1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/futex.h>
41 #include <linux/compat.h>
42 #include <linux/kthread.h>
43 #include <linux/task_io_accounting_ops.h>
44 #include <linux/rcupdate.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/audit.h>
48 #include <linux/memcontrol.h>
49 #include <linux/ftrace.h>
50 #include <linux/profile.h>
51 #include <linux/rmap.h>
52 #include <linux/ksm.h>
53 #include <linux/acct.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/freezer.h>
57 #include <linux/delayacct.h>
58 #include <linux/taskstats_kern.h>
59 #include <linux/random.h>
60 #include <linux/tty.h>
61 #include <linux/blkdev.h>
62 #include <linux/fs_struct.h>
63 #include <linux/magic.h>
64 #include <linux/perf_event.h>
65 #include <linux/posix-timers.h>
66 #include <linux/user-return-notifier.h>
67 #include <linux/oom.h>
68 #include <linux/khugepaged.h>
69 #include <linux/signalfd.h>
70 
71 #include <asm/pgtable.h>
72 #include <asm/pgalloc.h>
73 #include <asm/uaccess.h>
74 #include <asm/mmu_context.h>
75 #include <asm/cacheflush.h>
76 #include <asm/tlbflush.h>
77 
78 #include <trace/events/sched.h>
79 
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/task.h>
82 
83 /*
84  * Protected counters by write_lock_irq(&tasklist_lock)
85  */
86 unsigned long total_forks;	/* Handle normal Linux uptimes. */
87 int nr_threads;			/* The idle threads do not count.. */
88 
89 int max_threads;		/* tunable limit on nr_threads */
90 
91 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
92 
93 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
94 
95 #ifdef CONFIG_PROVE_RCU
lockdep_tasklist_lock_is_held(void)96 int lockdep_tasklist_lock_is_held(void)
97 {
98 	return lockdep_is_held(&tasklist_lock);
99 }
100 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
101 #endif /* #ifdef CONFIG_PROVE_RCU */
102 
nr_processes(void)103 int nr_processes(void)
104 {
105 	int cpu;
106 	int total = 0;
107 
108 	for_each_possible_cpu(cpu)
109 		total += per_cpu(process_counts, cpu);
110 
111 	return total;
112 }
113 
114 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
115 # define alloc_task_struct_node(node)		\
116 		kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node)
117 # define free_task_struct(tsk)			\
118 		kmem_cache_free(task_struct_cachep, (tsk))
119 static struct kmem_cache *task_struct_cachep;
120 #endif
121 
122 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
alloc_thread_info_node(struct task_struct * tsk,int node)123 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
124 						  int node)
125 {
126 #ifdef CONFIG_DEBUG_STACK_USAGE
127 	gfp_t mask = GFP_KERNEL | __GFP_ZERO;
128 #else
129 	gfp_t mask = GFP_KERNEL;
130 #endif
131 	struct page *page = alloc_pages_node(node, mask, THREAD_SIZE_ORDER);
132 
133 	return page ? page_address(page) : NULL;
134 }
135 
free_thread_info(struct thread_info * ti)136 static inline void free_thread_info(struct thread_info *ti)
137 {
138 	free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
139 }
140 #endif
141 
142 /* SLAB cache for signal_struct structures (tsk->signal) */
143 static struct kmem_cache *signal_cachep;
144 
145 /* SLAB cache for sighand_struct structures (tsk->sighand) */
146 struct kmem_cache *sighand_cachep;
147 
148 /* SLAB cache for files_struct structures (tsk->files) */
149 struct kmem_cache *files_cachep;
150 
151 /* SLAB cache for fs_struct structures (tsk->fs) */
152 struct kmem_cache *fs_cachep;
153 
154 /* SLAB cache for vm_area_struct structures */
155 struct kmem_cache *vm_area_cachep;
156 
157 /* SLAB cache for mm_struct structures (tsk->mm) */
158 static struct kmem_cache *mm_cachep;
159 
account_kernel_stack(struct thread_info * ti,int account)160 static void account_kernel_stack(struct thread_info *ti, int account)
161 {
162 	struct zone *zone = page_zone(virt_to_page(ti));
163 
164 	mod_zone_page_state(zone, NR_KERNEL_STACK, account);
165 }
166 
free_task(struct task_struct * tsk)167 void free_task(struct task_struct *tsk)
168 {
169 	account_kernel_stack(tsk->stack, -1);
170 	free_thread_info(tsk->stack);
171 	rt_mutex_debug_task_free(tsk);
172 	ftrace_graph_exit_task(tsk);
173 	free_task_struct(tsk);
174 }
175 EXPORT_SYMBOL(free_task);
176 
free_signal_struct(struct signal_struct * sig)177 static inline void free_signal_struct(struct signal_struct *sig)
178 {
179 	taskstats_tgid_free(sig);
180 	sched_autogroup_exit(sig);
181 	kmem_cache_free(signal_cachep, sig);
182 }
183 
put_signal_struct(struct signal_struct * sig)184 static inline void put_signal_struct(struct signal_struct *sig)
185 {
186 	if (atomic_dec_and_test(&sig->sigcnt))
187 		free_signal_struct(sig);
188 }
189 
__put_task_struct(struct task_struct * tsk)190 void __put_task_struct(struct task_struct *tsk)
191 {
192 	WARN_ON(!tsk->exit_state);
193 	WARN_ON(atomic_read(&tsk->usage));
194 	WARN_ON(tsk == current);
195 
196 	exit_creds(tsk);
197 	delayacct_tsk_free(tsk);
198 	put_signal_struct(tsk->signal);
199 
200 	if (!profile_handoff_task(tsk))
201 		free_task(tsk);
202 }
203 EXPORT_SYMBOL_GPL(__put_task_struct);
204 
205 /*
206  * macro override instead of weak attribute alias, to workaround
207  * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
208  */
209 #ifndef arch_task_cache_init
210 #define arch_task_cache_init()
211 #endif
212 
fork_init(unsigned long mempages)213 void __init fork_init(unsigned long mempages)
214 {
215 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
216 #ifndef ARCH_MIN_TASKALIGN
217 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
218 #endif
219 	/* create a slab on which task_structs can be allocated */
220 	task_struct_cachep =
221 		kmem_cache_create("task_struct", sizeof(struct task_struct),
222 			ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
223 #endif
224 
225 	/* do the arch specific task caches init */
226 	arch_task_cache_init();
227 
228 	/*
229 	 * The default maximum number of threads is set to a safe
230 	 * value: the thread structures can take up at most half
231 	 * of memory.
232 	 */
233 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
234 
235 	/*
236 	 * we need to allow at least 20 threads to boot a system
237 	 */
238 	if (max_threads < 20)
239 		max_threads = 20;
240 
241 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
242 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
243 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
244 		init_task.signal->rlim[RLIMIT_NPROC];
245 }
246 
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)247 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
248 					       struct task_struct *src)
249 {
250 	*dst = *src;
251 	return 0;
252 }
253 
dup_task_struct(struct task_struct * orig)254 static struct task_struct *dup_task_struct(struct task_struct *orig)
255 {
256 	struct task_struct *tsk;
257 	struct thread_info *ti;
258 	unsigned long *stackend;
259 	int node = tsk_fork_get_node(orig);
260 	int err;
261 
262 	prepare_to_copy(orig);
263 
264 	tsk = alloc_task_struct_node(node);
265 	if (!tsk)
266 		return NULL;
267 
268 	ti = alloc_thread_info_node(tsk, node);
269 	if (!ti) {
270 		free_task_struct(tsk);
271 		return NULL;
272 	}
273 
274 	err = arch_dup_task_struct(tsk, orig);
275 	if (err)
276 		goto out;
277 
278 	tsk->stack = ti;
279 
280 	setup_thread_stack(tsk, orig);
281 	clear_user_return_notifier(tsk);
282 	clear_tsk_need_resched(tsk);
283 	stackend = end_of_stack(tsk);
284 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
285 
286 #ifdef CONFIG_CC_STACKPROTECTOR
287 	tsk->stack_canary = get_random_int();
288 #endif
289 
290 	/*
291 	 * One for us, one for whoever does the "release_task()" (usually
292 	 * parent)
293 	 */
294 	atomic_set(&tsk->usage, 2);
295 #ifdef CONFIG_BLK_DEV_IO_TRACE
296 	tsk->btrace_seq = 0;
297 #endif
298 	tsk->splice_pipe = NULL;
299 
300 	account_kernel_stack(ti, 1);
301 
302 	return tsk;
303 
304 out:
305 	free_thread_info(ti);
306 	free_task_struct(tsk);
307 	return NULL;
308 }
309 
310 #ifdef CONFIG_MMU
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)311 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
312 {
313 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
314 	struct rb_node **rb_link, *rb_parent;
315 	int retval;
316 	unsigned long charge;
317 	struct mempolicy *pol;
318 
319 	down_write(&oldmm->mmap_sem);
320 	flush_cache_dup_mm(oldmm);
321 	/*
322 	 * Not linked in yet - no deadlock potential:
323 	 */
324 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
325 
326 	mm->locked_vm = 0;
327 	mm->mmap = NULL;
328 	mm->mmap_cache = NULL;
329 	mm->free_area_cache = oldmm->mmap_base;
330 	mm->cached_hole_size = ~0UL;
331 	mm->map_count = 0;
332 	cpumask_clear(mm_cpumask(mm));
333 	mm->mm_rb = RB_ROOT;
334 	rb_link = &mm->mm_rb.rb_node;
335 	rb_parent = NULL;
336 	pprev = &mm->mmap;
337 	retval = ksm_fork(mm, oldmm);
338 	if (retval)
339 		goto out;
340 	retval = khugepaged_fork(mm, oldmm);
341 	if (retval)
342 		goto out;
343 
344 	prev = NULL;
345 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
346 		struct file *file;
347 
348 		if (mpnt->vm_flags & VM_DONTCOPY) {
349 			long pages = vma_pages(mpnt);
350 			mm->total_vm -= pages;
351 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
352 								-pages);
353 			continue;
354 		}
355 		charge = 0;
356 		if (mpnt->vm_flags & VM_ACCOUNT) {
357 			unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
358 			if (security_vm_enough_memory(len))
359 				goto fail_nomem;
360 			charge = len;
361 		}
362 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
363 		if (!tmp)
364 			goto fail_nomem;
365 		*tmp = *mpnt;
366 		INIT_LIST_HEAD(&tmp->anon_vma_chain);
367 		pol = mpol_dup(vma_policy(mpnt));
368 		retval = PTR_ERR(pol);
369 		if (IS_ERR(pol))
370 			goto fail_nomem_policy;
371 		vma_set_policy(tmp, pol);
372 		tmp->vm_mm = mm;
373 		if (anon_vma_fork(tmp, mpnt))
374 			goto fail_nomem_anon_vma_fork;
375 		tmp->vm_flags &= ~VM_LOCKED;
376 		tmp->vm_next = tmp->vm_prev = NULL;
377 		file = tmp->vm_file;
378 		if (file) {
379 			struct inode *inode = file->f_path.dentry->d_inode;
380 			struct address_space *mapping = file->f_mapping;
381 
382 			get_file(file);
383 			if (tmp->vm_flags & VM_DENYWRITE)
384 				atomic_dec(&inode->i_writecount);
385 			mutex_lock(&mapping->i_mmap_mutex);
386 			if (tmp->vm_flags & VM_SHARED)
387 				mapping->i_mmap_writable++;
388 			flush_dcache_mmap_lock(mapping);
389 			/* insert tmp into the share list, just after mpnt */
390 			vma_prio_tree_add(tmp, mpnt);
391 			flush_dcache_mmap_unlock(mapping);
392 			mutex_unlock(&mapping->i_mmap_mutex);
393 		}
394 
395 		/*
396 		 * Clear hugetlb-related page reserves for children. This only
397 		 * affects MAP_PRIVATE mappings. Faults generated by the child
398 		 * are not guaranteed to succeed, even if read-only
399 		 */
400 		if (is_vm_hugetlb_page(tmp))
401 			reset_vma_resv_huge_pages(tmp);
402 
403 		/*
404 		 * Link in the new vma and copy the page table entries.
405 		 */
406 		*pprev = tmp;
407 		pprev = &tmp->vm_next;
408 		tmp->vm_prev = prev;
409 		prev = tmp;
410 
411 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
412 		rb_link = &tmp->vm_rb.rb_right;
413 		rb_parent = &tmp->vm_rb;
414 
415 		mm->map_count++;
416 		retval = copy_page_range(mm, oldmm, mpnt);
417 
418 		if (tmp->vm_ops && tmp->vm_ops->open)
419 			tmp->vm_ops->open(tmp);
420 
421 		if (retval)
422 			goto out;
423 	}
424 	/* a new mm has just been created */
425 	arch_dup_mmap(oldmm, mm);
426 	retval = 0;
427 out:
428 	up_write(&mm->mmap_sem);
429 	flush_tlb_mm(oldmm);
430 	up_write(&oldmm->mmap_sem);
431 	return retval;
432 fail_nomem_anon_vma_fork:
433 	mpol_put(pol);
434 fail_nomem_policy:
435 	kmem_cache_free(vm_area_cachep, tmp);
436 fail_nomem:
437 	retval = -ENOMEM;
438 	vm_unacct_memory(charge);
439 	goto out;
440 }
441 
mm_alloc_pgd(struct mm_struct * mm)442 static inline int mm_alloc_pgd(struct mm_struct *mm)
443 {
444 	mm->pgd = pgd_alloc(mm);
445 	if (unlikely(!mm->pgd))
446 		return -ENOMEM;
447 	return 0;
448 }
449 
mm_free_pgd(struct mm_struct * mm)450 static inline void mm_free_pgd(struct mm_struct *mm)
451 {
452 	pgd_free(mm, mm->pgd);
453 }
454 #else
455 #define dup_mmap(mm, oldmm)	(0)
456 #define mm_alloc_pgd(mm)	(0)
457 #define mm_free_pgd(mm)
458 #endif /* CONFIG_MMU */
459 
460 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
461 
462 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
463 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
464 
465 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
466 
coredump_filter_setup(char * s)467 static int __init coredump_filter_setup(char *s)
468 {
469 	default_dump_filter =
470 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
471 		MMF_DUMP_FILTER_MASK;
472 	return 1;
473 }
474 
475 __setup("coredump_filter=", coredump_filter_setup);
476 
477 #include <linux/init_task.h>
478 
mm_init_aio(struct mm_struct * mm)479 static void mm_init_aio(struct mm_struct *mm)
480 {
481 #ifdef CONFIG_AIO
482 	spin_lock_init(&mm->ioctx_lock);
483 	INIT_HLIST_HEAD(&mm->ioctx_list);
484 #endif
485 }
486 
mm_init(struct mm_struct * mm,struct task_struct * p)487 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
488 {
489 	atomic_set(&mm->mm_users, 1);
490 	atomic_set(&mm->mm_count, 1);
491 	init_rwsem(&mm->mmap_sem);
492 	INIT_LIST_HEAD(&mm->mmlist);
493 	mm->flags = (current->mm) ?
494 		(current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
495 	mm->core_state = NULL;
496 	mm->nr_ptes = 0;
497 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
498 	spin_lock_init(&mm->page_table_lock);
499 	mm->free_area_cache = TASK_UNMAPPED_BASE;
500 	mm->cached_hole_size = ~0UL;
501 	mm_init_aio(mm);
502 	mm_init_owner(mm, p);
503 
504 	if (likely(!mm_alloc_pgd(mm))) {
505 		mm->def_flags = 0;
506 		mmu_notifier_mm_init(mm);
507 		return mm;
508 	}
509 
510 	free_mm(mm);
511 	return NULL;
512 }
513 
514 /*
515  * Allocate and initialize an mm_struct.
516  */
mm_alloc(void)517 struct mm_struct *mm_alloc(void)
518 {
519 	struct mm_struct *mm;
520 
521 	mm = allocate_mm();
522 	if (!mm)
523 		return NULL;
524 
525 	memset(mm, 0, sizeof(*mm));
526 	mm_init_cpumask(mm);
527 	return mm_init(mm, current);
528 }
529 
530 /*
531  * Called when the last reference to the mm
532  * is dropped: either by a lazy thread or by
533  * mmput. Free the page directory and the mm.
534  */
__mmdrop(struct mm_struct * mm)535 void __mmdrop(struct mm_struct *mm)
536 {
537 	BUG_ON(mm == &init_mm);
538 	mm_free_pgd(mm);
539 	destroy_context(mm);
540 	mmu_notifier_mm_destroy(mm);
541 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
542 	VM_BUG_ON(mm->pmd_huge_pte);
543 #endif
544 	free_mm(mm);
545 }
546 EXPORT_SYMBOL_GPL(__mmdrop);
547 
548 /*
549  * Decrement the use count and release all resources for an mm.
550  */
mmput(struct mm_struct * mm)551 void mmput(struct mm_struct *mm)
552 {
553 	might_sleep();
554 
555 	if (atomic_dec_and_test(&mm->mm_users)) {
556 		exit_aio(mm);
557 		ksm_exit(mm);
558 		khugepaged_exit(mm); /* must run before exit_mmap */
559 		exit_mmap(mm);
560 		set_mm_exe_file(mm, NULL);
561 		if (!list_empty(&mm->mmlist)) {
562 			spin_lock(&mmlist_lock);
563 			list_del(&mm->mmlist);
564 			spin_unlock(&mmlist_lock);
565 		}
566 		put_swap_token(mm);
567 		if (mm->binfmt)
568 			module_put(mm->binfmt->module);
569 		mmdrop(mm);
570 	}
571 }
572 EXPORT_SYMBOL_GPL(mmput);
573 
574 /*
575  * We added or removed a vma mapping the executable. The vmas are only mapped
576  * during exec and are not mapped with the mmap system call.
577  * Callers must hold down_write() on the mm's mmap_sem for these
578  */
added_exe_file_vma(struct mm_struct * mm)579 void added_exe_file_vma(struct mm_struct *mm)
580 {
581 	mm->num_exe_file_vmas++;
582 }
583 
removed_exe_file_vma(struct mm_struct * mm)584 void removed_exe_file_vma(struct mm_struct *mm)
585 {
586 	mm->num_exe_file_vmas--;
587 	if ((mm->num_exe_file_vmas == 0) && mm->exe_file) {
588 		fput(mm->exe_file);
589 		mm->exe_file = NULL;
590 	}
591 
592 }
593 
set_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)594 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
595 {
596 	if (new_exe_file)
597 		get_file(new_exe_file);
598 	if (mm->exe_file)
599 		fput(mm->exe_file);
600 	mm->exe_file = new_exe_file;
601 	mm->num_exe_file_vmas = 0;
602 }
603 
get_mm_exe_file(struct mm_struct * mm)604 struct file *get_mm_exe_file(struct mm_struct *mm)
605 {
606 	struct file *exe_file;
607 
608 	/* We need mmap_sem to protect against races with removal of
609 	 * VM_EXECUTABLE vmas */
610 	down_read(&mm->mmap_sem);
611 	exe_file = mm->exe_file;
612 	if (exe_file)
613 		get_file(exe_file);
614 	up_read(&mm->mmap_sem);
615 	return exe_file;
616 }
617 
dup_mm_exe_file(struct mm_struct * oldmm,struct mm_struct * newmm)618 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
619 {
620 	/* It's safe to write the exe_file pointer without exe_file_lock because
621 	 * this is called during fork when the task is not yet in /proc */
622 	newmm->exe_file = get_mm_exe_file(oldmm);
623 }
624 
625 /**
626  * get_task_mm - acquire a reference to the task's mm
627  *
628  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
629  * this kernel workthread has transiently adopted a user mm with use_mm,
630  * to do its AIO) is not set and if so returns a reference to it, after
631  * bumping up the use count.  User must release the mm via mmput()
632  * after use.  Typically used by /proc and ptrace.
633  */
get_task_mm(struct task_struct * task)634 struct mm_struct *get_task_mm(struct task_struct *task)
635 {
636 	struct mm_struct *mm;
637 
638 	task_lock(task);
639 	mm = task->mm;
640 	if (mm) {
641 		if (task->flags & PF_KTHREAD)
642 			mm = NULL;
643 		else
644 			atomic_inc(&mm->mm_users);
645 	}
646 	task_unlock(task);
647 	return mm;
648 }
649 EXPORT_SYMBOL_GPL(get_task_mm);
650 
mm_access(struct task_struct * task,unsigned int mode)651 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
652 {
653 	struct mm_struct *mm;
654 	int err;
655 
656 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
657 	if (err)
658 		return ERR_PTR(err);
659 
660 	mm = get_task_mm(task);
661 	if (mm && mm != current->mm &&
662 			!ptrace_may_access(task, mode)) {
663 		mmput(mm);
664 		mm = ERR_PTR(-EACCES);
665 	}
666 	mutex_unlock(&task->signal->cred_guard_mutex);
667 
668 	return mm;
669 }
670 
complete_vfork_done(struct task_struct * tsk)671 static void complete_vfork_done(struct task_struct *tsk)
672 {
673 	struct completion *vfork;
674 
675 	task_lock(tsk);
676 	vfork = tsk->vfork_done;
677 	if (likely(vfork)) {
678 		tsk->vfork_done = NULL;
679 		complete(vfork);
680 	}
681 	task_unlock(tsk);
682 }
683 
wait_for_vfork_done(struct task_struct * child,struct completion * vfork)684 static int wait_for_vfork_done(struct task_struct *child,
685 				struct completion *vfork)
686 {
687 	int killed;
688 
689 	freezer_do_not_count();
690 	killed = wait_for_completion_killable(vfork);
691 	freezer_count();
692 
693 	if (killed) {
694 		task_lock(child);
695 		child->vfork_done = NULL;
696 		task_unlock(child);
697 	}
698 
699 	put_task_struct(child);
700 	return killed;
701 }
702 
703 /* Please note the differences between mmput and mm_release.
704  * mmput is called whenever we stop holding onto a mm_struct,
705  * error success whatever.
706  *
707  * mm_release is called after a mm_struct has been removed
708  * from the current process.
709  *
710  * This difference is important for error handling, when we
711  * only half set up a mm_struct for a new process and need to restore
712  * the old one.  Because we mmput the new mm_struct before
713  * restoring the old one. . .
714  * Eric Biederman 10 January 1998
715  */
mm_release(struct task_struct * tsk,struct mm_struct * mm)716 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
717 {
718 	/* Get rid of any futexes when releasing the mm */
719 #ifdef CONFIG_FUTEX
720 	if (unlikely(tsk->robust_list)) {
721 		exit_robust_list(tsk);
722 		tsk->robust_list = NULL;
723 	}
724 #ifdef CONFIG_COMPAT
725 	if (unlikely(tsk->compat_robust_list)) {
726 		compat_exit_robust_list(tsk);
727 		tsk->compat_robust_list = NULL;
728 	}
729 #endif
730 	if (unlikely(!list_empty(&tsk->pi_state_list)))
731 		exit_pi_state_list(tsk);
732 #endif
733 
734 	/* Get rid of any cached register state */
735 	deactivate_mm(tsk, mm);
736 
737 	if (tsk->vfork_done)
738 		complete_vfork_done(tsk);
739 
740 	/*
741 	 * If we're exiting normally, clear a user-space tid field if
742 	 * requested.  We leave this alone when dying by signal, to leave
743 	 * the value intact in a core dump, and to save the unnecessary
744 	 * trouble, say, a killed vfork parent shouldn't touch this mm.
745 	 * Userland only wants this done for a sys_exit.
746 	 */
747 	if (tsk->clear_child_tid) {
748 		if (!(tsk->flags & PF_SIGNALED) &&
749 		    atomic_read(&mm->mm_users) > 1) {
750 			/*
751 			 * We don't check the error code - if userspace has
752 			 * not set up a proper pointer then tough luck.
753 			 */
754 			put_user(0, tsk->clear_child_tid);
755 			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
756 					1, NULL, NULL, 0);
757 		}
758 		tsk->clear_child_tid = NULL;
759 	}
760 }
761 
762 /*
763  * Allocate a new mm structure and copy contents from the
764  * mm structure of the passed in task structure.
765  */
dup_mm(struct task_struct * tsk)766 struct mm_struct *dup_mm(struct task_struct *tsk)
767 {
768 	struct mm_struct *mm, *oldmm = current->mm;
769 	int err;
770 
771 	if (!oldmm)
772 		return NULL;
773 
774 	mm = allocate_mm();
775 	if (!mm)
776 		goto fail_nomem;
777 
778 	memcpy(mm, oldmm, sizeof(*mm));
779 	mm_init_cpumask(mm);
780 
781 	/* Initializing for Swap token stuff */
782 	mm->token_priority = 0;
783 	mm->last_interval = 0;
784 
785 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
786 	mm->pmd_huge_pte = NULL;
787 #endif
788 
789 	if (!mm_init(mm, tsk))
790 		goto fail_nomem;
791 
792 	if (init_new_context(tsk, mm))
793 		goto fail_nocontext;
794 
795 	dup_mm_exe_file(oldmm, mm);
796 
797 	err = dup_mmap(mm, oldmm);
798 	if (err)
799 		goto free_pt;
800 
801 	mm->hiwater_rss = get_mm_rss(mm);
802 	mm->hiwater_vm = mm->total_vm;
803 
804 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
805 		goto free_pt;
806 
807 	return mm;
808 
809 free_pt:
810 	/* don't put binfmt in mmput, we haven't got module yet */
811 	mm->binfmt = NULL;
812 	mmput(mm);
813 
814 fail_nomem:
815 	return NULL;
816 
817 fail_nocontext:
818 	/*
819 	 * If init_new_context() failed, we cannot use mmput() to free the mm
820 	 * because it calls destroy_context()
821 	 */
822 	mm_free_pgd(mm);
823 	free_mm(mm);
824 	return NULL;
825 }
826 
copy_mm(unsigned long clone_flags,struct task_struct * tsk)827 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
828 {
829 	struct mm_struct *mm, *oldmm;
830 	int retval;
831 
832 	tsk->min_flt = tsk->maj_flt = 0;
833 	tsk->nvcsw = tsk->nivcsw = 0;
834 #ifdef CONFIG_DETECT_HUNG_TASK
835 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
836 #endif
837 
838 	tsk->mm = NULL;
839 	tsk->active_mm = NULL;
840 
841 	/*
842 	 * Are we cloning a kernel thread?
843 	 *
844 	 * We need to steal a active VM for that..
845 	 */
846 	oldmm = current->mm;
847 	if (!oldmm)
848 		return 0;
849 
850 	if (clone_flags & CLONE_VM) {
851 		atomic_inc(&oldmm->mm_users);
852 		mm = oldmm;
853 		goto good_mm;
854 	}
855 
856 	retval = -ENOMEM;
857 	mm = dup_mm(tsk);
858 	if (!mm)
859 		goto fail_nomem;
860 
861 good_mm:
862 	/* Initializing for Swap token stuff */
863 	mm->token_priority = 0;
864 	mm->last_interval = 0;
865 
866 	tsk->mm = mm;
867 	tsk->active_mm = mm;
868 	return 0;
869 
870 fail_nomem:
871 	return retval;
872 }
873 
copy_fs(unsigned long clone_flags,struct task_struct * tsk)874 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
875 {
876 	struct fs_struct *fs = current->fs;
877 	if (clone_flags & CLONE_FS) {
878 		/* tsk->fs is already what we want */
879 		spin_lock(&fs->lock);
880 		if (fs->in_exec) {
881 			spin_unlock(&fs->lock);
882 			return -EAGAIN;
883 		}
884 		fs->users++;
885 		spin_unlock(&fs->lock);
886 		return 0;
887 	}
888 	tsk->fs = copy_fs_struct(fs);
889 	if (!tsk->fs)
890 		return -ENOMEM;
891 	return 0;
892 }
893 
copy_files(unsigned long clone_flags,struct task_struct * tsk)894 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
895 {
896 	struct files_struct *oldf, *newf;
897 	int error = 0;
898 
899 	/*
900 	 * A background process may not have any files ...
901 	 */
902 	oldf = current->files;
903 	if (!oldf)
904 		goto out;
905 
906 	if (clone_flags & CLONE_FILES) {
907 		atomic_inc(&oldf->count);
908 		goto out;
909 	}
910 
911 	newf = dup_fd(oldf, &error);
912 	if (!newf)
913 		goto out;
914 
915 	tsk->files = newf;
916 	error = 0;
917 out:
918 	return error;
919 }
920 
copy_io(unsigned long clone_flags,struct task_struct * tsk)921 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
922 {
923 #ifdef CONFIG_BLOCK
924 	struct io_context *ioc = current->io_context;
925 	struct io_context *new_ioc;
926 
927 	if (!ioc)
928 		return 0;
929 	/*
930 	 * Share io context with parent, if CLONE_IO is set
931 	 */
932 	if (clone_flags & CLONE_IO) {
933 		tsk->io_context = ioc_task_link(ioc);
934 		if (unlikely(!tsk->io_context))
935 			return -ENOMEM;
936 	} else if (ioprio_valid(ioc->ioprio)) {
937 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
938 		if (unlikely(!new_ioc))
939 			return -ENOMEM;
940 
941 		new_ioc->ioprio = ioc->ioprio;
942 		put_io_context(new_ioc);
943 	}
944 #endif
945 	return 0;
946 }
947 
copy_sighand(unsigned long clone_flags,struct task_struct * tsk)948 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
949 {
950 	struct sighand_struct *sig;
951 
952 	if (clone_flags & CLONE_SIGHAND) {
953 		atomic_inc(&current->sighand->count);
954 		return 0;
955 	}
956 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
957 	rcu_assign_pointer(tsk->sighand, sig);
958 	if (!sig)
959 		return -ENOMEM;
960 	atomic_set(&sig->count, 1);
961 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
962 	return 0;
963 }
964 
__cleanup_sighand(struct sighand_struct * sighand)965 void __cleanup_sighand(struct sighand_struct *sighand)
966 {
967 	if (atomic_dec_and_test(&sighand->count)) {
968 		signalfd_cleanup(sighand);
969 		kmem_cache_free(sighand_cachep, sighand);
970 	}
971 }
972 
973 
974 /*
975  * Initialize POSIX timer handling for a thread group.
976  */
posix_cpu_timers_init_group(struct signal_struct * sig)977 static void posix_cpu_timers_init_group(struct signal_struct *sig)
978 {
979 	unsigned long cpu_limit;
980 
981 	/* Thread group counters. */
982 	thread_group_cputime_init(sig);
983 
984 	cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
985 	if (cpu_limit != RLIM_INFINITY) {
986 		sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
987 		sig->cputimer.running = 1;
988 	}
989 
990 	/* The timer lists. */
991 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
992 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
993 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
994 }
995 
copy_signal(unsigned long clone_flags,struct task_struct * tsk)996 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
997 {
998 	struct signal_struct *sig;
999 
1000 	if (clone_flags & CLONE_THREAD)
1001 		return 0;
1002 
1003 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1004 	tsk->signal = sig;
1005 	if (!sig)
1006 		return -ENOMEM;
1007 
1008 	sig->nr_threads = 1;
1009 	atomic_set(&sig->live, 1);
1010 	atomic_set(&sig->sigcnt, 1);
1011 	init_waitqueue_head(&sig->wait_chldexit);
1012 	if (clone_flags & CLONE_NEWPID)
1013 		sig->flags |= SIGNAL_UNKILLABLE;
1014 	sig->curr_target = tsk;
1015 	init_sigpending(&sig->shared_pending);
1016 	INIT_LIST_HEAD(&sig->posix_timers);
1017 
1018 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1019 	sig->real_timer.function = it_real_fn;
1020 
1021 	task_lock(current->group_leader);
1022 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1023 	task_unlock(current->group_leader);
1024 
1025 	posix_cpu_timers_init_group(sig);
1026 
1027 	tty_audit_fork(sig);
1028 	sched_autogroup_fork(sig);
1029 
1030 #ifdef CONFIG_CGROUPS
1031 	init_rwsem(&sig->group_rwsem);
1032 #endif
1033 
1034 	sig->oom_adj = current->signal->oom_adj;
1035 	sig->oom_score_adj = current->signal->oom_score_adj;
1036 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1037 
1038 	mutex_init(&sig->cred_guard_mutex);
1039 
1040 	return 0;
1041 }
1042 
copy_flags(unsigned long clone_flags,struct task_struct * p)1043 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
1044 {
1045 	unsigned long new_flags = p->flags;
1046 
1047 	new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1048 	new_flags |= PF_FORKNOEXEC;
1049 	p->flags = new_flags;
1050 }
1051 
SYSCALL_DEFINE1(set_tid_address,int __user *,tidptr)1052 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1053 {
1054 	current->clear_child_tid = tidptr;
1055 
1056 	return task_pid_vnr(current);
1057 }
1058 
rt_mutex_init_task(struct task_struct * p)1059 static void rt_mutex_init_task(struct task_struct *p)
1060 {
1061 	raw_spin_lock_init(&p->pi_lock);
1062 #ifdef CONFIG_RT_MUTEXES
1063 	plist_head_init(&p->pi_waiters);
1064 	p->pi_blocked_on = NULL;
1065 #endif
1066 }
1067 
1068 #ifdef CONFIG_MM_OWNER
mm_init_owner(struct mm_struct * mm,struct task_struct * p)1069 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1070 {
1071 	mm->owner = p;
1072 }
1073 #endif /* CONFIG_MM_OWNER */
1074 
1075 /*
1076  * Initialize POSIX timer handling for a single task.
1077  */
posix_cpu_timers_init(struct task_struct * tsk)1078 static void posix_cpu_timers_init(struct task_struct *tsk)
1079 {
1080 	tsk->cputime_expires.prof_exp = 0;
1081 	tsk->cputime_expires.virt_exp = 0;
1082 	tsk->cputime_expires.sched_exp = 0;
1083 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1084 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1085 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1086 }
1087 
1088 /*
1089  * This creates a new process as a copy of the old one,
1090  * but does not actually start it yet.
1091  *
1092  * It copies the registers, and all the appropriate
1093  * parts of the process environment (as per the clone
1094  * flags). The actual kick-off is left to the caller.
1095  */
copy_process(unsigned long clone_flags,unsigned long stack_start,struct pt_regs * regs,unsigned long stack_size,int __user * child_tidptr,struct pid * pid,int trace)1096 static struct task_struct *copy_process(unsigned long clone_flags,
1097 					unsigned long stack_start,
1098 					struct pt_regs *regs,
1099 					unsigned long stack_size,
1100 					int __user *child_tidptr,
1101 					struct pid *pid,
1102 					int trace)
1103 {
1104 	int retval;
1105 	struct task_struct *p;
1106 	int cgroup_callbacks_done = 0;
1107 
1108 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1109 		return ERR_PTR(-EINVAL);
1110 
1111 	/*
1112 	 * Thread groups must share signals as well, and detached threads
1113 	 * can only be started up within the thread group.
1114 	 */
1115 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1116 		return ERR_PTR(-EINVAL);
1117 
1118 	/*
1119 	 * Shared signal handlers imply shared VM. By way of the above,
1120 	 * thread groups also imply shared VM. Blocking this case allows
1121 	 * for various simplifications in other code.
1122 	 */
1123 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1124 		return ERR_PTR(-EINVAL);
1125 
1126 	/*
1127 	 * Siblings of global init remain as zombies on exit since they are
1128 	 * not reaped by their parent (swapper). To solve this and to avoid
1129 	 * multi-rooted process trees, prevent global and container-inits
1130 	 * from creating siblings.
1131 	 */
1132 	if ((clone_flags & CLONE_PARENT) &&
1133 				current->signal->flags & SIGNAL_UNKILLABLE)
1134 		return ERR_PTR(-EINVAL);
1135 
1136 	retval = security_task_create(clone_flags);
1137 	if (retval)
1138 		goto fork_out;
1139 
1140 	retval = -ENOMEM;
1141 	p = dup_task_struct(current);
1142 	if (!p)
1143 		goto fork_out;
1144 
1145 	ftrace_graph_init_task(p);
1146 
1147 	rt_mutex_init_task(p);
1148 
1149 #ifdef CONFIG_PROVE_LOCKING
1150 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1151 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1152 #endif
1153 	retval = -EAGAIN;
1154 	if (atomic_read(&p->real_cred->user->processes) >=
1155 			task_rlimit(p, RLIMIT_NPROC)) {
1156 		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1157 		    p->real_cred->user != INIT_USER)
1158 			goto bad_fork_free;
1159 	}
1160 	current->flags &= ~PF_NPROC_EXCEEDED;
1161 
1162 	retval = copy_creds(p, clone_flags);
1163 	if (retval < 0)
1164 		goto bad_fork_free;
1165 
1166 	/*
1167 	 * If multiple threads are within copy_process(), then this check
1168 	 * triggers too late. This doesn't hurt, the check is only there
1169 	 * to stop root fork bombs.
1170 	 */
1171 	retval = -EAGAIN;
1172 	if (nr_threads >= max_threads)
1173 		goto bad_fork_cleanup_count;
1174 
1175 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
1176 		goto bad_fork_cleanup_count;
1177 
1178 	p->did_exec = 0;
1179 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1180 	copy_flags(clone_flags, p);
1181 	INIT_LIST_HEAD(&p->children);
1182 	INIT_LIST_HEAD(&p->sibling);
1183 	rcu_copy_process(p);
1184 	p->vfork_done = NULL;
1185 	spin_lock_init(&p->alloc_lock);
1186 
1187 	init_sigpending(&p->pending);
1188 
1189 	p->utime = p->stime = p->gtime = 0;
1190 	p->utimescaled = p->stimescaled = 0;
1191 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1192 	p->prev_utime = p->prev_stime = 0;
1193 #endif
1194 #if defined(SPLIT_RSS_COUNTING)
1195 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1196 #endif
1197 
1198 	p->default_timer_slack_ns = current->timer_slack_ns;
1199 
1200 	task_io_accounting_init(&p->ioac);
1201 	acct_clear_integrals(p);
1202 
1203 	posix_cpu_timers_init(p);
1204 
1205 	do_posix_clock_monotonic_gettime(&p->start_time);
1206 	p->real_start_time = p->start_time;
1207 	monotonic_to_bootbased(&p->real_start_time);
1208 	p->io_context = NULL;
1209 	p->audit_context = NULL;
1210 	if (clone_flags & CLONE_THREAD)
1211 		threadgroup_change_begin(current);
1212 	cgroup_fork(p);
1213 #ifdef CONFIG_NUMA
1214 	p->mempolicy = mpol_dup(p->mempolicy);
1215 	if (IS_ERR(p->mempolicy)) {
1216 		retval = PTR_ERR(p->mempolicy);
1217 		p->mempolicy = NULL;
1218 		goto bad_fork_cleanup_cgroup;
1219 	}
1220 	mpol_fix_fork_child_flag(p);
1221 #endif
1222 #ifdef CONFIG_CPUSETS
1223 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1224 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1225 #endif
1226 #ifdef CONFIG_TRACE_IRQFLAGS
1227 	p->irq_events = 0;
1228 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1229 	p->hardirqs_enabled = 1;
1230 #else
1231 	p->hardirqs_enabled = 0;
1232 #endif
1233 	p->hardirq_enable_ip = 0;
1234 	p->hardirq_enable_event = 0;
1235 	p->hardirq_disable_ip = _THIS_IP_;
1236 	p->hardirq_disable_event = 0;
1237 	p->softirqs_enabled = 1;
1238 	p->softirq_enable_ip = _THIS_IP_;
1239 	p->softirq_enable_event = 0;
1240 	p->softirq_disable_ip = 0;
1241 	p->softirq_disable_event = 0;
1242 	p->hardirq_context = 0;
1243 	p->softirq_context = 0;
1244 #endif
1245 #ifdef CONFIG_LOCKDEP
1246 	p->lockdep_depth = 0; /* no locks held yet */
1247 	p->curr_chain_key = 0;
1248 	p->lockdep_recursion = 0;
1249 #endif
1250 
1251 #ifdef CONFIG_DEBUG_MUTEXES
1252 	p->blocked_on = NULL; /* not blocked yet */
1253 #endif
1254 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1255 	p->memcg_batch.do_batch = 0;
1256 	p->memcg_batch.memcg = NULL;
1257 #endif
1258 
1259 	/* Perform scheduler related setup. Assign this task to a CPU. */
1260 	sched_fork(p);
1261 
1262 	retval = perf_event_init_task(p);
1263 	if (retval)
1264 		goto bad_fork_cleanup_policy;
1265 	retval = audit_alloc(p);
1266 	if (retval)
1267 		goto bad_fork_cleanup_policy;
1268 	/* copy all the process information */
1269 	retval = copy_semundo(clone_flags, p);
1270 	if (retval)
1271 		goto bad_fork_cleanup_audit;
1272 	retval = copy_files(clone_flags, p);
1273 	if (retval)
1274 		goto bad_fork_cleanup_semundo;
1275 	retval = copy_fs(clone_flags, p);
1276 	if (retval)
1277 		goto bad_fork_cleanup_files;
1278 	retval = copy_sighand(clone_flags, p);
1279 	if (retval)
1280 		goto bad_fork_cleanup_fs;
1281 	retval = copy_signal(clone_flags, p);
1282 	if (retval)
1283 		goto bad_fork_cleanup_sighand;
1284 	retval = copy_mm(clone_flags, p);
1285 	if (retval)
1286 		goto bad_fork_cleanup_signal;
1287 	retval = copy_namespaces(clone_flags, p);
1288 	if (retval)
1289 		goto bad_fork_cleanup_mm;
1290 	retval = copy_io(clone_flags, p);
1291 	if (retval)
1292 		goto bad_fork_cleanup_namespaces;
1293 	retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1294 	if (retval)
1295 		goto bad_fork_cleanup_io;
1296 
1297 	if (pid != &init_struct_pid) {
1298 		retval = -ENOMEM;
1299 		pid = alloc_pid(p->nsproxy->pid_ns);
1300 		if (!pid)
1301 			goto bad_fork_cleanup_io;
1302 	}
1303 
1304 	p->pid = pid_nr(pid);
1305 	p->tgid = p->pid;
1306 	if (clone_flags & CLONE_THREAD)
1307 		p->tgid = current->tgid;
1308 
1309 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1310 	/*
1311 	 * Clear TID on mm_release()?
1312 	 */
1313 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1314 #ifdef CONFIG_BLOCK
1315 	p->plug = NULL;
1316 #endif
1317 #ifdef CONFIG_FUTEX
1318 	p->robust_list = NULL;
1319 #ifdef CONFIG_COMPAT
1320 	p->compat_robust_list = NULL;
1321 #endif
1322 	INIT_LIST_HEAD(&p->pi_state_list);
1323 	p->pi_state_cache = NULL;
1324 #endif
1325 	/*
1326 	 * sigaltstack should be cleared when sharing the same VM
1327 	 */
1328 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1329 		p->sas_ss_sp = p->sas_ss_size = 0;
1330 
1331 	/*
1332 	 * Syscall tracing and stepping should be turned off in the
1333 	 * child regardless of CLONE_PTRACE.
1334 	 */
1335 	user_disable_single_step(p);
1336 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1337 #ifdef TIF_SYSCALL_EMU
1338 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1339 #endif
1340 	clear_all_latency_tracing(p);
1341 
1342 	/* ok, now we should be set up.. */
1343 	p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1344 	p->pdeath_signal = 0;
1345 	p->exit_state = 0;
1346 
1347 	p->nr_dirtied = 0;
1348 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1349 	p->dirty_paused_when = 0;
1350 
1351 	/*
1352 	 * Ok, make it visible to the rest of the system.
1353 	 * We dont wake it up yet.
1354 	 */
1355 	p->group_leader = p;
1356 	INIT_LIST_HEAD(&p->thread_group);
1357 
1358 	/* Now that the task is set up, run cgroup callbacks if
1359 	 * necessary. We need to run them before the task is visible
1360 	 * on the tasklist. */
1361 	cgroup_fork_callbacks(p);
1362 	cgroup_callbacks_done = 1;
1363 
1364 	/* Need tasklist lock for parent etc handling! */
1365 	write_lock_irq(&tasklist_lock);
1366 
1367 	/* CLONE_PARENT re-uses the old parent */
1368 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1369 		p->real_parent = current->real_parent;
1370 		p->parent_exec_id = current->parent_exec_id;
1371 	} else {
1372 		p->real_parent = current;
1373 		p->parent_exec_id = current->self_exec_id;
1374 	}
1375 
1376 	spin_lock(&current->sighand->siglock);
1377 
1378 	/*
1379 	 * Process group and session signals need to be delivered to just the
1380 	 * parent before the fork or both the parent and the child after the
1381 	 * fork. Restart if a signal comes in before we add the new process to
1382 	 * it's process group.
1383 	 * A fatal signal pending means that current will exit, so the new
1384 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1385 	*/
1386 	recalc_sigpending();
1387 	if (signal_pending(current)) {
1388 		spin_unlock(&current->sighand->siglock);
1389 		write_unlock_irq(&tasklist_lock);
1390 		retval = -ERESTARTNOINTR;
1391 		goto bad_fork_free_pid;
1392 	}
1393 
1394 	if (clone_flags & CLONE_THREAD) {
1395 		current->signal->nr_threads++;
1396 		atomic_inc(&current->signal->live);
1397 		atomic_inc(&current->signal->sigcnt);
1398 		p->group_leader = current->group_leader;
1399 		list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1400 	}
1401 
1402 	if (likely(p->pid)) {
1403 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1404 
1405 		if (thread_group_leader(p)) {
1406 			if (is_child_reaper(pid))
1407 				p->nsproxy->pid_ns->child_reaper = p;
1408 
1409 			p->signal->leader_pid = pid;
1410 			p->signal->tty = tty_kref_get(current->signal->tty);
1411 			attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1412 			attach_pid(p, PIDTYPE_SID, task_session(current));
1413 			list_add_tail(&p->sibling, &p->real_parent->children);
1414 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1415 			__this_cpu_inc(process_counts);
1416 		}
1417 		attach_pid(p, PIDTYPE_PID, pid);
1418 		nr_threads++;
1419 	}
1420 
1421 	total_forks++;
1422 	spin_unlock(&current->sighand->siglock);
1423 	write_unlock_irq(&tasklist_lock);
1424 	proc_fork_connector(p);
1425 	cgroup_post_fork(p);
1426 	if (clone_flags & CLONE_THREAD)
1427 		threadgroup_change_end(current);
1428 	perf_event_fork(p);
1429 
1430 	trace_task_newtask(p, clone_flags);
1431 
1432 	return p;
1433 
1434 bad_fork_free_pid:
1435 	if (pid != &init_struct_pid)
1436 		free_pid(pid);
1437 bad_fork_cleanup_io:
1438 	if (p->io_context)
1439 		exit_io_context(p);
1440 bad_fork_cleanup_namespaces:
1441 	exit_task_namespaces(p);
1442 bad_fork_cleanup_mm:
1443 	if (p->mm)
1444 		mmput(p->mm);
1445 bad_fork_cleanup_signal:
1446 	if (!(clone_flags & CLONE_THREAD))
1447 		free_signal_struct(p->signal);
1448 bad_fork_cleanup_sighand:
1449 	__cleanup_sighand(p->sighand);
1450 bad_fork_cleanup_fs:
1451 	exit_fs(p); /* blocking */
1452 bad_fork_cleanup_files:
1453 	exit_files(p); /* blocking */
1454 bad_fork_cleanup_semundo:
1455 	exit_sem(p);
1456 bad_fork_cleanup_audit:
1457 	audit_free(p);
1458 bad_fork_cleanup_policy:
1459 	perf_event_free_task(p);
1460 #ifdef CONFIG_NUMA
1461 	mpol_put(p->mempolicy);
1462 bad_fork_cleanup_cgroup:
1463 #endif
1464 	if (clone_flags & CLONE_THREAD)
1465 		threadgroup_change_end(current);
1466 	cgroup_exit(p, cgroup_callbacks_done);
1467 	delayacct_tsk_free(p);
1468 	module_put(task_thread_info(p)->exec_domain->module);
1469 bad_fork_cleanup_count:
1470 	atomic_dec(&p->cred->user->processes);
1471 	exit_creds(p);
1472 bad_fork_free:
1473 	free_task(p);
1474 fork_out:
1475 	return ERR_PTR(retval);
1476 }
1477 
idle_regs(struct pt_regs * regs)1478 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1479 {
1480 	memset(regs, 0, sizeof(struct pt_regs));
1481 	return regs;
1482 }
1483 
init_idle_pids(struct pid_link * links)1484 static inline void init_idle_pids(struct pid_link *links)
1485 {
1486 	enum pid_type type;
1487 
1488 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1489 		INIT_HLIST_NODE(&links[type].node); /* not really needed */
1490 		links[type].pid = &init_struct_pid;
1491 	}
1492 }
1493 
fork_idle(int cpu)1494 struct task_struct * __cpuinit fork_idle(int cpu)
1495 {
1496 	struct task_struct *task;
1497 	struct pt_regs regs;
1498 
1499 	task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1500 			    &init_struct_pid, 0);
1501 	if (!IS_ERR(task)) {
1502 		init_idle_pids(task->pids);
1503 		init_idle(task, cpu);
1504 	}
1505 
1506 	return task;
1507 }
1508 
1509 /*
1510  *  Ok, this is the main fork-routine.
1511  *
1512  * It copies the process, and if successful kick-starts
1513  * it and waits for it to finish using the VM if required.
1514  */
do_fork(unsigned long clone_flags,unsigned long stack_start,struct pt_regs * regs,unsigned long stack_size,int __user * parent_tidptr,int __user * child_tidptr)1515 long do_fork(unsigned long clone_flags,
1516 	      unsigned long stack_start,
1517 	      struct pt_regs *regs,
1518 	      unsigned long stack_size,
1519 	      int __user *parent_tidptr,
1520 	      int __user *child_tidptr)
1521 {
1522 	struct task_struct *p;
1523 	int trace = 0;
1524 	long nr;
1525 
1526 	/*
1527 	 * Do some preliminary argument and permissions checking before we
1528 	 * actually start allocating stuff
1529 	 */
1530 	if (clone_flags & CLONE_NEWUSER) {
1531 		if (clone_flags & CLONE_THREAD)
1532 			return -EINVAL;
1533 		/* hopefully this check will go away when userns support is
1534 		 * complete
1535 		 */
1536 		if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1537 				!capable(CAP_SETGID))
1538 			return -EPERM;
1539 	}
1540 
1541 	/*
1542 	 * Determine whether and which event to report to ptracer.  When
1543 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
1544 	 * requested, no event is reported; otherwise, report if the event
1545 	 * for the type of forking is enabled.
1546 	 */
1547 	if (likely(user_mode(regs)) && !(clone_flags & CLONE_UNTRACED)) {
1548 		if (clone_flags & CLONE_VFORK)
1549 			trace = PTRACE_EVENT_VFORK;
1550 		else if ((clone_flags & CSIGNAL) != SIGCHLD)
1551 			trace = PTRACE_EVENT_CLONE;
1552 		else
1553 			trace = PTRACE_EVENT_FORK;
1554 
1555 		if (likely(!ptrace_event_enabled(current, trace)))
1556 			trace = 0;
1557 	}
1558 
1559 	p = copy_process(clone_flags, stack_start, regs, stack_size,
1560 			 child_tidptr, NULL, trace);
1561 	/*
1562 	 * Do this prior waking up the new thread - the thread pointer
1563 	 * might get invalid after that point, if the thread exits quickly.
1564 	 */
1565 	if (!IS_ERR(p)) {
1566 		struct completion vfork;
1567 
1568 		trace_sched_process_fork(current, p);
1569 
1570 		nr = task_pid_vnr(p);
1571 
1572 		if (clone_flags & CLONE_PARENT_SETTID)
1573 			put_user(nr, parent_tidptr);
1574 
1575 		if (clone_flags & CLONE_VFORK) {
1576 			p->vfork_done = &vfork;
1577 			init_completion(&vfork);
1578 			get_task_struct(p);
1579 		}
1580 
1581 		wake_up_new_task(p);
1582 
1583 		/* forking complete and child started to run, tell ptracer */
1584 		if (unlikely(trace))
1585 			ptrace_event(trace, nr);
1586 
1587 		if (clone_flags & CLONE_VFORK) {
1588 			if (!wait_for_vfork_done(p, &vfork))
1589 				ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1590 		}
1591 	} else {
1592 		nr = PTR_ERR(p);
1593 	}
1594 	return nr;
1595 }
1596 
1597 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1598 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1599 #endif
1600 
sighand_ctor(void * data)1601 static void sighand_ctor(void *data)
1602 {
1603 	struct sighand_struct *sighand = data;
1604 
1605 	spin_lock_init(&sighand->siglock);
1606 	init_waitqueue_head(&sighand->signalfd_wqh);
1607 }
1608 
proc_caches_init(void)1609 void __init proc_caches_init(void)
1610 {
1611 	sighand_cachep = kmem_cache_create("sighand_cache",
1612 			sizeof(struct sighand_struct), 0,
1613 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1614 			SLAB_NOTRACK, sighand_ctor);
1615 	signal_cachep = kmem_cache_create("signal_cache",
1616 			sizeof(struct signal_struct), 0,
1617 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1618 	files_cachep = kmem_cache_create("files_cache",
1619 			sizeof(struct files_struct), 0,
1620 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1621 	fs_cachep = kmem_cache_create("fs_cache",
1622 			sizeof(struct fs_struct), 0,
1623 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1624 	/*
1625 	 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1626 	 * whole struct cpumask for the OFFSTACK case. We could change
1627 	 * this to *only* allocate as much of it as required by the
1628 	 * maximum number of CPU's we can ever have.  The cpumask_allocation
1629 	 * is at the end of the structure, exactly for that reason.
1630 	 */
1631 	mm_cachep = kmem_cache_create("mm_struct",
1632 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1633 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1634 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1635 	mmap_init();
1636 	nsproxy_cache_init();
1637 }
1638 
1639 /*
1640  * Check constraints on flags passed to the unshare system call.
1641  */
check_unshare_flags(unsigned long unshare_flags)1642 static int check_unshare_flags(unsigned long unshare_flags)
1643 {
1644 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1645 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1646 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1647 		return -EINVAL;
1648 	/*
1649 	 * Not implemented, but pretend it works if there is nothing to
1650 	 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1651 	 * needs to unshare vm.
1652 	 */
1653 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1654 		/* FIXME: get_task_mm() increments ->mm_users */
1655 		if (atomic_read(&current->mm->mm_users) > 1)
1656 			return -EINVAL;
1657 	}
1658 
1659 	return 0;
1660 }
1661 
1662 /*
1663  * Unshare the filesystem structure if it is being shared
1664  */
unshare_fs(unsigned long unshare_flags,struct fs_struct ** new_fsp)1665 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1666 {
1667 	struct fs_struct *fs = current->fs;
1668 
1669 	if (!(unshare_flags & CLONE_FS) || !fs)
1670 		return 0;
1671 
1672 	/* don't need lock here; in the worst case we'll do useless copy */
1673 	if (fs->users == 1)
1674 		return 0;
1675 
1676 	*new_fsp = copy_fs_struct(fs);
1677 	if (!*new_fsp)
1678 		return -ENOMEM;
1679 
1680 	return 0;
1681 }
1682 
1683 /*
1684  * Unshare file descriptor table if it is being shared
1685  */
unshare_fd(unsigned long unshare_flags,struct files_struct ** new_fdp)1686 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1687 {
1688 	struct files_struct *fd = current->files;
1689 	int error = 0;
1690 
1691 	if ((unshare_flags & CLONE_FILES) &&
1692 	    (fd && atomic_read(&fd->count) > 1)) {
1693 		*new_fdp = dup_fd(fd, &error);
1694 		if (!*new_fdp)
1695 			return error;
1696 	}
1697 
1698 	return 0;
1699 }
1700 
1701 /*
1702  * unshare allows a process to 'unshare' part of the process
1703  * context which was originally shared using clone.  copy_*
1704  * functions used by do_fork() cannot be used here directly
1705  * because they modify an inactive task_struct that is being
1706  * constructed. Here we are modifying the current, active,
1707  * task_struct.
1708  */
SYSCALL_DEFINE1(unshare,unsigned long,unshare_flags)1709 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1710 {
1711 	struct fs_struct *fs, *new_fs = NULL;
1712 	struct files_struct *fd, *new_fd = NULL;
1713 	struct nsproxy *new_nsproxy = NULL;
1714 	int do_sysvsem = 0;
1715 	int err;
1716 
1717 	err = check_unshare_flags(unshare_flags);
1718 	if (err)
1719 		goto bad_unshare_out;
1720 
1721 	/*
1722 	 * If unsharing namespace, must also unshare filesystem information.
1723 	 */
1724 	if (unshare_flags & CLONE_NEWNS)
1725 		unshare_flags |= CLONE_FS;
1726 	/*
1727 	 * CLONE_NEWIPC must also detach from the undolist: after switching
1728 	 * to a new ipc namespace, the semaphore arrays from the old
1729 	 * namespace are unreachable.
1730 	 */
1731 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1732 		do_sysvsem = 1;
1733 	err = unshare_fs(unshare_flags, &new_fs);
1734 	if (err)
1735 		goto bad_unshare_out;
1736 	err = unshare_fd(unshare_flags, &new_fd);
1737 	if (err)
1738 		goto bad_unshare_cleanup_fs;
1739 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, new_fs);
1740 	if (err)
1741 		goto bad_unshare_cleanup_fd;
1742 
1743 	if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
1744 		if (do_sysvsem) {
1745 			/*
1746 			 * CLONE_SYSVSEM is equivalent to sys_exit().
1747 			 */
1748 			exit_sem(current);
1749 		}
1750 
1751 		if (new_nsproxy) {
1752 			switch_task_namespaces(current, new_nsproxy);
1753 			new_nsproxy = NULL;
1754 		}
1755 
1756 		task_lock(current);
1757 
1758 		if (new_fs) {
1759 			fs = current->fs;
1760 			spin_lock(&fs->lock);
1761 			current->fs = new_fs;
1762 			if (--fs->users)
1763 				new_fs = NULL;
1764 			else
1765 				new_fs = fs;
1766 			spin_unlock(&fs->lock);
1767 		}
1768 
1769 		if (new_fd) {
1770 			fd = current->files;
1771 			current->files = new_fd;
1772 			new_fd = fd;
1773 		}
1774 
1775 		task_unlock(current);
1776 	}
1777 
1778 	if (new_nsproxy)
1779 		put_nsproxy(new_nsproxy);
1780 
1781 bad_unshare_cleanup_fd:
1782 	if (new_fd)
1783 		put_files_struct(new_fd);
1784 
1785 bad_unshare_cleanup_fs:
1786 	if (new_fs)
1787 		free_fs_struct(new_fs);
1788 
1789 bad_unshare_out:
1790 	return err;
1791 }
1792 
1793 /*
1794  *	Helper to unshare the files of the current task.
1795  *	We don't want to expose copy_files internals to
1796  *	the exec layer of the kernel.
1797  */
1798 
unshare_files(struct files_struct ** displaced)1799 int unshare_files(struct files_struct **displaced)
1800 {
1801 	struct task_struct *task = current;
1802 	struct files_struct *copy = NULL;
1803 	int error;
1804 
1805 	error = unshare_fd(CLONE_FILES, &copy);
1806 	if (error || !copy) {
1807 		*displaced = NULL;
1808 		return error;
1809 	}
1810 	*displaced = task->files;
1811 	task_lock(task);
1812 	task->files = copy;
1813 	task_unlock(task);
1814 	return 0;
1815 }
1816