigned long pte_get_hash_gslot(unsigned long vpn, unsigned long shift,
2168 		int ssize, real_pte_t rpte, unsigned int subpg_index)
2169 {
2170 	unsigned long hash, gslot, hidx;
2171 
2172 	hash = hpt_hash(vpn, shift, ssize);
2173 	hidx = __rpte_to_hidx(rpte, subpg_index);
2174 	if (hidx & _PTEIDX_SECONDARY)
2175 		hash = ~hash;
2176 	gslot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
2177 	gslot += hidx & _PTEIDX_GROUP_IX;
2178 	return gslot;
2179 }
2180 
flush_hash_page(unsigned long vpn,real_pte_t pte,int psize,int ssize,unsigned long flags)2181 void flush_hash_page(unsigned long vpn, real_pte_t pte, int psize, int ssize,
2182 		     unsigned long flags)
2183 {
2184 	unsigned long index, shift, gslot;
2185 	int local = flags & HPTE_LOCAL_UPDATE;
2186 
2187 	DBG_LOW("flush_hash_page(vpn=%016lx)\n", vpn);
2188 	pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
2189 		gslot = pte_get_hash_gslot(vpn, shift, ssize, pte, index);
2190 		DBG_LOW(" sub %ld: gslot=%lx\n", index, gslot);
2191 		/*
2192 		 * We use same base page size and actual psize, because we don't
2193 		 * use these functions for hugepage
2194 		 */
2195 		mmu_hash_ops.hpte_invalidate(gslot, vpn, psize, psize,
2196 					     ssize, local);
2197 	} pte_iterate_hashed_end();
2198 
2199 	tm_flush_hash_page(local);
2200 }
2201 
2202 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
flush_hash_hugepage(unsigned long vsid,unsigned long addr,pmd_t * pmdp,unsigned int psize,int ssize,unsigned long flags)2203 void flush_hash_hugepage(unsigned long vsid, unsigned long addr,
2204 			 pmd_t *pmdp, unsigned int psize, int ssize,
2205 			 unsigned long flags)
2206 {
2207 	int i, max_hpte_count, valid;
2208 	unsigned long s_addr;
2209 	unsigned char *hpte_slot_array;
2210 	unsigned long hidx, shift, vpn, hash, slot;
2211 	int local = flags & HPTE_LOCAL_UPDATE;
2212 
2213 	s_addr = addr & HPAGE_PMD_MASK;
2214 	hpte_slot_array = get_hpte_slot_array(pmdp);
2215 	/*
2216 	 * IF we try to do a HUGE PTE update after a withdraw is done.
2217 	 * we will find the below NULL. This happens when we do
2218 	 * split_huge_pmd
2219 	 */
2220 	if (!hpte_slot_array)
2221 		return;
2222 
2223 	if (mmu_hash_ops.hugepage_invalidate) {
2224 		mmu_hash_ops.hugepage_invalidate(vsid, s_addr, hpte_slot_array,
2225 						 psize, ssize, local);
2226 		goto tm_abort;
2227 	}
2228 	/*
2229 	 * No bluk hpte removal support, invalidate each entry
2230 	 */
2231 	shift = mmu_psize_defs[psize].shift;
2232 	max_hpte_count = HPAGE_PMD_SIZE >> shift;
2233 	for (i = 0; i < max_hpte_count; i++) {
2234 		/*
2235 		 * 8 bits per each hpte entries
2236 		 * 000| [ secondary group (one bit) | hidx (3 bits) | valid bit]
2237 		 */
2238 		valid = hpte_valid(hpte_slot_array, i);
2239 		if (!valid)
2240 			continue;
2241 		hidx =  hpte_hash_index(hpte_slot_array, i);
2242 
2243 		/* get the vpn */
2244 		addr = s_addr + (i * (1ul << shift));
2245 		vpn = hpt_vpn(addr, vsid, ssize);
2246 		hash = hpt_hash(vpn, shift, ssize);
2247 		if (hidx & _PTEIDX_SECONDARY)
2248 			hash = ~hash;
2249 
2250 		slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
2251 		slot += hidx & _PTEIDX_GROUP_IX;
2252 		mmu_hash_ops.hpte_invalidate(slot, vpn, psize,
2253 					     MMU_PAGE_16M, ssize, local);
2254 	}
2255 tm_abort:
2256 	tm_flush_hash_page(local);
2257 }
2258 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2259 
flush_hash_range(unsigned long number,int local)2260 void flush_hash_range(unsigned long number, int local)
2261 {
2262 	if (mmu_hash_ops.flush_hash_range)
2263 		mmu_hash_ops.flush_hash_range(number, local);
2264 	else {
2265 		int i;
2266 		struct ppc64_tlb_batch *batch =
2267 			this_cpu_ptr(&ppc64_tlb_batch);
2268 
2269 		for (i = 0; i < number; i++)
2270 			flush_hash_page(batch->vpn[i], batch->pte[i],
2271 					batch->psize, batch->ssize, local);
2272 	}
2273 }
2274 
hpte_insert_repeating(unsigned long hash,unsigned long vpn,unsigned long pa,unsigned long rflags,unsigned long vflags,int psize,int ssize)2275 long hpte_insert_repeating(unsigned long hash, unsigned long vpn,
2276 			   unsigned long pa, unsigned long rflags,
2277 			   unsigned long vflags, int psize, int ssize)
2278 {
2279 	unsigned long hpte_group;
2280 	long slot;
2281 
2282 repeat:
2283 	hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP;
2284 
2285 	/* Insert into the hash table, primary slot */
2286 	slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags, vflags,
2287 					psize, psize, ssize);
2288 
2289 	/* Primary is full, try the secondary */
2290 	if (unlikely(slot == -1)) {
2291 		hpte_group = (~hash & htab_hash_mask) * HPTES_PER_GROUP;
2292 		slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags,
2293 						vflags | HPTE_V_SECONDARY,
2294 						psize, psize, ssize);
2295 		if (slot == -1) {
2296 			if (mftb() & 0x1)
2297 				hpte_group = (hash & htab_hash_mask) *
2298 						HPTES_PER_GROUP;
2299 
2300 			mmu_hash_ops.hpte_remove(hpte_group);
2301 			goto repeat;
2302 		}
2303 	}
2304 
2305 	return slot;
2306 }
2307 
hpt_clear_stress(void)2308 void hpt_clear_stress(void)
2309 {
2310 	int cpu = raw_smp_processor_id();
2311 	int g;
2312 
2313 	for (g = 0; g < stress_nr_groups(); g++) {
2314 		unsigned long last_group;
2315 		last_group = stress_hpt_struct[cpu].last_group[g];
2316 
2317 		if (last_group != -1UL) {
2318 			int i;
2319 			for (i = 0; i < HPTES_PER_GROUP; i++) {
2320 				if (mmu_hash_ops.hpte_remove(last_group) == -1)
2321 					break;
2322 			}
2323 			stress_hpt_struct[cpu].last_group[g] = -1;
2324 		}
2325 	}
2326 }
2327 
hpt_do_stress(unsigned long ea,unsigned long hpte_group)2328 void hpt_do_stress(unsigned long ea, unsigned long hpte_group)
2329 {
2330 	unsigned long last_group;
2331 	int cpu = raw_smp_processor_id();
2332 
2333 	last_group = stress_hpt_struct[cpu].last_group[stress_nr_groups() - 1];
2334 	if (hpte_group == last_group)
2335 		return;
2336 
2337 	if (last_group != -1UL) {
2338 		int i;
2339 		/*
2340 		 * Concurrent CPUs might be inserting into this group, so
2341 		 * give up after a number of iterations, to prevent a live
2342 		 * lock.
2343 		 */
2344 		for (i = 0; i < HPTES_PER_GROUP; i++) {
2345 			if (mmu_hash_ops.hpte_remove(last_group) == -1)
2346 				break;
2347 		}
2348 		stress_hpt_struct[cpu].last_group[stress_nr_groups() - 1] = -1;
2349 	}
2350 
2351 	if (ea >= PAGE_OFFSET) {
2352 		/*
2353 		 * We would really like to prefetch to get the TLB loaded, then
2354 		 * remove the PTE before returning from fault interrupt, to
2355 		 * increase the hash fault rate.
2356 		 *
2357 		 * Unfortunately QEMU TCG does not model the TLB in a way that
2358 		 * makes this possible, and systemsim (mambo) emulator does not
2359 		 * bring in TLBs with prefetches (although loads/stores do
2360 		 * work for non-CI PTEs).
2361 		 *
2362 		 * So remember this PTE and clear it on the next hash fault.
2363 		 */
2364 		memmove(&stress_hpt_struct[cpu].last_group[1],
2365 			&stress_hpt_struct[cpu].last_group[0],
2366 			(stress_nr_groups() - 1) * sizeof(unsigned long));
2367 		stress_hpt_struct[cpu].last_group[0] = hpte_group;
2368 	}
2369 }
2370 
hash__setup_initial_memory_limit(phys_addr_t first_memblock_base,phys_addr_t first_memblock_size)2371 void hash__setup_initial_memory_limit(phys_addr_t first_memblock_base,
2372 				phys_addr_t first_memblock_size)
2373 {
2374 	/*
2375 	 * We don't currently support the first MEMBLOCK not mapping 0
2376 	 * physical on those processors
2377 	 */
2378 	BUG_ON(first_memblock_base != 0);
2379 
2380 	/*
2381 	 * On virtualized systems the first entry is our RMA region aka VRMA,
2382 	 * non-virtualized 64-bit hash MMU systems don't have a limitation
2383 	 * on real mode access.
2384 	 *
2385 	 * For guests on platforms before POWER9, we clamp the it limit to 1G
2386 	 * to avoid some funky things such as RTAS bugs etc...
2387 	 *
2388 	 * On POWER9 we limit to 1TB in case the host erroneously told us that
2389 	 * the RMA was >1TB. Effective address bits 0:23 are treated as zero
2390 	 * (meaning the access is aliased to zero i.e. addr = addr % 1TB)
2391 	 * for virtual real mode addressing and so it doesn't make sense to
2392 	 * have an area larger than 1TB as it can't be addressed.
2393 	 */
2394 	if (!early_cpu_has_feature(CPU_FTR_HVMODE)) {
2395 		ppc64_rma_size = first_memblock_size;
2396 		if (!early_cpu_has_feature(CPU_FTR_ARCH_300))
2397 			ppc64_rma_size = min_t(u64, ppc64_rma_size, 0x40000000);
2398 		else
2399 			ppc64_rma_size = min_t(u64, ppc64_rma_size,
2400 					       1UL << SID_SHIFT_1T);
2401 
2402 		/* Finally limit subsequent allocations */
2403 		memblock_set_current_limit(ppc64_rma_size);
2404 	} else {
2405 		ppc64_rma_size = ULONG_MAX;
2406 	}
2407 }
2408 
2409 #ifdef CONFIG_DEBUG_FS
2410 
hpt_order_get(void * data,u64 * val)2411 static int hpt_order_get(void *data, u64 *val)
2412 {
2413 	*val = ppc64_pft_size;
2414 	return 0;
2415 }
2416 
hpt_order_set(void * data,u64 val)2417 static int hpt_order_set(void *data, u64 val)
2418 {
2419 	int ret;
2420 
2421 	if (!mmu_hash_ops.resize_hpt)
2422 		return -ENODEV;
2423 
2424 	cpus_read_lock();
2425 	ret = mmu_hash_ops.resize_hpt(val);
2426 	cpus_read_unlock();
2427 
2428 	return ret;
2429 }
2430 
2431 DEFINE_DEBUGFS_ATTRIBUTE(fops_hpt_order, hpt_order_get, hpt_order_set, "%llu\n");
2432 
hash64_debugfs(void)2433 static int __init hash64_debugfs(void)
2434 {
2435 	debugfs_create_file("hpt_order", 0600, arch_debugfs_dir, NULL,
2436 			    &fops_hpt_order);
2437 	return 0;
2438 }
2439 machine_device_initcall(pseries, hash64_debugfs);
2440 #endif /* CONFIG_DEBUG_FS */
2441 
print_system_hash_info(void)2442 void __init print_system_hash_info(void)
2443 {
2444 	pr_info("ppc64_pft_size    = 0x%llx\n", ppc64_pft_size);
2445 
2446 	if (htab_hash_mask)
2447 		pr_info("htab_hash_mask    = 0x%lx\n", htab_hash_mask);
2448 }
2449 
arch_randomize_brk(struct mm_struct * mm)2450 unsigned long arch_randomize_brk(struct mm_struct *mm)
2451 {
2452 	/*
2453 	 * If we are using 1TB segments and we are allowed to randomise
2454 	 * the heap, we can put it above 1TB so it is backed by a 1TB
2455 	 * segment. Otherwise the heap will be in the bottom 1TB
2456 	 * which always uses 256MB segments and this may result in a
2457 	 * performance penalty.
2458 	 */
2459 	if (is_32bit_task())
2460 		return randomize_page(mm->brk, SZ_32M);
2461 	else if (!radix_enabled() && mmu_highuser_ssize == MMU_SEGSIZE_1T)
2462 		return randomize_page(max_t(unsigned long, mm->brk, SZ_1T), SZ_1G);
2463 	else
2464 		return randomize_page(mm->brk, SZ_1G);
2465 }
2466