xref: /qemu/target/arm/gdbstub64.c (revision fc524567087c2537b5103cdfc1d41e4f442892b6)
1 /*
2  * ARM gdb server stub: AArch64 specific functions.
3  *
4  * Copyright (c) 2013 SUSE LINUX Products GmbH
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 #include "qemu/log.h"
21 #include "cpu.h"
22 #include "internals.h"
23 #include "gdbstub/helpers.h"
24 #include "gdbstub/commands.h"
25 #include "tcg/mte_helper.h"
26 #if defined(CONFIG_USER_ONLY) && defined(CONFIG_LINUX)
27 #include <sys/prctl.h>
28 #include "mte_user_helper.h"
29 #endif
30 #ifdef CONFIG_TCG
31 #include "accel/tcg/cpu-mmu-index.h"
32 #include "exec/target_page.h"
33 #endif
34 
aarch64_cpu_gdb_read_register(CPUState * cs,GByteArray * mem_buf,int n)35 int aarch64_cpu_gdb_read_register(CPUState *cs, GByteArray *mem_buf, int n)
36 {
37     ARMCPU *cpu = ARM_CPU(cs);
38     CPUARMState *env = &cpu->env;
39 
40     if (n < 31) {
41         /* Core integer register.  */
42         return gdb_get_reg64(mem_buf, env->xregs[n]);
43     }
44     switch (n) {
45     case 31:
46         return gdb_get_reg64(mem_buf, env->xregs[31]);
47     case 32:
48         return gdb_get_reg64(mem_buf, env->pc);
49     case 33:
50         return gdb_get_reg32(mem_buf, pstate_read(env));
51     }
52     /* Unknown register.  */
53     return 0;
54 }
55 
aarch64_cpu_gdb_write_register(CPUState * cs,uint8_t * mem_buf,int n)56 int aarch64_cpu_gdb_write_register(CPUState *cs, uint8_t *mem_buf, int n)
57 {
58     ARMCPU *cpu = ARM_CPU(cs);
59     CPUARMState *env = &cpu->env;
60     uint64_t tmp;
61 
62     tmp = ldq_p(mem_buf);
63 
64     if (n < 31) {
65         /* Core integer register.  */
66         env->xregs[n] = tmp;
67         return 8;
68     }
69     switch (n) {
70     case 31:
71         env->xregs[31] = tmp;
72         return 8;
73     case 32:
74         env->pc = tmp;
75         return 8;
76     case 33:
77         /* CPSR */
78         pstate_write(env, tmp);
79         return 4;
80     }
81     /* Unknown register.  */
82     return 0;
83 }
84 
aarch64_gdb_get_fpu_reg(CPUState * cs,GByteArray * buf,int reg)85 int aarch64_gdb_get_fpu_reg(CPUState *cs, GByteArray *buf, int reg)
86 {
87     ARMCPU *cpu = ARM_CPU(cs);
88     CPUARMState *env = &cpu->env;
89 
90     switch (reg) {
91     case 0 ... 31:
92     {
93         /* 128 bit FP register - quads are in LE order */
94         uint64_t *q = aa64_vfp_qreg(env, reg);
95         return gdb_get_reg128(buf, q[1], q[0]);
96     }
97     case 32:
98         /* FPSR */
99         return gdb_get_reg32(buf, vfp_get_fpsr(env));
100     case 33:
101         /* FPCR */
102         return gdb_get_reg32(buf, vfp_get_fpcr(env));
103     default:
104         return 0;
105     }
106 }
107 
aarch64_gdb_set_fpu_reg(CPUState * cs,uint8_t * buf,int reg)108 int aarch64_gdb_set_fpu_reg(CPUState *cs, uint8_t *buf, int reg)
109 {
110     ARMCPU *cpu = ARM_CPU(cs);
111     CPUARMState *env = &cpu->env;
112 
113     switch (reg) {
114     case 0 ... 31:
115         /* 128 bit FP register */
116         {
117             uint64_t *q = aa64_vfp_qreg(env, reg);
118             q[0] = ldq_le_p(buf);
119             q[1] = ldq_le_p(buf + 8);
120             return 16;
121         }
122     case 32:
123         /* FPSR */
124         vfp_set_fpsr(env, ldl_p(buf));
125         return 4;
126     case 33:
127         /* FPCR */
128         vfp_set_fpcr(env, ldl_p(buf));
129         return 4;
130     default:
131         return 0;
132     }
133 }
134 
aarch64_gdb_get_sve_reg(CPUState * cs,GByteArray * buf,int reg)135 int aarch64_gdb_get_sve_reg(CPUState *cs, GByteArray *buf, int reg)
136 {
137     ARMCPU *cpu = ARM_CPU(cs);
138     CPUARMState *env = &cpu->env;
139 
140     switch (reg) {
141     /* The first 32 registers are the zregs */
142     case 0 ... 31:
143     {
144         int vq, len = 0;
145         for (vq = 0; vq < cpu->sve_max_vq; vq++) {
146             len += gdb_get_reg128(buf,
147                                   env->vfp.zregs[reg].d[vq * 2 + 1],
148                                   env->vfp.zregs[reg].d[vq * 2]);
149         }
150         return len;
151     }
152     case 32:
153         return gdb_get_reg32(buf, vfp_get_fpsr(env));
154     case 33:
155         return gdb_get_reg32(buf, vfp_get_fpcr(env));
156     /* then 16 predicates and the ffr */
157     case 34 ... 50:
158     {
159         int preg = reg - 34;
160         int vq, len = 0;
161         for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) {
162             len += gdb_get_reg64(buf, env->vfp.pregs[preg].p[vq / 4]);
163         }
164         return len;
165     }
166     case 51:
167     {
168         /*
169          * We report in Vector Granules (VG) which is 64bit in a Z reg
170          * while the ZCR works in Vector Quads (VQ) which is 128bit chunks.
171          */
172         int vq = sve_vqm1_for_el(env, arm_current_el(env)) + 1;
173         return gdb_get_reg64(buf, vq * 2);
174     }
175     default:
176         /* gdbstub asked for something out our range */
177         qemu_log_mask(LOG_UNIMP, "%s: out of range register %d", __func__, reg);
178         break;
179     }
180 
181     return 0;
182 }
183 
aarch64_gdb_set_sve_reg(CPUState * cs,uint8_t * buf,int reg)184 int aarch64_gdb_set_sve_reg(CPUState *cs, uint8_t *buf, int reg)
185 {
186     ARMCPU *cpu = ARM_CPU(cs);
187     CPUARMState *env = &cpu->env;
188 
189     /* The first 32 registers are the zregs */
190     switch (reg) {
191     /* The first 32 registers are the zregs */
192     case 0 ... 31:
193     {
194         int vq, len = 0;
195         uint64_t *p = (uint64_t *) buf;
196         for (vq = 0; vq < cpu->sve_max_vq; vq++) {
197             env->vfp.zregs[reg].d[vq * 2 + 1] = *p++;
198             env->vfp.zregs[reg].d[vq * 2] = *p++;
199             len += 16;
200         }
201         return len;
202     }
203     case 32:
204         vfp_set_fpsr(env, *(uint32_t *)buf);
205         return 4;
206     case 33:
207         vfp_set_fpcr(env, *(uint32_t *)buf);
208         return 4;
209     case 34 ... 50:
210     {
211         int preg = reg - 34;
212         int vq, len = 0;
213         uint64_t *p = (uint64_t *) buf;
214         for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) {
215             env->vfp.pregs[preg].p[vq / 4] = *p++;
216             len += 8;
217         }
218         return len;
219     }
220     case 51:
221         /* cannot set vg via gdbstub */
222         return 0;
223     default:
224         /* gdbstub asked for something out our range */
225         break;
226     }
227 
228     return 0;
229 }
230 
aarch64_gdb_get_pauth_reg(CPUState * cs,GByteArray * buf,int reg)231 int aarch64_gdb_get_pauth_reg(CPUState *cs, GByteArray *buf, int reg)
232 {
233     ARMCPU *cpu = ARM_CPU(cs);
234     CPUARMState *env = &cpu->env;
235 
236     switch (reg) {
237     case 0: /* pauth_dmask */
238     case 1: /* pauth_cmask */
239     case 2: /* pauth_dmask_high */
240     case 3: /* pauth_cmask_high */
241         /*
242          * Note that older versions of this feature only contained
243          * pauth_{d,c}mask, for use with Linux user processes, and
244          * thus exclusively in the low half of the address space.
245          *
246          * To support system mode, and to debug kernels, two new regs
247          * were added to cover the high half of the address space.
248          * For the purpose of pauth_ptr_mask, we can use any well-formed
249          * address within the address space half -- here, 0 and -1.
250          */
251         {
252             bool is_data = !(reg & 1);
253             bool is_high = reg & 2;
254             ARMMMUIdx mmu_idx = arm_stage1_mmu_idx(env);
255             ARMVAParameters param;
256 
257             param = aa64_va_parameters(env, -is_high, mmu_idx, is_data, false);
258             return gdb_get_reg64(buf, pauth_ptr_mask(param));
259         }
260     default:
261         return 0;
262     }
263 }
264 
aarch64_gdb_set_pauth_reg(CPUState * cs,uint8_t * buf,int reg)265 int aarch64_gdb_set_pauth_reg(CPUState *cs, uint8_t *buf, int reg)
266 {
267     /* All pseudo registers are read-only. */
268     return 0;
269 }
270 
output_vector_union_type(GDBFeatureBuilder * builder,int reg_width,const char * name)271 static void output_vector_union_type(GDBFeatureBuilder *builder, int reg_width,
272                                      const char *name)
273 {
274     struct TypeSize {
275         const char *gdb_type;
276         short size;
277         char sz, suffix;
278     };
279 
280     static const struct TypeSize vec_lanes[] = {
281         /* quads */
282         { "uint128", 128, 'q', 'u' },
283         { "int128", 128, 'q', 's' },
284         /* 64 bit */
285         { "ieee_double", 64, 'd', 'f' },
286         { "uint64", 64, 'd', 'u' },
287         { "int64", 64, 'd', 's' },
288         /* 32 bit */
289         { "ieee_single", 32, 's', 'f' },
290         { "uint32", 32, 's', 'u' },
291         { "int32", 32, 's', 's' },
292         /* 16 bit */
293         { "ieee_half", 16, 'h', 'f' },
294         { "uint16", 16, 'h', 'u' },
295         { "int16", 16, 'h', 's' },
296         /* bytes */
297         { "uint8", 8, 'b', 'u' },
298         { "int8", 8, 'b', 's' },
299     };
300 
301     static const char suf[] = { 'b', 'h', 's', 'd', 'q' };
302     int i, j;
303 
304     /* First define types and totals in a whole VL */
305     for (i = 0; i < ARRAY_SIZE(vec_lanes); i++) {
306         gdb_feature_builder_append_tag(
307             builder, "<vector id=\"%s%c%c\" type=\"%s\" count=\"%d\"/>",
308             name, vec_lanes[i].sz, vec_lanes[i].suffix,
309             vec_lanes[i].gdb_type, reg_width / vec_lanes[i].size);
310     }
311 
312     /*
313      * Now define a union for each size group containing unsigned and
314      * signed and potentially float versions of each size from 128 to
315      * 8 bits.
316      */
317     for (i = 0; i < ARRAY_SIZE(suf); i++) {
318         int bits = 8 << i;
319 
320         gdb_feature_builder_append_tag(builder, "<union id=\"%sn%c\">",
321                                        name, suf[i]);
322         for (j = 0; j < ARRAY_SIZE(vec_lanes); j++) {
323             if (vec_lanes[j].size == bits) {
324                 gdb_feature_builder_append_tag(
325                     builder, "<field name=\"%c\" type=\"%s%c%c\"/>",
326                     vec_lanes[j].suffix, name,
327                     vec_lanes[j].sz, vec_lanes[j].suffix);
328             }
329         }
330         gdb_feature_builder_append_tag(builder, "</union>");
331     }
332 
333     /* And now the final union of unions */
334     gdb_feature_builder_append_tag(builder, "<union id=\"%s\">", name);
335     for (i = ARRAY_SIZE(suf) - 1; i >= 0; i--) {
336         gdb_feature_builder_append_tag(builder,
337                                        "<field name=\"%c\" type=\"%sn%c\"/>",
338                                        suf[i], name, suf[i]);
339     }
340     gdb_feature_builder_append_tag(builder, "</union>");
341 }
342 
arm_gen_dynamic_svereg_feature(CPUState * cs,int base_reg)343 GDBFeature *arm_gen_dynamic_svereg_feature(CPUState *cs, int base_reg)
344 {
345     ARMCPU *cpu = ARM_CPU(cs);
346     int reg_width = cpu->sve_max_vq * 128;
347     int pred_width = cpu->sve_max_vq * 16;
348     GDBFeatureBuilder builder;
349     char *name;
350     int reg = 0;
351     int i;
352 
353     gdb_feature_builder_init(&builder, &cpu->dyn_svereg_feature.desc,
354                              "org.gnu.gdb.aarch64.sve", "sve-registers.xml",
355                              base_reg);
356 
357     /* Create the vector union type. */
358     output_vector_union_type(&builder, reg_width, "svev");
359 
360     /* Create the predicate vector type. */
361     gdb_feature_builder_append_tag(
362         &builder, "<vector id=\"svep\" type=\"uint8\" count=\"%d\"/>",
363         pred_width / 8);
364 
365     /* Define the vector registers. */
366     for (i = 0; i < 32; i++) {
367         name = g_strdup_printf("z%d", i);
368         gdb_feature_builder_append_reg(&builder, name, reg_width, reg++,
369                                        "svev", NULL);
370     }
371 
372     /* fpscr & status registers */
373     gdb_feature_builder_append_reg(&builder, "fpsr", 32, reg++,
374                                    "int", "float");
375     gdb_feature_builder_append_reg(&builder, "fpcr", 32, reg++,
376                                    "int", "float");
377 
378     /* Define the predicate registers. */
379     for (i = 0; i < 16; i++) {
380         name = g_strdup_printf("p%d", i);
381         gdb_feature_builder_append_reg(&builder, name, pred_width, reg++,
382                                        "svep", NULL);
383     }
384     gdb_feature_builder_append_reg(&builder, "ffr", pred_width, reg++,
385                                    "svep", "vector");
386 
387     /* Define the vector length pseudo-register. */
388     gdb_feature_builder_append_reg(&builder, "vg", 64, reg++, "int", NULL);
389 
390     gdb_feature_builder_end(&builder);
391 
392     return &cpu->dyn_svereg_feature.desc;
393 }
394 
395 #ifdef CONFIG_USER_ONLY
aarch64_gdb_get_tag_ctl_reg(CPUState * cs,GByteArray * buf,int reg)396 int aarch64_gdb_get_tag_ctl_reg(CPUState *cs, GByteArray *buf, int reg)
397 {
398     ARMCPU *cpu = ARM_CPU(cs);
399     CPUARMState *env = &cpu->env;
400     uint64_t tcf0;
401 
402     assert(reg == 0);
403 
404     tcf0 = extract64(env->cp15.sctlr_el[1], 38, 2);
405 
406     return gdb_get_reg64(buf, tcf0);
407 }
408 
aarch64_gdb_set_tag_ctl_reg(CPUState * cs,uint8_t * buf,int reg)409 int aarch64_gdb_set_tag_ctl_reg(CPUState *cs, uint8_t *buf, int reg)
410 {
411 #if defined(CONFIG_LINUX)
412     ARMCPU *cpu = ARM_CPU(cs);
413     CPUARMState *env = &cpu->env;
414 
415     uint8_t tcf;
416 
417     assert(reg == 0);
418 
419     tcf = *buf << PR_MTE_TCF_SHIFT;
420 
421     if (!tcf) {
422         return 0;
423     }
424 
425     /*
426      * 'tag_ctl' register is actually a "pseudo-register" provided by GDB to
427      * expose options regarding the type of MTE fault that can be controlled at
428      * runtime.
429      */
430     arm_set_mte_tcf0(env, tcf);
431 
432     return 1;
433 #else
434     return 0;
435 #endif
436 }
437 #endif /* CONFIG_USER_ONLY */
438 
439 #ifdef CONFIG_TCG
handle_q_memtag(GArray * params,void * user_ctx)440 static void handle_q_memtag(GArray *params, void *user_ctx)
441 {
442     ARMCPU *cpu = ARM_CPU(user_ctx);
443     CPUARMState *env = &cpu->env;
444     uint32_t mmu_index;
445 
446     uint64_t addr = gdb_get_cmd_param(params, 0)->val_ull;
447     uint64_t len = gdb_get_cmd_param(params, 1)->val_ul;
448     int type = gdb_get_cmd_param(params, 2)->val_ul;
449 
450     uint8_t *tags;
451     uint8_t addr_tag;
452 
453     g_autoptr(GString) str_buf = g_string_new(NULL);
454 
455     /*
456      * GDB does not query multiple tags for a memory range on remote targets, so
457      * that's not supported either by gdbstub.
458      */
459     if (len != 1) {
460         gdb_put_packet("E02");
461     }
462 
463     /* GDB never queries a tag different from an allocation tag (type 1). */
464     if (type != 1) {
465         gdb_put_packet("E03");
466     }
467 
468     /* Find out the current translation regime for probe. */
469     mmu_index = cpu_mmu_index(env_cpu(env), false);
470     /* Note that tags are packed here (2 tags packed in one byte). */
471     tags = allocation_tag_mem_probe(env, mmu_index, addr, MMU_DATA_LOAD, 1,
472                                     MMU_DATA_LOAD, true, 0);
473     if (!tags) {
474         /* Address is not in a tagged region. */
475         gdb_put_packet("E04");
476         return;
477     }
478 
479     /* Unpack tag from byte. */
480     addr_tag = load_tag1(addr, tags);
481     g_string_printf(str_buf, "m%.2x", addr_tag);
482 
483     gdb_put_packet(str_buf->str);
484 }
485 
handle_q_isaddresstagged(GArray * params,void * user_ctx)486 static void handle_q_isaddresstagged(GArray *params, void *user_ctx)
487 {
488     ARMCPU *cpu = ARM_CPU(user_ctx);
489     CPUARMState *env = &cpu->env;
490     uint32_t mmu_index;
491 
492     uint64_t addr = gdb_get_cmd_param(params, 0)->val_ull;
493 
494     uint8_t *tags;
495     const char *reply;
496 
497     /* Find out the current translation regime for probe. */
498     mmu_index = cpu_mmu_index(env_cpu(env), false);
499     tags = allocation_tag_mem_probe(env, mmu_index, addr, MMU_DATA_LOAD, 1,
500                                     MMU_DATA_LOAD, true, 0);
501     reply = tags ? "01" : "00";
502 
503     gdb_put_packet(reply);
504 }
505 
handle_Q_memtag(GArray * params,void * user_ctx)506 static void handle_Q_memtag(GArray *params, void *user_ctx)
507 {
508     ARMCPU *cpu = ARM_CPU(user_ctx);
509     CPUARMState *env = &cpu->env;
510     uint32_t mmu_index;
511 
512     uint64_t start_addr = gdb_get_cmd_param(params, 0)->val_ull;
513     uint64_t len = gdb_get_cmd_param(params, 1)->val_ul;
514     int type = gdb_get_cmd_param(params, 2)->val_ul;
515     char const *new_tags_str = gdb_get_cmd_param(params, 3)->data;
516 
517     uint64_t end_addr;
518 
519     int num_new_tags;
520     uint8_t *tags;
521 
522     g_autoptr(GByteArray) new_tags = g_byte_array_new();
523 
524     /*
525      * Only the allocation tag (i.e. type 1) can be set at the stub side.
526      */
527     if (type != 1) {
528         gdb_put_packet("E02");
529         return;
530     }
531 
532     end_addr = start_addr + (len - 1); /* 'len' is always >= 1 */
533     /* Check if request's memory range does not cross page boundaries. */
534     if ((start_addr ^ end_addr) & TARGET_PAGE_MASK) {
535         gdb_put_packet("E03");
536         return;
537     }
538 
539     /*
540      * Get all tags in the page starting from the tag of the start address.
541      * Note that there are two tags packed into a single byte here.
542      */
543     /* Find out the current translation regime for probe. */
544     mmu_index = cpu_mmu_index(env_cpu(env), false);
545     tags = allocation_tag_mem_probe(env, mmu_index, start_addr, MMU_DATA_STORE,
546                                     1, MMU_DATA_STORE, true, 0);
547     if (!tags) {
548         /* Address is not in a tagged region. */
549         gdb_put_packet("E04");
550         return;
551     }
552 
553     /* Convert tags provided by GDB, 2 hex digits per tag. */
554     num_new_tags = strlen(new_tags_str) / 2;
555     gdb_hextomem(new_tags, new_tags_str, num_new_tags);
556 
557     uint64_t address = start_addr;
558     int new_tag_index = 0;
559     while (address <= end_addr) {
560         uint8_t new_tag;
561         int packed_index;
562 
563         /*
564          * Find packed tag index from unpacked tag index. There are two tags
565          * in one packed index (one tag per nibble).
566          */
567         packed_index = new_tag_index / 2;
568 
569         new_tag = new_tags->data[new_tag_index % num_new_tags];
570         store_tag1(address, tags + packed_index, new_tag);
571 
572         address += TAG_GRANULE;
573         new_tag_index++;
574     }
575 
576     gdb_put_packet("OK");
577 }
578 
579 enum Command {
580     qMemTags,
581     qIsAddressTagged,
582     QMemTags,
583     NUM_CMDS
584 };
585 
586 static const GdbCmdParseEntry cmd_handler_table[NUM_CMDS] = {
587     [qMemTags] = {
588         .handler = handle_q_memtag,
589         .cmd_startswith = true,
590         .cmd = "MemTags:",
591         .schema = "L,l:l0",
592         .need_cpu_context = true
593     },
594     [qIsAddressTagged] = {
595         .handler = handle_q_isaddresstagged,
596         .cmd_startswith = true,
597         .cmd = "IsAddressTagged:",
598         .schema = "L0",
599         .need_cpu_context = true
600     },
601     [QMemTags] = {
602         .handler = handle_Q_memtag,
603         .cmd_startswith = true,
604         .cmd = "MemTags:",
605         .schema = "L,l:l:s0",
606         .need_cpu_context = true
607     },
608 };
609 #endif /* CONFIG_TCG */
610 
aarch64_cpu_register_gdb_commands(ARMCPU * cpu,GString * qsupported,GPtrArray * qtable,GPtrArray * stable)611 void aarch64_cpu_register_gdb_commands(ARMCPU *cpu, GString *qsupported,
612                                        GPtrArray *qtable, GPtrArray *stable)
613 {
614     /* MTE */
615 #ifdef CONFIG_TCG
616     if (cpu_isar_feature(aa64_mte, cpu)) {
617         g_string_append(qsupported, ";memory-tagging+");
618 
619         g_ptr_array_add(qtable, (gpointer) &cmd_handler_table[qMemTags]);
620         g_ptr_array_add(qtable, (gpointer) &cmd_handler_table[qIsAddressTagged]);
621         g_ptr_array_add(stable, (gpointer) &cmd_handler_table[QMemTags]);
622     }
623 #endif
624 }
625