1 // SPDX-License-Identifier: GPL-2.0+
2
3 /*
4 * NXP FlexSPI(FSPI) controller driver.
5 *
6 * Copyright 2019-2020 NXP
7 * Copyright 2020 Puresoftware Ltd.
8 *
9 * FlexSPI is a flexsible SPI host controller which supports two SPI
10 * channels and up to 4 external devices. Each channel supports
11 * Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional
12 * data lines).
13 *
14 * FlexSPI controller is driven by the LUT(Look-up Table) registers
15 * LUT registers are a look-up-table for sequences of instructions.
16 * A valid sequence consists of four LUT registers.
17 * Maximum 32 LUT sequences can be programmed simultaneously.
18 *
19 * LUTs are being created at run-time based on the commands passed
20 * from the spi-mem framework, thus using single LUT index.
21 *
22 * Software triggered Flash read/write access by IP Bus.
23 *
24 * Memory mapped read access by AHB Bus.
25 *
26 * Based on SPI MEM interface and spi-fsl-qspi.c driver.
27 *
28 * Author:
29 * Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>
30 * Boris Brezillon <bbrezillon@kernel.org>
31 * Frieder Schrempf <frieder.schrempf@kontron.de>
32 */
33
34 #include <linux/acpi.h>
35 #include <linux/bitops.h>
36 #include <linux/bitfield.h>
37 #include <linux/clk.h>
38 #include <linux/completion.h>
39 #include <linux/delay.h>
40 #include <linux/err.h>
41 #include <linux/errno.h>
42 #include <linux/interrupt.h>
43 #include <linux/io.h>
44 #include <linux/iopoll.h>
45 #include <linux/jiffies.h>
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/mutex.h>
49 #include <linux/of.h>
50 #include <linux/platform_device.h>
51 #include <linux/pinctrl/consumer.h>
52 #include <linux/pm_runtime.h>
53 #include <linux/pm_qos.h>
54 #include <linux/regmap.h>
55 #include <linux/sizes.h>
56 #include <linux/sys_soc.h>
57
58 #include <linux/mfd/syscon.h>
59 #include <linux/spi/spi.h>
60 #include <linux/spi/spi-mem.h>
61
62 /* runtime pm timeout */
63 #define FSPI_RPM_TIMEOUT 50 /* 50ms */
64
65 /* Registers used by the driver */
66 #define FSPI_MCR0 0x00
67 #define FSPI_MCR0_AHB_TIMEOUT(x) ((x) << 24)
68 #define FSPI_MCR0_IP_TIMEOUT(x) ((x) << 16)
69 #define FSPI_MCR0_LEARN_EN BIT(15)
70 #define FSPI_MCR0_SCRFRUN_EN BIT(14)
71 #define FSPI_MCR0_OCTCOMB_EN BIT(13)
72 #define FSPI_MCR0_DOZE_EN BIT(12)
73 #define FSPI_MCR0_HSEN BIT(11)
74 #define FSPI_MCR0_SERCLKDIV BIT(8)
75 #define FSPI_MCR0_ATDF_EN BIT(7)
76 #define FSPI_MCR0_ARDF_EN BIT(6)
77 #define FSPI_MCR0_RXCLKSRC(x) ((x) << 4)
78 #define FSPI_MCR0_END_CFG(x) ((x) << 2)
79 #define FSPI_MCR0_MDIS BIT(1)
80 #define FSPI_MCR0_SWRST BIT(0)
81
82 #define FSPI_MCR1 0x04
83 #define FSPI_MCR1_SEQ_TIMEOUT(x) ((x) << 16)
84 #define FSPI_MCR1_AHB_TIMEOUT(x) (x)
85
86 #define FSPI_MCR2 0x08
87 #define FSPI_MCR2_IDLE_WAIT(x) ((x) << 24)
88 #define FSPI_MCR2_SAMEDEVICEEN BIT(15)
89 #define FSPI_MCR2_CLRLRPHS BIT(14)
90 #define FSPI_MCR2_ABRDATSZ BIT(8)
91 #define FSPI_MCR2_ABRLEARN BIT(7)
92 #define FSPI_MCR2_ABR_READ BIT(6)
93 #define FSPI_MCR2_ABRWRITE BIT(5)
94 #define FSPI_MCR2_ABRDUMMY BIT(4)
95 #define FSPI_MCR2_ABR_MODE BIT(3)
96 #define FSPI_MCR2_ABRCADDR BIT(2)
97 #define FSPI_MCR2_ABRRADDR BIT(1)
98 #define FSPI_MCR2_ABR_CMD BIT(0)
99
100 #define FSPI_AHBCR 0x0c
101 #define FSPI_AHBCR_RDADDROPT BIT(6)
102 #define FSPI_AHBCR_PREF_EN BIT(5)
103 #define FSPI_AHBCR_BUFF_EN BIT(4)
104 #define FSPI_AHBCR_CACH_EN BIT(3)
105 #define FSPI_AHBCR_CLRTXBUF BIT(2)
106 #define FSPI_AHBCR_CLRRXBUF BIT(1)
107 #define FSPI_AHBCR_PAR_EN BIT(0)
108
109 #define FSPI_INTEN 0x10
110 #define FSPI_INTEN_SCLKSBWR BIT(9)
111 #define FSPI_INTEN_SCLKSBRD BIT(8)
112 #define FSPI_INTEN_DATALRNFL BIT(7)
113 #define FSPI_INTEN_IPTXWE BIT(6)
114 #define FSPI_INTEN_IPRXWA BIT(5)
115 #define FSPI_INTEN_AHBCMDERR BIT(4)
116 #define FSPI_INTEN_IPCMDERR BIT(3)
117 #define FSPI_INTEN_AHBCMDGE BIT(2)
118 #define FSPI_INTEN_IPCMDGE BIT(1)
119 #define FSPI_INTEN_IPCMDDONE BIT(0)
120
121 #define FSPI_INTR 0x14
122 #define FSPI_INTR_SCLKSBWR BIT(9)
123 #define FSPI_INTR_SCLKSBRD BIT(8)
124 #define FSPI_INTR_DATALRNFL BIT(7)
125 #define FSPI_INTR_IPTXWE BIT(6)
126 #define FSPI_INTR_IPRXWA BIT(5)
127 #define FSPI_INTR_AHBCMDERR BIT(4)
128 #define FSPI_INTR_IPCMDERR BIT(3)
129 #define FSPI_INTR_AHBCMDGE BIT(2)
130 #define FSPI_INTR_IPCMDGE BIT(1)
131 #define FSPI_INTR_IPCMDDONE BIT(0)
132
133 #define FSPI_LUTKEY 0x18
134 #define FSPI_LUTKEY_VALUE 0x5AF05AF0
135
136 #define FSPI_LCKCR 0x1C
137
138 #define FSPI_LCKER_LOCK 0x1
139 #define FSPI_LCKER_UNLOCK 0x2
140
141 #define FSPI_BUFXCR_INVALID_MSTRID 0xE
142 #define FSPI_AHBRX_BUF0CR0 0x20
143 #define FSPI_AHBRX_BUF1CR0 0x24
144 #define FSPI_AHBRX_BUF2CR0 0x28
145 #define FSPI_AHBRX_BUF3CR0 0x2C
146 #define FSPI_AHBRX_BUF4CR0 0x30
147 #define FSPI_AHBRX_BUF5CR0 0x34
148 #define FSPI_AHBRX_BUF6CR0 0x38
149 #define FSPI_AHBRX_BUF7CR0 0x3C
150 #define FSPI_AHBRXBUF0CR7_PREF BIT(31)
151
152 #define FSPI_AHBRX_BUF0CR1 0x40
153 #define FSPI_AHBRX_BUF1CR1 0x44
154 #define FSPI_AHBRX_BUF2CR1 0x48
155 #define FSPI_AHBRX_BUF3CR1 0x4C
156 #define FSPI_AHBRX_BUF4CR1 0x50
157 #define FSPI_AHBRX_BUF5CR1 0x54
158 #define FSPI_AHBRX_BUF6CR1 0x58
159 #define FSPI_AHBRX_BUF7CR1 0x5C
160
161 #define FSPI_FLSHA1CR0 0x60
162 #define FSPI_FLSHA2CR0 0x64
163 #define FSPI_FLSHB1CR0 0x68
164 #define FSPI_FLSHB2CR0 0x6C
165 #define FSPI_FLSHXCR0_SZ_KB 10
166 #define FSPI_FLSHXCR0_SZ(x) ((x) >> FSPI_FLSHXCR0_SZ_KB)
167
168 #define FSPI_FLSHA1CR1 0x70
169 #define FSPI_FLSHA2CR1 0x74
170 #define FSPI_FLSHB1CR1 0x78
171 #define FSPI_FLSHB2CR1 0x7C
172 #define FSPI_FLSHXCR1_CSINTR(x) ((x) << 16)
173 #define FSPI_FLSHXCR1_CAS(x) ((x) << 11)
174 #define FSPI_FLSHXCR1_WA BIT(10)
175 #define FSPI_FLSHXCR1_TCSH(x) ((x) << 5)
176 #define FSPI_FLSHXCR1_TCSS(x) (x)
177
178 #define FSPI_FLSHA1CR2 0x80
179 #define FSPI_FLSHA2CR2 0x84
180 #define FSPI_FLSHB1CR2 0x88
181 #define FSPI_FLSHB2CR2 0x8C
182 #define FSPI_FLSHXCR2_CLRINSP BIT(24)
183 #define FSPI_FLSHXCR2_AWRWAIT BIT(16)
184 #define FSPI_FLSHXCR2_AWRSEQN_SHIFT 13
185 #define FSPI_FLSHXCR2_AWRSEQI_SHIFT 8
186 #define FSPI_FLSHXCR2_ARDSEQN_SHIFT 5
187 #define FSPI_FLSHXCR2_ARDSEQI_SHIFT 0
188
189 #define FSPI_IPCR0 0xA0
190
191 #define FSPI_IPCR1 0xA4
192 #define FSPI_IPCR1_IPAREN BIT(31)
193 #define FSPI_IPCR1_SEQNUM_SHIFT 24
194 #define FSPI_IPCR1_SEQID_SHIFT 16
195 #define FSPI_IPCR1_IDATSZ(x) (x)
196
197 #define FSPI_IPCMD 0xB0
198 #define FSPI_IPCMD_TRG BIT(0)
199
200 #define FSPI_DLPR 0xB4
201
202 #define FSPI_IPRXFCR 0xB8
203 #define FSPI_IPRXFCR_CLR BIT(0)
204 #define FSPI_IPRXFCR_DMA_EN BIT(1)
205 #define FSPI_IPRXFCR_WMRK(x) ((x) << 2)
206
207 #define FSPI_IPTXFCR 0xBC
208 #define FSPI_IPTXFCR_CLR BIT(0)
209 #define FSPI_IPTXFCR_DMA_EN BIT(1)
210 #define FSPI_IPTXFCR_WMRK(x) ((x) << 2)
211
212 #define FSPI_DLLACR 0xC0
213 #define FSPI_DLLACR_OVRDEN BIT(8)
214 #define FSPI_DLLACR_SLVDLY(x) ((x) << 3)
215 #define FSPI_DLLACR_DLLRESET BIT(1)
216 #define FSPI_DLLACR_DLLEN BIT(0)
217
218 #define FSPI_DLLBCR 0xC4
219 #define FSPI_DLLBCR_OVRDEN BIT(8)
220 #define FSPI_DLLBCR_SLVDLY(x) ((x) << 3)
221 #define FSPI_DLLBCR_DLLRESET BIT(1)
222 #define FSPI_DLLBCR_DLLEN BIT(0)
223
224 #define FSPI_STS0 0xE0
225 #define FSPI_STS0_DLPHB(x) ((x) << 8)
226 #define FSPI_STS0_DLPHA(x) ((x) << 4)
227 #define FSPI_STS0_CMD_SRC(x) ((x) << 2)
228 #define FSPI_STS0_ARB_IDLE BIT(1)
229 #define FSPI_STS0_SEQ_IDLE BIT(0)
230
231 #define FSPI_STS1 0xE4
232 #define FSPI_STS1_IP_ERRCD(x) ((x) << 24)
233 #define FSPI_STS1_IP_ERRID(x) ((x) << 16)
234 #define FSPI_STS1_AHB_ERRCD(x) ((x) << 8)
235 #define FSPI_STS1_AHB_ERRID(x) (x)
236
237 #define FSPI_STS2 0xE8
238 #define FSPI_STS2_BREFLOCK BIT(17)
239 #define FSPI_STS2_BSLVLOCK BIT(16)
240 #define FSPI_STS2_AREFLOCK BIT(1)
241 #define FSPI_STS2_ASLVLOCK BIT(0)
242 #define FSPI_STS2_AB_LOCK (FSPI_STS2_BREFLOCK | \
243 FSPI_STS2_BSLVLOCK | \
244 FSPI_STS2_AREFLOCK | \
245 FSPI_STS2_ASLVLOCK)
246
247 #define FSPI_AHBSPNST 0xEC
248 #define FSPI_AHBSPNST_DATLFT(x) ((x) << 16)
249 #define FSPI_AHBSPNST_BUFID(x) ((x) << 1)
250 #define FSPI_AHBSPNST_ACTIVE BIT(0)
251
252 #define FSPI_IPRXFSTS 0xF0
253 #define FSPI_IPRXFSTS_RDCNTR(x) ((x) << 16)
254 #define FSPI_IPRXFSTS_FILL(x) (x)
255
256 #define FSPI_IPTXFSTS 0xF4
257 #define FSPI_IPTXFSTS_WRCNTR(x) ((x) << 16)
258 #define FSPI_IPTXFSTS_FILL(x) (x)
259
260 #define FSPI_RFDR 0x100
261 #define FSPI_TFDR 0x180
262
263 #define FSPI_LUT_BASE 0x200
264
265 /* register map end */
266
267 /* Instruction set for the LUT register. */
268 #define LUT_STOP 0x00
269 #define LUT_CMD 0x01
270 #define LUT_ADDR 0x02
271 #define LUT_CADDR_SDR 0x03
272 #define LUT_MODE 0x04
273 #define LUT_MODE2 0x05
274 #define LUT_MODE4 0x06
275 #define LUT_MODE8 0x07
276 #define LUT_NXP_WRITE 0x08
277 #define LUT_NXP_READ 0x09
278 #define LUT_LEARN_SDR 0x0A
279 #define LUT_DATSZ_SDR 0x0B
280 #define LUT_DUMMY 0x0C
281 #define LUT_DUMMY_RWDS_SDR 0x0D
282 #define LUT_JMP_ON_CS 0x1F
283 #define LUT_CMD_DDR 0x21
284 #define LUT_ADDR_DDR 0x22
285 #define LUT_CADDR_DDR 0x23
286 #define LUT_MODE_DDR 0x24
287 #define LUT_MODE2_DDR 0x25
288 #define LUT_MODE4_DDR 0x26
289 #define LUT_MODE8_DDR 0x27
290 #define LUT_WRITE_DDR 0x28
291 #define LUT_READ_DDR 0x29
292 #define LUT_LEARN_DDR 0x2A
293 #define LUT_DATSZ_DDR 0x2B
294 #define LUT_DUMMY_DDR 0x2C
295 #define LUT_DUMMY_RWDS_DDR 0x2D
296
297 /*
298 * Calculate number of required PAD bits for LUT register.
299 *
300 * The pad stands for the number of IO lines [0:7].
301 * For example, the octal read needs eight IO lines,
302 * so you should use LUT_PAD(8). This macro
303 * returns 3 i.e. use eight (2^3) IP lines for read.
304 */
305 #define LUT_PAD(x) (fls(x) - 1)
306
307 /*
308 * Macro for constructing the LUT entries with the following
309 * register layout:
310 *
311 * ---------------------------------------------------
312 * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
313 * ---------------------------------------------------
314 */
315 #define PAD_SHIFT 8
316 #define INSTR_SHIFT 10
317 #define OPRND_SHIFT 16
318
319 /* Macros for constructing the LUT register. */
320 #define LUT_DEF(idx, ins, pad, opr) \
321 ((((ins) << INSTR_SHIFT) | ((pad) << PAD_SHIFT) | \
322 (opr)) << (((idx) % 2) * OPRND_SHIFT))
323
324 #define POLL_TOUT 5000
325 #define NXP_FSPI_MAX_CHIPSELECT 4
326 #define NXP_FSPI_MIN_IOMAP SZ_4M
327
328 #define DCFG_RCWSR1 0x100
329 #define SYS_PLL_RAT GENMASK(6, 2)
330
331 /* Access flash memory using IP bus only */
332 #define FSPI_QUIRK_USE_IP_ONLY BIT(0)
333 /* Disable DTR */
334 #define FSPI_QUIRK_DISABLE_DTR BIT(1)
335
336 struct nxp_fspi_devtype_data {
337 unsigned int rxfifo;
338 unsigned int txfifo;
339 unsigned int ahb_buf_size;
340 unsigned int quirks;
341 unsigned int lut_num;
342 bool little_endian;
343 };
344
345 static struct nxp_fspi_devtype_data lx2160a_data = {
346 .rxfifo = SZ_512, /* (64 * 64 bits) */
347 .txfifo = SZ_1K, /* (128 * 64 bits) */
348 .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */
349 .quirks = FSPI_QUIRK_DISABLE_DTR,
350 .lut_num = 32,
351 .little_endian = true, /* little-endian */
352 };
353
354 static struct nxp_fspi_devtype_data imx8mm_data = {
355 .rxfifo = SZ_512, /* (64 * 64 bits) */
356 .txfifo = SZ_1K, /* (128 * 64 bits) */
357 .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */
358 .quirks = 0,
359 .lut_num = 32,
360 .little_endian = true, /* little-endian */
361 };
362
363 static struct nxp_fspi_devtype_data imx8qxp_data = {
364 .rxfifo = SZ_512, /* (64 * 64 bits) */
365 .txfifo = SZ_1K, /* (128 * 64 bits) */
366 .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */
367 .quirks = 0,
368 .lut_num = 32,
369 .little_endian = true, /* little-endian */
370 };
371
372 static struct nxp_fspi_devtype_data imx8dxl_data = {
373 .rxfifo = SZ_512, /* (64 * 64 bits) */
374 .txfifo = SZ_1K, /* (128 * 64 bits) */
375 .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */
376 .quirks = FSPI_QUIRK_USE_IP_ONLY,
377 .lut_num = 32,
378 .little_endian = true, /* little-endian */
379 };
380
381 static struct nxp_fspi_devtype_data imx8ulp_data = {
382 .rxfifo = SZ_512, /* (64 * 64 bits) */
383 .txfifo = SZ_1K, /* (128 * 64 bits) */
384 .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */
385 .quirks = 0,
386 .lut_num = 16,
387 .little_endian = true, /* little-endian */
388 };
389
390 struct nxp_fspi {
391 void __iomem *iobase;
392 void __iomem *ahb_addr;
393 u32 memmap_phy;
394 u32 memmap_phy_size;
395 u32 memmap_start;
396 u32 memmap_len;
397 struct clk *clk, *clk_en;
398 struct device *dev;
399 struct completion c;
400 struct nxp_fspi_devtype_data *devtype_data;
401 struct mutex lock;
402 struct pm_qos_request pm_qos_req;
403 int selected;
404 #define FSPI_NEED_INIT BIT(0)
405 #define FSPI_DTR_MODE BIT(1)
406 int flags;
407 /* save the previous operation clock rate */
408 unsigned long pre_op_rate;
409 /* the max clock rate fspi output to device */
410 unsigned long max_rate;
411 };
412
needs_ip_only(struct nxp_fspi * f)413 static inline int needs_ip_only(struct nxp_fspi *f)
414 {
415 return f->devtype_data->quirks & FSPI_QUIRK_USE_IP_ONLY;
416 }
417
418 /*
419 * R/W functions for big- or little-endian registers:
420 * The FSPI controller's endianness is independent of
421 * the CPU core's endianness. So far, although the CPU
422 * core is little-endian the FSPI controller can use
423 * big-endian or little-endian.
424 */
fspi_writel(struct nxp_fspi * f,u32 val,void __iomem * addr)425 static void fspi_writel(struct nxp_fspi *f, u32 val, void __iomem *addr)
426 {
427 if (f->devtype_data->little_endian)
428 iowrite32(val, addr);
429 else
430 iowrite32be(val, addr);
431 }
432
fspi_readl(struct nxp_fspi * f,void __iomem * addr)433 static u32 fspi_readl(struct nxp_fspi *f, void __iomem *addr)
434 {
435 if (f->devtype_data->little_endian)
436 return ioread32(addr);
437 else
438 return ioread32be(addr);
439 }
440
nxp_fspi_irq_handler(int irq,void * dev_id)441 static irqreturn_t nxp_fspi_irq_handler(int irq, void *dev_id)
442 {
443 struct nxp_fspi *f = dev_id;
444 u32 reg;
445
446 /* clear interrupt */
447 reg = fspi_readl(f, f->iobase + FSPI_INTR);
448 fspi_writel(f, FSPI_INTR_IPCMDDONE, f->iobase + FSPI_INTR);
449
450 if (reg & FSPI_INTR_IPCMDDONE)
451 complete(&f->c);
452
453 return IRQ_HANDLED;
454 }
455
nxp_fspi_check_buswidth(struct nxp_fspi * f,u8 width)456 static int nxp_fspi_check_buswidth(struct nxp_fspi *f, u8 width)
457 {
458 switch (width) {
459 case 1:
460 case 2:
461 case 4:
462 case 8:
463 return 0;
464 }
465
466 return -ENOTSUPP;
467 }
468
nxp_fspi_supports_op(struct spi_mem * mem,const struct spi_mem_op * op)469 static bool nxp_fspi_supports_op(struct spi_mem *mem,
470 const struct spi_mem_op *op)
471 {
472 struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->controller);
473 int ret;
474
475 ret = nxp_fspi_check_buswidth(f, op->cmd.buswidth);
476
477 if (op->addr.nbytes)
478 ret |= nxp_fspi_check_buswidth(f, op->addr.buswidth);
479
480 if (op->dummy.nbytes)
481 ret |= nxp_fspi_check_buswidth(f, op->dummy.buswidth);
482
483 if (op->data.nbytes)
484 ret |= nxp_fspi_check_buswidth(f, op->data.buswidth);
485
486 if (ret)
487 return false;
488
489 /*
490 * The number of address bytes should be equal to or less than 4 bytes.
491 */
492 if (op->addr.nbytes > 4)
493 return false;
494
495 /*
496 * If requested address value is greater than controller assigned
497 * memory mapped space, return error as it didn't fit in the range
498 * of assigned address space.
499 */
500 if (op->addr.val >= f->memmap_phy_size)
501 return false;
502
503 /* Max 64 dummy clock cycles supported */
504 if (op->dummy.buswidth &&
505 (op->dummy.nbytes * 8 / op->dummy.buswidth > 64))
506 return false;
507
508 /* Max data length, check controller limits and alignment */
509 if (op->data.dir == SPI_MEM_DATA_IN &&
510 (op->data.nbytes > f->devtype_data->ahb_buf_size ||
511 (op->data.nbytes > f->devtype_data->rxfifo - 4 &&
512 !IS_ALIGNED(op->data.nbytes, 8))))
513 return false;
514
515 if (op->data.dir == SPI_MEM_DATA_OUT &&
516 op->data.nbytes > f->devtype_data->txfifo)
517 return false;
518
519 return spi_mem_default_supports_op(mem, op);
520 }
521
522 /* Instead of busy looping invoke readl_poll_timeout functionality. */
fspi_readl_poll_tout(struct nxp_fspi * f,void __iomem * base,u32 mask,u32 delay_us,u32 timeout_us,bool c)523 static int fspi_readl_poll_tout(struct nxp_fspi *f, void __iomem *base,
524 u32 mask, u32 delay_us,
525 u32 timeout_us, bool c)
526 {
527 u32 reg;
528
529 if (!f->devtype_data->little_endian)
530 mask = (u32)cpu_to_be32(mask);
531
532 if (c)
533 return readl_poll_timeout(base, reg, (reg & mask),
534 delay_us, timeout_us);
535 else
536 return readl_poll_timeout(base, reg, !(reg & mask),
537 delay_us, timeout_us);
538 }
539
540 /*
541 * If the target device content being changed by Write/Erase, need to
542 * invalidate the AHB buffer. This can be achieved by doing the reset
543 * of controller after setting MCR0[SWRESET] bit.
544 */
nxp_fspi_invalid(struct nxp_fspi * f)545 static inline void nxp_fspi_invalid(struct nxp_fspi *f)
546 {
547 u32 reg;
548 int ret;
549
550 reg = fspi_readl(f, f->iobase + FSPI_MCR0);
551 fspi_writel(f, reg | FSPI_MCR0_SWRST, f->iobase + FSPI_MCR0);
552
553 /* w1c register, wait unit clear */
554 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
555 FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
556 WARN_ON(ret);
557 }
558
nxp_fspi_prepare_lut(struct nxp_fspi * f,const struct spi_mem_op * op)559 static void nxp_fspi_prepare_lut(struct nxp_fspi *f,
560 const struct spi_mem_op *op)
561 {
562 void __iomem *base = f->iobase;
563 u32 lutval[4] = {};
564 int lutidx = 1, i;
565 u32 lut_offset = (f->devtype_data->lut_num - 1) * 4 * 4;
566 u32 target_lut_reg;
567
568 /* cmd */
569 if (op->cmd.dtr) {
570 lutval[0] |= LUT_DEF(0, LUT_CMD_DDR, LUT_PAD(op->cmd.buswidth),
571 op->cmd.opcode >> 8);
572 lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_CMD_DDR,
573 LUT_PAD(op->cmd.buswidth),
574 op->cmd.opcode & 0xFF);
575 lutidx++;
576 } else {
577 lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth),
578 op->cmd.opcode);
579 }
580
581 /* addr bytes */
582 if (op->addr.nbytes) {
583 lutval[lutidx / 2] |= LUT_DEF(lutidx, op->addr.dtr ? LUT_ADDR_DDR : LUT_ADDR,
584 LUT_PAD(op->addr.buswidth),
585 op->addr.nbytes * 8);
586 lutidx++;
587 }
588
589 /* dummy bytes, if needed */
590 if (op->dummy.nbytes) {
591 lutval[lutidx / 2] |= LUT_DEF(lutidx, op->dummy.dtr ? LUT_DUMMY_DDR : LUT_DUMMY,
592 /*
593 * Due to FlexSPI controller limitation number of PAD for dummy
594 * buswidth needs to be programmed as equal to data buswidth.
595 */
596 LUT_PAD(op->data.buswidth),
597 op->dummy.nbytes * 8 /
598 op->dummy.buswidth);
599 lutidx++;
600 }
601
602 /* read/write data bytes */
603 if (op->data.nbytes) {
604 lutval[lutidx / 2] |= LUT_DEF(lutidx,
605 op->data.dir == SPI_MEM_DATA_IN ?
606 (op->data.dtr ? LUT_READ_DDR : LUT_NXP_READ) :
607 (op->data.dtr ? LUT_WRITE_DDR : LUT_NXP_WRITE),
608 LUT_PAD(op->data.buswidth),
609 0);
610 lutidx++;
611 }
612
613 /* stop condition. */
614 lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0);
615
616 /* unlock LUT */
617 fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
618 fspi_writel(f, FSPI_LCKER_UNLOCK, f->iobase + FSPI_LCKCR);
619
620 /* fill LUT */
621 for (i = 0; i < ARRAY_SIZE(lutval); i++) {
622 target_lut_reg = FSPI_LUT_BASE + lut_offset + i * 4;
623 fspi_writel(f, lutval[i], base + target_lut_reg);
624 }
625
626 dev_dbg(f->dev, "CMD[%02x] lutval[0:%08x 1:%08x 2:%08x 3:%08x], size: 0x%08x\n",
627 op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3], op->data.nbytes);
628
629 /* lock LUT */
630 fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
631 fspi_writel(f, FSPI_LCKER_LOCK, f->iobase + FSPI_LCKCR);
632 }
633
nxp_fspi_clk_prep_enable(struct nxp_fspi * f)634 static int nxp_fspi_clk_prep_enable(struct nxp_fspi *f)
635 {
636 int ret;
637
638 if (is_acpi_node(dev_fwnode(f->dev)))
639 return 0;
640
641 ret = clk_prepare_enable(f->clk_en);
642 if (ret)
643 return ret;
644
645 ret = clk_prepare_enable(f->clk);
646 if (ret) {
647 clk_disable_unprepare(f->clk_en);
648 return ret;
649 }
650
651 return 0;
652 }
653
nxp_fspi_clk_disable_unprep(struct nxp_fspi * f)654 static void nxp_fspi_clk_disable_unprep(struct nxp_fspi *f)
655 {
656 if (is_acpi_node(dev_fwnode(f->dev)))
657 return;
658
659 clk_disable_unprepare(f->clk);
660 clk_disable_unprepare(f->clk_en);
661
662 return;
663 }
664
665 /*
666 * Sample Clock source selection for Flash Reading
667 * Four modes defined by fspi:
668 * mode 0: Dummy Read strobe generated by FlexSPI Controller
669 * and loopback internally
670 * mode 1: Dummy Read strobe generated by FlexSPI Controller
671 * and loopback from DQS pad
672 * mode 2: Reserved
673 * mode 3: Flash provided Read strobe and input from DQS pad
674 *
675 * fspi default use mode 0 after reset
676 */
nxp_fspi_select_rx_sample_clk_source(struct nxp_fspi * f,bool op_is_dtr)677 static void nxp_fspi_select_rx_sample_clk_source(struct nxp_fspi *f,
678 bool op_is_dtr)
679 {
680 u32 reg;
681
682 /*
683 * For 8D-8D-8D mode, need to use mode 3 (Flash provided Read
684 * strobe and input from DQS pad), otherwise read operaton may
685 * meet issue.
686 * This mode require flash device connect the DQS pad on board.
687 * For other modes, still use mode 0, keep align with before.
688 * spi_nor_suspend will disable 8D-8D-8D mode, also need to
689 * change the mode back to mode 0.
690 */
691 reg = fspi_readl(f, f->iobase + FSPI_MCR0);
692 if (op_is_dtr) {
693 reg |= FSPI_MCR0_RXCLKSRC(3);
694 f->max_rate = 166000000;
695 } else { /*select mode 0 */
696 reg &= ~FSPI_MCR0_RXCLKSRC(3);
697 f->max_rate = 66000000;
698 }
699 fspi_writel(f, reg, f->iobase + FSPI_MCR0);
700 }
701
nxp_fspi_dll_calibration(struct nxp_fspi * f)702 static void nxp_fspi_dll_calibration(struct nxp_fspi *f)
703 {
704 int ret;
705
706 /* Reset the DLL, set the DLLRESET to 1 and then set to 0 */
707 fspi_writel(f, FSPI_DLLACR_DLLRESET, f->iobase + FSPI_DLLACR);
708 fspi_writel(f, FSPI_DLLBCR_DLLRESET, f->iobase + FSPI_DLLBCR);
709 fspi_writel(f, 0, f->iobase + FSPI_DLLACR);
710 fspi_writel(f, 0, f->iobase + FSPI_DLLBCR);
711
712 /*
713 * Enable the DLL calibration mode.
714 * The delay target for slave delay line is:
715 * ((SLVDLYTARGET+1) * 1/32 * clock cycle of reference clock.
716 * When clock rate > 100MHz, recommend SLVDLYTARGET is 0xF, which
717 * means half of clock cycle of reference clock.
718 */
719 fspi_writel(f, FSPI_DLLACR_DLLEN | FSPI_DLLACR_SLVDLY(0xF),
720 f->iobase + FSPI_DLLACR);
721 fspi_writel(f, FSPI_DLLBCR_DLLEN | FSPI_DLLBCR_SLVDLY(0xF),
722 f->iobase + FSPI_DLLBCR);
723
724 /* Wait to get REF/SLV lock */
725 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_STS2, FSPI_STS2_AB_LOCK,
726 0, POLL_TOUT, true);
727 if (ret)
728 dev_warn(f->dev, "DLL lock failed, please fix it!\n");
729
730 /*
731 * For ERR050272, DLL lock status bit is not accurate,
732 * wait for 4us more as a workaround.
733 */
734 udelay(4);
735 }
736
737 /*
738 * Config the DLL register to default value, enable the target clock delay
739 * line delay cell override mode, and use 1 fixed delay cell in DLL delay
740 * chain, this is the suggested setting when clock rate < 100MHz.
741 */
nxp_fspi_dll_override(struct nxp_fspi * f)742 static void nxp_fspi_dll_override(struct nxp_fspi *f)
743 {
744 fspi_writel(f, FSPI_DLLACR_OVRDEN, f->iobase + FSPI_DLLACR);
745 fspi_writel(f, FSPI_DLLBCR_OVRDEN, f->iobase + FSPI_DLLBCR);
746 }
747
748 /*
749 * In FlexSPI controller, flash access is based on value of FSPI_FLSHXXCR0
750 * register and start base address of the target device.
751 *
752 * (Higher address)
753 * -------- <-- FLSHB2CR0
754 * | B2 |
755 * | |
756 * B2 start address --> -------- <-- FLSHB1CR0
757 * | B1 |
758 * | |
759 * B1 start address --> -------- <-- FLSHA2CR0
760 * | A2 |
761 * | |
762 * A2 start address --> -------- <-- FLSHA1CR0
763 * | A1 |
764 * | |
765 * A1 start address --> -------- (Lower address)
766 *
767 *
768 * Start base address defines the starting address range for given CS and
769 * FSPI_FLSHXXCR0 defines the size of the target device connected at given CS.
770 *
771 * But, different targets are having different combinations of number of CS,
772 * some targets only have single CS or two CS covering controller's full
773 * memory mapped space area.
774 * Thus, implementation is being done as independent of the size and number
775 * of the connected target device.
776 * Assign controller memory mapped space size as the size to the connected
777 * target device.
778 * Mark FLSHxxCR0 as zero initially and then assign value only to the selected
779 * chip-select Flash configuration register.
780 *
781 * For e.g. to access CS2 (B1), FLSHB1CR0 register would be equal to the
782 * memory mapped size of the controller.
783 * Value for rest of the CS FLSHxxCR0 register would be zero.
784 *
785 */
nxp_fspi_select_mem(struct nxp_fspi * f,struct spi_device * spi,const struct spi_mem_op * op)786 static void nxp_fspi_select_mem(struct nxp_fspi *f, struct spi_device *spi,
787 const struct spi_mem_op *op)
788 {
789 /* flexspi only support one DTR mode: 8D-8D-8D */
790 bool op_is_dtr = op->cmd.dtr && op->addr.dtr && op->dummy.dtr && op->data.dtr;
791 unsigned long rate = op->max_freq;
792 int ret;
793 uint64_t size_kb;
794
795 /*
796 * Return when following condition all meet,
797 * 1, if previously selected target device is same as current
798 * requested target device.
799 * 2, the DTR or STR mode do not change.
800 * 3, previous operation max rate equals current one.
801 *
802 * For other case, need to re-config.
803 */
804 if ((f->selected == spi_get_chipselect(spi, 0)) &&
805 (!!(f->flags & FSPI_DTR_MODE) == op_is_dtr) &&
806 (f->pre_op_rate == op->max_freq))
807 return;
808
809 /* Reset FLSHxxCR0 registers */
810 fspi_writel(f, 0, f->iobase + FSPI_FLSHA1CR0);
811 fspi_writel(f, 0, f->iobase + FSPI_FLSHA2CR0);
812 fspi_writel(f, 0, f->iobase + FSPI_FLSHB1CR0);
813 fspi_writel(f, 0, f->iobase + FSPI_FLSHB2CR0);
814
815 /* Assign controller memory mapped space as size, KBytes, of flash. */
816 size_kb = FSPI_FLSHXCR0_SZ(f->memmap_phy_size);
817
818 fspi_writel(f, size_kb, f->iobase + FSPI_FLSHA1CR0 +
819 4 * spi_get_chipselect(spi, 0));
820
821 dev_dbg(f->dev, "Target device [CS:%x] selected\n", spi_get_chipselect(spi, 0));
822
823 nxp_fspi_select_rx_sample_clk_source(f, op_is_dtr);
824 rate = min(f->max_rate, op->max_freq);
825
826 if (op_is_dtr) {
827 f->flags |= FSPI_DTR_MODE;
828 /* For DTR mode, flexspi will default div 2 and output to device.
829 * so here to config the root clock to 2 * device rate.
830 */
831 rate = rate * 2;
832 } else {
833 f->flags &= ~FSPI_DTR_MODE;
834 }
835
836 nxp_fspi_clk_disable_unprep(f);
837
838 ret = clk_set_rate(f->clk, rate);
839 if (ret)
840 return;
841
842 ret = nxp_fspi_clk_prep_enable(f);
843 if (ret)
844 return;
845
846 /*
847 * If clock rate > 100MHz, then switch from DLL override mode to
848 * DLL calibration mode.
849 */
850 if (rate > 100000000)
851 nxp_fspi_dll_calibration(f);
852 else
853 nxp_fspi_dll_override(f);
854
855 f->pre_op_rate = op->max_freq;
856
857 f->selected = spi_get_chipselect(spi, 0);
858 }
859
nxp_fspi_read_ahb(struct nxp_fspi * f,const struct spi_mem_op * op)860 static int nxp_fspi_read_ahb(struct nxp_fspi *f, const struct spi_mem_op *op)
861 {
862 u32 start = op->addr.val;
863 u32 len = op->data.nbytes;
864
865 /* if necessary, ioremap before AHB read */
866 if ((!f->ahb_addr) || start < f->memmap_start ||
867 start + len > f->memmap_start + f->memmap_len) {
868 if (f->ahb_addr)
869 iounmap(f->ahb_addr);
870
871 f->memmap_start = start;
872 f->memmap_len = max_t(u32, len, NXP_FSPI_MIN_IOMAP);
873
874 f->ahb_addr = ioremap(f->memmap_phy + f->memmap_start,
875 f->memmap_len);
876
877 if (!f->ahb_addr) {
878 dev_err(f->dev, "failed to alloc memory\n");
879 return -ENOMEM;
880 }
881 }
882
883 /* Read out the data directly from the AHB buffer. */
884 memcpy_fromio(op->data.buf.in,
885 f->ahb_addr + start - f->memmap_start, len);
886
887 return 0;
888 }
889
nxp_fspi_fill_txfifo(struct nxp_fspi * f,const struct spi_mem_op * op)890 static void nxp_fspi_fill_txfifo(struct nxp_fspi *f,
891 const struct spi_mem_op *op)
892 {
893 void __iomem *base = f->iobase;
894 int i, ret;
895 u8 *buf = (u8 *) op->data.buf.out;
896
897 /* clear the TX FIFO. */
898 fspi_writel(f, FSPI_IPTXFCR_CLR, base + FSPI_IPTXFCR);
899
900 /*
901 * Default value of water mark level is 8 bytes, hence in single
902 * write request controller can write max 8 bytes of data.
903 */
904
905 for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 8); i += 8) {
906 /* Wait for TXFIFO empty */
907 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
908 FSPI_INTR_IPTXWE, 0,
909 POLL_TOUT, true);
910 WARN_ON(ret);
911
912 fspi_writel(f, *(u32 *) (buf + i), base + FSPI_TFDR);
913 fspi_writel(f, *(u32 *) (buf + i + 4), base + FSPI_TFDR + 4);
914 fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
915 }
916
917 if (i < op->data.nbytes) {
918 u32 data = 0;
919 int j;
920 int remaining = op->data.nbytes - i;
921 /* Wait for TXFIFO empty */
922 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
923 FSPI_INTR_IPTXWE, 0,
924 POLL_TOUT, true);
925 WARN_ON(ret);
926
927 for (j = 0; j < ALIGN(remaining, 4); j += 4) {
928 memcpy(&data, buf + i + j, min_t(int, 4, remaining - j));
929 fspi_writel(f, data, base + FSPI_TFDR + j);
930 }
931 fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
932 }
933 }
934
nxp_fspi_read_rxfifo(struct nxp_fspi * f,const struct spi_mem_op * op)935 static void nxp_fspi_read_rxfifo(struct nxp_fspi *f,
936 const struct spi_mem_op *op)
937 {
938 void __iomem *base = f->iobase;
939 int i, ret;
940 int len = op->data.nbytes;
941 u8 *buf = (u8 *) op->data.buf.in;
942
943 /*
944 * Default value of water mark level is 8 bytes, hence in single
945 * read request controller can read max 8 bytes of data.
946 */
947 for (i = 0; i < ALIGN_DOWN(len, 8); i += 8) {
948 /* Wait for RXFIFO available */
949 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
950 FSPI_INTR_IPRXWA, 0,
951 POLL_TOUT, true);
952 WARN_ON(ret);
953
954 *(u32 *)(buf + i) = fspi_readl(f, base + FSPI_RFDR);
955 *(u32 *)(buf + i + 4) = fspi_readl(f, base + FSPI_RFDR + 4);
956 /* move the FIFO pointer */
957 fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
958 }
959
960 if (i < len) {
961 u32 tmp;
962 int size, j;
963
964 buf = op->data.buf.in + i;
965 /* Wait for RXFIFO available */
966 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
967 FSPI_INTR_IPRXWA, 0,
968 POLL_TOUT, true);
969 WARN_ON(ret);
970
971 len = op->data.nbytes - i;
972 for (j = 0; j < op->data.nbytes - i; j += 4) {
973 tmp = fspi_readl(f, base + FSPI_RFDR + j);
974 size = min(len, 4);
975 memcpy(buf + j, &tmp, size);
976 len -= size;
977 }
978 }
979
980 /* invalid the RXFIFO */
981 fspi_writel(f, FSPI_IPRXFCR_CLR, base + FSPI_IPRXFCR);
982 /* move the FIFO pointer */
983 fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
984 }
985
nxp_fspi_do_op(struct nxp_fspi * f,const struct spi_mem_op * op)986 static int nxp_fspi_do_op(struct nxp_fspi *f, const struct spi_mem_op *op)
987 {
988 void __iomem *base = f->iobase;
989 int seqnum = 0;
990 int err = 0;
991 u32 reg, seqid_lut;
992
993 reg = fspi_readl(f, base + FSPI_IPRXFCR);
994 /* invalid RXFIFO first */
995 reg &= ~FSPI_IPRXFCR_DMA_EN;
996 reg = reg | FSPI_IPRXFCR_CLR;
997 fspi_writel(f, reg, base + FSPI_IPRXFCR);
998
999 init_completion(&f->c);
1000
1001 fspi_writel(f, op->addr.val, base + FSPI_IPCR0);
1002 /*
1003 * Always start the sequence at the same index since we update
1004 * the LUT at each exec_op() call. And also specify the DATA
1005 * length, since it's has not been specified in the LUT.
1006 */
1007 seqid_lut = f->devtype_data->lut_num - 1;
1008 fspi_writel(f, op->data.nbytes |
1009 (seqid_lut << FSPI_IPCR1_SEQID_SHIFT) |
1010 (seqnum << FSPI_IPCR1_SEQNUM_SHIFT),
1011 base + FSPI_IPCR1);
1012
1013 /* Trigger the LUT now. */
1014 fspi_writel(f, FSPI_IPCMD_TRG, base + FSPI_IPCMD);
1015
1016 /* Wait for the interrupt. */
1017 if (!wait_for_completion_timeout(&f->c, msecs_to_jiffies(1000)))
1018 err = -ETIMEDOUT;
1019
1020 /* Invoke IP data read, if request is of data read. */
1021 if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
1022 nxp_fspi_read_rxfifo(f, op);
1023
1024 return err;
1025 }
1026
nxp_fspi_exec_op(struct spi_mem * mem,const struct spi_mem_op * op)1027 static int nxp_fspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
1028 {
1029 struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->controller);
1030 int err = 0;
1031
1032 guard(mutex)(&f->lock);
1033
1034 err = pm_runtime_get_sync(f->dev);
1035 if (err < 0) {
1036 dev_err(f->dev, "Failed to enable clock %d\n", __LINE__);
1037 return err;
1038 }
1039
1040 /* Wait for controller being ready. */
1041 err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0,
1042 FSPI_STS0_ARB_IDLE, 1, POLL_TOUT, true);
1043 WARN_ON(err);
1044
1045 nxp_fspi_select_mem(f, mem->spi, op);
1046
1047 nxp_fspi_prepare_lut(f, op);
1048 /*
1049 * If we have large chunks of data, we read them through the AHB bus by
1050 * accessing the mapped memory. In all other cases we use IP commands
1051 * to access the flash. Read via AHB bus may be corrupted due to
1052 * existence of an errata and therefore discard AHB read in such cases.
1053 */
1054 if (op->data.nbytes > (f->devtype_data->rxfifo - 4) &&
1055 op->data.dir == SPI_MEM_DATA_IN &&
1056 !needs_ip_only(f)) {
1057 err = nxp_fspi_read_ahb(f, op);
1058 } else {
1059 if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
1060 nxp_fspi_fill_txfifo(f, op);
1061
1062 err = nxp_fspi_do_op(f, op);
1063 }
1064
1065 /* Invalidate the data in the AHB buffer. */
1066 nxp_fspi_invalid(f);
1067
1068 pm_runtime_put_autosuspend(f->dev);
1069
1070 return err;
1071 }
1072
nxp_fspi_adjust_op_size(struct spi_mem * mem,struct spi_mem_op * op)1073 static int nxp_fspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
1074 {
1075 struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->controller);
1076
1077 if (op->data.dir == SPI_MEM_DATA_OUT) {
1078 if (op->data.nbytes > f->devtype_data->txfifo)
1079 op->data.nbytes = f->devtype_data->txfifo;
1080 } else {
1081 if (op->data.nbytes > f->devtype_data->ahb_buf_size)
1082 op->data.nbytes = f->devtype_data->ahb_buf_size;
1083 else if (op->data.nbytes > (f->devtype_data->rxfifo - 4))
1084 op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8);
1085 }
1086
1087 /* Limit data bytes to RX FIFO in case of IP read only */
1088 if (op->data.dir == SPI_MEM_DATA_IN &&
1089 needs_ip_only(f) &&
1090 op->data.nbytes > f->devtype_data->rxfifo)
1091 op->data.nbytes = f->devtype_data->rxfifo;
1092
1093 return 0;
1094 }
1095
erratum_err050568(struct nxp_fspi * f)1096 static void erratum_err050568(struct nxp_fspi *f)
1097 {
1098 static const struct soc_device_attribute ls1028a_soc_attr[] = {
1099 { .family = "QorIQ LS1028A" },
1100 { /* sentinel */ }
1101 };
1102 struct regmap *map;
1103 u32 val, sys_pll_ratio;
1104 int ret;
1105
1106 /* Check for LS1028A family */
1107 if (!soc_device_match(ls1028a_soc_attr)) {
1108 dev_dbg(f->dev, "Errata applicable only for LS1028A\n");
1109 return;
1110 }
1111
1112 map = syscon_regmap_lookup_by_compatible("fsl,ls1028a-dcfg");
1113 if (IS_ERR(map)) {
1114 dev_err(f->dev, "No syscon regmap\n");
1115 goto err;
1116 }
1117
1118 ret = regmap_read(map, DCFG_RCWSR1, &val);
1119 if (ret < 0)
1120 goto err;
1121
1122 sys_pll_ratio = FIELD_GET(SYS_PLL_RAT, val);
1123 dev_dbg(f->dev, "val: 0x%08x, sys_pll_ratio: %d\n", val, sys_pll_ratio);
1124
1125 /* Use IP bus only if platform clock is 300MHz */
1126 if (sys_pll_ratio == 3)
1127 f->devtype_data->quirks |= FSPI_QUIRK_USE_IP_ONLY;
1128
1129 return;
1130
1131 err:
1132 dev_err(f->dev, "Errata cannot be executed. Read via IP bus may not work\n");
1133 }
1134
nxp_fspi_default_setup(struct nxp_fspi * f)1135 static int nxp_fspi_default_setup(struct nxp_fspi *f)
1136 {
1137 void __iomem *base = f->iobase;
1138 int ret, i;
1139 u32 reg, seqid_lut;
1140
1141 /* disable and unprepare clock to avoid glitch pass to controller */
1142 nxp_fspi_clk_disable_unprep(f);
1143
1144 /* the default frequency, we will change it later if necessary. */
1145 ret = clk_set_rate(f->clk, 20000000);
1146 if (ret)
1147 return ret;
1148
1149 ret = nxp_fspi_clk_prep_enable(f);
1150 if (ret)
1151 return ret;
1152
1153 /*
1154 * ERR050568: Flash access by FlexSPI AHB command may not work with
1155 * platform frequency equal to 300 MHz on LS1028A.
1156 * LS1028A reuses LX2160A compatible entry. Make errata applicable for
1157 * Layerscape LS1028A platform.
1158 */
1159 if (of_device_is_compatible(f->dev->of_node, "nxp,lx2160a-fspi"))
1160 erratum_err050568(f);
1161
1162 /* Reset the module */
1163 /* w1c register, wait unit clear */
1164 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
1165 FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
1166 WARN_ON(ret);
1167
1168 /* Disable the module */
1169 fspi_writel(f, FSPI_MCR0_MDIS, base + FSPI_MCR0);
1170
1171 nxp_fspi_dll_override(f);
1172
1173 /* enable module */
1174 fspi_writel(f, FSPI_MCR0_AHB_TIMEOUT(0xFF) |
1175 FSPI_MCR0_IP_TIMEOUT(0xFF) | (u32) FSPI_MCR0_OCTCOMB_EN,
1176 base + FSPI_MCR0);
1177
1178 /*
1179 * Disable same device enable bit and configure all target devices
1180 * independently.
1181 */
1182 reg = fspi_readl(f, f->iobase + FSPI_MCR2);
1183 reg = reg & ~(FSPI_MCR2_SAMEDEVICEEN);
1184 fspi_writel(f, reg, base + FSPI_MCR2);
1185
1186 /* AHB configuration for access buffer 0~7. */
1187 for (i = 0; i < 7; i++)
1188 fspi_writel(f, 0, base + FSPI_AHBRX_BUF0CR0 + 4 * i);
1189
1190 /*
1191 * Set ADATSZ with the maximum AHB buffer size to improve the read
1192 * performance.
1193 */
1194 fspi_writel(f, (f->devtype_data->ahb_buf_size / 8 |
1195 FSPI_AHBRXBUF0CR7_PREF), base + FSPI_AHBRX_BUF7CR0);
1196
1197 /* prefetch and no start address alignment limitation */
1198 fspi_writel(f, FSPI_AHBCR_PREF_EN | FSPI_AHBCR_RDADDROPT,
1199 base + FSPI_AHBCR);
1200
1201 /* Reset the FLSHxCR1 registers. */
1202 reg = FSPI_FLSHXCR1_TCSH(0x3) | FSPI_FLSHXCR1_TCSS(0x3);
1203 fspi_writel(f, reg, base + FSPI_FLSHA1CR1);
1204 fspi_writel(f, reg, base + FSPI_FLSHA2CR1);
1205 fspi_writel(f, reg, base + FSPI_FLSHB1CR1);
1206 fspi_writel(f, reg, base + FSPI_FLSHB2CR1);
1207
1208 /*
1209 * The driver only uses one single LUT entry, that is updated on
1210 * each call of exec_op(). Index 0 is preset at boot with a basic
1211 * read operation, so let's use the last entry.
1212 */
1213 seqid_lut = f->devtype_data->lut_num - 1;
1214 /* AHB Read - Set lut sequence ID for all CS. */
1215 fspi_writel(f, seqid_lut, base + FSPI_FLSHA1CR2);
1216 fspi_writel(f, seqid_lut, base + FSPI_FLSHA2CR2);
1217 fspi_writel(f, seqid_lut, base + FSPI_FLSHB1CR2);
1218 fspi_writel(f, seqid_lut, base + FSPI_FLSHB2CR2);
1219
1220 f->selected = -1;
1221
1222 /* enable the interrupt */
1223 fspi_writel(f, FSPI_INTEN_IPCMDDONE, base + FSPI_INTEN);
1224
1225 return 0;
1226 }
1227
nxp_fspi_get_name(struct spi_mem * mem)1228 static const char *nxp_fspi_get_name(struct spi_mem *mem)
1229 {
1230 struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->controller);
1231 struct device *dev = &mem->spi->dev;
1232 const char *name;
1233
1234 // Set custom name derived from the platform_device of the controller.
1235 if (of_get_available_child_count(f->dev->of_node) == 1)
1236 return dev_name(f->dev);
1237
1238 name = devm_kasprintf(dev, GFP_KERNEL,
1239 "%s-%d", dev_name(f->dev),
1240 spi_get_chipselect(mem->spi, 0));
1241
1242 if (!name) {
1243 dev_err(dev, "failed to get memory for custom flash name\n");
1244 return ERR_PTR(-ENOMEM);
1245 }
1246
1247 return name;
1248 }
1249
1250 static const struct spi_controller_mem_ops nxp_fspi_mem_ops = {
1251 .adjust_op_size = nxp_fspi_adjust_op_size,
1252 .supports_op = nxp_fspi_supports_op,
1253 .exec_op = nxp_fspi_exec_op,
1254 .get_name = nxp_fspi_get_name,
1255 };
1256
1257 static const struct spi_controller_mem_caps nxp_fspi_mem_caps = {
1258 .dtr = true,
1259 .swap16 = false,
1260 .per_op_freq = true,
1261 };
1262
1263 static const struct spi_controller_mem_caps nxp_fspi_mem_caps_disable_dtr = {
1264 .dtr = false,
1265 .per_op_freq = true,
1266 };
1267
nxp_fspi_cleanup(void * data)1268 static void nxp_fspi_cleanup(void *data)
1269 {
1270 struct nxp_fspi *f = data;
1271
1272 /* enable clock first since there is register access */
1273 pm_runtime_get_sync(f->dev);
1274
1275 /* disable the hardware */
1276 fspi_writel(f, FSPI_MCR0_MDIS, f->iobase + FSPI_MCR0);
1277
1278 pm_runtime_disable(f->dev);
1279 pm_runtime_put_noidle(f->dev);
1280 nxp_fspi_clk_disable_unprep(f);
1281
1282 if (f->ahb_addr)
1283 iounmap(f->ahb_addr);
1284 }
1285
nxp_fspi_probe(struct platform_device * pdev)1286 static int nxp_fspi_probe(struct platform_device *pdev)
1287 {
1288 struct spi_controller *ctlr;
1289 struct device *dev = &pdev->dev;
1290 struct device_node *np = dev->of_node;
1291 struct resource *res;
1292 struct nxp_fspi *f;
1293 int ret, irq;
1294 u32 reg;
1295
1296 ctlr = devm_spi_alloc_host(&pdev->dev, sizeof(*f));
1297 if (!ctlr)
1298 return -ENOMEM;
1299
1300 ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL |
1301 SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL;
1302
1303 f = spi_controller_get_devdata(ctlr);
1304 f->dev = dev;
1305 f->devtype_data = (struct nxp_fspi_devtype_data *)device_get_match_data(dev);
1306 if (!f->devtype_data)
1307 return -ENODEV;
1308
1309 platform_set_drvdata(pdev, f);
1310
1311 /* find the resources - configuration register address space */
1312 if (is_acpi_node(dev_fwnode(f->dev)))
1313 f->iobase = devm_platform_ioremap_resource(pdev, 0);
1314 else
1315 f->iobase = devm_platform_ioremap_resource_byname(pdev, "fspi_base");
1316 if (IS_ERR(f->iobase))
1317 return PTR_ERR(f->iobase);
1318
1319 /* find the resources - controller memory mapped space */
1320 if (is_acpi_node(dev_fwnode(f->dev)))
1321 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1322 else
1323 res = platform_get_resource_byname(pdev,
1324 IORESOURCE_MEM, "fspi_mmap");
1325 if (!res)
1326 return -ENODEV;
1327
1328 /* assign memory mapped starting address and mapped size. */
1329 f->memmap_phy = res->start;
1330 f->memmap_phy_size = resource_size(res);
1331
1332 /* find the clocks */
1333 if (dev_of_node(&pdev->dev)) {
1334 f->clk_en = devm_clk_get(dev, "fspi_en");
1335 if (IS_ERR(f->clk_en))
1336 return PTR_ERR(f->clk_en);
1337
1338 f->clk = devm_clk_get(dev, "fspi");
1339 if (IS_ERR(f->clk))
1340 return PTR_ERR(f->clk);
1341 }
1342
1343 /* find the irq */
1344 irq = platform_get_irq(pdev, 0);
1345 if (irq < 0)
1346 return dev_err_probe(dev, irq, "Failed to get irq source");
1347
1348 pm_runtime_enable(dev);
1349 pm_runtime_set_autosuspend_delay(dev, FSPI_RPM_TIMEOUT);
1350 pm_runtime_use_autosuspend(dev);
1351
1352 /* enable clock */
1353 ret = pm_runtime_get_sync(f->dev);
1354 if (ret < 0)
1355 return dev_err_probe(dev, ret, "Failed to enable clock");
1356
1357 /* Clear potential interrupts */
1358 reg = fspi_readl(f, f->iobase + FSPI_INTR);
1359 if (reg)
1360 fspi_writel(f, reg, f->iobase + FSPI_INTR);
1361
1362 nxp_fspi_default_setup(f);
1363
1364 ret = pm_runtime_put_sync(dev);
1365 if (ret < 0)
1366 return dev_err_probe(dev, ret, "Failed to disable clock");
1367
1368 ret = devm_request_irq(dev, irq,
1369 nxp_fspi_irq_handler, 0, pdev->name, f);
1370 if (ret)
1371 return dev_err_probe(dev, ret, "Failed to request irq\n");
1372
1373 ret = devm_mutex_init(dev, &f->lock);
1374 if (ret)
1375 return dev_err_probe(dev, ret, "Failed to initialize lock\n");
1376
1377 ctlr->bus_num = -1;
1378 ctlr->num_chipselect = NXP_FSPI_MAX_CHIPSELECT;
1379 ctlr->mem_ops = &nxp_fspi_mem_ops;
1380
1381 if (f->devtype_data->quirks & FSPI_QUIRK_DISABLE_DTR)
1382 ctlr->mem_caps = &nxp_fspi_mem_caps_disable_dtr;
1383 else
1384 ctlr->mem_caps = &nxp_fspi_mem_caps;
1385
1386 ctlr->dev.of_node = np;
1387
1388 ret = devm_add_action_or_reset(dev, nxp_fspi_cleanup, f);
1389 if (ret)
1390 return ret;
1391
1392 return devm_spi_register_controller(&pdev->dev, ctlr);
1393 }
1394
nxp_fspi_runtime_suspend(struct device * dev)1395 static int nxp_fspi_runtime_suspend(struct device *dev)
1396 {
1397 struct nxp_fspi *f = dev_get_drvdata(dev);
1398
1399 nxp_fspi_clk_disable_unprep(f);
1400
1401 return 0;
1402 }
1403
nxp_fspi_runtime_resume(struct device * dev)1404 static int nxp_fspi_runtime_resume(struct device *dev)
1405 {
1406 struct nxp_fspi *f = dev_get_drvdata(dev);
1407 int ret;
1408
1409 ret = nxp_fspi_clk_prep_enable(f);
1410 if (ret)
1411 return ret;
1412
1413 if (f->flags & FSPI_NEED_INIT) {
1414 nxp_fspi_default_setup(f);
1415 ret = pinctrl_pm_select_default_state(dev);
1416 if (ret)
1417 dev_err(dev, "select flexspi default pinctrl failed!\n");
1418 f->flags &= ~FSPI_NEED_INIT;
1419 }
1420
1421 return ret;
1422 }
1423
nxp_fspi_suspend(struct device * dev)1424 static int nxp_fspi_suspend(struct device *dev)
1425 {
1426 struct nxp_fspi *f = dev_get_drvdata(dev);
1427 int ret;
1428
1429 ret = pinctrl_pm_select_sleep_state(dev);
1430 if (ret) {
1431 dev_err(dev, "select flexspi sleep pinctrl failed!\n");
1432 return ret;
1433 }
1434
1435 f->flags |= FSPI_NEED_INIT;
1436
1437 return pm_runtime_force_suspend(dev);
1438 }
1439
1440 static const struct dev_pm_ops nxp_fspi_pm_ops = {
1441 RUNTIME_PM_OPS(nxp_fspi_runtime_suspend, nxp_fspi_runtime_resume, NULL)
1442 SYSTEM_SLEEP_PM_OPS(nxp_fspi_suspend, pm_runtime_force_resume)
1443 };
1444
1445 static const struct of_device_id nxp_fspi_dt_ids[] = {
1446 { .compatible = "nxp,lx2160a-fspi", .data = (void *)&lx2160a_data, },
1447 { .compatible = "nxp,imx8mm-fspi", .data = (void *)&imx8mm_data, },
1448 { .compatible = "nxp,imx8mp-fspi", .data = (void *)&imx8mm_data, },
1449 { .compatible = "nxp,imx8qxp-fspi", .data = (void *)&imx8qxp_data, },
1450 { .compatible = "nxp,imx8dxl-fspi", .data = (void *)&imx8dxl_data, },
1451 { .compatible = "nxp,imx8ulp-fspi", .data = (void *)&imx8ulp_data, },
1452 { /* sentinel */ }
1453 };
1454 MODULE_DEVICE_TABLE(of, nxp_fspi_dt_ids);
1455
1456 #ifdef CONFIG_ACPI
1457 static const struct acpi_device_id nxp_fspi_acpi_ids[] = {
1458 { "NXP0009", .driver_data = (kernel_ulong_t)&lx2160a_data, },
1459 {}
1460 };
1461 MODULE_DEVICE_TABLE(acpi, nxp_fspi_acpi_ids);
1462 #endif
1463
1464 static struct platform_driver nxp_fspi_driver = {
1465 .driver = {
1466 .name = "nxp-fspi",
1467 .of_match_table = nxp_fspi_dt_ids,
1468 .acpi_match_table = ACPI_PTR(nxp_fspi_acpi_ids),
1469 .pm = pm_ptr(&nxp_fspi_pm_ops),
1470 },
1471 .probe = nxp_fspi_probe,
1472 };
1473 module_platform_driver(nxp_fspi_driver);
1474
1475 MODULE_DESCRIPTION("NXP FSPI Controller Driver");
1476 MODULE_AUTHOR("NXP Semiconductor");
1477 MODULE_AUTHOR("Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>");
1478 MODULE_AUTHOR("Boris Brezillon <bbrezillon@kernel.org>");
1479 MODULE_AUTHOR("Frieder Schrempf <frieder.schrempf@kontron.de>");
1480 MODULE_LICENSE("GPL v2");
1481