1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * f_fs.c -- user mode file system API for USB composite function controllers
4 *
5 * Copyright (C) 2010 Samsung Electronics
6 * Author: Michal Nazarewicz <mina86@mina86.com>
7 *
8 * Based on inode.c (GadgetFS) which was:
9 * Copyright (C) 2003-2004 David Brownell
10 * Copyright (C) 2003 Agilent Technologies
11 */
12
13
14 /* #define DEBUG */
15 /* #define VERBOSE_DEBUG */
16
17 #include <linux/blkdev.h>
18 #include <linux/pagemap.h>
19 #include <linux/export.h>
20 #include <linux/fs_parser.h>
21 #include <linux/hid.h>
22 #include <linux/mm.h>
23 #include <linux/module.h>
24 #include <linux/scatterlist.h>
25 #include <linux/sched/signal.h>
26 #include <linux/uio.h>
27 #include <linux/vmalloc.h>
28 #include <asm/unaligned.h>
29
30 #include <linux/usb/ccid.h>
31 #include <linux/usb/composite.h>
32 #include <linux/usb/functionfs.h>
33
34 #include <linux/aio.h>
35 #include <linux/kthread.h>
36 #include <linux/poll.h>
37 #include <linux/eventfd.h>
38
39 #include "u_fs.h"
40 #include "u_f.h"
41 #include "u_os_desc.h"
42 #include "configfs.h"
43
44 #define FUNCTIONFS_MAGIC 0xa647361 /* Chosen by a honest dice roll ;) */
45
46 /* Reference counter handling */
47 static void ffs_data_get(struct ffs_data *ffs);
48 static void ffs_data_put(struct ffs_data *ffs);
49 /* Creates new ffs_data object. */
50 static struct ffs_data *__must_check ffs_data_new(const char *dev_name)
51 __attribute__((malloc));
52
53 /* Opened counter handling. */
54 static void ffs_data_opened(struct ffs_data *ffs);
55 static void ffs_data_closed(struct ffs_data *ffs);
56
57 /* Called with ffs->mutex held; take over ownership of data. */
58 static int __must_check
59 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
60 static int __must_check
61 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
62
63
64 /* The function structure ***************************************************/
65
66 struct ffs_ep;
67
68 struct ffs_function {
69 struct usb_configuration *conf;
70 struct usb_gadget *gadget;
71 struct ffs_data *ffs;
72
73 struct ffs_ep *eps;
74 u8 eps_revmap[16];
75 short *interfaces_nums;
76
77 struct usb_function function;
78 };
79
80
ffs_func_from_usb(struct usb_function * f)81 static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
82 {
83 return container_of(f, struct ffs_function, function);
84 }
85
86
87 static inline enum ffs_setup_state
ffs_setup_state_clear_cancelled(struct ffs_data * ffs)88 ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
89 {
90 return (enum ffs_setup_state)
91 cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
92 }
93
94
95 static void ffs_func_eps_disable(struct ffs_function *func);
96 static int __must_check ffs_func_eps_enable(struct ffs_function *func);
97
98 static int ffs_func_bind(struct usb_configuration *,
99 struct usb_function *);
100 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
101 static void ffs_func_disable(struct usb_function *);
102 static int ffs_func_setup(struct usb_function *,
103 const struct usb_ctrlrequest *);
104 static bool ffs_func_req_match(struct usb_function *,
105 const struct usb_ctrlrequest *,
106 bool config0);
107 static void ffs_func_suspend(struct usb_function *);
108 static void ffs_func_resume(struct usb_function *);
109
110
111 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
112 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
113
114
115 /* The endpoints structures *************************************************/
116
117 struct ffs_ep {
118 struct usb_ep *ep; /* P: ffs->eps_lock */
119 struct usb_request *req; /* P: epfile->mutex */
120
121 /* [0]: full speed, [1]: high speed, [2]: super speed */
122 struct usb_endpoint_descriptor *descs[3];
123
124 u8 num;
125
126 int status; /* P: epfile->mutex */
127 };
128
129 struct ffs_epfile {
130 /* Protects ep->ep and ep->req. */
131 struct mutex mutex;
132
133 struct ffs_data *ffs;
134 struct ffs_ep *ep; /* P: ffs->eps_lock */
135
136 struct dentry *dentry;
137
138 /*
139 * Buffer for holding data from partial reads which may happen since
140 * we’re rounding user read requests to a multiple of a max packet size.
141 *
142 * The pointer is initialised with NULL value and may be set by
143 * __ffs_epfile_read_data function to point to a temporary buffer.
144 *
145 * In normal operation, calls to __ffs_epfile_read_buffered will consume
146 * data from said buffer and eventually free it. Importantly, while the
147 * function is using the buffer, it sets the pointer to NULL. This is
148 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
149 * can never run concurrently (they are synchronised by epfile->mutex)
150 * so the latter will not assign a new value to the pointer.
151 *
152 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
153 * valid) and sets the pointer to READ_BUFFER_DROP value. This special
154 * value is crux of the synchronisation between ffs_func_eps_disable and
155 * __ffs_epfile_read_data.
156 *
157 * Once __ffs_epfile_read_data is about to finish it will try to set the
158 * pointer back to its old value (as described above), but seeing as the
159 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
160 * the buffer.
161 *
162 * == State transitions ==
163 *
164 * • ptr == NULL: (initial state)
165 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP
166 * ◦ __ffs_epfile_read_buffered: nop
167 * ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
168 * ◦ reading finishes: n/a, not in ‘and reading’ state
169 * • ptr == DROP:
170 * ◦ __ffs_epfile_read_buffer_free: nop
171 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL
172 * ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
173 * ◦ reading finishes: n/a, not in ‘and reading’ state
174 * • ptr == buf:
175 * ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
176 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL and reading
177 * ◦ __ffs_epfile_read_data: n/a, __ffs_epfile_read_buffered
178 * is always called first
179 * ◦ reading finishes: n/a, not in ‘and reading’ state
180 * • ptr == NULL and reading:
181 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
182 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held
183 * ◦ __ffs_epfile_read_data: n/a, mutex is held
184 * ◦ reading finishes and …
185 * … all data read: free buf, go to ptr == NULL
186 * … otherwise: go to ptr == buf and reading
187 * • ptr == DROP and reading:
188 * ◦ __ffs_epfile_read_buffer_free: nop
189 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held
190 * ◦ __ffs_epfile_read_data: n/a, mutex is held
191 * ◦ reading finishes: free buf, go to ptr == DROP
192 */
193 struct ffs_buffer *read_buffer;
194 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
195
196 char name[5];
197
198 unsigned char in; /* P: ffs->eps_lock */
199 unsigned char isoc; /* P: ffs->eps_lock */
200
201 unsigned char _pad;
202 };
203
204 struct ffs_buffer {
205 size_t length;
206 char *data;
207 char storage[];
208 };
209
210 /* ffs_io_data structure ***************************************************/
211
212 struct ffs_io_data {
213 bool aio;
214 bool read;
215
216 struct kiocb *kiocb;
217 struct iov_iter data;
218 const void *to_free;
219 char *buf;
220
221 struct mm_struct *mm;
222 struct work_struct work;
223
224 struct usb_ep *ep;
225 struct usb_request *req;
226 struct sg_table sgt;
227 bool use_sg;
228
229 struct ffs_data *ffs;
230 };
231
232 struct ffs_desc_helper {
233 struct ffs_data *ffs;
234 unsigned interfaces_count;
235 unsigned eps_count;
236 };
237
238 static int __must_check ffs_epfiles_create(struct ffs_data *ffs);
239 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
240
241 static struct dentry *
242 ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
243 const struct file_operations *fops);
244
245 /* Devices management *******************************************************/
246
247 DEFINE_MUTEX(ffs_lock);
248 EXPORT_SYMBOL_GPL(ffs_lock);
249
250 static struct ffs_dev *_ffs_find_dev(const char *name);
251 static struct ffs_dev *_ffs_alloc_dev(void);
252 static void _ffs_free_dev(struct ffs_dev *dev);
253 static void *ffs_acquire_dev(const char *dev_name);
254 static void ffs_release_dev(struct ffs_data *ffs_data);
255 static int ffs_ready(struct ffs_data *ffs);
256 static void ffs_closed(struct ffs_data *ffs);
257
258 /* Misc helper functions ****************************************************/
259
260 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
261 __attribute__((warn_unused_result, nonnull));
262 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
263 __attribute__((warn_unused_result, nonnull));
264
265
266 /* Control file aka ep0 *****************************************************/
267
ffs_ep0_complete(struct usb_ep * ep,struct usb_request * req)268 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
269 {
270 struct ffs_data *ffs = req->context;
271
272 complete(&ffs->ep0req_completion);
273 }
274
__ffs_ep0_queue_wait(struct ffs_data * ffs,char * data,size_t len)275 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
276 __releases(&ffs->ev.waitq.lock)
277 {
278 struct usb_request *req = ffs->ep0req;
279 int ret;
280
281 req->zero = len < le16_to_cpu(ffs->ev.setup.wLength);
282
283 spin_unlock_irq(&ffs->ev.waitq.lock);
284
285 req->buf = data;
286 req->length = len;
287
288 /*
289 * UDC layer requires to provide a buffer even for ZLP, but should
290 * not use it at all. Let's provide some poisoned pointer to catch
291 * possible bug in the driver.
292 */
293 if (req->buf == NULL)
294 req->buf = (void *)0xDEADBABE;
295
296 reinit_completion(&ffs->ep0req_completion);
297
298 ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
299 if (unlikely(ret < 0))
300 return ret;
301
302 ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
303 if (unlikely(ret)) {
304 usb_ep_dequeue(ffs->gadget->ep0, req);
305 return -EINTR;
306 }
307
308 ffs->setup_state = FFS_NO_SETUP;
309 return req->status ? req->status : req->actual;
310 }
311
__ffs_ep0_stall(struct ffs_data * ffs)312 static int __ffs_ep0_stall(struct ffs_data *ffs)
313 {
314 if (ffs->ev.can_stall) {
315 pr_vdebug("ep0 stall\n");
316 usb_ep_set_halt(ffs->gadget->ep0);
317 ffs->setup_state = FFS_NO_SETUP;
318 return -EL2HLT;
319 } else {
320 pr_debug("bogus ep0 stall!\n");
321 return -ESRCH;
322 }
323 }
324
ffs_ep0_write(struct file * file,const char __user * buf,size_t len,loff_t * ptr)325 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
326 size_t len, loff_t *ptr)
327 {
328 struct ffs_data *ffs = file->private_data;
329 ssize_t ret;
330 char *data;
331
332 ENTER();
333
334 /* Fast check if setup was canceled */
335 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
336 return -EIDRM;
337
338 /* Acquire mutex */
339 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
340 if (unlikely(ret < 0))
341 return ret;
342
343 /* Check state */
344 switch (ffs->state) {
345 case FFS_READ_DESCRIPTORS:
346 case FFS_READ_STRINGS:
347 /* Copy data */
348 if (unlikely(len < 16)) {
349 ret = -EINVAL;
350 break;
351 }
352
353 data = ffs_prepare_buffer(buf, len);
354 if (IS_ERR(data)) {
355 ret = PTR_ERR(data);
356 break;
357 }
358
359 /* Handle data */
360 if (ffs->state == FFS_READ_DESCRIPTORS) {
361 pr_info("read descriptors\n");
362 ret = __ffs_data_got_descs(ffs, data, len);
363 if (unlikely(ret < 0))
364 break;
365
366 ffs->state = FFS_READ_STRINGS;
367 ret = len;
368 } else {
369 pr_info("read strings\n");
370 ret = __ffs_data_got_strings(ffs, data, len);
371 if (unlikely(ret < 0))
372 break;
373
374 ret = ffs_epfiles_create(ffs);
375 if (unlikely(ret)) {
376 ffs->state = FFS_CLOSING;
377 break;
378 }
379
380 ffs->state = FFS_ACTIVE;
381 mutex_unlock(&ffs->mutex);
382
383 ret = ffs_ready(ffs);
384 if (unlikely(ret < 0)) {
385 ffs->state = FFS_CLOSING;
386 return ret;
387 }
388
389 return len;
390 }
391 break;
392
393 case FFS_ACTIVE:
394 data = NULL;
395 /*
396 * We're called from user space, we can use _irq
397 * rather then _irqsave
398 */
399 spin_lock_irq(&ffs->ev.waitq.lock);
400 switch (ffs_setup_state_clear_cancelled(ffs)) {
401 case FFS_SETUP_CANCELLED:
402 ret = -EIDRM;
403 goto done_spin;
404
405 case FFS_NO_SETUP:
406 ret = -ESRCH;
407 goto done_spin;
408
409 case FFS_SETUP_PENDING:
410 break;
411 }
412
413 /* FFS_SETUP_PENDING */
414 if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
415 spin_unlock_irq(&ffs->ev.waitq.lock);
416 ret = __ffs_ep0_stall(ffs);
417 break;
418 }
419
420 /* FFS_SETUP_PENDING and not stall */
421 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
422
423 spin_unlock_irq(&ffs->ev.waitq.lock);
424
425 data = ffs_prepare_buffer(buf, len);
426 if (IS_ERR(data)) {
427 ret = PTR_ERR(data);
428 break;
429 }
430
431 spin_lock_irq(&ffs->ev.waitq.lock);
432
433 /*
434 * We are guaranteed to be still in FFS_ACTIVE state
435 * but the state of setup could have changed from
436 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
437 * to check for that. If that happened we copied data
438 * from user space in vain but it's unlikely.
439 *
440 * For sure we are not in FFS_NO_SETUP since this is
441 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
442 * transition can be performed and it's protected by
443 * mutex.
444 */
445 if (ffs_setup_state_clear_cancelled(ffs) ==
446 FFS_SETUP_CANCELLED) {
447 ret = -EIDRM;
448 done_spin:
449 spin_unlock_irq(&ffs->ev.waitq.lock);
450 } else {
451 /* unlocks spinlock */
452 ret = __ffs_ep0_queue_wait(ffs, data, len);
453 }
454 kfree(data);
455 break;
456
457 default:
458 ret = -EBADFD;
459 break;
460 }
461
462 mutex_unlock(&ffs->mutex);
463 return ret;
464 }
465
466 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
__ffs_ep0_read_events(struct ffs_data * ffs,char __user * buf,size_t n)467 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
468 size_t n)
469 __releases(&ffs->ev.waitq.lock)
470 {
471 /*
472 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
473 * size of ffs->ev.types array (which is four) so that's how much space
474 * we reserve.
475 */
476 struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
477 const size_t size = n * sizeof *events;
478 unsigned i = 0;
479
480 memset(events, 0, size);
481
482 do {
483 events[i].type = ffs->ev.types[i];
484 if (events[i].type == FUNCTIONFS_SETUP) {
485 events[i].u.setup = ffs->ev.setup;
486 ffs->setup_state = FFS_SETUP_PENDING;
487 }
488 } while (++i < n);
489
490 ffs->ev.count -= n;
491 if (ffs->ev.count)
492 memmove(ffs->ev.types, ffs->ev.types + n,
493 ffs->ev.count * sizeof *ffs->ev.types);
494
495 spin_unlock_irq(&ffs->ev.waitq.lock);
496 mutex_unlock(&ffs->mutex);
497
498 return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size;
499 }
500
ffs_ep0_read(struct file * file,char __user * buf,size_t len,loff_t * ptr)501 static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
502 size_t len, loff_t *ptr)
503 {
504 struct ffs_data *ffs = file->private_data;
505 char *data = NULL;
506 size_t n;
507 int ret;
508
509 ENTER();
510
511 /* Fast check if setup was canceled */
512 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
513 return -EIDRM;
514
515 /* Acquire mutex */
516 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
517 if (unlikely(ret < 0))
518 return ret;
519
520 /* Check state */
521 if (ffs->state != FFS_ACTIVE) {
522 ret = -EBADFD;
523 goto done_mutex;
524 }
525
526 /*
527 * We're called from user space, we can use _irq rather then
528 * _irqsave
529 */
530 spin_lock_irq(&ffs->ev.waitq.lock);
531
532 switch (ffs_setup_state_clear_cancelled(ffs)) {
533 case FFS_SETUP_CANCELLED:
534 ret = -EIDRM;
535 break;
536
537 case FFS_NO_SETUP:
538 n = len / sizeof(struct usb_functionfs_event);
539 if (unlikely(!n)) {
540 ret = -EINVAL;
541 break;
542 }
543
544 if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
545 ret = -EAGAIN;
546 break;
547 }
548
549 if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
550 ffs->ev.count)) {
551 ret = -EINTR;
552 break;
553 }
554
555 /* unlocks spinlock */
556 return __ffs_ep0_read_events(ffs, buf,
557 min(n, (size_t)ffs->ev.count));
558
559 case FFS_SETUP_PENDING:
560 if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
561 spin_unlock_irq(&ffs->ev.waitq.lock);
562 ret = __ffs_ep0_stall(ffs);
563 goto done_mutex;
564 }
565
566 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
567
568 spin_unlock_irq(&ffs->ev.waitq.lock);
569
570 if (likely(len)) {
571 data = kmalloc(len, GFP_KERNEL);
572 if (unlikely(!data)) {
573 ret = -ENOMEM;
574 goto done_mutex;
575 }
576 }
577
578 spin_lock_irq(&ffs->ev.waitq.lock);
579
580 /* See ffs_ep0_write() */
581 if (ffs_setup_state_clear_cancelled(ffs) ==
582 FFS_SETUP_CANCELLED) {
583 ret = -EIDRM;
584 break;
585 }
586
587 /* unlocks spinlock */
588 ret = __ffs_ep0_queue_wait(ffs, data, len);
589 if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len)))
590 ret = -EFAULT;
591 goto done_mutex;
592
593 default:
594 ret = -EBADFD;
595 break;
596 }
597
598 spin_unlock_irq(&ffs->ev.waitq.lock);
599 done_mutex:
600 mutex_unlock(&ffs->mutex);
601 kfree(data);
602 return ret;
603 }
604
ffs_ep0_open(struct inode * inode,struct file * file)605 static int ffs_ep0_open(struct inode *inode, struct file *file)
606 {
607 struct ffs_data *ffs = inode->i_private;
608
609 ENTER();
610
611 if (unlikely(ffs->state == FFS_CLOSING))
612 return -EBUSY;
613
614 file->private_data = ffs;
615 ffs_data_opened(ffs);
616
617 return 0;
618 }
619
ffs_ep0_release(struct inode * inode,struct file * file)620 static int ffs_ep0_release(struct inode *inode, struct file *file)
621 {
622 struct ffs_data *ffs = file->private_data;
623
624 ENTER();
625
626 ffs_data_closed(ffs);
627
628 return 0;
629 }
630
ffs_ep0_ioctl(struct file * file,unsigned code,unsigned long value)631 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
632 {
633 struct ffs_data *ffs = file->private_data;
634 struct usb_gadget *gadget = ffs->gadget;
635 long ret;
636
637 ENTER();
638
639 if (code == FUNCTIONFS_INTERFACE_REVMAP) {
640 struct ffs_function *func = ffs->func;
641 ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
642 } else if (gadget && gadget->ops->ioctl) {
643 ret = gadget->ops->ioctl(gadget, code, value);
644 } else {
645 ret = -ENOTTY;
646 }
647
648 return ret;
649 }
650
ffs_ep0_poll(struct file * file,poll_table * wait)651 static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait)
652 {
653 struct ffs_data *ffs = file->private_data;
654 __poll_t mask = EPOLLWRNORM;
655 int ret;
656
657 poll_wait(file, &ffs->ev.waitq, wait);
658
659 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
660 if (unlikely(ret < 0))
661 return mask;
662
663 switch (ffs->state) {
664 case FFS_READ_DESCRIPTORS:
665 case FFS_READ_STRINGS:
666 mask |= EPOLLOUT;
667 break;
668
669 case FFS_ACTIVE:
670 switch (ffs->setup_state) {
671 case FFS_NO_SETUP:
672 if (ffs->ev.count)
673 mask |= EPOLLIN;
674 break;
675
676 case FFS_SETUP_PENDING:
677 case FFS_SETUP_CANCELLED:
678 mask |= (EPOLLIN | EPOLLOUT);
679 break;
680 }
681 case FFS_CLOSING:
682 break;
683 case FFS_DEACTIVATED:
684 break;
685 }
686
687 mutex_unlock(&ffs->mutex);
688
689 return mask;
690 }
691
692 static const struct file_operations ffs_ep0_operations = {
693 .llseek = no_llseek,
694
695 .open = ffs_ep0_open,
696 .write = ffs_ep0_write,
697 .read = ffs_ep0_read,
698 .release = ffs_ep0_release,
699 .unlocked_ioctl = ffs_ep0_ioctl,
700 .poll = ffs_ep0_poll,
701 };
702
703
704 /* "Normal" endpoints operations ********************************************/
705
ffs_epfile_io_complete(struct usb_ep * _ep,struct usb_request * req)706 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
707 {
708 ENTER();
709 if (likely(req->context)) {
710 struct ffs_ep *ep = _ep->driver_data;
711 ep->status = req->status ? req->status : req->actual;
712 complete(req->context);
713 }
714 }
715
ffs_copy_to_iter(void * data,int data_len,struct iov_iter * iter)716 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
717 {
718 ssize_t ret = copy_to_iter(data, data_len, iter);
719 if (likely(ret == data_len))
720 return ret;
721
722 if (unlikely(iov_iter_count(iter)))
723 return -EFAULT;
724
725 /*
726 * Dear user space developer!
727 *
728 * TL;DR: To stop getting below error message in your kernel log, change
729 * user space code using functionfs to align read buffers to a max
730 * packet size.
731 *
732 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
733 * packet size. When unaligned buffer is passed to functionfs, it
734 * internally uses a larger, aligned buffer so that such UDCs are happy.
735 *
736 * Unfortunately, this means that host may send more data than was
737 * requested in read(2) system call. f_fs doesn’t know what to do with
738 * that excess data so it simply drops it.
739 *
740 * Was the buffer aligned in the first place, no such problem would
741 * happen.
742 *
743 * Data may be dropped only in AIO reads. Synchronous reads are handled
744 * by splitting a request into multiple parts. This splitting may still
745 * be a problem though so it’s likely best to align the buffer
746 * regardless of it being AIO or not..
747 *
748 * This only affects OUT endpoints, i.e. reading data with a read(2),
749 * aio_read(2) etc. system calls. Writing data to an IN endpoint is not
750 * affected.
751 */
752 pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
753 "Align read buffer size to max packet size to avoid the problem.\n",
754 data_len, ret);
755
756 return ret;
757 }
758
759 /*
760 * allocate a virtually contiguous buffer and create a scatterlist describing it
761 * @sg_table - pointer to a place to be filled with sg_table contents
762 * @size - required buffer size
763 */
ffs_build_sg_list(struct sg_table * sgt,size_t sz)764 static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz)
765 {
766 struct page **pages;
767 void *vaddr, *ptr;
768 unsigned int n_pages;
769 int i;
770
771 vaddr = vmalloc(sz);
772 if (!vaddr)
773 return NULL;
774
775 n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
776 pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL);
777 if (!pages) {
778 vfree(vaddr);
779
780 return NULL;
781 }
782 for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE)
783 pages[i] = vmalloc_to_page(ptr);
784
785 if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) {
786 kvfree(pages);
787 vfree(vaddr);
788
789 return NULL;
790 }
791 kvfree(pages);
792
793 return vaddr;
794 }
795
ffs_alloc_buffer(struct ffs_io_data * io_data,size_t data_len)796 static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data,
797 size_t data_len)
798 {
799 if (io_data->use_sg)
800 return ffs_build_sg_list(&io_data->sgt, data_len);
801
802 return kmalloc(data_len, GFP_KERNEL);
803 }
804
ffs_free_buffer(struct ffs_io_data * io_data)805 static inline void ffs_free_buffer(struct ffs_io_data *io_data)
806 {
807 if (!io_data->buf)
808 return;
809
810 if (io_data->use_sg) {
811 sg_free_table(&io_data->sgt);
812 vfree(io_data->buf);
813 } else {
814 kfree(io_data->buf);
815 }
816 }
817
ffs_user_copy_worker(struct work_struct * work)818 static void ffs_user_copy_worker(struct work_struct *work)
819 {
820 struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
821 work);
822 int ret = io_data->req->status ? io_data->req->status :
823 io_data->req->actual;
824 bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
825
826 if (io_data->read && ret > 0) {
827 kthread_use_mm(io_data->mm);
828 ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
829 kthread_unuse_mm(io_data->mm);
830 }
831
832 io_data->kiocb->ki_complete(io_data->kiocb, ret, ret);
833
834 if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
835 eventfd_signal(io_data->ffs->ffs_eventfd, 1);
836
837 usb_ep_free_request(io_data->ep, io_data->req);
838
839 if (io_data->read)
840 kfree(io_data->to_free);
841 ffs_free_buffer(io_data);
842 kfree(io_data);
843 }
844
ffs_epfile_async_io_complete(struct usb_ep * _ep,struct usb_request * req)845 static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
846 struct usb_request *req)
847 {
848 struct ffs_io_data *io_data = req->context;
849 struct ffs_data *ffs = io_data->ffs;
850
851 ENTER();
852
853 INIT_WORK(&io_data->work, ffs_user_copy_worker);
854 queue_work(ffs->io_completion_wq, &io_data->work);
855 }
856
__ffs_epfile_read_buffer_free(struct ffs_epfile * epfile)857 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
858 {
859 /*
860 * See comment in struct ffs_epfile for full read_buffer pointer
861 * synchronisation story.
862 */
863 struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
864 if (buf && buf != READ_BUFFER_DROP)
865 kfree(buf);
866 }
867
868 /* Assumes epfile->mutex is held. */
__ffs_epfile_read_buffered(struct ffs_epfile * epfile,struct iov_iter * iter)869 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
870 struct iov_iter *iter)
871 {
872 /*
873 * Null out epfile->read_buffer so ffs_func_eps_disable does not free
874 * the buffer while we are using it. See comment in struct ffs_epfile
875 * for full read_buffer pointer synchronisation story.
876 */
877 struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
878 ssize_t ret;
879 if (!buf || buf == READ_BUFFER_DROP)
880 return 0;
881
882 ret = copy_to_iter(buf->data, buf->length, iter);
883 if (buf->length == ret) {
884 kfree(buf);
885 return ret;
886 }
887
888 if (unlikely(iov_iter_count(iter))) {
889 ret = -EFAULT;
890 } else {
891 buf->length -= ret;
892 buf->data += ret;
893 }
894
895 if (cmpxchg(&epfile->read_buffer, NULL, buf))
896 kfree(buf);
897
898 return ret;
899 }
900
901 /* Assumes epfile->mutex is held. */
__ffs_epfile_read_data(struct ffs_epfile * epfile,void * data,int data_len,struct iov_iter * iter)902 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
903 void *data, int data_len,
904 struct iov_iter *iter)
905 {
906 struct ffs_buffer *buf;
907
908 ssize_t ret = copy_to_iter(data, data_len, iter);
909 if (likely(data_len == ret))
910 return ret;
911
912 if (unlikely(iov_iter_count(iter)))
913 return -EFAULT;
914
915 /* See ffs_copy_to_iter for more context. */
916 pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
917 data_len, ret);
918
919 data_len -= ret;
920 buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL);
921 if (!buf)
922 return -ENOMEM;
923 buf->length = data_len;
924 buf->data = buf->storage;
925 memcpy(buf->storage, data + ret, data_len);
926
927 /*
928 * At this point read_buffer is NULL or READ_BUFFER_DROP (if
929 * ffs_func_eps_disable has been called in the meanwhile). See comment
930 * in struct ffs_epfile for full read_buffer pointer synchronisation
931 * story.
932 */
933 if (unlikely(cmpxchg(&epfile->read_buffer, NULL, buf)))
934 kfree(buf);
935
936 return ret;
937 }
938
ffs_epfile_io(struct file * file,struct ffs_io_data * io_data)939 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
940 {
941 struct ffs_epfile *epfile = file->private_data;
942 struct usb_request *req;
943 struct ffs_ep *ep;
944 char *data = NULL;
945 ssize_t ret, data_len = -EINVAL;
946 int halt;
947
948 /* Are we still active? */
949 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
950 return -ENODEV;
951
952 /* Wait for endpoint to be enabled */
953 ep = epfile->ep;
954 if (!ep) {
955 if (file->f_flags & O_NONBLOCK)
956 return -EAGAIN;
957
958 ret = wait_event_interruptible(
959 epfile->ffs->wait, (ep = epfile->ep));
960 if (ret)
961 return -EINTR;
962 }
963
964 /* Do we halt? */
965 halt = (!io_data->read == !epfile->in);
966 if (halt && epfile->isoc)
967 return -EINVAL;
968
969 /* We will be using request and read_buffer */
970 ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
971 if (unlikely(ret))
972 goto error;
973
974 /* Allocate & copy */
975 if (!halt) {
976 struct usb_gadget *gadget;
977
978 /*
979 * Do we have buffered data from previous partial read? Check
980 * that for synchronous case only because we do not have
981 * facility to ‘wake up’ a pending asynchronous read and push
982 * buffered data to it which we would need to make things behave
983 * consistently.
984 */
985 if (!io_data->aio && io_data->read) {
986 ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
987 if (ret)
988 goto error_mutex;
989 }
990
991 /*
992 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
993 * before the waiting completes, so do not assign to 'gadget'
994 * earlier
995 */
996 gadget = epfile->ffs->gadget;
997
998 spin_lock_irq(&epfile->ffs->eps_lock);
999 /* In the meantime, endpoint got disabled or changed. */
1000 if (epfile->ep != ep) {
1001 ret = -ESHUTDOWN;
1002 goto error_lock;
1003 }
1004 data_len = iov_iter_count(&io_data->data);
1005 /*
1006 * Controller may require buffer size to be aligned to
1007 * maxpacketsize of an out endpoint.
1008 */
1009 if (io_data->read)
1010 data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
1011
1012 io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE;
1013 spin_unlock_irq(&epfile->ffs->eps_lock);
1014
1015 data = ffs_alloc_buffer(io_data, data_len);
1016 if (unlikely(!data)) {
1017 ret = -ENOMEM;
1018 goto error_mutex;
1019 }
1020 if (!io_data->read &&
1021 !copy_from_iter_full(data, data_len, &io_data->data)) {
1022 ret = -EFAULT;
1023 goto error_mutex;
1024 }
1025 }
1026
1027 spin_lock_irq(&epfile->ffs->eps_lock);
1028
1029 if (epfile->ep != ep) {
1030 /* In the meantime, endpoint got disabled or changed. */
1031 ret = -ESHUTDOWN;
1032 } else if (halt) {
1033 ret = usb_ep_set_halt(ep->ep);
1034 if (!ret)
1035 ret = -EBADMSG;
1036 } else if (unlikely(data_len == -EINVAL)) {
1037 /*
1038 * Sanity Check: even though data_len can't be used
1039 * uninitialized at the time I write this comment, some
1040 * compilers complain about this situation.
1041 * In order to keep the code clean from warnings, data_len is
1042 * being initialized to -EINVAL during its declaration, which
1043 * means we can't rely on compiler anymore to warn no future
1044 * changes won't result in data_len being used uninitialized.
1045 * For such reason, we're adding this redundant sanity check
1046 * here.
1047 */
1048 WARN(1, "%s: data_len == -EINVAL\n", __func__);
1049 ret = -EINVAL;
1050 } else if (!io_data->aio) {
1051 DECLARE_COMPLETION_ONSTACK(done);
1052 bool interrupted = false;
1053
1054 req = ep->req;
1055 if (io_data->use_sg) {
1056 req->buf = NULL;
1057 req->sg = io_data->sgt.sgl;
1058 req->num_sgs = io_data->sgt.nents;
1059 } else {
1060 req->buf = data;
1061 req->num_sgs = 0;
1062 }
1063 req->length = data_len;
1064
1065 io_data->buf = data;
1066
1067 req->context = &done;
1068 req->complete = ffs_epfile_io_complete;
1069
1070 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1071 if (unlikely(ret < 0))
1072 goto error_lock;
1073
1074 spin_unlock_irq(&epfile->ffs->eps_lock);
1075
1076 if (unlikely(wait_for_completion_interruptible(&done))) {
1077 /*
1078 * To avoid race condition with ffs_epfile_io_complete,
1079 * dequeue the request first then check
1080 * status. usb_ep_dequeue API should guarantee no race
1081 * condition with req->complete callback.
1082 */
1083 usb_ep_dequeue(ep->ep, req);
1084 wait_for_completion(&done);
1085 interrupted = ep->status < 0;
1086 }
1087
1088 if (interrupted)
1089 ret = -EINTR;
1090 else if (io_data->read && ep->status > 0)
1091 ret = __ffs_epfile_read_data(epfile, data, ep->status,
1092 &io_data->data);
1093 else
1094 ret = ep->status;
1095 goto error_mutex;
1096 } else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) {
1097 ret = -ENOMEM;
1098 } else {
1099 if (io_data->use_sg) {
1100 req->buf = NULL;
1101 req->sg = io_data->sgt.sgl;
1102 req->num_sgs = io_data->sgt.nents;
1103 } else {
1104 req->buf = data;
1105 req->num_sgs = 0;
1106 }
1107 req->length = data_len;
1108
1109 io_data->buf = data;
1110 io_data->ep = ep->ep;
1111 io_data->req = req;
1112 io_data->ffs = epfile->ffs;
1113
1114 req->context = io_data;
1115 req->complete = ffs_epfile_async_io_complete;
1116
1117 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1118 if (unlikely(ret)) {
1119 io_data->req = NULL;
1120 usb_ep_free_request(ep->ep, req);
1121 goto error_lock;
1122 }
1123
1124 ret = -EIOCBQUEUED;
1125 /*
1126 * Do not kfree the buffer in this function. It will be freed
1127 * by ffs_user_copy_worker.
1128 */
1129 data = NULL;
1130 }
1131
1132 error_lock:
1133 spin_unlock_irq(&epfile->ffs->eps_lock);
1134 error_mutex:
1135 mutex_unlock(&epfile->mutex);
1136 error:
1137 if (ret != -EIOCBQUEUED) /* don't free if there is iocb queued */
1138 ffs_free_buffer(io_data);
1139 return ret;
1140 }
1141
1142 static int
ffs_epfile_open(struct inode * inode,struct file * file)1143 ffs_epfile_open(struct inode *inode, struct file *file)
1144 {
1145 struct ffs_epfile *epfile = inode->i_private;
1146
1147 ENTER();
1148
1149 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1150 return -ENODEV;
1151
1152 file->private_data = epfile;
1153 ffs_data_opened(epfile->ffs);
1154
1155 return 0;
1156 }
1157
ffs_aio_cancel(struct kiocb * kiocb)1158 static int ffs_aio_cancel(struct kiocb *kiocb)
1159 {
1160 struct ffs_io_data *io_data = kiocb->private;
1161 struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
1162 unsigned long flags;
1163 int value;
1164
1165 ENTER();
1166
1167 spin_lock_irqsave(&epfile->ffs->eps_lock, flags);
1168
1169 if (likely(io_data && io_data->ep && io_data->req))
1170 value = usb_ep_dequeue(io_data->ep, io_data->req);
1171 else
1172 value = -EINVAL;
1173
1174 spin_unlock_irqrestore(&epfile->ffs->eps_lock, flags);
1175
1176 return value;
1177 }
1178
ffs_epfile_write_iter(struct kiocb * kiocb,struct iov_iter * from)1179 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1180 {
1181 struct ffs_io_data io_data, *p = &io_data;
1182 ssize_t res;
1183
1184 ENTER();
1185
1186 if (!is_sync_kiocb(kiocb)) {
1187 p = kzalloc(sizeof(io_data), GFP_KERNEL);
1188 if (unlikely(!p))
1189 return -ENOMEM;
1190 p->aio = true;
1191 } else {
1192 memset(p, 0, sizeof(*p));
1193 p->aio = false;
1194 }
1195
1196 p->read = false;
1197 p->kiocb = kiocb;
1198 p->data = *from;
1199 p->mm = current->mm;
1200
1201 kiocb->private = p;
1202
1203 if (p->aio)
1204 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1205
1206 res = ffs_epfile_io(kiocb->ki_filp, p);
1207 if (res == -EIOCBQUEUED)
1208 return res;
1209 if (p->aio)
1210 kfree(p);
1211 else
1212 *from = p->data;
1213 return res;
1214 }
1215
ffs_epfile_read_iter(struct kiocb * kiocb,struct iov_iter * to)1216 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1217 {
1218 struct ffs_io_data io_data, *p = &io_data;
1219 ssize_t res;
1220
1221 ENTER();
1222
1223 if (!is_sync_kiocb(kiocb)) {
1224 p = kzalloc(sizeof(io_data), GFP_KERNEL);
1225 if (unlikely(!p))
1226 return -ENOMEM;
1227 p->aio = true;
1228 } else {
1229 memset(p, 0, sizeof(*p));
1230 p->aio = false;
1231 }
1232
1233 p->read = true;
1234 p->kiocb = kiocb;
1235 if (p->aio) {
1236 p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1237 if (!p->to_free) {
1238 kfree(p);
1239 return -ENOMEM;
1240 }
1241 } else {
1242 p->data = *to;
1243 p->to_free = NULL;
1244 }
1245 p->mm = current->mm;
1246
1247 kiocb->private = p;
1248
1249 if (p->aio)
1250 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1251
1252 res = ffs_epfile_io(kiocb->ki_filp, p);
1253 if (res == -EIOCBQUEUED)
1254 return res;
1255
1256 if (p->aio) {
1257 kfree(p->to_free);
1258 kfree(p);
1259 } else {
1260 *to = p->data;
1261 }
1262 return res;
1263 }
1264
1265 static int
ffs_epfile_release(struct inode * inode,struct file * file)1266 ffs_epfile_release(struct inode *inode, struct file *file)
1267 {
1268 struct ffs_epfile *epfile = inode->i_private;
1269
1270 ENTER();
1271
1272 __ffs_epfile_read_buffer_free(epfile);
1273 ffs_data_closed(epfile->ffs);
1274
1275 return 0;
1276 }
1277
ffs_epfile_ioctl(struct file * file,unsigned code,unsigned long value)1278 static long ffs_epfile_ioctl(struct file *file, unsigned code,
1279 unsigned long value)
1280 {
1281 struct ffs_epfile *epfile = file->private_data;
1282 struct ffs_ep *ep;
1283 int ret;
1284
1285 ENTER();
1286
1287 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1288 return -ENODEV;
1289
1290 /* Wait for endpoint to be enabled */
1291 ep = epfile->ep;
1292 if (!ep) {
1293 if (file->f_flags & O_NONBLOCK)
1294 return -EAGAIN;
1295
1296 ret = wait_event_interruptible(
1297 epfile->ffs->wait, (ep = epfile->ep));
1298 if (ret)
1299 return -EINTR;
1300 }
1301
1302 spin_lock_irq(&epfile->ffs->eps_lock);
1303
1304 /* In the meantime, endpoint got disabled or changed. */
1305 if (epfile->ep != ep) {
1306 spin_unlock_irq(&epfile->ffs->eps_lock);
1307 return -ESHUTDOWN;
1308 }
1309
1310 switch (code) {
1311 case FUNCTIONFS_FIFO_STATUS:
1312 ret = usb_ep_fifo_status(epfile->ep->ep);
1313 break;
1314 case FUNCTIONFS_FIFO_FLUSH:
1315 usb_ep_fifo_flush(epfile->ep->ep);
1316 ret = 0;
1317 break;
1318 case FUNCTIONFS_CLEAR_HALT:
1319 ret = usb_ep_clear_halt(epfile->ep->ep);
1320 break;
1321 case FUNCTIONFS_ENDPOINT_REVMAP:
1322 ret = epfile->ep->num;
1323 break;
1324 case FUNCTIONFS_ENDPOINT_DESC:
1325 {
1326 int desc_idx;
1327 struct usb_endpoint_descriptor desc1, *desc;
1328
1329 switch (epfile->ffs->gadget->speed) {
1330 case USB_SPEED_SUPER:
1331 desc_idx = 2;
1332 break;
1333 case USB_SPEED_HIGH:
1334 desc_idx = 1;
1335 break;
1336 default:
1337 desc_idx = 0;
1338 }
1339
1340 desc = epfile->ep->descs[desc_idx];
1341 memcpy(&desc1, desc, desc->bLength);
1342
1343 spin_unlock_irq(&epfile->ffs->eps_lock);
1344 ret = copy_to_user((void __user *)value, &desc1, desc1.bLength);
1345 if (ret)
1346 ret = -EFAULT;
1347 return ret;
1348 }
1349 default:
1350 ret = -ENOTTY;
1351 }
1352 spin_unlock_irq(&epfile->ffs->eps_lock);
1353
1354 return ret;
1355 }
1356
1357 static const struct file_operations ffs_epfile_operations = {
1358 .llseek = no_llseek,
1359
1360 .open = ffs_epfile_open,
1361 .write_iter = ffs_epfile_write_iter,
1362 .read_iter = ffs_epfile_read_iter,
1363 .release = ffs_epfile_release,
1364 .unlocked_ioctl = ffs_epfile_ioctl,
1365 .compat_ioctl = compat_ptr_ioctl,
1366 };
1367
1368
1369 /* File system and super block operations ***********************************/
1370
1371 /*
1372 * Mounting the file system creates a controller file, used first for
1373 * function configuration then later for event monitoring.
1374 */
1375
1376 static struct inode *__must_check
ffs_sb_make_inode(struct super_block * sb,void * data,const struct file_operations * fops,const struct inode_operations * iops,struct ffs_file_perms * perms)1377 ffs_sb_make_inode(struct super_block *sb, void *data,
1378 const struct file_operations *fops,
1379 const struct inode_operations *iops,
1380 struct ffs_file_perms *perms)
1381 {
1382 struct inode *inode;
1383
1384 ENTER();
1385
1386 inode = new_inode(sb);
1387
1388 if (likely(inode)) {
1389 struct timespec64 ts = current_time(inode);
1390
1391 inode->i_ino = get_next_ino();
1392 inode->i_mode = perms->mode;
1393 inode->i_uid = perms->uid;
1394 inode->i_gid = perms->gid;
1395 inode->i_atime = ts;
1396 inode->i_mtime = ts;
1397 inode->i_ctime = ts;
1398 inode->i_private = data;
1399 if (fops)
1400 inode->i_fop = fops;
1401 if (iops)
1402 inode->i_op = iops;
1403 }
1404
1405 return inode;
1406 }
1407
1408 /* Create "regular" file */
ffs_sb_create_file(struct super_block * sb,const char * name,void * data,const struct file_operations * fops)1409 static struct dentry *ffs_sb_create_file(struct super_block *sb,
1410 const char *name, void *data,
1411 const struct file_operations *fops)
1412 {
1413 struct ffs_data *ffs = sb->s_fs_info;
1414 struct dentry *dentry;
1415 struct inode *inode;
1416
1417 ENTER();
1418
1419 dentry = d_alloc_name(sb->s_root, name);
1420 if (unlikely(!dentry))
1421 return NULL;
1422
1423 inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1424 if (unlikely(!inode)) {
1425 dput(dentry);
1426 return NULL;
1427 }
1428
1429 d_add(dentry, inode);
1430 return dentry;
1431 }
1432
1433 /* Super block */
1434 static const struct super_operations ffs_sb_operations = {
1435 .statfs = simple_statfs,
1436 .drop_inode = generic_delete_inode,
1437 };
1438
1439 struct ffs_sb_fill_data {
1440 struct ffs_file_perms perms;
1441 umode_t root_mode;
1442 const char *dev_name;
1443 bool no_disconnect;
1444 struct ffs_data *ffs_data;
1445 };
1446
ffs_sb_fill(struct super_block * sb,struct fs_context * fc)1447 static int ffs_sb_fill(struct super_block *sb, struct fs_context *fc)
1448 {
1449 struct ffs_sb_fill_data *data = fc->fs_private;
1450 struct inode *inode;
1451 struct ffs_data *ffs = data->ffs_data;
1452
1453 ENTER();
1454
1455 ffs->sb = sb;
1456 data->ffs_data = NULL;
1457 sb->s_fs_info = ffs;
1458 sb->s_blocksize = PAGE_SIZE;
1459 sb->s_blocksize_bits = PAGE_SHIFT;
1460 sb->s_magic = FUNCTIONFS_MAGIC;
1461 sb->s_op = &ffs_sb_operations;
1462 sb->s_time_gran = 1;
1463
1464 /* Root inode */
1465 data->perms.mode = data->root_mode;
1466 inode = ffs_sb_make_inode(sb, NULL,
1467 &simple_dir_operations,
1468 &simple_dir_inode_operations,
1469 &data->perms);
1470 sb->s_root = d_make_root(inode);
1471 if (unlikely(!sb->s_root))
1472 return -ENOMEM;
1473
1474 /* EP0 file */
1475 if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs,
1476 &ffs_ep0_operations)))
1477 return -ENOMEM;
1478
1479 return 0;
1480 }
1481
1482 enum {
1483 Opt_no_disconnect,
1484 Opt_rmode,
1485 Opt_fmode,
1486 Opt_mode,
1487 Opt_uid,
1488 Opt_gid,
1489 };
1490
1491 static const struct fs_parameter_spec ffs_fs_fs_parameters[] = {
1492 fsparam_bool ("no_disconnect", Opt_no_disconnect),
1493 fsparam_u32 ("rmode", Opt_rmode),
1494 fsparam_u32 ("fmode", Opt_fmode),
1495 fsparam_u32 ("mode", Opt_mode),
1496 fsparam_u32 ("uid", Opt_uid),
1497 fsparam_u32 ("gid", Opt_gid),
1498 {}
1499 };
1500
ffs_fs_parse_param(struct fs_context * fc,struct fs_parameter * param)1501 static int ffs_fs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1502 {
1503 struct ffs_sb_fill_data *data = fc->fs_private;
1504 struct fs_parse_result result;
1505 int opt;
1506
1507 ENTER();
1508
1509 opt = fs_parse(fc, ffs_fs_fs_parameters, param, &result);
1510 if (opt < 0)
1511 return opt;
1512
1513 switch (opt) {
1514 case Opt_no_disconnect:
1515 data->no_disconnect = result.boolean;
1516 break;
1517 case Opt_rmode:
1518 data->root_mode = (result.uint_32 & 0555) | S_IFDIR;
1519 break;
1520 case Opt_fmode:
1521 data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1522 break;
1523 case Opt_mode:
1524 data->root_mode = (result.uint_32 & 0555) | S_IFDIR;
1525 data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1526 break;
1527
1528 case Opt_uid:
1529 data->perms.uid = make_kuid(current_user_ns(), result.uint_32);
1530 if (!uid_valid(data->perms.uid))
1531 goto unmapped_value;
1532 break;
1533 case Opt_gid:
1534 data->perms.gid = make_kgid(current_user_ns(), result.uint_32);
1535 if (!gid_valid(data->perms.gid))
1536 goto unmapped_value;
1537 break;
1538
1539 default:
1540 return -ENOPARAM;
1541 }
1542
1543 return 0;
1544
1545 unmapped_value:
1546 return invalf(fc, "%s: unmapped value: %u", param->key, result.uint_32);
1547 }
1548
1549 /*
1550 * Set up the superblock for a mount.
1551 */
ffs_fs_get_tree(struct fs_context * fc)1552 static int ffs_fs_get_tree(struct fs_context *fc)
1553 {
1554 struct ffs_sb_fill_data *ctx = fc->fs_private;
1555 void *ffs_dev;
1556 struct ffs_data *ffs;
1557
1558 ENTER();
1559
1560 if (!fc->source)
1561 return invalf(fc, "No source specified");
1562
1563 ffs = ffs_data_new(fc->source);
1564 if (unlikely(!ffs))
1565 return -ENOMEM;
1566 ffs->file_perms = ctx->perms;
1567 ffs->no_disconnect = ctx->no_disconnect;
1568
1569 ffs->dev_name = kstrdup(fc->source, GFP_KERNEL);
1570 if (unlikely(!ffs->dev_name)) {
1571 ffs_data_put(ffs);
1572 return -ENOMEM;
1573 }
1574
1575 ffs_dev = ffs_acquire_dev(ffs->dev_name);
1576 if (IS_ERR(ffs_dev)) {
1577 ffs_data_put(ffs);
1578 return PTR_ERR(ffs_dev);
1579 }
1580
1581 ffs->private_data = ffs_dev;
1582 ctx->ffs_data = ffs;
1583 return get_tree_nodev(fc, ffs_sb_fill);
1584 }
1585
ffs_fs_free_fc(struct fs_context * fc)1586 static void ffs_fs_free_fc(struct fs_context *fc)
1587 {
1588 struct ffs_sb_fill_data *ctx = fc->fs_private;
1589
1590 if (ctx) {
1591 if (ctx->ffs_data) {
1592 ffs_release_dev(ctx->ffs_data);
1593 ffs_data_put(ctx->ffs_data);
1594 }
1595
1596 kfree(ctx);
1597 }
1598 }
1599
1600 static const struct fs_context_operations ffs_fs_context_ops = {
1601 .free = ffs_fs_free_fc,
1602 .parse_param = ffs_fs_parse_param,
1603 .get_tree = ffs_fs_get_tree,
1604 };
1605
ffs_fs_init_fs_context(struct fs_context * fc)1606 static int ffs_fs_init_fs_context(struct fs_context *fc)
1607 {
1608 struct ffs_sb_fill_data *ctx;
1609
1610 ctx = kzalloc(sizeof(struct ffs_sb_fill_data), GFP_KERNEL);
1611 if (!ctx)
1612 return -ENOMEM;
1613
1614 ctx->perms.mode = S_IFREG | 0600;
1615 ctx->perms.uid = GLOBAL_ROOT_UID;
1616 ctx->perms.gid = GLOBAL_ROOT_GID;
1617 ctx->root_mode = S_IFDIR | 0500;
1618 ctx->no_disconnect = false;
1619
1620 fc->fs_private = ctx;
1621 fc->ops = &ffs_fs_context_ops;
1622 return 0;
1623 }
1624
1625 static void
ffs_fs_kill_sb(struct super_block * sb)1626 ffs_fs_kill_sb(struct super_block *sb)
1627 {
1628 ENTER();
1629
1630 kill_litter_super(sb);
1631 if (sb->s_fs_info) {
1632 ffs_release_dev(sb->s_fs_info);
1633 ffs_data_closed(sb->s_fs_info);
1634 }
1635 }
1636
1637 static struct file_system_type ffs_fs_type = {
1638 .owner = THIS_MODULE,
1639 .name = "functionfs",
1640 .init_fs_context = ffs_fs_init_fs_context,
1641 .parameters = ffs_fs_fs_parameters,
1642 .kill_sb = ffs_fs_kill_sb,
1643 };
1644 MODULE_ALIAS_FS("functionfs");
1645
1646
1647 /* Driver's main init/cleanup functions *************************************/
1648
functionfs_init(void)1649 static int functionfs_init(void)
1650 {
1651 int ret;
1652
1653 ENTER();
1654
1655 ret = register_filesystem(&ffs_fs_type);
1656 if (likely(!ret))
1657 pr_info("file system registered\n");
1658 else
1659 pr_err("failed registering file system (%d)\n", ret);
1660
1661 return ret;
1662 }
1663
functionfs_cleanup(void)1664 static void functionfs_cleanup(void)
1665 {
1666 ENTER();
1667
1668 pr_info("unloading\n");
1669 unregister_filesystem(&ffs_fs_type);
1670 }
1671
1672
1673 /* ffs_data and ffs_function construction and destruction code **************/
1674
1675 static void ffs_data_clear(struct ffs_data *ffs);
1676 static void ffs_data_reset(struct ffs_data *ffs);
1677
ffs_data_get(struct ffs_data * ffs)1678 static void ffs_data_get(struct ffs_data *ffs)
1679 {
1680 ENTER();
1681
1682 refcount_inc(&ffs->ref);
1683 }
1684
ffs_data_opened(struct ffs_data * ffs)1685 static void ffs_data_opened(struct ffs_data *ffs)
1686 {
1687 ENTER();
1688
1689 refcount_inc(&ffs->ref);
1690 if (atomic_add_return(1, &ffs->opened) == 1 &&
1691 ffs->state == FFS_DEACTIVATED) {
1692 ffs->state = FFS_CLOSING;
1693 ffs_data_reset(ffs);
1694 }
1695 }
1696
ffs_data_put(struct ffs_data * ffs)1697 static void ffs_data_put(struct ffs_data *ffs)
1698 {
1699 ENTER();
1700
1701 if (unlikely(refcount_dec_and_test(&ffs->ref))) {
1702 pr_info("%s(): freeing\n", __func__);
1703 ffs_data_clear(ffs);
1704 BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1705 swait_active(&ffs->ep0req_completion.wait) ||
1706 waitqueue_active(&ffs->wait));
1707 destroy_workqueue(ffs->io_completion_wq);
1708 kfree(ffs->dev_name);
1709 kfree(ffs);
1710 }
1711 }
1712
ffs_data_closed(struct ffs_data * ffs)1713 static void ffs_data_closed(struct ffs_data *ffs)
1714 {
1715 ENTER();
1716
1717 if (atomic_dec_and_test(&ffs->opened)) {
1718 if (ffs->no_disconnect) {
1719 ffs->state = FFS_DEACTIVATED;
1720 if (ffs->epfiles) {
1721 ffs_epfiles_destroy(ffs->epfiles,
1722 ffs->eps_count);
1723 ffs->epfiles = NULL;
1724 }
1725 if (ffs->setup_state == FFS_SETUP_PENDING)
1726 __ffs_ep0_stall(ffs);
1727 } else {
1728 ffs->state = FFS_CLOSING;
1729 ffs_data_reset(ffs);
1730 }
1731 }
1732 if (atomic_read(&ffs->opened) < 0) {
1733 ffs->state = FFS_CLOSING;
1734 ffs_data_reset(ffs);
1735 }
1736
1737 ffs_data_put(ffs);
1738 }
1739
ffs_data_new(const char * dev_name)1740 static struct ffs_data *ffs_data_new(const char *dev_name)
1741 {
1742 struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
1743 if (unlikely(!ffs))
1744 return NULL;
1745
1746 ENTER();
1747
1748 ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name);
1749 if (!ffs->io_completion_wq) {
1750 kfree(ffs);
1751 return NULL;
1752 }
1753
1754 refcount_set(&ffs->ref, 1);
1755 atomic_set(&ffs->opened, 0);
1756 ffs->state = FFS_READ_DESCRIPTORS;
1757 mutex_init(&ffs->mutex);
1758 spin_lock_init(&ffs->eps_lock);
1759 init_waitqueue_head(&ffs->ev.waitq);
1760 init_waitqueue_head(&ffs->wait);
1761 init_completion(&ffs->ep0req_completion);
1762
1763 /* XXX REVISIT need to update it in some places, or do we? */
1764 ffs->ev.can_stall = 1;
1765
1766 return ffs;
1767 }
1768
ffs_data_clear(struct ffs_data * ffs)1769 static void ffs_data_clear(struct ffs_data *ffs)
1770 {
1771 ENTER();
1772
1773 ffs_closed(ffs);
1774
1775 BUG_ON(ffs->gadget);
1776
1777 if (ffs->epfiles)
1778 ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count);
1779
1780 if (ffs->ffs_eventfd)
1781 eventfd_ctx_put(ffs->ffs_eventfd);
1782
1783 kfree(ffs->raw_descs_data);
1784 kfree(ffs->raw_strings);
1785 kfree(ffs->stringtabs);
1786 }
1787
ffs_data_reset(struct ffs_data * ffs)1788 static void ffs_data_reset(struct ffs_data *ffs)
1789 {
1790 ENTER();
1791
1792 ffs_data_clear(ffs);
1793
1794 ffs->epfiles = NULL;
1795 ffs->raw_descs_data = NULL;
1796 ffs->raw_descs = NULL;
1797 ffs->raw_strings = NULL;
1798 ffs->stringtabs = NULL;
1799
1800 ffs->raw_descs_length = 0;
1801 ffs->fs_descs_count = 0;
1802 ffs->hs_descs_count = 0;
1803 ffs->ss_descs_count = 0;
1804
1805 ffs->strings_count = 0;
1806 ffs->interfaces_count = 0;
1807 ffs->eps_count = 0;
1808
1809 ffs->ev.count = 0;
1810
1811 ffs->state = FFS_READ_DESCRIPTORS;
1812 ffs->setup_state = FFS_NO_SETUP;
1813 ffs->flags = 0;
1814
1815 ffs->ms_os_descs_ext_prop_count = 0;
1816 ffs->ms_os_descs_ext_prop_name_len = 0;
1817 ffs->ms_os_descs_ext_prop_data_len = 0;
1818 }
1819
1820
functionfs_bind(struct ffs_data * ffs,struct usb_composite_dev * cdev)1821 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
1822 {
1823 struct usb_gadget_strings **lang;
1824 int first_id;
1825
1826 ENTER();
1827
1828 if (WARN_ON(ffs->state != FFS_ACTIVE
1829 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
1830 return -EBADFD;
1831
1832 first_id = usb_string_ids_n(cdev, ffs->strings_count);
1833 if (unlikely(first_id < 0))
1834 return first_id;
1835
1836 ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
1837 if (unlikely(!ffs->ep0req))
1838 return -ENOMEM;
1839 ffs->ep0req->complete = ffs_ep0_complete;
1840 ffs->ep0req->context = ffs;
1841
1842 lang = ffs->stringtabs;
1843 if (lang) {
1844 for (; *lang; ++lang) {
1845 struct usb_string *str = (*lang)->strings;
1846 int id = first_id;
1847 for (; str->s; ++id, ++str)
1848 str->id = id;
1849 }
1850 }
1851
1852 ffs->gadget = cdev->gadget;
1853 ffs_data_get(ffs);
1854 return 0;
1855 }
1856
functionfs_unbind(struct ffs_data * ffs)1857 static void functionfs_unbind(struct ffs_data *ffs)
1858 {
1859 ENTER();
1860
1861 if (!WARN_ON(!ffs->gadget)) {
1862 usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
1863 ffs->ep0req = NULL;
1864 ffs->gadget = NULL;
1865 clear_bit(FFS_FL_BOUND, &ffs->flags);
1866 ffs_data_put(ffs);
1867 }
1868 }
1869
ffs_epfiles_create(struct ffs_data * ffs)1870 static int ffs_epfiles_create(struct ffs_data *ffs)
1871 {
1872 struct ffs_epfile *epfile, *epfiles;
1873 unsigned i, count;
1874
1875 ENTER();
1876
1877 count = ffs->eps_count;
1878 epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1879 if (!epfiles)
1880 return -ENOMEM;
1881
1882 epfile = epfiles;
1883 for (i = 1; i <= count; ++i, ++epfile) {
1884 epfile->ffs = ffs;
1885 mutex_init(&epfile->mutex);
1886 if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1887 sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1888 else
1889 sprintf(epfile->name, "ep%u", i);
1890 epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
1891 epfile,
1892 &ffs_epfile_operations);
1893 if (unlikely(!epfile->dentry)) {
1894 ffs_epfiles_destroy(epfiles, i - 1);
1895 return -ENOMEM;
1896 }
1897 }
1898
1899 ffs->epfiles = epfiles;
1900 return 0;
1901 }
1902
ffs_epfiles_destroy(struct ffs_epfile * epfiles,unsigned count)1903 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
1904 {
1905 struct ffs_epfile *epfile = epfiles;
1906
1907 ENTER();
1908
1909 for (; count; --count, ++epfile) {
1910 BUG_ON(mutex_is_locked(&epfile->mutex));
1911 if (epfile->dentry) {
1912 d_delete(epfile->dentry);
1913 dput(epfile->dentry);
1914 epfile->dentry = NULL;
1915 }
1916 }
1917
1918 kfree(epfiles);
1919 }
1920
ffs_func_eps_disable(struct ffs_function * func)1921 static void ffs_func_eps_disable(struct ffs_function *func)
1922 {
1923 struct ffs_ep *ep = func->eps;
1924 struct ffs_epfile *epfile = func->ffs->epfiles;
1925 unsigned count = func->ffs->eps_count;
1926 unsigned long flags;
1927
1928 spin_lock_irqsave(&func->ffs->eps_lock, flags);
1929 while (count--) {
1930 /* pending requests get nuked */
1931 if (likely(ep->ep))
1932 usb_ep_disable(ep->ep);
1933 ++ep;
1934
1935 if (epfile) {
1936 epfile->ep = NULL;
1937 __ffs_epfile_read_buffer_free(epfile);
1938 ++epfile;
1939 }
1940 }
1941 spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1942 }
1943
ffs_func_eps_enable(struct ffs_function * func)1944 static int ffs_func_eps_enable(struct ffs_function *func)
1945 {
1946 struct ffs_data *ffs = func->ffs;
1947 struct ffs_ep *ep = func->eps;
1948 struct ffs_epfile *epfile = ffs->epfiles;
1949 unsigned count = ffs->eps_count;
1950 unsigned long flags;
1951 int ret = 0;
1952
1953 spin_lock_irqsave(&func->ffs->eps_lock, flags);
1954 while(count--) {
1955 ep->ep->driver_data = ep;
1956
1957 ret = config_ep_by_speed(func->gadget, &func->function, ep->ep);
1958 if (ret) {
1959 pr_err("%s: config_ep_by_speed(%s) returned %d\n",
1960 __func__, ep->ep->name, ret);
1961 break;
1962 }
1963
1964 ret = usb_ep_enable(ep->ep);
1965 if (likely(!ret)) {
1966 epfile->ep = ep;
1967 epfile->in = usb_endpoint_dir_in(ep->ep->desc);
1968 epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc);
1969 } else {
1970 break;
1971 }
1972
1973 ++ep;
1974 ++epfile;
1975 }
1976
1977 wake_up_interruptible(&ffs->wait);
1978 spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1979
1980 return ret;
1981 }
1982
1983
1984 /* Parsing and building descriptors and strings *****************************/
1985
1986 /*
1987 * This validates if data pointed by data is a valid USB descriptor as
1988 * well as record how many interfaces, endpoints and strings are
1989 * required by given configuration. Returns address after the
1990 * descriptor or NULL if data is invalid.
1991 */
1992
1993 enum ffs_entity_type {
1994 FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
1995 };
1996
1997 enum ffs_os_desc_type {
1998 FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
1999 };
2000
2001 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
2002 u8 *valuep,
2003 struct usb_descriptor_header *desc,
2004 void *priv);
2005
2006 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
2007 struct usb_os_desc_header *h, void *data,
2008 unsigned len, void *priv);
2009
ffs_do_single_desc(char * data,unsigned len,ffs_entity_callback entity,void * priv,int * current_class)2010 static int __must_check ffs_do_single_desc(char *data, unsigned len,
2011 ffs_entity_callback entity,
2012 void *priv, int *current_class)
2013 {
2014 struct usb_descriptor_header *_ds = (void *)data;
2015 u8 length;
2016 int ret;
2017
2018 ENTER();
2019
2020 /* At least two bytes are required: length and type */
2021 if (len < 2) {
2022 pr_vdebug("descriptor too short\n");
2023 return -EINVAL;
2024 }
2025
2026 /* If we have at least as many bytes as the descriptor takes? */
2027 length = _ds->bLength;
2028 if (len < length) {
2029 pr_vdebug("descriptor longer then available data\n");
2030 return -EINVAL;
2031 }
2032
2033 #define __entity_check_INTERFACE(val) 1
2034 #define __entity_check_STRING(val) (val)
2035 #define __entity_check_ENDPOINT(val) ((val) & USB_ENDPOINT_NUMBER_MASK)
2036 #define __entity(type, val) do { \
2037 pr_vdebug("entity " #type "(%02x)\n", (val)); \
2038 if (unlikely(!__entity_check_ ##type(val))) { \
2039 pr_vdebug("invalid entity's value\n"); \
2040 return -EINVAL; \
2041 } \
2042 ret = entity(FFS_ ##type, &val, _ds, priv); \
2043 if (unlikely(ret < 0)) { \
2044 pr_debug("entity " #type "(%02x); ret = %d\n", \
2045 (val), ret); \
2046 return ret; \
2047 } \
2048 } while (0)
2049
2050 /* Parse descriptor depending on type. */
2051 switch (_ds->bDescriptorType) {
2052 case USB_DT_DEVICE:
2053 case USB_DT_CONFIG:
2054 case USB_DT_STRING:
2055 case USB_DT_DEVICE_QUALIFIER:
2056 /* function can't have any of those */
2057 pr_vdebug("descriptor reserved for gadget: %d\n",
2058 _ds->bDescriptorType);
2059 return -EINVAL;
2060
2061 case USB_DT_INTERFACE: {
2062 struct usb_interface_descriptor *ds = (void *)_ds;
2063 pr_vdebug("interface descriptor\n");
2064 if (length != sizeof *ds)
2065 goto inv_length;
2066
2067 __entity(INTERFACE, ds->bInterfaceNumber);
2068 if (ds->iInterface)
2069 __entity(STRING, ds->iInterface);
2070 *current_class = ds->bInterfaceClass;
2071 }
2072 break;
2073
2074 case USB_DT_ENDPOINT: {
2075 struct usb_endpoint_descriptor *ds = (void *)_ds;
2076 pr_vdebug("endpoint descriptor\n");
2077 if (length != USB_DT_ENDPOINT_SIZE &&
2078 length != USB_DT_ENDPOINT_AUDIO_SIZE)
2079 goto inv_length;
2080 __entity(ENDPOINT, ds->bEndpointAddress);
2081 }
2082 break;
2083
2084 case USB_TYPE_CLASS | 0x01:
2085 if (*current_class == USB_INTERFACE_CLASS_HID) {
2086 pr_vdebug("hid descriptor\n");
2087 if (length != sizeof(struct hid_descriptor))
2088 goto inv_length;
2089 break;
2090 } else if (*current_class == USB_INTERFACE_CLASS_CCID) {
2091 pr_vdebug("ccid descriptor\n");
2092 if (length != sizeof(struct ccid_descriptor))
2093 goto inv_length;
2094 break;
2095 } else {
2096 pr_vdebug("unknown descriptor: %d for class %d\n",
2097 _ds->bDescriptorType, *current_class);
2098 return -EINVAL;
2099 }
2100
2101 case USB_DT_OTG:
2102 if (length != sizeof(struct usb_otg_descriptor))
2103 goto inv_length;
2104 break;
2105
2106 case USB_DT_INTERFACE_ASSOCIATION: {
2107 struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2108 pr_vdebug("interface association descriptor\n");
2109 if (length != sizeof *ds)
2110 goto inv_length;
2111 if (ds->iFunction)
2112 __entity(STRING, ds->iFunction);
2113 }
2114 break;
2115
2116 case USB_DT_SS_ENDPOINT_COMP:
2117 pr_vdebug("EP SS companion descriptor\n");
2118 if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2119 goto inv_length;
2120 break;
2121
2122 case USB_DT_OTHER_SPEED_CONFIG:
2123 case USB_DT_INTERFACE_POWER:
2124 case USB_DT_DEBUG:
2125 case USB_DT_SECURITY:
2126 case USB_DT_CS_RADIO_CONTROL:
2127 /* TODO */
2128 pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2129 return -EINVAL;
2130
2131 default:
2132 /* We should never be here */
2133 pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2134 return -EINVAL;
2135
2136 inv_length:
2137 pr_vdebug("invalid length: %d (descriptor %d)\n",
2138 _ds->bLength, _ds->bDescriptorType);
2139 return -EINVAL;
2140 }
2141
2142 #undef __entity
2143 #undef __entity_check_DESCRIPTOR
2144 #undef __entity_check_INTERFACE
2145 #undef __entity_check_STRING
2146 #undef __entity_check_ENDPOINT
2147
2148 return length;
2149 }
2150
ffs_do_descs(unsigned count,char * data,unsigned len,ffs_entity_callback entity,void * priv)2151 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2152 ffs_entity_callback entity, void *priv)
2153 {
2154 const unsigned _len = len;
2155 unsigned long num = 0;
2156 int current_class = -1;
2157
2158 ENTER();
2159
2160 for (;;) {
2161 int ret;
2162
2163 if (num == count)
2164 data = NULL;
2165
2166 /* Record "descriptor" entity */
2167 ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2168 if (unlikely(ret < 0)) {
2169 pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2170 num, ret);
2171 return ret;
2172 }
2173
2174 if (!data)
2175 return _len - len;
2176
2177 ret = ffs_do_single_desc(data, len, entity, priv,
2178 ¤t_class);
2179 if (unlikely(ret < 0)) {
2180 pr_debug("%s returns %d\n", __func__, ret);
2181 return ret;
2182 }
2183
2184 len -= ret;
2185 data += ret;
2186 ++num;
2187 }
2188 }
2189
__ffs_data_do_entity(enum ffs_entity_type type,u8 * valuep,struct usb_descriptor_header * desc,void * priv)2190 static int __ffs_data_do_entity(enum ffs_entity_type type,
2191 u8 *valuep, struct usb_descriptor_header *desc,
2192 void *priv)
2193 {
2194 struct ffs_desc_helper *helper = priv;
2195 struct usb_endpoint_descriptor *d;
2196
2197 ENTER();
2198
2199 switch (type) {
2200 case FFS_DESCRIPTOR:
2201 break;
2202
2203 case FFS_INTERFACE:
2204 /*
2205 * Interfaces are indexed from zero so if we
2206 * encountered interface "n" then there are at least
2207 * "n+1" interfaces.
2208 */
2209 if (*valuep >= helper->interfaces_count)
2210 helper->interfaces_count = *valuep + 1;
2211 break;
2212
2213 case FFS_STRING:
2214 /*
2215 * Strings are indexed from 1 (0 is reserved
2216 * for languages list)
2217 */
2218 if (*valuep > helper->ffs->strings_count)
2219 helper->ffs->strings_count = *valuep;
2220 break;
2221
2222 case FFS_ENDPOINT:
2223 d = (void *)desc;
2224 helper->eps_count++;
2225 if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2226 return -EINVAL;
2227 /* Check if descriptors for any speed were already parsed */
2228 if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2229 helper->ffs->eps_addrmap[helper->eps_count] =
2230 d->bEndpointAddress;
2231 else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2232 d->bEndpointAddress)
2233 return -EINVAL;
2234 break;
2235 }
2236
2237 return 0;
2238 }
2239
__ffs_do_os_desc_header(enum ffs_os_desc_type * next_type,struct usb_os_desc_header * desc)2240 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2241 struct usb_os_desc_header *desc)
2242 {
2243 u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2244 u16 w_index = le16_to_cpu(desc->wIndex);
2245
2246 if (bcd_version != 1) {
2247 pr_vdebug("unsupported os descriptors version: %d",
2248 bcd_version);
2249 return -EINVAL;
2250 }
2251 switch (w_index) {
2252 case 0x4:
2253 *next_type = FFS_OS_DESC_EXT_COMPAT;
2254 break;
2255 case 0x5:
2256 *next_type = FFS_OS_DESC_EXT_PROP;
2257 break;
2258 default:
2259 pr_vdebug("unsupported os descriptor type: %d", w_index);
2260 return -EINVAL;
2261 }
2262
2263 return sizeof(*desc);
2264 }
2265
2266 /*
2267 * Process all extended compatibility/extended property descriptors
2268 * of a feature descriptor
2269 */
ffs_do_single_os_desc(char * data,unsigned len,enum ffs_os_desc_type type,u16 feature_count,ffs_os_desc_callback entity,void * priv,struct usb_os_desc_header * h)2270 static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2271 enum ffs_os_desc_type type,
2272 u16 feature_count,
2273 ffs_os_desc_callback entity,
2274 void *priv,
2275 struct usb_os_desc_header *h)
2276 {
2277 int ret;
2278 const unsigned _len = len;
2279
2280 ENTER();
2281
2282 /* loop over all ext compat/ext prop descriptors */
2283 while (feature_count--) {
2284 ret = entity(type, h, data, len, priv);
2285 if (unlikely(ret < 0)) {
2286 pr_debug("bad OS descriptor, type: %d\n", type);
2287 return ret;
2288 }
2289 data += ret;
2290 len -= ret;
2291 }
2292 return _len - len;
2293 }
2294
2295 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
ffs_do_os_descs(unsigned count,char * data,unsigned len,ffs_os_desc_callback entity,void * priv)2296 static int __must_check ffs_do_os_descs(unsigned count,
2297 char *data, unsigned len,
2298 ffs_os_desc_callback entity, void *priv)
2299 {
2300 const unsigned _len = len;
2301 unsigned long num = 0;
2302
2303 ENTER();
2304
2305 for (num = 0; num < count; ++num) {
2306 int ret;
2307 enum ffs_os_desc_type type;
2308 u16 feature_count;
2309 struct usb_os_desc_header *desc = (void *)data;
2310
2311 if (len < sizeof(*desc))
2312 return -EINVAL;
2313
2314 /*
2315 * Record "descriptor" entity.
2316 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2317 * Move the data pointer to the beginning of extended
2318 * compatibilities proper or extended properties proper
2319 * portions of the data
2320 */
2321 if (le32_to_cpu(desc->dwLength) > len)
2322 return -EINVAL;
2323
2324 ret = __ffs_do_os_desc_header(&type, desc);
2325 if (unlikely(ret < 0)) {
2326 pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2327 num, ret);
2328 return ret;
2329 }
2330 /*
2331 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2332 */
2333 feature_count = le16_to_cpu(desc->wCount);
2334 if (type == FFS_OS_DESC_EXT_COMPAT &&
2335 (feature_count > 255 || desc->Reserved))
2336 return -EINVAL;
2337 len -= ret;
2338 data += ret;
2339
2340 /*
2341 * Process all function/property descriptors
2342 * of this Feature Descriptor
2343 */
2344 ret = ffs_do_single_os_desc(data, len, type,
2345 feature_count, entity, priv, desc);
2346 if (unlikely(ret < 0)) {
2347 pr_debug("%s returns %d\n", __func__, ret);
2348 return ret;
2349 }
2350
2351 len -= ret;
2352 data += ret;
2353 }
2354 return _len - len;
2355 }
2356
2357 /*
2358 * Validate contents of the buffer from userspace related to OS descriptors.
2359 */
__ffs_data_do_os_desc(enum ffs_os_desc_type type,struct usb_os_desc_header * h,void * data,unsigned len,void * priv)2360 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2361 struct usb_os_desc_header *h, void *data,
2362 unsigned len, void *priv)
2363 {
2364 struct ffs_data *ffs = priv;
2365 u8 length;
2366
2367 ENTER();
2368
2369 switch (type) {
2370 case FFS_OS_DESC_EXT_COMPAT: {
2371 struct usb_ext_compat_desc *d = data;
2372 int i;
2373
2374 if (len < sizeof(*d) ||
2375 d->bFirstInterfaceNumber >= ffs->interfaces_count)
2376 return -EINVAL;
2377 if (d->Reserved1 != 1) {
2378 /*
2379 * According to the spec, Reserved1 must be set to 1
2380 * but older kernels incorrectly rejected non-zero
2381 * values. We fix it here to avoid returning EINVAL
2382 * in response to values we used to accept.
2383 */
2384 pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n");
2385 d->Reserved1 = 1;
2386 }
2387 for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2388 if (d->Reserved2[i])
2389 return -EINVAL;
2390
2391 length = sizeof(struct usb_ext_compat_desc);
2392 }
2393 break;
2394 case FFS_OS_DESC_EXT_PROP: {
2395 struct usb_ext_prop_desc *d = data;
2396 u32 type, pdl;
2397 u16 pnl;
2398
2399 if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2400 return -EINVAL;
2401 length = le32_to_cpu(d->dwSize);
2402 if (len < length)
2403 return -EINVAL;
2404 type = le32_to_cpu(d->dwPropertyDataType);
2405 if (type < USB_EXT_PROP_UNICODE ||
2406 type > USB_EXT_PROP_UNICODE_MULTI) {
2407 pr_vdebug("unsupported os descriptor property type: %d",
2408 type);
2409 return -EINVAL;
2410 }
2411 pnl = le16_to_cpu(d->wPropertyNameLength);
2412 if (length < 14 + pnl) {
2413 pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
2414 length, pnl, type);
2415 return -EINVAL;
2416 }
2417 pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl));
2418 if (length != 14 + pnl + pdl) {
2419 pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2420 length, pnl, pdl, type);
2421 return -EINVAL;
2422 }
2423 ++ffs->ms_os_descs_ext_prop_count;
2424 /* property name reported to the host as "WCHAR"s */
2425 ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2426 ffs->ms_os_descs_ext_prop_data_len += pdl;
2427 }
2428 break;
2429 default:
2430 pr_vdebug("unknown descriptor: %d\n", type);
2431 return -EINVAL;
2432 }
2433 return length;
2434 }
2435
__ffs_data_got_descs(struct ffs_data * ffs,char * const _data,size_t len)2436 static int __ffs_data_got_descs(struct ffs_data *ffs,
2437 char *const _data, size_t len)
2438 {
2439 char *data = _data, *raw_descs;
2440 unsigned os_descs_count = 0, counts[3], flags;
2441 int ret = -EINVAL, i;
2442 struct ffs_desc_helper helper;
2443
2444 ENTER();
2445
2446 if (get_unaligned_le32(data + 4) != len)
2447 goto error;
2448
2449 switch (get_unaligned_le32(data)) {
2450 case FUNCTIONFS_DESCRIPTORS_MAGIC:
2451 flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2452 data += 8;
2453 len -= 8;
2454 break;
2455 case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2456 flags = get_unaligned_le32(data + 8);
2457 ffs->user_flags = flags;
2458 if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2459 FUNCTIONFS_HAS_HS_DESC |
2460 FUNCTIONFS_HAS_SS_DESC |
2461 FUNCTIONFS_HAS_MS_OS_DESC |
2462 FUNCTIONFS_VIRTUAL_ADDR |
2463 FUNCTIONFS_EVENTFD |
2464 FUNCTIONFS_ALL_CTRL_RECIP |
2465 FUNCTIONFS_CONFIG0_SETUP)) {
2466 ret = -ENOSYS;
2467 goto error;
2468 }
2469 data += 12;
2470 len -= 12;
2471 break;
2472 default:
2473 goto error;
2474 }
2475
2476 if (flags & FUNCTIONFS_EVENTFD) {
2477 if (len < 4)
2478 goto error;
2479 ffs->ffs_eventfd =
2480 eventfd_ctx_fdget((int)get_unaligned_le32(data));
2481 if (IS_ERR(ffs->ffs_eventfd)) {
2482 ret = PTR_ERR(ffs->ffs_eventfd);
2483 ffs->ffs_eventfd = NULL;
2484 goto error;
2485 }
2486 data += 4;
2487 len -= 4;
2488 }
2489
2490 /* Read fs_count, hs_count and ss_count (if present) */
2491 for (i = 0; i < 3; ++i) {
2492 if (!(flags & (1 << i))) {
2493 counts[i] = 0;
2494 } else if (len < 4) {
2495 goto error;
2496 } else {
2497 counts[i] = get_unaligned_le32(data);
2498 data += 4;
2499 len -= 4;
2500 }
2501 }
2502 if (flags & (1 << i)) {
2503 if (len < 4) {
2504 goto error;
2505 }
2506 os_descs_count = get_unaligned_le32(data);
2507 data += 4;
2508 len -= 4;
2509 }
2510
2511 /* Read descriptors */
2512 raw_descs = data;
2513 helper.ffs = ffs;
2514 for (i = 0; i < 3; ++i) {
2515 if (!counts[i])
2516 continue;
2517 helper.interfaces_count = 0;
2518 helper.eps_count = 0;
2519 ret = ffs_do_descs(counts[i], data, len,
2520 __ffs_data_do_entity, &helper);
2521 if (ret < 0)
2522 goto error;
2523 if (!ffs->eps_count && !ffs->interfaces_count) {
2524 ffs->eps_count = helper.eps_count;
2525 ffs->interfaces_count = helper.interfaces_count;
2526 } else {
2527 if (ffs->eps_count != helper.eps_count) {
2528 ret = -EINVAL;
2529 goto error;
2530 }
2531 if (ffs->interfaces_count != helper.interfaces_count) {
2532 ret = -EINVAL;
2533 goto error;
2534 }
2535 }
2536 data += ret;
2537 len -= ret;
2538 }
2539 if (os_descs_count) {
2540 ret = ffs_do_os_descs(os_descs_count, data, len,
2541 __ffs_data_do_os_desc, ffs);
2542 if (ret < 0)
2543 goto error;
2544 data += ret;
2545 len -= ret;
2546 }
2547
2548 if (raw_descs == data || len) {
2549 ret = -EINVAL;
2550 goto error;
2551 }
2552
2553 ffs->raw_descs_data = _data;
2554 ffs->raw_descs = raw_descs;
2555 ffs->raw_descs_length = data - raw_descs;
2556 ffs->fs_descs_count = counts[0];
2557 ffs->hs_descs_count = counts[1];
2558 ffs->ss_descs_count = counts[2];
2559 ffs->ms_os_descs_count = os_descs_count;
2560
2561 return 0;
2562
2563 error:
2564 kfree(_data);
2565 return ret;
2566 }
2567
__ffs_data_got_strings(struct ffs_data * ffs,char * const _data,size_t len)2568 static int __ffs_data_got_strings(struct ffs_data *ffs,
2569 char *const _data, size_t len)
2570 {
2571 u32 str_count, needed_count, lang_count;
2572 struct usb_gadget_strings **stringtabs, *t;
2573 const char *data = _data;
2574 struct usb_string *s;
2575
2576 ENTER();
2577
2578 if (unlikely(len < 16 ||
2579 get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2580 get_unaligned_le32(data + 4) != len))
2581 goto error;
2582 str_count = get_unaligned_le32(data + 8);
2583 lang_count = get_unaligned_le32(data + 12);
2584
2585 /* if one is zero the other must be zero */
2586 if (unlikely(!str_count != !lang_count))
2587 goto error;
2588
2589 /* Do we have at least as many strings as descriptors need? */
2590 needed_count = ffs->strings_count;
2591 if (unlikely(str_count < needed_count))
2592 goto error;
2593
2594 /*
2595 * If we don't need any strings just return and free all
2596 * memory.
2597 */
2598 if (!needed_count) {
2599 kfree(_data);
2600 return 0;
2601 }
2602
2603 /* Allocate everything in one chunk so there's less maintenance. */
2604 {
2605 unsigned i = 0;
2606 vla_group(d);
2607 vla_item(d, struct usb_gadget_strings *, stringtabs,
2608 lang_count + 1);
2609 vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
2610 vla_item(d, struct usb_string, strings,
2611 lang_count*(needed_count+1));
2612
2613 char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
2614
2615 if (unlikely(!vlabuf)) {
2616 kfree(_data);
2617 return -ENOMEM;
2618 }
2619
2620 /* Initialize the VLA pointers */
2621 stringtabs = vla_ptr(vlabuf, d, stringtabs);
2622 t = vla_ptr(vlabuf, d, stringtab);
2623 i = lang_count;
2624 do {
2625 *stringtabs++ = t++;
2626 } while (--i);
2627 *stringtabs = NULL;
2628
2629 /* stringtabs = vlabuf = d_stringtabs for later kfree */
2630 stringtabs = vla_ptr(vlabuf, d, stringtabs);
2631 t = vla_ptr(vlabuf, d, stringtab);
2632 s = vla_ptr(vlabuf, d, strings);
2633 }
2634
2635 /* For each language */
2636 data += 16;
2637 len -= 16;
2638
2639 do { /* lang_count > 0 so we can use do-while */
2640 unsigned needed = needed_count;
2641
2642 if (unlikely(len < 3))
2643 goto error_free;
2644 t->language = get_unaligned_le16(data);
2645 t->strings = s;
2646 ++t;
2647
2648 data += 2;
2649 len -= 2;
2650
2651 /* For each string */
2652 do { /* str_count > 0 so we can use do-while */
2653 size_t length = strnlen(data, len);
2654
2655 if (unlikely(length == len))
2656 goto error_free;
2657
2658 /*
2659 * User may provide more strings then we need,
2660 * if that's the case we simply ignore the
2661 * rest
2662 */
2663 if (likely(needed)) {
2664 /*
2665 * s->id will be set while adding
2666 * function to configuration so for
2667 * now just leave garbage here.
2668 */
2669 s->s = data;
2670 --needed;
2671 ++s;
2672 }
2673
2674 data += length + 1;
2675 len -= length + 1;
2676 } while (--str_count);
2677
2678 s->id = 0; /* terminator */
2679 s->s = NULL;
2680 ++s;
2681
2682 } while (--lang_count);
2683
2684 /* Some garbage left? */
2685 if (unlikely(len))
2686 goto error_free;
2687
2688 /* Done! */
2689 ffs->stringtabs = stringtabs;
2690 ffs->raw_strings = _data;
2691
2692 return 0;
2693
2694 error_free:
2695 kfree(stringtabs);
2696 error:
2697 kfree(_data);
2698 return -EINVAL;
2699 }
2700
2701
2702 /* Events handling and management *******************************************/
2703
__ffs_event_add(struct ffs_data * ffs,enum usb_functionfs_event_type type)2704 static void __ffs_event_add(struct ffs_data *ffs,
2705 enum usb_functionfs_event_type type)
2706 {
2707 enum usb_functionfs_event_type rem_type1, rem_type2 = type;
2708 int neg = 0;
2709
2710 /*
2711 * Abort any unhandled setup
2712 *
2713 * We do not need to worry about some cmpxchg() changing value
2714 * of ffs->setup_state without holding the lock because when
2715 * state is FFS_SETUP_PENDING cmpxchg() in several places in
2716 * the source does nothing.
2717 */
2718 if (ffs->setup_state == FFS_SETUP_PENDING)
2719 ffs->setup_state = FFS_SETUP_CANCELLED;
2720
2721 /*
2722 * Logic of this function guarantees that there are at most four pending
2723 * evens on ffs->ev.types queue. This is important because the queue
2724 * has space for four elements only and __ffs_ep0_read_events function
2725 * depends on that limit as well. If more event types are added, those
2726 * limits have to be revisited or guaranteed to still hold.
2727 */
2728 switch (type) {
2729 case FUNCTIONFS_RESUME:
2730 rem_type2 = FUNCTIONFS_SUSPEND;
2731 fallthrough;
2732 case FUNCTIONFS_SUSPEND:
2733 case FUNCTIONFS_SETUP:
2734 rem_type1 = type;
2735 /* Discard all similar events */
2736 break;
2737
2738 case FUNCTIONFS_BIND:
2739 case FUNCTIONFS_UNBIND:
2740 case FUNCTIONFS_DISABLE:
2741 case FUNCTIONFS_ENABLE:
2742 /* Discard everything other then power management. */
2743 rem_type1 = FUNCTIONFS_SUSPEND;
2744 rem_type2 = FUNCTIONFS_RESUME;
2745 neg = 1;
2746 break;
2747
2748 default:
2749 WARN(1, "%d: unknown event, this should not happen\n", type);
2750 return;
2751 }
2752
2753 {
2754 u8 *ev = ffs->ev.types, *out = ev;
2755 unsigned n = ffs->ev.count;
2756 for (; n; --n, ++ev)
2757 if ((*ev == rem_type1 || *ev == rem_type2) == neg)
2758 *out++ = *ev;
2759 else
2760 pr_vdebug("purging event %d\n", *ev);
2761 ffs->ev.count = out - ffs->ev.types;
2762 }
2763
2764 pr_vdebug("adding event %d\n", type);
2765 ffs->ev.types[ffs->ev.count++] = type;
2766 wake_up_locked(&ffs->ev.waitq);
2767 if (ffs->ffs_eventfd)
2768 eventfd_signal(ffs->ffs_eventfd, 1);
2769 }
2770
ffs_event_add(struct ffs_data * ffs,enum usb_functionfs_event_type type)2771 static void ffs_event_add(struct ffs_data *ffs,
2772 enum usb_functionfs_event_type type)
2773 {
2774 unsigned long flags;
2775 spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
2776 __ffs_event_add(ffs, type);
2777 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
2778 }
2779
2780 /* Bind/unbind USB function hooks *******************************************/
2781
ffs_ep_addr2idx(struct ffs_data * ffs,u8 endpoint_address)2782 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
2783 {
2784 int i;
2785
2786 for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
2787 if (ffs->eps_addrmap[i] == endpoint_address)
2788 return i;
2789 return -ENOENT;
2790 }
2791
__ffs_func_bind_do_descs(enum ffs_entity_type type,u8 * valuep,struct usb_descriptor_header * desc,void * priv)2792 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
2793 struct usb_descriptor_header *desc,
2794 void *priv)
2795 {
2796 struct usb_endpoint_descriptor *ds = (void *)desc;
2797 struct ffs_function *func = priv;
2798 struct ffs_ep *ffs_ep;
2799 unsigned ep_desc_id;
2800 int idx;
2801 static const char *speed_names[] = { "full", "high", "super" };
2802
2803 if (type != FFS_DESCRIPTOR)
2804 return 0;
2805
2806 /*
2807 * If ss_descriptors is not NULL, we are reading super speed
2808 * descriptors; if hs_descriptors is not NULL, we are reading high
2809 * speed descriptors; otherwise, we are reading full speed
2810 * descriptors.
2811 */
2812 if (func->function.ss_descriptors) {
2813 ep_desc_id = 2;
2814 func->function.ss_descriptors[(long)valuep] = desc;
2815 } else if (func->function.hs_descriptors) {
2816 ep_desc_id = 1;
2817 func->function.hs_descriptors[(long)valuep] = desc;
2818 } else {
2819 ep_desc_id = 0;
2820 func->function.fs_descriptors[(long)valuep] = desc;
2821 }
2822
2823 if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
2824 return 0;
2825
2826 idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
2827 if (idx < 0)
2828 return idx;
2829
2830 ffs_ep = func->eps + idx;
2831
2832 if (unlikely(ffs_ep->descs[ep_desc_id])) {
2833 pr_err("two %sspeed descriptors for EP %d\n",
2834 speed_names[ep_desc_id],
2835 ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2836 return -EINVAL;
2837 }
2838 ffs_ep->descs[ep_desc_id] = ds;
2839
2840 ffs_dump_mem(": Original ep desc", ds, ds->bLength);
2841 if (ffs_ep->ep) {
2842 ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
2843 if (!ds->wMaxPacketSize)
2844 ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
2845 } else {
2846 struct usb_request *req;
2847 struct usb_ep *ep;
2848 u8 bEndpointAddress;
2849 u16 wMaxPacketSize;
2850
2851 /*
2852 * We back up bEndpointAddress because autoconfig overwrites
2853 * it with physical endpoint address.
2854 */
2855 bEndpointAddress = ds->bEndpointAddress;
2856 /*
2857 * We back up wMaxPacketSize because autoconfig treats
2858 * endpoint descriptors as if they were full speed.
2859 */
2860 wMaxPacketSize = ds->wMaxPacketSize;
2861 pr_vdebug("autoconfig\n");
2862 ep = usb_ep_autoconfig(func->gadget, ds);
2863 if (unlikely(!ep))
2864 return -ENOTSUPP;
2865 ep->driver_data = func->eps + idx;
2866
2867 req = usb_ep_alloc_request(ep, GFP_KERNEL);
2868 if (unlikely(!req))
2869 return -ENOMEM;
2870
2871 ffs_ep->ep = ep;
2872 ffs_ep->req = req;
2873 func->eps_revmap[ds->bEndpointAddress &
2874 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2875 /*
2876 * If we use virtual address mapping, we restore
2877 * original bEndpointAddress value.
2878 */
2879 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2880 ds->bEndpointAddress = bEndpointAddress;
2881 /*
2882 * Restore wMaxPacketSize which was potentially
2883 * overwritten by autoconfig.
2884 */
2885 ds->wMaxPacketSize = wMaxPacketSize;
2886 }
2887 ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
2888
2889 return 0;
2890 }
2891
__ffs_func_bind_do_nums(enum ffs_entity_type type,u8 * valuep,struct usb_descriptor_header * desc,void * priv)2892 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
2893 struct usb_descriptor_header *desc,
2894 void *priv)
2895 {
2896 struct ffs_function *func = priv;
2897 unsigned idx;
2898 u8 newValue;
2899
2900 switch (type) {
2901 default:
2902 case FFS_DESCRIPTOR:
2903 /* Handled in previous pass by __ffs_func_bind_do_descs() */
2904 return 0;
2905
2906 case FFS_INTERFACE:
2907 idx = *valuep;
2908 if (func->interfaces_nums[idx] < 0) {
2909 int id = usb_interface_id(func->conf, &func->function);
2910 if (unlikely(id < 0))
2911 return id;
2912 func->interfaces_nums[idx] = id;
2913 }
2914 newValue = func->interfaces_nums[idx];
2915 break;
2916
2917 case FFS_STRING:
2918 /* String' IDs are allocated when fsf_data is bound to cdev */
2919 newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
2920 break;
2921
2922 case FFS_ENDPOINT:
2923 /*
2924 * USB_DT_ENDPOINT are handled in
2925 * __ffs_func_bind_do_descs().
2926 */
2927 if (desc->bDescriptorType == USB_DT_ENDPOINT)
2928 return 0;
2929
2930 idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
2931 if (unlikely(!func->eps[idx].ep))
2932 return -EINVAL;
2933
2934 {
2935 struct usb_endpoint_descriptor **descs;
2936 descs = func->eps[idx].descs;
2937 newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
2938 }
2939 break;
2940 }
2941
2942 pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2943 *valuep = newValue;
2944 return 0;
2945 }
2946
__ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,struct usb_os_desc_header * h,void * data,unsigned len,void * priv)2947 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
2948 struct usb_os_desc_header *h, void *data,
2949 unsigned len, void *priv)
2950 {
2951 struct ffs_function *func = priv;
2952 u8 length = 0;
2953
2954 switch (type) {
2955 case FFS_OS_DESC_EXT_COMPAT: {
2956 struct usb_ext_compat_desc *desc = data;
2957 struct usb_os_desc_table *t;
2958
2959 t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
2960 t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
2961 memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
2962 ARRAY_SIZE(desc->CompatibleID) +
2963 ARRAY_SIZE(desc->SubCompatibleID));
2964 length = sizeof(*desc);
2965 }
2966 break;
2967 case FFS_OS_DESC_EXT_PROP: {
2968 struct usb_ext_prop_desc *desc = data;
2969 struct usb_os_desc_table *t;
2970 struct usb_os_desc_ext_prop *ext_prop;
2971 char *ext_prop_name;
2972 char *ext_prop_data;
2973
2974 t = &func->function.os_desc_table[h->interface];
2975 t->if_id = func->interfaces_nums[h->interface];
2976
2977 ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
2978 func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
2979
2980 ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
2981 ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
2982 ext_prop->data_len = le32_to_cpu(*(__le32 *)
2983 usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
2984 length = ext_prop->name_len + ext_prop->data_len + 14;
2985
2986 ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
2987 func->ffs->ms_os_descs_ext_prop_name_avail +=
2988 ext_prop->name_len;
2989
2990 ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
2991 func->ffs->ms_os_descs_ext_prop_data_avail +=
2992 ext_prop->data_len;
2993 memcpy(ext_prop_data,
2994 usb_ext_prop_data_ptr(data, ext_prop->name_len),
2995 ext_prop->data_len);
2996 /* unicode data reported to the host as "WCHAR"s */
2997 switch (ext_prop->type) {
2998 case USB_EXT_PROP_UNICODE:
2999 case USB_EXT_PROP_UNICODE_ENV:
3000 case USB_EXT_PROP_UNICODE_LINK:
3001 case USB_EXT_PROP_UNICODE_MULTI:
3002 ext_prop->data_len *= 2;
3003 break;
3004 }
3005 ext_prop->data = ext_prop_data;
3006
3007 memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
3008 ext_prop->name_len);
3009 /* property name reported to the host as "WCHAR"s */
3010 ext_prop->name_len *= 2;
3011 ext_prop->name = ext_prop_name;
3012
3013 t->os_desc->ext_prop_len +=
3014 ext_prop->name_len + ext_prop->data_len + 14;
3015 ++t->os_desc->ext_prop_count;
3016 list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
3017 }
3018 break;
3019 default:
3020 pr_vdebug("unknown descriptor: %d\n", type);
3021 }
3022
3023 return length;
3024 }
3025
ffs_do_functionfs_bind(struct usb_function * f,struct usb_configuration * c)3026 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
3027 struct usb_configuration *c)
3028 {
3029 struct ffs_function *func = ffs_func_from_usb(f);
3030 struct f_fs_opts *ffs_opts =
3031 container_of(f->fi, struct f_fs_opts, func_inst);
3032 int ret;
3033
3034 ENTER();
3035
3036 /*
3037 * Legacy gadget triggers binding in functionfs_ready_callback,
3038 * which already uses locking; taking the same lock here would
3039 * cause a deadlock.
3040 *
3041 * Configfs-enabled gadgets however do need ffs_dev_lock.
3042 */
3043 if (!ffs_opts->no_configfs)
3044 ffs_dev_lock();
3045 ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
3046 func->ffs = ffs_opts->dev->ffs_data;
3047 if (!ffs_opts->no_configfs)
3048 ffs_dev_unlock();
3049 if (ret)
3050 return ERR_PTR(ret);
3051
3052 func->conf = c;
3053 func->gadget = c->cdev->gadget;
3054
3055 /*
3056 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
3057 * configurations are bound in sequence with list_for_each_entry,
3058 * in each configuration its functions are bound in sequence
3059 * with list_for_each_entry, so we assume no race condition
3060 * with regard to ffs_opts->bound access
3061 */
3062 if (!ffs_opts->refcnt) {
3063 ret = functionfs_bind(func->ffs, c->cdev);
3064 if (ret)
3065 return ERR_PTR(ret);
3066 }
3067 ffs_opts->refcnt++;
3068 func->function.strings = func->ffs->stringtabs;
3069
3070 return ffs_opts;
3071 }
3072
_ffs_func_bind(struct usb_configuration * c,struct usb_function * f)3073 static int _ffs_func_bind(struct usb_configuration *c,
3074 struct usb_function *f)
3075 {
3076 struct ffs_function *func = ffs_func_from_usb(f);
3077 struct ffs_data *ffs = func->ffs;
3078
3079 const int full = !!func->ffs->fs_descs_count;
3080 const int high = !!func->ffs->hs_descs_count;
3081 const int super = !!func->ffs->ss_descs_count;
3082
3083 int fs_len, hs_len, ss_len, ret, i;
3084 struct ffs_ep *eps_ptr;
3085
3086 /* Make it a single chunk, less management later on */
3087 vla_group(d);
3088 vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
3089 vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
3090 full ? ffs->fs_descs_count + 1 : 0);
3091 vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
3092 high ? ffs->hs_descs_count + 1 : 0);
3093 vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
3094 super ? ffs->ss_descs_count + 1 : 0);
3095 vla_item_with_sz(d, short, inums, ffs->interfaces_count);
3096 vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
3097 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3098 vla_item_with_sz(d, char[16], ext_compat,
3099 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3100 vla_item_with_sz(d, struct usb_os_desc, os_desc,
3101 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3102 vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
3103 ffs->ms_os_descs_ext_prop_count);
3104 vla_item_with_sz(d, char, ext_prop_name,
3105 ffs->ms_os_descs_ext_prop_name_len);
3106 vla_item_with_sz(d, char, ext_prop_data,
3107 ffs->ms_os_descs_ext_prop_data_len);
3108 vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
3109 char *vlabuf;
3110
3111 ENTER();
3112
3113 /* Has descriptors only for speeds gadget does not support */
3114 if (unlikely(!(full | high | super)))
3115 return -ENOTSUPP;
3116
3117 /* Allocate a single chunk, less management later on */
3118 vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
3119 if (unlikely(!vlabuf))
3120 return -ENOMEM;
3121
3122 ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
3123 ffs->ms_os_descs_ext_prop_name_avail =
3124 vla_ptr(vlabuf, d, ext_prop_name);
3125 ffs->ms_os_descs_ext_prop_data_avail =
3126 vla_ptr(vlabuf, d, ext_prop_data);
3127
3128 /* Copy descriptors */
3129 memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
3130 ffs->raw_descs_length);
3131
3132 memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3133 eps_ptr = vla_ptr(vlabuf, d, eps);
3134 for (i = 0; i < ffs->eps_count; i++)
3135 eps_ptr[i].num = -1;
3136
3137 /* Save pointers
3138 * d_eps == vlabuf, func->eps used to kfree vlabuf later
3139 */
3140 func->eps = vla_ptr(vlabuf, d, eps);
3141 func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3142
3143 /*
3144 * Go through all the endpoint descriptors and allocate
3145 * endpoints first, so that later we can rewrite the endpoint
3146 * numbers without worrying that it may be described later on.
3147 */
3148 if (likely(full)) {
3149 func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3150 fs_len = ffs_do_descs(ffs->fs_descs_count,
3151 vla_ptr(vlabuf, d, raw_descs),
3152 d_raw_descs__sz,
3153 __ffs_func_bind_do_descs, func);
3154 if (unlikely(fs_len < 0)) {
3155 ret = fs_len;
3156 goto error;
3157 }
3158 } else {
3159 fs_len = 0;
3160 }
3161
3162 if (likely(high)) {
3163 func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3164 hs_len = ffs_do_descs(ffs->hs_descs_count,
3165 vla_ptr(vlabuf, d, raw_descs) + fs_len,
3166 d_raw_descs__sz - fs_len,
3167 __ffs_func_bind_do_descs, func);
3168 if (unlikely(hs_len < 0)) {
3169 ret = hs_len;
3170 goto error;
3171 }
3172 } else {
3173 hs_len = 0;
3174 }
3175
3176 if (likely(super)) {
3177 func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs);
3178 ss_len = ffs_do_descs(ffs->ss_descs_count,
3179 vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3180 d_raw_descs__sz - fs_len - hs_len,
3181 __ffs_func_bind_do_descs, func);
3182 if (unlikely(ss_len < 0)) {
3183 ret = ss_len;
3184 goto error;
3185 }
3186 } else {
3187 ss_len = 0;
3188 }
3189
3190 /*
3191 * Now handle interface numbers allocation and interface and
3192 * endpoint numbers rewriting. We can do that in one go
3193 * now.
3194 */
3195 ret = ffs_do_descs(ffs->fs_descs_count +
3196 (high ? ffs->hs_descs_count : 0) +
3197 (super ? ffs->ss_descs_count : 0),
3198 vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3199 __ffs_func_bind_do_nums, func);
3200 if (unlikely(ret < 0))
3201 goto error;
3202
3203 func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3204 if (c->cdev->use_os_string) {
3205 for (i = 0; i < ffs->interfaces_count; ++i) {
3206 struct usb_os_desc *desc;
3207
3208 desc = func->function.os_desc_table[i].os_desc =
3209 vla_ptr(vlabuf, d, os_desc) +
3210 i * sizeof(struct usb_os_desc);
3211 desc->ext_compat_id =
3212 vla_ptr(vlabuf, d, ext_compat) + i * 16;
3213 INIT_LIST_HEAD(&desc->ext_prop);
3214 }
3215 ret = ffs_do_os_descs(ffs->ms_os_descs_count,
3216 vla_ptr(vlabuf, d, raw_descs) +
3217 fs_len + hs_len + ss_len,
3218 d_raw_descs__sz - fs_len - hs_len -
3219 ss_len,
3220 __ffs_func_bind_do_os_desc, func);
3221 if (unlikely(ret < 0))
3222 goto error;
3223 }
3224 func->function.os_desc_n =
3225 c->cdev->use_os_string ? ffs->interfaces_count : 0;
3226
3227 /* And we're done */
3228 ffs_event_add(ffs, FUNCTIONFS_BIND);
3229 return 0;
3230
3231 error:
3232 /* XXX Do we need to release all claimed endpoints here? */
3233 return ret;
3234 }
3235
ffs_func_bind(struct usb_configuration * c,struct usb_function * f)3236 static int ffs_func_bind(struct usb_configuration *c,
3237 struct usb_function *f)
3238 {
3239 struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3240 struct ffs_function *func = ffs_func_from_usb(f);
3241 int ret;
3242
3243 if (IS_ERR(ffs_opts))
3244 return PTR_ERR(ffs_opts);
3245
3246 ret = _ffs_func_bind(c, f);
3247 if (ret && !--ffs_opts->refcnt)
3248 functionfs_unbind(func->ffs);
3249
3250 return ret;
3251 }
3252
3253
3254 /* Other USB function hooks *************************************************/
3255
ffs_reset_work(struct work_struct * work)3256 static void ffs_reset_work(struct work_struct *work)
3257 {
3258 struct ffs_data *ffs = container_of(work,
3259 struct ffs_data, reset_work);
3260 ffs_data_reset(ffs);
3261 }
3262
ffs_func_set_alt(struct usb_function * f,unsigned interface,unsigned alt)3263 static int ffs_func_set_alt(struct usb_function *f,
3264 unsigned interface, unsigned alt)
3265 {
3266 struct ffs_function *func = ffs_func_from_usb(f);
3267 struct ffs_data *ffs = func->ffs;
3268 int ret = 0, intf;
3269
3270 if (alt != (unsigned)-1) {
3271 intf = ffs_func_revmap_intf(func, interface);
3272 if (unlikely(intf < 0))
3273 return intf;
3274 }
3275
3276 if (ffs->func)
3277 ffs_func_eps_disable(ffs->func);
3278
3279 if (ffs->state == FFS_DEACTIVATED) {
3280 ffs->state = FFS_CLOSING;
3281 INIT_WORK(&ffs->reset_work, ffs_reset_work);
3282 schedule_work(&ffs->reset_work);
3283 return -ENODEV;
3284 }
3285
3286 if (ffs->state != FFS_ACTIVE)
3287 return -ENODEV;
3288
3289 if (alt == (unsigned)-1) {
3290 ffs->func = NULL;
3291 ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3292 return 0;
3293 }
3294
3295 ffs->func = func;
3296 ret = ffs_func_eps_enable(func);
3297 if (likely(ret >= 0))
3298 ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3299 return ret;
3300 }
3301
ffs_func_disable(struct usb_function * f)3302 static void ffs_func_disable(struct usb_function *f)
3303 {
3304 ffs_func_set_alt(f, 0, (unsigned)-1);
3305 }
3306
ffs_func_setup(struct usb_function * f,const struct usb_ctrlrequest * creq)3307 static int ffs_func_setup(struct usb_function *f,
3308 const struct usb_ctrlrequest *creq)
3309 {
3310 struct ffs_function *func = ffs_func_from_usb(f);
3311 struct ffs_data *ffs = func->ffs;
3312 unsigned long flags;
3313 int ret;
3314
3315 ENTER();
3316
3317 pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3318 pr_vdebug("creq->bRequest = %02x\n", creq->bRequest);
3319 pr_vdebug("creq->wValue = %04x\n", le16_to_cpu(creq->wValue));
3320 pr_vdebug("creq->wIndex = %04x\n", le16_to_cpu(creq->wIndex));
3321 pr_vdebug("creq->wLength = %04x\n", le16_to_cpu(creq->wLength));
3322
3323 /*
3324 * Most requests directed to interface go through here
3325 * (notable exceptions are set/get interface) so we need to
3326 * handle them. All other either handled by composite or
3327 * passed to usb_configuration->setup() (if one is set). No
3328 * matter, we will handle requests directed to endpoint here
3329 * as well (as it's straightforward). Other request recipient
3330 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3331 * is being used.
3332 */
3333 if (ffs->state != FFS_ACTIVE)
3334 return -ENODEV;
3335
3336 switch (creq->bRequestType & USB_RECIP_MASK) {
3337 case USB_RECIP_INTERFACE:
3338 ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3339 if (unlikely(ret < 0))
3340 return ret;
3341 break;
3342
3343 case USB_RECIP_ENDPOINT:
3344 ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3345 if (unlikely(ret < 0))
3346 return ret;
3347 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3348 ret = func->ffs->eps_addrmap[ret];
3349 break;
3350
3351 default:
3352 if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3353 ret = le16_to_cpu(creq->wIndex);
3354 else
3355 return -EOPNOTSUPP;
3356 }
3357
3358 spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3359 ffs->ev.setup = *creq;
3360 ffs->ev.setup.wIndex = cpu_to_le16(ret);
3361 __ffs_event_add(ffs, FUNCTIONFS_SETUP);
3362 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3363
3364 return creq->wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0;
3365 }
3366
ffs_func_req_match(struct usb_function * f,const struct usb_ctrlrequest * creq,bool config0)3367 static bool ffs_func_req_match(struct usb_function *f,
3368 const struct usb_ctrlrequest *creq,
3369 bool config0)
3370 {
3371 struct ffs_function *func = ffs_func_from_usb(f);
3372
3373 if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3374 return false;
3375
3376 switch (creq->bRequestType & USB_RECIP_MASK) {
3377 case USB_RECIP_INTERFACE:
3378 return (ffs_func_revmap_intf(func,
3379 le16_to_cpu(creq->wIndex)) >= 0);
3380 case USB_RECIP_ENDPOINT:
3381 return (ffs_func_revmap_ep(func,
3382 le16_to_cpu(creq->wIndex)) >= 0);
3383 default:
3384 return (bool) (func->ffs->user_flags &
3385 FUNCTIONFS_ALL_CTRL_RECIP);
3386 }
3387 }
3388
ffs_func_suspend(struct usb_function * f)3389 static void ffs_func_suspend(struct usb_function *f)
3390 {
3391 ENTER();
3392 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3393 }
3394
ffs_func_resume(struct usb_function * f)3395 static void ffs_func_resume(struct usb_function *f)
3396 {
3397 ENTER();
3398 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3399 }
3400
3401
3402 /* Endpoint and interface numbers reverse mapping ***************************/
3403
ffs_func_revmap_ep(struct ffs_function * func,u8 num)3404 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3405 {
3406 num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3407 return num ? num : -EDOM;
3408 }
3409
ffs_func_revmap_intf(struct ffs_function * func,u8 intf)3410 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3411 {
3412 short *nums = func->interfaces_nums;
3413 unsigned count = func->ffs->interfaces_count;
3414
3415 for (; count; --count, ++nums) {
3416 if (*nums >= 0 && *nums == intf)
3417 return nums - func->interfaces_nums;
3418 }
3419
3420 return -EDOM;
3421 }
3422
3423
3424 /* Devices management *******************************************************/
3425
3426 static LIST_HEAD(ffs_devices);
3427
_ffs_do_find_dev(const char * name)3428 static struct ffs_dev *_ffs_do_find_dev(const char *name)
3429 {
3430 struct ffs_dev *dev;
3431
3432 if (!name)
3433 return NULL;
3434
3435 list_for_each_entry(dev, &ffs_devices, entry) {
3436 if (strcmp(dev->name, name) == 0)
3437 return dev;
3438 }
3439
3440 return NULL;
3441 }
3442
3443 /*
3444 * ffs_lock must be taken by the caller of this function
3445 */
_ffs_get_single_dev(void)3446 static struct ffs_dev *_ffs_get_single_dev(void)
3447 {
3448 struct ffs_dev *dev;
3449
3450 if (list_is_singular(&ffs_devices)) {
3451 dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3452 if (dev->single)
3453 return dev;
3454 }
3455
3456 return NULL;
3457 }
3458
3459 /*
3460 * ffs_lock must be taken by the caller of this function
3461 */
_ffs_find_dev(const char * name)3462 static struct ffs_dev *_ffs_find_dev(const char *name)
3463 {
3464 struct ffs_dev *dev;
3465
3466 dev = _ffs_get_single_dev();
3467 if (dev)
3468 return dev;
3469
3470 return _ffs_do_find_dev(name);
3471 }
3472
3473 /* Configfs support *********************************************************/
3474
to_ffs_opts(struct config_item * item)3475 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3476 {
3477 return container_of(to_config_group(item), struct f_fs_opts,
3478 func_inst.group);
3479 }
3480
ffs_attr_release(struct config_item * item)3481 static void ffs_attr_release(struct config_item *item)
3482 {
3483 struct f_fs_opts *opts = to_ffs_opts(item);
3484
3485 usb_put_function_instance(&opts->func_inst);
3486 }
3487
3488 static struct configfs_item_operations ffs_item_ops = {
3489 .release = ffs_attr_release,
3490 };
3491
3492 static const struct config_item_type ffs_func_type = {
3493 .ct_item_ops = &ffs_item_ops,
3494 .ct_owner = THIS_MODULE,
3495 };
3496
3497
3498 /* Function registration interface ******************************************/
3499
ffs_free_inst(struct usb_function_instance * f)3500 static void ffs_free_inst(struct usb_function_instance *f)
3501 {
3502 struct f_fs_opts *opts;
3503
3504 opts = to_f_fs_opts(f);
3505 ffs_dev_lock();
3506 _ffs_free_dev(opts->dev);
3507 ffs_dev_unlock();
3508 kfree(opts);
3509 }
3510
ffs_set_inst_name(struct usb_function_instance * fi,const char * name)3511 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3512 {
3513 if (strlen(name) >= sizeof_field(struct ffs_dev, name))
3514 return -ENAMETOOLONG;
3515 return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
3516 }
3517
ffs_alloc_inst(void)3518 static struct usb_function_instance *ffs_alloc_inst(void)
3519 {
3520 struct f_fs_opts *opts;
3521 struct ffs_dev *dev;
3522
3523 opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3524 if (!opts)
3525 return ERR_PTR(-ENOMEM);
3526
3527 opts->func_inst.set_inst_name = ffs_set_inst_name;
3528 opts->func_inst.free_func_inst = ffs_free_inst;
3529 ffs_dev_lock();
3530 dev = _ffs_alloc_dev();
3531 ffs_dev_unlock();
3532 if (IS_ERR(dev)) {
3533 kfree(opts);
3534 return ERR_CAST(dev);
3535 }
3536 opts->dev = dev;
3537 dev->opts = opts;
3538
3539 config_group_init_type_name(&opts->func_inst.group, "",
3540 &ffs_func_type);
3541 return &opts->func_inst;
3542 }
3543
ffs_free(struct usb_function * f)3544 static void ffs_free(struct usb_function *f)
3545 {
3546 kfree(ffs_func_from_usb(f));
3547 }
3548
ffs_func_unbind(struct usb_configuration * c,struct usb_function * f)3549 static void ffs_func_unbind(struct usb_configuration *c,
3550 struct usb_function *f)
3551 {
3552 struct ffs_function *func = ffs_func_from_usb(f);
3553 struct ffs_data *ffs = func->ffs;
3554 struct f_fs_opts *opts =
3555 container_of(f->fi, struct f_fs_opts, func_inst);
3556 struct ffs_ep *ep = func->eps;
3557 unsigned count = ffs->eps_count;
3558 unsigned long flags;
3559
3560 ENTER();
3561 if (ffs->func == func) {
3562 ffs_func_eps_disable(func);
3563 ffs->func = NULL;
3564 }
3565
3566 if (!--opts->refcnt)
3567 functionfs_unbind(ffs);
3568
3569 /* cleanup after autoconfig */
3570 spin_lock_irqsave(&func->ffs->eps_lock, flags);
3571 while (count--) {
3572 if (ep->ep && ep->req)
3573 usb_ep_free_request(ep->ep, ep->req);
3574 ep->req = NULL;
3575 ++ep;
3576 }
3577 spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
3578 kfree(func->eps);
3579 func->eps = NULL;
3580 /*
3581 * eps, descriptors and interfaces_nums are allocated in the
3582 * same chunk so only one free is required.
3583 */
3584 func->function.fs_descriptors = NULL;
3585 func->function.hs_descriptors = NULL;
3586 func->function.ss_descriptors = NULL;
3587 func->interfaces_nums = NULL;
3588
3589 ffs_event_add(ffs, FUNCTIONFS_UNBIND);
3590 }
3591
ffs_alloc(struct usb_function_instance * fi)3592 static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
3593 {
3594 struct ffs_function *func;
3595
3596 ENTER();
3597
3598 func = kzalloc(sizeof(*func), GFP_KERNEL);
3599 if (unlikely(!func))
3600 return ERR_PTR(-ENOMEM);
3601
3602 func->function.name = "Function FS Gadget";
3603
3604 func->function.bind = ffs_func_bind;
3605 func->function.unbind = ffs_func_unbind;
3606 func->function.set_alt = ffs_func_set_alt;
3607 func->function.disable = ffs_func_disable;
3608 func->function.setup = ffs_func_setup;
3609 func->function.req_match = ffs_func_req_match;
3610 func->function.suspend = ffs_func_suspend;
3611 func->function.resume = ffs_func_resume;
3612 func->function.free_func = ffs_free;
3613
3614 return &func->function;
3615 }
3616
3617 /*
3618 * ffs_lock must be taken by the caller of this function
3619 */
_ffs_alloc_dev(void)3620 static struct ffs_dev *_ffs_alloc_dev(void)
3621 {
3622 struct ffs_dev *dev;
3623 int ret;
3624
3625 if (_ffs_get_single_dev())
3626 return ERR_PTR(-EBUSY);
3627
3628 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3629 if (!dev)
3630 return ERR_PTR(-ENOMEM);
3631
3632 if (list_empty(&ffs_devices)) {
3633 ret = functionfs_init();
3634 if (ret) {
3635 kfree(dev);
3636 return ERR_PTR(ret);
3637 }
3638 }
3639
3640 list_add(&dev->entry, &ffs_devices);
3641
3642 return dev;
3643 }
3644
ffs_name_dev(struct ffs_dev * dev,const char * name)3645 int ffs_name_dev(struct ffs_dev *dev, const char *name)
3646 {
3647 struct ffs_dev *existing;
3648 int ret = 0;
3649
3650 ffs_dev_lock();
3651
3652 existing = _ffs_do_find_dev(name);
3653 if (!existing)
3654 strlcpy(dev->name, name, ARRAY_SIZE(dev->name));
3655 else if (existing != dev)
3656 ret = -EBUSY;
3657
3658 ffs_dev_unlock();
3659
3660 return ret;
3661 }
3662 EXPORT_SYMBOL_GPL(ffs_name_dev);
3663
ffs_single_dev(struct ffs_dev * dev)3664 int ffs_single_dev(struct ffs_dev *dev)
3665 {
3666 int ret;
3667
3668 ret = 0;
3669 ffs_dev_lock();
3670
3671 if (!list_is_singular(&ffs_devices))
3672 ret = -EBUSY;
3673 else
3674 dev->single = true;
3675
3676 ffs_dev_unlock();
3677 return ret;
3678 }
3679 EXPORT_SYMBOL_GPL(ffs_single_dev);
3680
3681 /*
3682 * ffs_lock must be taken by the caller of this function
3683 */
_ffs_free_dev(struct ffs_dev * dev)3684 static void _ffs_free_dev(struct ffs_dev *dev)
3685 {
3686 list_del(&dev->entry);
3687
3688 /* Clear the private_data pointer to stop incorrect dev access */
3689 if (dev->ffs_data)
3690 dev->ffs_data->private_data = NULL;
3691
3692 kfree(dev);
3693 if (list_empty(&ffs_devices))
3694 functionfs_cleanup();
3695 }
3696
ffs_acquire_dev(const char * dev_name)3697 static void *ffs_acquire_dev(const char *dev_name)
3698 {
3699 struct ffs_dev *ffs_dev;
3700
3701 ENTER();
3702 ffs_dev_lock();
3703
3704 ffs_dev = _ffs_find_dev(dev_name);
3705 if (!ffs_dev)
3706 ffs_dev = ERR_PTR(-ENOENT);
3707 else if (ffs_dev->mounted)
3708 ffs_dev = ERR_PTR(-EBUSY);
3709 else if (ffs_dev->ffs_acquire_dev_callback &&
3710 ffs_dev->ffs_acquire_dev_callback(ffs_dev))
3711 ffs_dev = ERR_PTR(-ENOENT);
3712 else
3713 ffs_dev->mounted = true;
3714
3715 ffs_dev_unlock();
3716 return ffs_dev;
3717 }
3718
ffs_release_dev(struct ffs_data * ffs_data)3719 static void ffs_release_dev(struct ffs_data *ffs_data)
3720 {
3721 struct ffs_dev *ffs_dev;
3722
3723 ENTER();
3724 ffs_dev_lock();
3725
3726 ffs_dev = ffs_data->private_data;
3727 if (ffs_dev) {
3728 ffs_dev->mounted = false;
3729
3730 if (ffs_dev->ffs_release_dev_callback)
3731 ffs_dev->ffs_release_dev_callback(ffs_dev);
3732 }
3733
3734 ffs_dev_unlock();
3735 }
3736
ffs_ready(struct ffs_data * ffs)3737 static int ffs_ready(struct ffs_data *ffs)
3738 {
3739 struct ffs_dev *ffs_obj;
3740 int ret = 0;
3741
3742 ENTER();
3743 ffs_dev_lock();
3744
3745 ffs_obj = ffs->private_data;
3746 if (!ffs_obj) {
3747 ret = -EINVAL;
3748 goto done;
3749 }
3750 if (WARN_ON(ffs_obj->desc_ready)) {
3751 ret = -EBUSY;
3752 goto done;
3753 }
3754
3755 ffs_obj->desc_ready = true;
3756 ffs_obj->ffs_data = ffs;
3757
3758 if (ffs_obj->ffs_ready_callback) {
3759 ret = ffs_obj->ffs_ready_callback(ffs);
3760 if (ret)
3761 goto done;
3762 }
3763
3764 set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3765 done:
3766 ffs_dev_unlock();
3767 return ret;
3768 }
3769
ffs_closed(struct ffs_data * ffs)3770 static void ffs_closed(struct ffs_data *ffs)
3771 {
3772 struct ffs_dev *ffs_obj;
3773 struct f_fs_opts *opts;
3774 struct config_item *ci;
3775
3776 ENTER();
3777 ffs_dev_lock();
3778
3779 ffs_obj = ffs->private_data;
3780 if (!ffs_obj)
3781 goto done;
3782
3783 ffs_obj->desc_ready = false;
3784 ffs_obj->ffs_data = NULL;
3785
3786 if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
3787 ffs_obj->ffs_closed_callback)
3788 ffs_obj->ffs_closed_callback(ffs);
3789
3790 if (ffs_obj->opts)
3791 opts = ffs_obj->opts;
3792 else
3793 goto done;
3794
3795 if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3796 || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
3797 goto done;
3798
3799 ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
3800 ffs_dev_unlock();
3801
3802 if (test_bit(FFS_FL_BOUND, &ffs->flags))
3803 unregister_gadget_item(ci);
3804 return;
3805 done:
3806 ffs_dev_unlock();
3807 }
3808
3809 /* Misc helper functions ****************************************************/
3810
ffs_mutex_lock(struct mutex * mutex,unsigned nonblock)3811 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
3812 {
3813 return nonblock
3814 ? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN
3815 : mutex_lock_interruptible(mutex);
3816 }
3817
ffs_prepare_buffer(const char __user * buf,size_t len)3818 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3819 {
3820 char *data;
3821
3822 if (unlikely(!len))
3823 return NULL;
3824
3825 data = kmalloc(len, GFP_KERNEL);
3826 if (unlikely(!data))
3827 return ERR_PTR(-ENOMEM);
3828
3829 if (unlikely(copy_from_user(data, buf, len))) {
3830 kfree(data);
3831 return ERR_PTR(-EFAULT);
3832 }
3833
3834 pr_vdebug("Buffer from user space:\n");
3835 ffs_dump_mem("", data, len);
3836
3837 return data;
3838 }
3839
3840 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
3841 MODULE_LICENSE("GPL");
3842 MODULE_AUTHOR("Michal Nazarewicz");
3843