1 /* Freescale Enhanced Local Bus Controller NAND driver
2  *
3  * Copyright © 2006-2007, 2010 Freescale Semiconductor
4  *
5  * Authors: Nick Spence <nick.spence@freescale.com>,
6  *          Scott Wood <scottwood@freescale.com>
7  *          Jack Lan <jack.lan@freescale.com>
8  *          Roy Zang <tie-fei.zang@freescale.com>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
23  */
24 
25 #include <linux/module.h>
26 #include <linux/types.h>
27 #include <linux/init.h>
28 #include <linux/kernel.h>
29 #include <linux/string.h>
30 #include <linux/ioport.h>
31 #include <linux/of_platform.h>
32 #include <linux/platform_device.h>
33 #include <linux/slab.h>
34 #include <linux/interrupt.h>
35 
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/nand.h>
38 #include <linux/mtd/nand_ecc.h>
39 #include <linux/mtd/partitions.h>
40 
41 #include <asm/io.h>
42 #include <asm/fsl_lbc.h>
43 
44 #define MAX_BANKS 8
45 #define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */
46 #define FCM_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait for FCM */
47 
48 /* mtd information per set */
49 
50 struct fsl_elbc_mtd {
51 	struct mtd_info mtd;
52 	struct nand_chip chip;
53 	struct fsl_lbc_ctrl *ctrl;
54 
55 	struct device *dev;
56 	int bank;               /* Chip select bank number           */
57 	u8 __iomem *vbase;      /* Chip select base virtual address  */
58 	int page_size;          /* NAND page size (0=512, 1=2048)    */
59 	unsigned int fmr;       /* FCM Flash Mode Register value     */
60 };
61 
62 /* Freescale eLBC FCM controller information */
63 
64 struct fsl_elbc_fcm_ctrl {
65 	struct nand_hw_control controller;
66 	struct fsl_elbc_mtd *chips[MAX_BANKS];
67 
68 	u8 __iomem *addr;        /* Address of assigned FCM buffer        */
69 	unsigned int page;       /* Last page written to / read from      */
70 	unsigned int read_bytes; /* Number of bytes read during command   */
71 	unsigned int column;     /* Saved column from SEQIN               */
72 	unsigned int index;      /* Pointer to next byte to 'read'        */
73 	unsigned int status;     /* status read from LTESR after last op  */
74 	unsigned int mdr;        /* UPM/FCM Data Register value           */
75 	unsigned int use_mdr;    /* Non zero if the MDR is to be set      */
76 	unsigned int oob;        /* Non zero if operating on OOB data     */
77 	unsigned int counter;	 /* counter for the initializations	  */
78 };
79 
80 /* These map to the positions used by the FCM hardware ECC generator */
81 
82 /* Small Page FLASH with FMR[ECCM] = 0 */
83 static struct nand_ecclayout fsl_elbc_oob_sp_eccm0 = {
84 	.eccbytes = 3,
85 	.eccpos = {6, 7, 8},
86 	.oobfree = { {0, 5}, {9, 7} },
87 };
88 
89 /* Small Page FLASH with FMR[ECCM] = 1 */
90 static struct nand_ecclayout fsl_elbc_oob_sp_eccm1 = {
91 	.eccbytes = 3,
92 	.eccpos = {8, 9, 10},
93 	.oobfree = { {0, 5}, {6, 2}, {11, 5} },
94 };
95 
96 /* Large Page FLASH with FMR[ECCM] = 0 */
97 static struct nand_ecclayout fsl_elbc_oob_lp_eccm0 = {
98 	.eccbytes = 12,
99 	.eccpos = {6, 7, 8, 22, 23, 24, 38, 39, 40, 54, 55, 56},
100 	.oobfree = { {1, 5}, {9, 13}, {25, 13}, {41, 13}, {57, 7} },
101 };
102 
103 /* Large Page FLASH with FMR[ECCM] = 1 */
104 static struct nand_ecclayout fsl_elbc_oob_lp_eccm1 = {
105 	.eccbytes = 12,
106 	.eccpos = {8, 9, 10, 24, 25, 26, 40, 41, 42, 56, 57, 58},
107 	.oobfree = { {1, 7}, {11, 13}, {27, 13}, {43, 13}, {59, 5} },
108 };
109 
110 /*
111  * fsl_elbc_oob_lp_eccm* specify that LP NAND's OOB free area starts at offset
112  * 1, so we have to adjust bad block pattern. This pattern should be used for
113  * x8 chips only. So far hardware does not support x16 chips anyway.
114  */
115 static u8 scan_ff_pattern[] = { 0xff, };
116 
117 static struct nand_bbt_descr largepage_memorybased = {
118 	.options = 0,
119 	.offs = 0,
120 	.len = 1,
121 	.pattern = scan_ff_pattern,
122 };
123 
124 /*
125  * ELBC may use HW ECC, so that OOB offsets, that NAND core uses for bbt,
126  * interfere with ECC positions, that's why we implement our own descriptors.
127  * OOB {11, 5}, works for both SP and LP chips, with ECCM = 1 and ECCM = 0.
128  */
129 static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
130 static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
131 
132 static struct nand_bbt_descr bbt_main_descr = {
133 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
134 		   NAND_BBT_2BIT | NAND_BBT_VERSION,
135 	.offs =	11,
136 	.len = 4,
137 	.veroffs = 15,
138 	.maxblocks = 4,
139 	.pattern = bbt_pattern,
140 };
141 
142 static struct nand_bbt_descr bbt_mirror_descr = {
143 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
144 		   NAND_BBT_2BIT | NAND_BBT_VERSION,
145 	.offs =	11,
146 	.len = 4,
147 	.veroffs = 15,
148 	.maxblocks = 4,
149 	.pattern = mirror_pattern,
150 };
151 
152 /*=================================*/
153 
154 /*
155  * Set up the FCM hardware block and page address fields, and the fcm
156  * structure addr field to point to the correct FCM buffer in memory
157  */
set_addr(struct mtd_info * mtd,int column,int page_addr,int oob)158 static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
159 {
160 	struct nand_chip *chip = mtd->priv;
161 	struct fsl_elbc_mtd *priv = chip->priv;
162 	struct fsl_lbc_ctrl *ctrl = priv->ctrl;
163 	struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
164 	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
165 	int buf_num;
166 
167 	elbc_fcm_ctrl->page = page_addr;
168 
169 	if (priv->page_size) {
170 		/*
171 		 * large page size chip : FPAR[PI] save the lowest 6 bits,
172 		 *                        FBAR[BLK] save the other bits.
173 		 */
174 		out_be32(&lbc->fbar, page_addr >> 6);
175 		out_be32(&lbc->fpar,
176 		         ((page_addr << FPAR_LP_PI_SHIFT) & FPAR_LP_PI) |
177 		         (oob ? FPAR_LP_MS : 0) | column);
178 		buf_num = (page_addr & 1) << 2;
179 	} else {
180 		/*
181 		 * small page size chip : FPAR[PI] save the lowest 5 bits,
182 		 *                        FBAR[BLK] save the other bits.
183 		 */
184 		out_be32(&lbc->fbar, page_addr >> 5);
185 		out_be32(&lbc->fpar,
186 		         ((page_addr << FPAR_SP_PI_SHIFT) & FPAR_SP_PI) |
187 		         (oob ? FPAR_SP_MS : 0) | column);
188 		buf_num = page_addr & 7;
189 	}
190 
191 	elbc_fcm_ctrl->addr = priv->vbase + buf_num * 1024;
192 	elbc_fcm_ctrl->index = column;
193 
194 	/* for OOB data point to the second half of the buffer */
195 	if (oob)
196 		elbc_fcm_ctrl->index += priv->page_size ? 2048 : 512;
197 
198 	dev_vdbg(priv->dev, "set_addr: bank=%d, "
199 			    "elbc_fcm_ctrl->addr=0x%p (0x%p), "
200 	                    "index %x, pes %d ps %d\n",
201 		 buf_num, elbc_fcm_ctrl->addr, priv->vbase,
202 		 elbc_fcm_ctrl->index,
203 	         chip->phys_erase_shift, chip->page_shift);
204 }
205 
206 /*
207  * execute FCM command and wait for it to complete
208  */
fsl_elbc_run_command(struct mtd_info * mtd)209 static int fsl_elbc_run_command(struct mtd_info *mtd)
210 {
211 	struct nand_chip *chip = mtd->priv;
212 	struct fsl_elbc_mtd *priv = chip->priv;
213 	struct fsl_lbc_ctrl *ctrl = priv->ctrl;
214 	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
215 	struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
216 
217 	/* Setup the FMR[OP] to execute without write protection */
218 	out_be32(&lbc->fmr, priv->fmr | 3);
219 	if (elbc_fcm_ctrl->use_mdr)
220 		out_be32(&lbc->mdr, elbc_fcm_ctrl->mdr);
221 
222 	dev_vdbg(priv->dev,
223 	         "fsl_elbc_run_command: fmr=%08x fir=%08x fcr=%08x\n",
224 	         in_be32(&lbc->fmr), in_be32(&lbc->fir), in_be32(&lbc->fcr));
225 	dev_vdbg(priv->dev,
226 	         "fsl_elbc_run_command: fbar=%08x fpar=%08x "
227 	         "fbcr=%08x bank=%d\n",
228 	         in_be32(&lbc->fbar), in_be32(&lbc->fpar),
229 	         in_be32(&lbc->fbcr), priv->bank);
230 
231 	ctrl->irq_status = 0;
232 	/* execute special operation */
233 	out_be32(&lbc->lsor, priv->bank);
234 
235 	/* wait for FCM complete flag or timeout */
236 	wait_event_timeout(ctrl->irq_wait, ctrl->irq_status,
237 	                   FCM_TIMEOUT_MSECS * HZ/1000);
238 	elbc_fcm_ctrl->status = ctrl->irq_status;
239 	/* store mdr value in case it was needed */
240 	if (elbc_fcm_ctrl->use_mdr)
241 		elbc_fcm_ctrl->mdr = in_be32(&lbc->mdr);
242 
243 	elbc_fcm_ctrl->use_mdr = 0;
244 
245 	if (elbc_fcm_ctrl->status != LTESR_CC) {
246 		dev_info(priv->dev,
247 		         "command failed: fir %x fcr %x status %x mdr %x\n",
248 		         in_be32(&lbc->fir), in_be32(&lbc->fcr),
249 			 elbc_fcm_ctrl->status, elbc_fcm_ctrl->mdr);
250 		return -EIO;
251 	}
252 
253 	if (chip->ecc.mode != NAND_ECC_HW)
254 		return 0;
255 
256 	if (elbc_fcm_ctrl->read_bytes == mtd->writesize + mtd->oobsize) {
257 		uint32_t lteccr = in_be32(&lbc->lteccr);
258 		/*
259 		 * if command was a full page read and the ELBC
260 		 * has the LTECCR register, then bits 12-15 (ppc order) of
261 		 * LTECCR indicates which 512 byte sub-pages had fixed errors.
262 		 * bits 28-31 are uncorrectable errors, marked elsewhere.
263 		 * for small page nand only 1 bit is used.
264 		 * if the ELBC doesn't have the lteccr register it reads 0
265 		 */
266 		if (lteccr & 0x000F000F)
267 			out_be32(&lbc->lteccr, 0x000F000F); /* clear lteccr */
268 		if (lteccr & 0x000F0000)
269 			mtd->ecc_stats.corrected++;
270 	}
271 
272 	return 0;
273 }
274 
fsl_elbc_do_read(struct nand_chip * chip,int oob)275 static void fsl_elbc_do_read(struct nand_chip *chip, int oob)
276 {
277 	struct fsl_elbc_mtd *priv = chip->priv;
278 	struct fsl_lbc_ctrl *ctrl = priv->ctrl;
279 	struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
280 
281 	if (priv->page_size) {
282 		out_be32(&lbc->fir,
283 		         (FIR_OP_CM0 << FIR_OP0_SHIFT) |
284 		         (FIR_OP_CA  << FIR_OP1_SHIFT) |
285 		         (FIR_OP_PA  << FIR_OP2_SHIFT) |
286 		         (FIR_OP_CM1 << FIR_OP3_SHIFT) |
287 		         (FIR_OP_RBW << FIR_OP4_SHIFT));
288 
289 		out_be32(&lbc->fcr, (NAND_CMD_READ0 << FCR_CMD0_SHIFT) |
290 		                    (NAND_CMD_READSTART << FCR_CMD1_SHIFT));
291 	} else {
292 		out_be32(&lbc->fir,
293 		         (FIR_OP_CM0 << FIR_OP0_SHIFT) |
294 		         (FIR_OP_CA  << FIR_OP1_SHIFT) |
295 		         (FIR_OP_PA  << FIR_OP2_SHIFT) |
296 		         (FIR_OP_RBW << FIR_OP3_SHIFT));
297 
298 		if (oob)
299 			out_be32(&lbc->fcr, NAND_CMD_READOOB << FCR_CMD0_SHIFT);
300 		else
301 			out_be32(&lbc->fcr, NAND_CMD_READ0 << FCR_CMD0_SHIFT);
302 	}
303 }
304 
305 /* cmdfunc send commands to the FCM */
fsl_elbc_cmdfunc(struct mtd_info * mtd,unsigned int command,int column,int page_addr)306 static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command,
307                              int column, int page_addr)
308 {
309 	struct nand_chip *chip = mtd->priv;
310 	struct fsl_elbc_mtd *priv = chip->priv;
311 	struct fsl_lbc_ctrl *ctrl = priv->ctrl;
312 	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
313 	struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
314 
315 	elbc_fcm_ctrl->use_mdr = 0;
316 
317 	/* clear the read buffer */
318 	elbc_fcm_ctrl->read_bytes = 0;
319 	if (command != NAND_CMD_PAGEPROG)
320 		elbc_fcm_ctrl->index = 0;
321 
322 	switch (command) {
323 	/* READ0 and READ1 read the entire buffer to use hardware ECC. */
324 	case NAND_CMD_READ1:
325 		column += 256;
326 
327 	/* fall-through */
328 	case NAND_CMD_READ0:
329 		dev_dbg(priv->dev,
330 		        "fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:"
331 		        " 0x%x, column: 0x%x.\n", page_addr, column);
332 
333 
334 		out_be32(&lbc->fbcr, 0); /* read entire page to enable ECC */
335 		set_addr(mtd, 0, page_addr, 0);
336 
337 		elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
338 		elbc_fcm_ctrl->index += column;
339 
340 		fsl_elbc_do_read(chip, 0);
341 		fsl_elbc_run_command(mtd);
342 		return;
343 
344 	/* READOOB reads only the OOB because no ECC is performed. */
345 	case NAND_CMD_READOOB:
346 		dev_vdbg(priv->dev,
347 		         "fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:"
348 			 " 0x%x, column: 0x%x.\n", page_addr, column);
349 
350 		out_be32(&lbc->fbcr, mtd->oobsize - column);
351 		set_addr(mtd, column, page_addr, 1);
352 
353 		elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
354 
355 		fsl_elbc_do_read(chip, 1);
356 		fsl_elbc_run_command(mtd);
357 		return;
358 
359 	case NAND_CMD_READID:
360 	case NAND_CMD_PARAM:
361 		dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD %x\n", command);
362 
363 		out_be32(&lbc->fir, (FIR_OP_CM0 << FIR_OP0_SHIFT) |
364 		                    (FIR_OP_UA  << FIR_OP1_SHIFT) |
365 		                    (FIR_OP_RBW << FIR_OP2_SHIFT));
366 		out_be32(&lbc->fcr, command << FCR_CMD0_SHIFT);
367 		/*
368 		 * although currently it's 8 bytes for READID, we always read
369 		 * the maximum 256 bytes(for PARAM)
370 		 */
371 		out_be32(&lbc->fbcr, 256);
372 		elbc_fcm_ctrl->read_bytes = 256;
373 		elbc_fcm_ctrl->use_mdr = 1;
374 		elbc_fcm_ctrl->mdr = column;
375 		set_addr(mtd, 0, 0, 0);
376 		fsl_elbc_run_command(mtd);
377 		return;
378 
379 	/* ERASE1 stores the block and page address */
380 	case NAND_CMD_ERASE1:
381 		dev_vdbg(priv->dev,
382 		         "fsl_elbc_cmdfunc: NAND_CMD_ERASE1, "
383 		         "page_addr: 0x%x.\n", page_addr);
384 		set_addr(mtd, 0, page_addr, 0);
385 		return;
386 
387 	/* ERASE2 uses the block and page address from ERASE1 */
388 	case NAND_CMD_ERASE2:
389 		dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n");
390 
391 		out_be32(&lbc->fir,
392 		         (FIR_OP_CM0 << FIR_OP0_SHIFT) |
393 		         (FIR_OP_PA  << FIR_OP1_SHIFT) |
394 		         (FIR_OP_CM2 << FIR_OP2_SHIFT) |
395 		         (FIR_OP_CW1 << FIR_OP3_SHIFT) |
396 		         (FIR_OP_RS  << FIR_OP4_SHIFT));
397 
398 		out_be32(&lbc->fcr,
399 		         (NAND_CMD_ERASE1 << FCR_CMD0_SHIFT) |
400 		         (NAND_CMD_STATUS << FCR_CMD1_SHIFT) |
401 		         (NAND_CMD_ERASE2 << FCR_CMD2_SHIFT));
402 
403 		out_be32(&lbc->fbcr, 0);
404 		elbc_fcm_ctrl->read_bytes = 0;
405 		elbc_fcm_ctrl->use_mdr = 1;
406 
407 		fsl_elbc_run_command(mtd);
408 		return;
409 
410 	/* SEQIN sets up the addr buffer and all registers except the length */
411 	case NAND_CMD_SEQIN: {
412 		__be32 fcr;
413 		dev_vdbg(priv->dev,
414 			 "fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, "
415 		         "page_addr: 0x%x, column: 0x%x.\n",
416 		         page_addr, column);
417 
418 		elbc_fcm_ctrl->column = column;
419 		elbc_fcm_ctrl->use_mdr = 1;
420 
421 		if (column >= mtd->writesize) {
422 			/* OOB area */
423 			column -= mtd->writesize;
424 			elbc_fcm_ctrl->oob = 1;
425 		} else {
426 			WARN_ON(column != 0);
427 			elbc_fcm_ctrl->oob = 0;
428 		}
429 
430 		fcr = (NAND_CMD_STATUS   << FCR_CMD1_SHIFT) |
431 		      (NAND_CMD_SEQIN    << FCR_CMD2_SHIFT) |
432 		      (NAND_CMD_PAGEPROG << FCR_CMD3_SHIFT);
433 
434 		if (priv->page_size) {
435 			out_be32(&lbc->fir,
436 			         (FIR_OP_CM2 << FIR_OP0_SHIFT) |
437 			         (FIR_OP_CA  << FIR_OP1_SHIFT) |
438 			         (FIR_OP_PA  << FIR_OP2_SHIFT) |
439 			         (FIR_OP_WB  << FIR_OP3_SHIFT) |
440 			         (FIR_OP_CM3 << FIR_OP4_SHIFT) |
441 			         (FIR_OP_CW1 << FIR_OP5_SHIFT) |
442 			         (FIR_OP_RS  << FIR_OP6_SHIFT));
443 		} else {
444 			out_be32(&lbc->fir,
445 			         (FIR_OP_CM0 << FIR_OP0_SHIFT) |
446 			         (FIR_OP_CM2 << FIR_OP1_SHIFT) |
447 			         (FIR_OP_CA  << FIR_OP2_SHIFT) |
448 			         (FIR_OP_PA  << FIR_OP3_SHIFT) |
449 			         (FIR_OP_WB  << FIR_OP4_SHIFT) |
450 			         (FIR_OP_CM3 << FIR_OP5_SHIFT) |
451 			         (FIR_OP_CW1 << FIR_OP6_SHIFT) |
452 			         (FIR_OP_RS  << FIR_OP7_SHIFT));
453 
454 			if (elbc_fcm_ctrl->oob)
455 				/* OOB area --> READOOB */
456 				fcr |= NAND_CMD_READOOB << FCR_CMD0_SHIFT;
457 			else
458 				/* First 256 bytes --> READ0 */
459 				fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
460 		}
461 
462 		out_be32(&lbc->fcr, fcr);
463 		set_addr(mtd, column, page_addr, elbc_fcm_ctrl->oob);
464 		return;
465 	}
466 
467 	/* PAGEPROG reuses all of the setup from SEQIN and adds the length */
468 	case NAND_CMD_PAGEPROG: {
469 		dev_vdbg(priv->dev,
470 		         "fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG "
471 			 "writing %d bytes.\n", elbc_fcm_ctrl->index);
472 
473 		/* if the write did not start at 0 or is not a full page
474 		 * then set the exact length, otherwise use a full page
475 		 * write so the HW generates the ECC.
476 		 */
477 		if (elbc_fcm_ctrl->oob || elbc_fcm_ctrl->column != 0 ||
478 		    elbc_fcm_ctrl->index != mtd->writesize + mtd->oobsize)
479 			out_be32(&lbc->fbcr,
480 				elbc_fcm_ctrl->index - elbc_fcm_ctrl->column);
481 		else
482 			out_be32(&lbc->fbcr, 0);
483 
484 		fsl_elbc_run_command(mtd);
485 		return;
486 	}
487 
488 	/* CMD_STATUS must read the status byte while CEB is active */
489 	/* Note - it does not wait for the ready line */
490 	case NAND_CMD_STATUS:
491 		out_be32(&lbc->fir,
492 		         (FIR_OP_CM0 << FIR_OP0_SHIFT) |
493 		         (FIR_OP_RBW << FIR_OP1_SHIFT));
494 		out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
495 		out_be32(&lbc->fbcr, 1);
496 		set_addr(mtd, 0, 0, 0);
497 		elbc_fcm_ctrl->read_bytes = 1;
498 
499 		fsl_elbc_run_command(mtd);
500 
501 		/* The chip always seems to report that it is
502 		 * write-protected, even when it is not.
503 		 */
504 		setbits8(elbc_fcm_ctrl->addr, NAND_STATUS_WP);
505 		return;
506 
507 	/* RESET without waiting for the ready line */
508 	case NAND_CMD_RESET:
509 		dev_dbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_RESET.\n");
510 		out_be32(&lbc->fir, FIR_OP_CM0 << FIR_OP0_SHIFT);
511 		out_be32(&lbc->fcr, NAND_CMD_RESET << FCR_CMD0_SHIFT);
512 		fsl_elbc_run_command(mtd);
513 		return;
514 
515 	default:
516 		dev_err(priv->dev,
517 		        "fsl_elbc_cmdfunc: error, unsupported command 0x%x.\n",
518 		        command);
519 	}
520 }
521 
fsl_elbc_select_chip(struct mtd_info * mtd,int chip)522 static void fsl_elbc_select_chip(struct mtd_info *mtd, int chip)
523 {
524 	/* The hardware does not seem to support multiple
525 	 * chips per bank.
526 	 */
527 }
528 
529 /*
530  * Write buf to the FCM Controller Data Buffer
531  */
fsl_elbc_write_buf(struct mtd_info * mtd,const u8 * buf,int len)532 static void fsl_elbc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
533 {
534 	struct nand_chip *chip = mtd->priv;
535 	struct fsl_elbc_mtd *priv = chip->priv;
536 	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
537 	unsigned int bufsize = mtd->writesize + mtd->oobsize;
538 
539 	if (len <= 0) {
540 		dev_err(priv->dev, "write_buf of %d bytes", len);
541 		elbc_fcm_ctrl->status = 0;
542 		return;
543 	}
544 
545 	if ((unsigned int)len > bufsize - elbc_fcm_ctrl->index) {
546 		dev_err(priv->dev,
547 		        "write_buf beyond end of buffer "
548 		        "(%d requested, %u available)\n",
549 			len, bufsize - elbc_fcm_ctrl->index);
550 		len = bufsize - elbc_fcm_ctrl->index;
551 	}
552 
553 	memcpy_toio(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], buf, len);
554 	/*
555 	 * This is workaround for the weird elbc hangs during nand write,
556 	 * Scott Wood says: "...perhaps difference in how long it takes a
557 	 * write to make it through the localbus compared to a write to IMMR
558 	 * is causing problems, and sync isn't helping for some reason."
559 	 * Reading back the last byte helps though.
560 	 */
561 	in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index] + len - 1);
562 
563 	elbc_fcm_ctrl->index += len;
564 }
565 
566 /*
567  * read a byte from either the FCM hardware buffer if it has any data left
568  * otherwise issue a command to read a single byte.
569  */
fsl_elbc_read_byte(struct mtd_info * mtd)570 static u8 fsl_elbc_read_byte(struct mtd_info *mtd)
571 {
572 	struct nand_chip *chip = mtd->priv;
573 	struct fsl_elbc_mtd *priv = chip->priv;
574 	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
575 
576 	/* If there are still bytes in the FCM, then use the next byte. */
577 	if (elbc_fcm_ctrl->index < elbc_fcm_ctrl->read_bytes)
578 		return in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index++]);
579 
580 	dev_err(priv->dev, "read_byte beyond end of buffer\n");
581 	return ERR_BYTE;
582 }
583 
584 /*
585  * Read from the FCM Controller Data Buffer
586  */
fsl_elbc_read_buf(struct mtd_info * mtd,u8 * buf,int len)587 static void fsl_elbc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
588 {
589 	struct nand_chip *chip = mtd->priv;
590 	struct fsl_elbc_mtd *priv = chip->priv;
591 	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
592 	int avail;
593 
594 	if (len < 0)
595 		return;
596 
597 	avail = min((unsigned int)len,
598 			elbc_fcm_ctrl->read_bytes - elbc_fcm_ctrl->index);
599 	memcpy_fromio(buf, &elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], avail);
600 	elbc_fcm_ctrl->index += avail;
601 
602 	if (len > avail)
603 		dev_err(priv->dev,
604 		        "read_buf beyond end of buffer "
605 		        "(%d requested, %d available)\n",
606 		        len, avail);
607 }
608 
609 /*
610  * Verify buffer against the FCM Controller Data Buffer
611  */
fsl_elbc_verify_buf(struct mtd_info * mtd,const u_char * buf,int len)612 static int fsl_elbc_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
613 {
614 	struct nand_chip *chip = mtd->priv;
615 	struct fsl_elbc_mtd *priv = chip->priv;
616 	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
617 	int i;
618 
619 	if (len < 0) {
620 		dev_err(priv->dev, "write_buf of %d bytes", len);
621 		return -EINVAL;
622 	}
623 
624 	if ((unsigned int)len >
625 			elbc_fcm_ctrl->read_bytes - elbc_fcm_ctrl->index) {
626 		dev_err(priv->dev,
627 			"verify_buf beyond end of buffer "
628 			"(%d requested, %u available)\n",
629 			len, elbc_fcm_ctrl->read_bytes - elbc_fcm_ctrl->index);
630 
631 		elbc_fcm_ctrl->index = elbc_fcm_ctrl->read_bytes;
632 		return -EINVAL;
633 	}
634 
635 	for (i = 0; i < len; i++)
636 		if (in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index + i])
637 				!= buf[i])
638 			break;
639 
640 	elbc_fcm_ctrl->index += len;
641 	return i == len && elbc_fcm_ctrl->status == LTESR_CC ? 0 : -EIO;
642 }
643 
644 /* This function is called after Program and Erase Operations to
645  * check for success or failure.
646  */
fsl_elbc_wait(struct mtd_info * mtd,struct nand_chip * chip)647 static int fsl_elbc_wait(struct mtd_info *mtd, struct nand_chip *chip)
648 {
649 	struct fsl_elbc_mtd *priv = chip->priv;
650 	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
651 
652 	if (elbc_fcm_ctrl->status != LTESR_CC)
653 		return NAND_STATUS_FAIL;
654 
655 	/* The chip always seems to report that it is
656 	 * write-protected, even when it is not.
657 	 */
658 	return (elbc_fcm_ctrl->mdr & 0xff) | NAND_STATUS_WP;
659 }
660 
fsl_elbc_chip_init_tail(struct mtd_info * mtd)661 static int fsl_elbc_chip_init_tail(struct mtd_info *mtd)
662 {
663 	struct nand_chip *chip = mtd->priv;
664 	struct fsl_elbc_mtd *priv = chip->priv;
665 	struct fsl_lbc_ctrl *ctrl = priv->ctrl;
666 	struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
667 	unsigned int al;
668 
669 	/* calculate FMR Address Length field */
670 	al = 0;
671 	if (chip->pagemask & 0xffff0000)
672 		al++;
673 	if (chip->pagemask & 0xff000000)
674 		al++;
675 
676 	priv->fmr |= al << FMR_AL_SHIFT;
677 
678 	dev_dbg(priv->dev, "fsl_elbc_init: nand->numchips = %d\n",
679 	        chip->numchips);
680 	dev_dbg(priv->dev, "fsl_elbc_init: nand->chipsize = %lld\n",
681 	        chip->chipsize);
682 	dev_dbg(priv->dev, "fsl_elbc_init: nand->pagemask = %8x\n",
683 	        chip->pagemask);
684 	dev_dbg(priv->dev, "fsl_elbc_init: nand->chip_delay = %d\n",
685 	        chip->chip_delay);
686 	dev_dbg(priv->dev, "fsl_elbc_init: nand->badblockpos = %d\n",
687 	        chip->badblockpos);
688 	dev_dbg(priv->dev, "fsl_elbc_init: nand->chip_shift = %d\n",
689 	        chip->chip_shift);
690 	dev_dbg(priv->dev, "fsl_elbc_init: nand->page_shift = %d\n",
691 	        chip->page_shift);
692 	dev_dbg(priv->dev, "fsl_elbc_init: nand->phys_erase_shift = %d\n",
693 	        chip->phys_erase_shift);
694 	dev_dbg(priv->dev, "fsl_elbc_init: nand->ecclayout = %p\n",
695 	        chip->ecclayout);
696 	dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.mode = %d\n",
697 	        chip->ecc.mode);
698 	dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.steps = %d\n",
699 	        chip->ecc.steps);
700 	dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.bytes = %d\n",
701 	        chip->ecc.bytes);
702 	dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.total = %d\n",
703 	        chip->ecc.total);
704 	dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.layout = %p\n",
705 	        chip->ecc.layout);
706 	dev_dbg(priv->dev, "fsl_elbc_init: mtd->flags = %08x\n", mtd->flags);
707 	dev_dbg(priv->dev, "fsl_elbc_init: mtd->size = %lld\n", mtd->size);
708 	dev_dbg(priv->dev, "fsl_elbc_init: mtd->erasesize = %d\n",
709 	        mtd->erasesize);
710 	dev_dbg(priv->dev, "fsl_elbc_init: mtd->writesize = %d\n",
711 	        mtd->writesize);
712 	dev_dbg(priv->dev, "fsl_elbc_init: mtd->oobsize = %d\n",
713 	        mtd->oobsize);
714 
715 	/* adjust Option Register and ECC to match Flash page size */
716 	if (mtd->writesize == 512) {
717 		priv->page_size = 0;
718 		clrbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
719 	} else if (mtd->writesize == 2048) {
720 		priv->page_size = 1;
721 		setbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
722 		/* adjust ecc setup if needed */
723 		if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
724 		    BR_DECC_CHK_GEN) {
725 			chip->ecc.size = 512;
726 			chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
727 			                   &fsl_elbc_oob_lp_eccm1 :
728 			                   &fsl_elbc_oob_lp_eccm0;
729 			chip->badblock_pattern = &largepage_memorybased;
730 		}
731 	} else {
732 		dev_err(priv->dev,
733 		        "fsl_elbc_init: page size %d is not supported\n",
734 		        mtd->writesize);
735 		return -1;
736 	}
737 
738 	return 0;
739 }
740 
fsl_elbc_read_page(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int page)741 static int fsl_elbc_read_page(struct mtd_info *mtd,
742                               struct nand_chip *chip,
743 			      uint8_t *buf,
744 			      int page)
745 {
746 	fsl_elbc_read_buf(mtd, buf, mtd->writesize);
747 	fsl_elbc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
748 
749 	if (fsl_elbc_wait(mtd, chip) & NAND_STATUS_FAIL)
750 		mtd->ecc_stats.failed++;
751 
752 	return 0;
753 }
754 
755 /* ECC will be calculated automatically, and errors will be detected in
756  * waitfunc.
757  */
fsl_elbc_write_page(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf)758 static void fsl_elbc_write_page(struct mtd_info *mtd,
759                                 struct nand_chip *chip,
760                                 const uint8_t *buf)
761 {
762 	fsl_elbc_write_buf(mtd, buf, mtd->writesize);
763 	fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
764 }
765 
fsl_elbc_chip_init(struct fsl_elbc_mtd * priv)766 static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv)
767 {
768 	struct fsl_lbc_ctrl *ctrl = priv->ctrl;
769 	struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
770 	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
771 	struct nand_chip *chip = &priv->chip;
772 
773 	dev_dbg(priv->dev, "eLBC Set Information for bank %d\n", priv->bank);
774 
775 	/* Fill in fsl_elbc_mtd structure */
776 	priv->mtd.priv = chip;
777 	priv->mtd.owner = THIS_MODULE;
778 
779 	/* set timeout to maximum */
780 	priv->fmr = 15 << FMR_CWTO_SHIFT;
781 	if (in_be32(&lbc->bank[priv->bank].or) & OR_FCM_PGS)
782 		priv->fmr |= FMR_ECCM;
783 
784 	/* fill in nand_chip structure */
785 	/* set up function call table */
786 	chip->read_byte = fsl_elbc_read_byte;
787 	chip->write_buf = fsl_elbc_write_buf;
788 	chip->read_buf = fsl_elbc_read_buf;
789 	chip->verify_buf = fsl_elbc_verify_buf;
790 	chip->select_chip = fsl_elbc_select_chip;
791 	chip->cmdfunc = fsl_elbc_cmdfunc;
792 	chip->waitfunc = fsl_elbc_wait;
793 
794 	chip->bbt_td = &bbt_main_descr;
795 	chip->bbt_md = &bbt_mirror_descr;
796 
797 	/* set up nand options */
798 	chip->options = NAND_NO_READRDY | NAND_NO_AUTOINCR;
799 	chip->bbt_options = NAND_BBT_USE_FLASH;
800 
801 	chip->controller = &elbc_fcm_ctrl->controller;
802 	chip->priv = priv;
803 
804 	chip->ecc.read_page = fsl_elbc_read_page;
805 	chip->ecc.write_page = fsl_elbc_write_page;
806 
807 	/* If CS Base Register selects full hardware ECC then use it */
808 	if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
809 	    BR_DECC_CHK_GEN) {
810 		chip->ecc.mode = NAND_ECC_HW;
811 		/* put in small page settings and adjust later if needed */
812 		chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
813 				&fsl_elbc_oob_sp_eccm1 : &fsl_elbc_oob_sp_eccm0;
814 		chip->ecc.size = 512;
815 		chip->ecc.bytes = 3;
816 	} else {
817 		/* otherwise fall back to default software ECC */
818 		chip->ecc.mode = NAND_ECC_SOFT;
819 	}
820 
821 	return 0;
822 }
823 
fsl_elbc_chip_remove(struct fsl_elbc_mtd * priv)824 static int fsl_elbc_chip_remove(struct fsl_elbc_mtd *priv)
825 {
826 	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
827 	nand_release(&priv->mtd);
828 
829 	kfree(priv->mtd.name);
830 
831 	if (priv->vbase)
832 		iounmap(priv->vbase);
833 
834 	elbc_fcm_ctrl->chips[priv->bank] = NULL;
835 	kfree(priv);
836 	return 0;
837 }
838 
839 static DEFINE_MUTEX(fsl_elbc_nand_mutex);
840 
fsl_elbc_nand_probe(struct platform_device * pdev)841 static int __devinit fsl_elbc_nand_probe(struct platform_device *pdev)
842 {
843 	struct fsl_lbc_regs __iomem *lbc;
844 	struct fsl_elbc_mtd *priv;
845 	struct resource res;
846 	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl;
847 	static const char *part_probe_types[]
848 		= { "cmdlinepart", "RedBoot", "ofpart", NULL };
849 	int ret;
850 	int bank;
851 	struct device *dev;
852 	struct device_node *node = pdev->dev.of_node;
853 	struct mtd_part_parser_data ppdata;
854 
855 	ppdata.of_node = pdev->dev.of_node;
856 	if (!fsl_lbc_ctrl_dev || !fsl_lbc_ctrl_dev->regs)
857 		return -ENODEV;
858 	lbc = fsl_lbc_ctrl_dev->regs;
859 	dev = fsl_lbc_ctrl_dev->dev;
860 
861 	/* get, allocate and map the memory resource */
862 	ret = of_address_to_resource(node, 0, &res);
863 	if (ret) {
864 		dev_err(dev, "failed to get resource\n");
865 		return ret;
866 	}
867 
868 	/* find which chip select it is connected to */
869 	for (bank = 0; bank < MAX_BANKS; bank++)
870 		if ((in_be32(&lbc->bank[bank].br) & BR_V) &&
871 		    (in_be32(&lbc->bank[bank].br) & BR_MSEL) == BR_MS_FCM &&
872 		    (in_be32(&lbc->bank[bank].br) &
873 		     in_be32(&lbc->bank[bank].or) & BR_BA)
874 		     == fsl_lbc_addr(res.start))
875 			break;
876 
877 	if (bank >= MAX_BANKS) {
878 		dev_err(dev, "address did not match any chip selects\n");
879 		return -ENODEV;
880 	}
881 
882 	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
883 	if (!priv)
884 		return -ENOMEM;
885 
886 	mutex_lock(&fsl_elbc_nand_mutex);
887 	if (!fsl_lbc_ctrl_dev->nand) {
888 		elbc_fcm_ctrl = kzalloc(sizeof(*elbc_fcm_ctrl), GFP_KERNEL);
889 		if (!elbc_fcm_ctrl) {
890 			dev_err(dev, "failed to allocate memory\n");
891 			mutex_unlock(&fsl_elbc_nand_mutex);
892 			ret = -ENOMEM;
893 			goto err;
894 		}
895 		elbc_fcm_ctrl->counter++;
896 
897 		spin_lock_init(&elbc_fcm_ctrl->controller.lock);
898 		init_waitqueue_head(&elbc_fcm_ctrl->controller.wq);
899 		fsl_lbc_ctrl_dev->nand = elbc_fcm_ctrl;
900 	} else {
901 		elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand;
902 	}
903 	mutex_unlock(&fsl_elbc_nand_mutex);
904 
905 	elbc_fcm_ctrl->chips[bank] = priv;
906 	priv->bank = bank;
907 	priv->ctrl = fsl_lbc_ctrl_dev;
908 	priv->dev = dev;
909 
910 	priv->vbase = ioremap(res.start, resource_size(&res));
911 	if (!priv->vbase) {
912 		dev_err(dev, "failed to map chip region\n");
913 		ret = -ENOMEM;
914 		goto err;
915 	}
916 
917 	priv->mtd.name = kasprintf(GFP_KERNEL, "%x.flash", (unsigned)res.start);
918 	if (!priv->mtd.name) {
919 		ret = -ENOMEM;
920 		goto err;
921 	}
922 
923 	ret = fsl_elbc_chip_init(priv);
924 	if (ret)
925 		goto err;
926 
927 	ret = nand_scan_ident(&priv->mtd, 1, NULL);
928 	if (ret)
929 		goto err;
930 
931 	ret = fsl_elbc_chip_init_tail(&priv->mtd);
932 	if (ret)
933 		goto err;
934 
935 	ret = nand_scan_tail(&priv->mtd);
936 	if (ret)
937 		goto err;
938 
939 	/* First look for RedBoot table or partitions on the command
940 	 * line, these take precedence over device tree information */
941 	mtd_device_parse_register(&priv->mtd, part_probe_types, &ppdata,
942 				  NULL, 0);
943 
944 	printk(KERN_INFO "eLBC NAND device at 0x%llx, bank %d\n",
945 	       (unsigned long long)res.start, priv->bank);
946 	return 0;
947 
948 err:
949 	fsl_elbc_chip_remove(priv);
950 	return ret;
951 }
952 
fsl_elbc_nand_remove(struct platform_device * pdev)953 static int fsl_elbc_nand_remove(struct platform_device *pdev)
954 {
955 	int i;
956 	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand;
957 	for (i = 0; i < MAX_BANKS; i++)
958 		if (elbc_fcm_ctrl->chips[i])
959 			fsl_elbc_chip_remove(elbc_fcm_ctrl->chips[i]);
960 
961 	mutex_lock(&fsl_elbc_nand_mutex);
962 	elbc_fcm_ctrl->counter--;
963 	if (!elbc_fcm_ctrl->counter) {
964 		fsl_lbc_ctrl_dev->nand = NULL;
965 		kfree(elbc_fcm_ctrl);
966 	}
967 	mutex_unlock(&fsl_elbc_nand_mutex);
968 
969 	return 0;
970 
971 }
972 
973 static const struct of_device_id fsl_elbc_nand_match[] = {
974 	{ .compatible = "fsl,elbc-fcm-nand", },
975 	{}
976 };
977 
978 static struct platform_driver fsl_elbc_nand_driver = {
979 	.driver = {
980 		.name = "fsl,elbc-fcm-nand",
981 		.owner = THIS_MODULE,
982 		.of_match_table = fsl_elbc_nand_match,
983 	},
984 	.probe = fsl_elbc_nand_probe,
985 	.remove = fsl_elbc_nand_remove,
986 };
987 
988 module_platform_driver(fsl_elbc_nand_driver);
989 
990 MODULE_LICENSE("GPL");
991 MODULE_AUTHOR("Freescale");
992 MODULE_DESCRIPTION("Freescale Enhanced Local Bus Controller MTD NAND driver");
993