1 /*
2   handle em28xx IR remotes via linux kernel input layer.
3 
4    Copyright (C) 2005 Ludovico Cavedon <cavedon@sssup.it>
5 		      Markus Rechberger <mrechberger@gmail.com>
6 		      Mauro Carvalho Chehab <mchehab@infradead.org>
7 		      Sascha Sommer <saschasommer@freenet.de>
8 
9   This program is free software; you can redistribute it and/or modify
10   it under the terms of the GNU General Public License as published by
11   the Free Software Foundation; either version 2 of the License, or
12   (at your option) any later version.
13 
14   This program is distributed in the hope that it will be useful,
15   but WITHOUT ANY WARRANTY; without even the implied warranty of
16   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17   GNU General Public License for more details.
18 
19   You should have received a copy of the GNU General Public License
20   along with this program; if not, write to the Free Software
21   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22  */
23 
24 #include <linux/module.h>
25 #include <linux/init.h>
26 #include <linux/delay.h>
27 #include <linux/interrupt.h>
28 #include <linux/usb.h>
29 #include <linux/slab.h>
30 
31 #include "em28xx.h"
32 
33 #define EM28XX_SNAPSHOT_KEY KEY_CAMERA
34 #define EM28XX_SBUTTON_QUERY_INTERVAL 500
35 #define EM28XX_R0C_USBSUSP_SNAPSHOT 0x20
36 
37 static unsigned int ir_debug;
38 module_param(ir_debug, int, 0644);
39 MODULE_PARM_DESC(ir_debug, "enable debug messages [IR]");
40 
41 #define MODULE_NAME "em28xx"
42 
43 #define i2cdprintk(fmt, arg...) \
44 	if (ir_debug) { \
45 		printk(KERN_DEBUG "%s/ir: " fmt, ir->name , ## arg); \
46 	}
47 
48 #define dprintk(fmt, arg...) \
49 	if (ir_debug) { \
50 		printk(KERN_DEBUG "%s/ir: " fmt, ir->name , ## arg); \
51 	}
52 
53 /**********************************************************
54  Polling structure used by em28xx IR's
55  **********************************************************/
56 
57 struct em28xx_ir_poll_result {
58 	unsigned int toggle_bit:1;
59 	unsigned int read_count:7;
60 	u8 rc_address;
61 	u8 rc_data[4]; /* 1 byte on em2860/2880, 4 on em2874 */
62 };
63 
64 struct em28xx_IR {
65 	struct em28xx *dev;
66 	struct rc_dev *rc;
67 	char name[32];
68 	char phys[32];
69 
70 	/* poll external decoder */
71 	int polling;
72 	struct delayed_work work;
73 	unsigned int full_code:1;
74 	unsigned int last_readcount;
75 
76 	int  (*get_key)(struct em28xx_IR *, struct em28xx_ir_poll_result *);
77 };
78 
79 /**********************************************************
80  I2C IR based get keycodes - should be used with ir-kbd-i2c
81  **********************************************************/
82 
em28xx_get_key_terratec(struct IR_i2c * ir,u32 * ir_key,u32 * ir_raw)83 int em28xx_get_key_terratec(struct IR_i2c *ir, u32 *ir_key, u32 *ir_raw)
84 {
85 	unsigned char b;
86 
87 	/* poll IR chip */
88 	if (1 != i2c_master_recv(ir->c, &b, 1)) {
89 		i2cdprintk("read error\n");
90 		return -EIO;
91 	}
92 
93 	/* it seems that 0xFE indicates that a button is still hold
94 	   down, while 0xff indicates that no button is hold
95 	   down. 0xfe sequences are sometimes interrupted by 0xFF */
96 
97 	i2cdprintk("key %02x\n", b);
98 
99 	if (b == 0xff)
100 		return 0;
101 
102 	if (b == 0xfe)
103 		/* keep old data */
104 		return 1;
105 
106 	*ir_key = b;
107 	*ir_raw = b;
108 	return 1;
109 }
110 
em28xx_get_key_em_haup(struct IR_i2c * ir,u32 * ir_key,u32 * ir_raw)111 int em28xx_get_key_em_haup(struct IR_i2c *ir, u32 *ir_key, u32 *ir_raw)
112 {
113 	unsigned char buf[2];
114 	u16 code;
115 	int size;
116 
117 	/* poll IR chip */
118 	size = i2c_master_recv(ir->c, buf, sizeof(buf));
119 
120 	if (size != 2)
121 		return -EIO;
122 
123 	/* Does eliminate repeated parity code */
124 	if (buf[1] == 0xff)
125 		return 0;
126 
127 	ir->old = buf[1];
128 
129 	/*
130 	 * Rearranges bits to the right order.
131 	 * The bit order were determined experimentally by using
132 	 * The original Hauppauge Grey IR and another RC5 that uses addr=0x08
133 	 * The RC5 code has 14 bits, but we've experimentally determined
134 	 * the meaning for only 11 bits.
135 	 * So, the code translation is not complete. Yet, it is enough to
136 	 * work with the provided RC5 IR.
137 	 */
138 	code =
139 		 ((buf[0] & 0x01) ? 0x0020 : 0) | /* 		0010 0000 */
140 		 ((buf[0] & 0x02) ? 0x0010 : 0) | /* 		0001 0000 */
141 		 ((buf[0] & 0x04) ? 0x0008 : 0) | /* 		0000 1000 */
142 		 ((buf[0] & 0x08) ? 0x0004 : 0) | /* 		0000 0100 */
143 		 ((buf[0] & 0x10) ? 0x0002 : 0) | /* 		0000 0010 */
144 		 ((buf[0] & 0x20) ? 0x0001 : 0) | /* 		0000 0001 */
145 		 ((buf[1] & 0x08) ? 0x1000 : 0) | /* 0001 0000		  */
146 		 ((buf[1] & 0x10) ? 0x0800 : 0) | /* 0000 1000		  */
147 		 ((buf[1] & 0x20) ? 0x0400 : 0) | /* 0000 0100		  */
148 		 ((buf[1] & 0x40) ? 0x0200 : 0) | /* 0000 0010		  */
149 		 ((buf[1] & 0x80) ? 0x0100 : 0);  /* 0000 0001		  */
150 
151 	i2cdprintk("ir hauppauge (em2840): code=0x%02x (rcv=0x%02x%02x)\n",
152 			code, buf[1], buf[0]);
153 
154 	/* return key */
155 	*ir_key = code;
156 	*ir_raw = code;
157 	return 1;
158 }
159 
em28xx_get_key_pinnacle_usb_grey(struct IR_i2c * ir,u32 * ir_key,u32 * ir_raw)160 int em28xx_get_key_pinnacle_usb_grey(struct IR_i2c *ir, u32 *ir_key,
161 				     u32 *ir_raw)
162 {
163 	unsigned char buf[3];
164 
165 	/* poll IR chip */
166 
167 	if (3 != i2c_master_recv(ir->c, buf, 3)) {
168 		i2cdprintk("read error\n");
169 		return -EIO;
170 	}
171 
172 	i2cdprintk("key %02x\n", buf[2]&0x3f);
173 	if (buf[0] != 0x00)
174 		return 0;
175 
176 	*ir_key = buf[2]&0x3f;
177 	*ir_raw = buf[2]&0x3f;
178 
179 	return 1;
180 }
181 
em28xx_get_key_winfast_usbii_deluxe(struct IR_i2c * ir,u32 * ir_key,u32 * ir_raw)182 int em28xx_get_key_winfast_usbii_deluxe(struct IR_i2c *ir, u32 *ir_key, u32 *ir_raw)
183 {
184 	unsigned char subaddr, keydetect, key;
185 
186 	struct i2c_msg msg[] = { { .addr = ir->c->addr, .flags = 0, .buf = &subaddr, .len = 1},
187 
188 				{ .addr = ir->c->addr, .flags = I2C_M_RD, .buf = &keydetect, .len = 1} };
189 
190 	subaddr = 0x10;
191 	if (2 != i2c_transfer(ir->c->adapter, msg, 2)) {
192 		i2cdprintk("read error\n");
193 		return -EIO;
194 	}
195 	if (keydetect == 0x00)
196 		return 0;
197 
198 	subaddr = 0x00;
199 	msg[1].buf = &key;
200 	if (2 != i2c_transfer(ir->c->adapter, msg, 2)) {
201 		i2cdprintk("read error\n");
202 	return -EIO;
203 	}
204 	if (key == 0x00)
205 		return 0;
206 
207 	*ir_key = key;
208 	*ir_raw = key;
209 	return 1;
210 }
211 
212 /**********************************************************
213  Poll based get keycode functions
214  **********************************************************/
215 
216 /* This is for the em2860/em2880 */
default_polling_getkey(struct em28xx_IR * ir,struct em28xx_ir_poll_result * poll_result)217 static int default_polling_getkey(struct em28xx_IR *ir,
218 				  struct em28xx_ir_poll_result *poll_result)
219 {
220 	struct em28xx *dev = ir->dev;
221 	int rc;
222 	u8 msg[3] = { 0, 0, 0 };
223 
224 	/* Read key toggle, brand, and key code
225 	   on registers 0x45, 0x46 and 0x47
226 	 */
227 	rc = dev->em28xx_read_reg_req_len(dev, 0, EM28XX_R45_IR,
228 					  msg, sizeof(msg));
229 	if (rc < 0)
230 		return rc;
231 
232 	/* Infrared toggle (Reg 0x45[7]) */
233 	poll_result->toggle_bit = (msg[0] >> 7);
234 
235 	/* Infrared read count (Reg 0x45[6:0] */
236 	poll_result->read_count = (msg[0] & 0x7f);
237 
238 	/* Remote Control Address (Reg 0x46) */
239 	poll_result->rc_address = msg[1];
240 
241 	/* Remote Control Data (Reg 0x47) */
242 	poll_result->rc_data[0] = msg[2];
243 
244 	return 0;
245 }
246 
em2874_polling_getkey(struct em28xx_IR * ir,struct em28xx_ir_poll_result * poll_result)247 static int em2874_polling_getkey(struct em28xx_IR *ir,
248 				 struct em28xx_ir_poll_result *poll_result)
249 {
250 	struct em28xx *dev = ir->dev;
251 	int rc;
252 	u8 msg[5] = { 0, 0, 0, 0, 0 };
253 
254 	/* Read key toggle, brand, and key code
255 	   on registers 0x51-55
256 	 */
257 	rc = dev->em28xx_read_reg_req_len(dev, 0, EM2874_R51_IR,
258 					  msg, sizeof(msg));
259 	if (rc < 0)
260 		return rc;
261 
262 	/* Infrared toggle (Reg 0x51[7]) */
263 	poll_result->toggle_bit = (msg[0] >> 7);
264 
265 	/* Infrared read count (Reg 0x51[6:0] */
266 	poll_result->read_count = (msg[0] & 0x7f);
267 
268 	/* Remote Control Address (Reg 0x52) */
269 	poll_result->rc_address = msg[1];
270 
271 	/* Remote Control Data (Reg 0x53-55) */
272 	poll_result->rc_data[0] = msg[2];
273 	poll_result->rc_data[1] = msg[3];
274 	poll_result->rc_data[2] = msg[4];
275 
276 	return 0;
277 }
278 
279 /**********************************************************
280  Polling code for em28xx
281  **********************************************************/
282 
em28xx_ir_handle_key(struct em28xx_IR * ir)283 static void em28xx_ir_handle_key(struct em28xx_IR *ir)
284 {
285 	int result;
286 	struct em28xx_ir_poll_result poll_result;
287 
288 	/* read the registers containing the IR status */
289 	result = ir->get_key(ir, &poll_result);
290 	if (unlikely(result < 0)) {
291 		dprintk("ir->get_key() failed %d\n", result);
292 		return;
293 	}
294 
295 	if (unlikely(poll_result.read_count != ir->last_readcount)) {
296 		dprintk("%s: toggle: %d, count: %d, key 0x%02x%02x\n", __func__,
297 			poll_result.toggle_bit, poll_result.read_count,
298 			poll_result.rc_address, poll_result.rc_data[0]);
299 		if (ir->full_code)
300 			rc_keydown(ir->rc,
301 				   poll_result.rc_address << 8 |
302 				   poll_result.rc_data[0],
303 				   poll_result.toggle_bit);
304 		else
305 			rc_keydown(ir->rc,
306 				   poll_result.rc_data[0],
307 				   poll_result.toggle_bit);
308 
309 		if (ir->dev->chip_id == CHIP_ID_EM2874 ||
310 		    ir->dev->chip_id == CHIP_ID_EM2884)
311 			/* The em2874 clears the readcount field every time the
312 			   register is read.  The em2860/2880 datasheet says that it
313 			   is supposed to clear the readcount, but it doesn't.  So with
314 			   the em2874, we are looking for a non-zero read count as
315 			   opposed to a readcount that is incrementing */
316 			ir->last_readcount = 0;
317 		else
318 			ir->last_readcount = poll_result.read_count;
319 	}
320 }
321 
em28xx_ir_work(struct work_struct * work)322 static void em28xx_ir_work(struct work_struct *work)
323 {
324 	struct em28xx_IR *ir = container_of(work, struct em28xx_IR, work.work);
325 
326 	em28xx_ir_handle_key(ir);
327 	schedule_delayed_work(&ir->work, msecs_to_jiffies(ir->polling));
328 }
329 
em28xx_ir_start(struct rc_dev * rc)330 static int em28xx_ir_start(struct rc_dev *rc)
331 {
332 	struct em28xx_IR *ir = rc->priv;
333 
334 	INIT_DELAYED_WORK(&ir->work, em28xx_ir_work);
335 	schedule_delayed_work(&ir->work, 0);
336 
337 	return 0;
338 }
339 
em28xx_ir_stop(struct rc_dev * rc)340 static void em28xx_ir_stop(struct rc_dev *rc)
341 {
342 	struct em28xx_IR *ir = rc->priv;
343 
344 	cancel_delayed_work_sync(&ir->work);
345 }
346 
em28xx_ir_change_protocol(struct rc_dev * rc_dev,u64 rc_type)347 int em28xx_ir_change_protocol(struct rc_dev *rc_dev, u64 rc_type)
348 {
349 	int rc = 0;
350 	struct em28xx_IR *ir = rc_dev->priv;
351 	struct em28xx *dev = ir->dev;
352 	u8 ir_config = EM2874_IR_RC5;
353 
354 	/* Adjust xclk based o IR table for RC5/NEC tables */
355 
356 	if (rc_type == RC_TYPE_RC5) {
357 		dev->board.xclk |= EM28XX_XCLK_IR_RC5_MODE;
358 		ir->full_code = 1;
359 	} else if (rc_type == RC_TYPE_NEC) {
360 		dev->board.xclk &= ~EM28XX_XCLK_IR_RC5_MODE;
361 		ir_config = EM2874_IR_NEC;
362 		ir->full_code = 1;
363 	} else if (rc_type != RC_TYPE_UNKNOWN)
364 		rc = -EINVAL;
365 
366 	em28xx_write_reg_bits(dev, EM28XX_R0F_XCLK, dev->board.xclk,
367 			      EM28XX_XCLK_IR_RC5_MODE);
368 
369 	/* Setup the proper handler based on the chip */
370 	switch (dev->chip_id) {
371 	case CHIP_ID_EM2860:
372 	case CHIP_ID_EM2883:
373 		ir->get_key = default_polling_getkey;
374 		break;
375 	case CHIP_ID_EM2884:
376 	case CHIP_ID_EM2874:
377 	case CHIP_ID_EM28174:
378 		ir->get_key = em2874_polling_getkey;
379 		em28xx_write_regs(dev, EM2874_R50_IR_CONFIG, &ir_config, 1);
380 		break;
381 	default:
382 		printk("Unrecognized em28xx chip id 0x%02x: IR not supported\n",
383 			dev->chip_id);
384 		rc = -EINVAL;
385 	}
386 
387 	return rc;
388 }
389 
em28xx_ir_init(struct em28xx * dev)390 int em28xx_ir_init(struct em28xx *dev)
391 {
392 	struct em28xx_IR *ir;
393 	struct rc_dev *rc;
394 	int err = -ENOMEM;
395 
396 	if (dev->board.ir_codes == NULL) {
397 		/* No remote control support */
398 		return 0;
399 	}
400 
401 	ir = kzalloc(sizeof(*ir), GFP_KERNEL);
402 	rc = rc_allocate_device();
403 	if (!ir || !rc)
404 		goto err_out_free;
405 
406 	/* record handles to ourself */
407 	ir->dev = dev;
408 	dev->ir = ir;
409 	ir->rc = rc;
410 
411 	/*
412 	 * em2874 supports more protocols. For now, let's just announce
413 	 * the two protocols that were already tested
414 	 */
415 	rc->allowed_protos = RC_TYPE_RC5 | RC_TYPE_NEC;
416 	rc->priv = ir;
417 	rc->change_protocol = em28xx_ir_change_protocol;
418 	rc->open = em28xx_ir_start;
419 	rc->close = em28xx_ir_stop;
420 
421 	/* By default, keep protocol field untouched */
422 	err = em28xx_ir_change_protocol(rc, RC_TYPE_UNKNOWN);
423 	if (err)
424 		goto err_out_free;
425 
426 	/* This is how often we ask the chip for IR information */
427 	ir->polling = 100; /* ms */
428 
429 	/* init input device */
430 	snprintf(ir->name, sizeof(ir->name), "em28xx IR (%s)",
431 						dev->name);
432 
433 	usb_make_path(dev->udev, ir->phys, sizeof(ir->phys));
434 	strlcat(ir->phys, "/input0", sizeof(ir->phys));
435 
436 	rc->input_name = ir->name;
437 	rc->input_phys = ir->phys;
438 	rc->input_id.bustype = BUS_USB;
439 	rc->input_id.version = 1;
440 	rc->input_id.vendor = le16_to_cpu(dev->udev->descriptor.idVendor);
441 	rc->input_id.product = le16_to_cpu(dev->udev->descriptor.idProduct);
442 	rc->dev.parent = &dev->udev->dev;
443 	rc->map_name = dev->board.ir_codes;
444 	rc->driver_name = MODULE_NAME;
445 
446 	/* all done */
447 	err = rc_register_device(rc);
448 	if (err)
449 		goto err_out_stop;
450 
451 	return 0;
452 
453  err_out_stop:
454 	dev->ir = NULL;
455  err_out_free:
456 	rc_free_device(rc);
457 	kfree(ir);
458 	return err;
459 }
460 
em28xx_ir_fini(struct em28xx * dev)461 int em28xx_ir_fini(struct em28xx *dev)
462 {
463 	struct em28xx_IR *ir = dev->ir;
464 
465 	/* skip detach on non attached boards */
466 	if (!ir)
467 		return 0;
468 
469 	if (ir->rc)
470 		rc_unregister_device(ir->rc);
471 
472 	/* done */
473 	kfree(ir);
474 	dev->ir = NULL;
475 	return 0;
476 }
477 
478 /**********************************************************
479  Handle Webcam snapshot button
480  **********************************************************/
481 
em28xx_query_sbutton(struct work_struct * work)482 static void em28xx_query_sbutton(struct work_struct *work)
483 {
484 	/* Poll the register and see if the button is depressed */
485 	struct em28xx *dev =
486 		container_of(work, struct em28xx, sbutton_query_work.work);
487 	int ret;
488 
489 	ret = em28xx_read_reg(dev, EM28XX_R0C_USBSUSP);
490 
491 	if (ret & EM28XX_R0C_USBSUSP_SNAPSHOT) {
492 		u8 cleared;
493 		/* Button is depressed, clear the register */
494 		cleared = ((u8) ret) & ~EM28XX_R0C_USBSUSP_SNAPSHOT;
495 		em28xx_write_regs(dev, EM28XX_R0C_USBSUSP, &cleared, 1);
496 
497 		/* Not emulate the keypress */
498 		input_report_key(dev->sbutton_input_dev, EM28XX_SNAPSHOT_KEY,
499 				 1);
500 		/* Now unpress the key */
501 		input_report_key(dev->sbutton_input_dev, EM28XX_SNAPSHOT_KEY,
502 				 0);
503 	}
504 
505 	/* Schedule next poll */
506 	schedule_delayed_work(&dev->sbutton_query_work,
507 			      msecs_to_jiffies(EM28XX_SBUTTON_QUERY_INTERVAL));
508 }
509 
em28xx_register_snapshot_button(struct em28xx * dev)510 void em28xx_register_snapshot_button(struct em28xx *dev)
511 {
512 	struct input_dev *input_dev;
513 	int err;
514 
515 	em28xx_info("Registering snapshot button...\n");
516 	input_dev = input_allocate_device();
517 	if (!input_dev) {
518 		em28xx_errdev("input_allocate_device failed\n");
519 		return;
520 	}
521 
522 	usb_make_path(dev->udev, dev->snapshot_button_path,
523 		      sizeof(dev->snapshot_button_path));
524 	strlcat(dev->snapshot_button_path, "/sbutton",
525 		sizeof(dev->snapshot_button_path));
526 	INIT_DELAYED_WORK(&dev->sbutton_query_work, em28xx_query_sbutton);
527 
528 	input_dev->name = "em28xx snapshot button";
529 	input_dev->phys = dev->snapshot_button_path;
530 	input_dev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_REP);
531 	set_bit(EM28XX_SNAPSHOT_KEY, input_dev->keybit);
532 	input_dev->keycodesize = 0;
533 	input_dev->keycodemax = 0;
534 	input_dev->id.bustype = BUS_USB;
535 	input_dev->id.vendor = le16_to_cpu(dev->udev->descriptor.idVendor);
536 	input_dev->id.product = le16_to_cpu(dev->udev->descriptor.idProduct);
537 	input_dev->id.version = 1;
538 	input_dev->dev.parent = &dev->udev->dev;
539 
540 	err = input_register_device(input_dev);
541 	if (err) {
542 		em28xx_errdev("input_register_device failed\n");
543 		input_free_device(input_dev);
544 		return;
545 	}
546 
547 	dev->sbutton_input_dev = input_dev;
548 	schedule_delayed_work(&dev->sbutton_query_work,
549 			      msecs_to_jiffies(EM28XX_SBUTTON_QUERY_INTERVAL));
550 	return;
551 
552 }
553 
em28xx_deregister_snapshot_button(struct em28xx * dev)554 void em28xx_deregister_snapshot_button(struct em28xx *dev)
555 {
556 	if (dev->sbutton_input_dev != NULL) {
557 		em28xx_info("Deregistering snapshot button\n");
558 		cancel_delayed_work_sync(&dev->sbutton_query_work);
559 		input_unregister_device(dev->sbutton_input_dev);
560 		dev->sbutton_input_dev = NULL;
561 	}
562 	return;
563 }
564