1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * drivers/of/property.c - Procedures for accessing and interpreting
4 * Devicetree properties and graphs.
5 *
6 * Initially created by copying procedures from drivers/of/base.c. This
7 * file contains the OF property as well as the OF graph interface
8 * functions.
9 *
10 * Paul Mackerras August 1996.
11 * Copyright (C) 1996-2005 Paul Mackerras.
12 *
13 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
14 * {engebret|bergner}@us.ibm.com
15 *
16 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
17 *
18 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
19 * Grant Likely.
20 */
21
22 #define pr_fmt(fmt) "OF: " fmt
23
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_device.h>
27 #include <linux/of_graph.h>
28 #include <linux/of_irq.h>
29 #include <linux/string.h>
30 #include <linux/moduleparam.h>
31
32 #include "of_private.h"
33
34 /**
35 * of_property_read_bool - Find a property
36 * @np: device node from which the property value is to be read.
37 * @propname: name of the property to be searched.
38 *
39 * Search for a boolean property in a device node. Usage on non-boolean
40 * property types is deprecated.
41 *
42 * Return: true if the property exists false otherwise.
43 */
of_property_read_bool(const struct device_node * np,const char * propname)44 bool of_property_read_bool(const struct device_node *np, const char *propname)
45 {
46 struct property *prop = of_find_property(np, propname, NULL);
47
48 /*
49 * Boolean properties should not have a value. Testing for property
50 * presence should either use of_property_present() or just read the
51 * property value and check the returned error code.
52 */
53 if (prop && prop->length)
54 pr_warn("%pOF: Read of boolean property '%s' with a value.\n", np, propname);
55
56 return prop ? true : false;
57 }
58 EXPORT_SYMBOL(of_property_read_bool);
59
60 /**
61 * of_graph_is_present() - check graph's presence
62 * @node: pointer to device_node containing graph port
63 *
64 * Return: True if @node has a port or ports (with a port) sub-node,
65 * false otherwise.
66 */
of_graph_is_present(const struct device_node * node)67 bool of_graph_is_present(const struct device_node *node)
68 {
69 struct device_node *ports __free(device_node) = of_get_child_by_name(node, "ports");
70
71 if (ports)
72 node = ports;
73
74 struct device_node *port __free(device_node) = of_get_child_by_name(node, "port");
75
76 return !!port;
77 }
78 EXPORT_SYMBOL(of_graph_is_present);
79
80 /**
81 * of_property_count_elems_of_size - Count the number of elements in a property
82 *
83 * @np: device node from which the property value is to be read.
84 * @propname: name of the property to be searched.
85 * @elem_size: size of the individual element
86 *
87 * Search for a property in a device node and count the number of elements of
88 * size elem_size in it.
89 *
90 * Return: The number of elements on sucess, -EINVAL if the property does not
91 * exist or its length does not match a multiple of elem_size and -ENODATA if
92 * the property does not have a value.
93 */
of_property_count_elems_of_size(const struct device_node * np,const char * propname,int elem_size)94 int of_property_count_elems_of_size(const struct device_node *np,
95 const char *propname, int elem_size)
96 {
97 const struct property *prop = of_find_property(np, propname, NULL);
98
99 if (!prop)
100 return -EINVAL;
101 if (!prop->value)
102 return -ENODATA;
103
104 if (prop->length % elem_size != 0) {
105 pr_err("size of %s in node %pOF is not a multiple of %d\n",
106 propname, np, elem_size);
107 return -EINVAL;
108 }
109
110 return prop->length / elem_size;
111 }
112 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
113
114 /**
115 * of_find_property_value_of_size
116 *
117 * @np: device node from which the property value is to be read.
118 * @propname: name of the property to be searched.
119 * @min: minimum allowed length of property value
120 * @max: maximum allowed length of property value (0 means unlimited)
121 * @len: if !=NULL, actual length is written to here
122 *
123 * Search for a property in a device node and valid the requested size.
124 *
125 * Return: The property value on success, -EINVAL if the property does not
126 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
127 * property data is too small or too large.
128 *
129 */
of_find_property_value_of_size(const struct device_node * np,const char * propname,u32 min,u32 max,size_t * len)130 static void *of_find_property_value_of_size(const struct device_node *np,
131 const char *propname, u32 min, u32 max, size_t *len)
132 {
133 const struct property *prop = of_find_property(np, propname, NULL);
134
135 if (!prop)
136 return ERR_PTR(-EINVAL);
137 if (!prop->value)
138 return ERR_PTR(-ENODATA);
139 if (prop->length < min)
140 return ERR_PTR(-EOVERFLOW);
141 if (max && prop->length > max)
142 return ERR_PTR(-EOVERFLOW);
143
144 if (len)
145 *len = prop->length;
146
147 return prop->value;
148 }
149
150 /**
151 * of_property_read_u16_index - Find and read a u16 from a multi-value property.
152 *
153 * @np: device node from which the property value is to be read.
154 * @propname: name of the property to be searched.
155 * @index: index of the u16 in the list of values
156 * @out_value: pointer to return value, modified only if no error.
157 *
158 * Search for a property in a device node and read nth 16-bit value from
159 * it.
160 *
161 * Return: 0 on success, -EINVAL if the property does not exist,
162 * -ENODATA if property does not have a value, and -EOVERFLOW if the
163 * property data isn't large enough.
164 *
165 * The out_value is modified only if a valid u16 value can be decoded.
166 */
of_property_read_u16_index(const struct device_node * np,const char * propname,u32 index,u16 * out_value)167 int of_property_read_u16_index(const struct device_node *np,
168 const char *propname,
169 u32 index, u16 *out_value)
170 {
171 const u16 *val = of_find_property_value_of_size(np, propname,
172 ((index + 1) * sizeof(*out_value)),
173 0, NULL);
174
175 if (IS_ERR(val))
176 return PTR_ERR(val);
177
178 *out_value = be16_to_cpup(((__be16 *)val) + index);
179 return 0;
180 }
181 EXPORT_SYMBOL_GPL(of_property_read_u16_index);
182
183 /**
184 * of_property_read_u32_index - Find and read a u32 from a multi-value property.
185 *
186 * @np: device node from which the property value is to be read.
187 * @propname: name of the property to be searched.
188 * @index: index of the u32 in the list of values
189 * @out_value: pointer to return value, modified only if no error.
190 *
191 * Search for a property in a device node and read nth 32-bit value from
192 * it.
193 *
194 * Return: 0 on success, -EINVAL if the property does not exist,
195 * -ENODATA if property does not have a value, and -EOVERFLOW if the
196 * property data isn't large enough.
197 *
198 * The out_value is modified only if a valid u32 value can be decoded.
199 */
of_property_read_u32_index(const struct device_node * np,const char * propname,u32 index,u32 * out_value)200 int of_property_read_u32_index(const struct device_node *np,
201 const char *propname,
202 u32 index, u32 *out_value)
203 {
204 const u32 *val = of_find_property_value_of_size(np, propname,
205 ((index + 1) * sizeof(*out_value)),
206 0,
207 NULL);
208
209 if (IS_ERR(val))
210 return PTR_ERR(val);
211
212 *out_value = be32_to_cpup(((__be32 *)val) + index);
213 return 0;
214 }
215 EXPORT_SYMBOL_GPL(of_property_read_u32_index);
216
217 /**
218 * of_property_read_u64_index - Find and read a u64 from a multi-value property.
219 *
220 * @np: device node from which the property value is to be read.
221 * @propname: name of the property to be searched.
222 * @index: index of the u64 in the list of values
223 * @out_value: pointer to return value, modified only if no error.
224 *
225 * Search for a property in a device node and read nth 64-bit value from
226 * it.
227 *
228 * Return: 0 on success, -EINVAL if the property does not exist,
229 * -ENODATA if property does not have a value, and -EOVERFLOW if the
230 * property data isn't large enough.
231 *
232 * The out_value is modified only if a valid u64 value can be decoded.
233 */
of_property_read_u64_index(const struct device_node * np,const char * propname,u32 index,u64 * out_value)234 int of_property_read_u64_index(const struct device_node *np,
235 const char *propname,
236 u32 index, u64 *out_value)
237 {
238 const u64 *val = of_find_property_value_of_size(np, propname,
239 ((index + 1) * sizeof(*out_value)),
240 0, NULL);
241
242 if (IS_ERR(val))
243 return PTR_ERR(val);
244
245 *out_value = be64_to_cpup(((__be64 *)val) + index);
246 return 0;
247 }
248 EXPORT_SYMBOL_GPL(of_property_read_u64_index);
249
250 /**
251 * of_property_read_variable_u8_array - Find and read an array of u8 from a
252 * property, with bounds on the minimum and maximum array size.
253 *
254 * @np: device node from which the property value is to be read.
255 * @propname: name of the property to be searched.
256 * @out_values: pointer to found values.
257 * @sz_min: minimum number of array elements to read
258 * @sz_max: maximum number of array elements to read, if zero there is no
259 * upper limit on the number of elements in the dts entry but only
260 * sz_min will be read.
261 *
262 * Search for a property in a device node and read 8-bit value(s) from
263 * it.
264 *
265 * dts entry of array should be like:
266 * ``property = /bits/ 8 <0x50 0x60 0x70>;``
267 *
268 * Return: The number of elements read on success, -EINVAL if the property
269 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
270 * if the property data is smaller than sz_min or longer than sz_max.
271 *
272 * The out_values is modified only if a valid u8 value can be decoded.
273 */
of_property_read_variable_u8_array(const struct device_node * np,const char * propname,u8 * out_values,size_t sz_min,size_t sz_max)274 int of_property_read_variable_u8_array(const struct device_node *np,
275 const char *propname, u8 *out_values,
276 size_t sz_min, size_t sz_max)
277 {
278 size_t sz, count;
279 const u8 *val = of_find_property_value_of_size(np, propname,
280 (sz_min * sizeof(*out_values)),
281 (sz_max * sizeof(*out_values)),
282 &sz);
283
284 if (IS_ERR(val))
285 return PTR_ERR(val);
286
287 if (!sz_max)
288 sz = sz_min;
289 else
290 sz /= sizeof(*out_values);
291
292 count = sz;
293 while (count--)
294 *out_values++ = *val++;
295
296 return sz;
297 }
298 EXPORT_SYMBOL_GPL(of_property_read_variable_u8_array);
299
300 /**
301 * of_property_read_variable_u16_array - Find and read an array of u16 from a
302 * property, with bounds on the minimum and maximum array size.
303 *
304 * @np: device node from which the property value is to be read.
305 * @propname: name of the property to be searched.
306 * @out_values: pointer to found values.
307 * @sz_min: minimum number of array elements to read
308 * @sz_max: maximum number of array elements to read, if zero there is no
309 * upper limit on the number of elements in the dts entry but only
310 * sz_min will be read.
311 *
312 * Search for a property in a device node and read 16-bit value(s) from
313 * it.
314 *
315 * dts entry of array should be like:
316 * ``property = /bits/ 16 <0x5000 0x6000 0x7000>;``
317 *
318 * Return: The number of elements read on success, -EINVAL if the property
319 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
320 * if the property data is smaller than sz_min or longer than sz_max.
321 *
322 * The out_values is modified only if a valid u16 value can be decoded.
323 */
of_property_read_variable_u16_array(const struct device_node * np,const char * propname,u16 * out_values,size_t sz_min,size_t sz_max)324 int of_property_read_variable_u16_array(const struct device_node *np,
325 const char *propname, u16 *out_values,
326 size_t sz_min, size_t sz_max)
327 {
328 size_t sz, count;
329 const __be16 *val = of_find_property_value_of_size(np, propname,
330 (sz_min * sizeof(*out_values)),
331 (sz_max * sizeof(*out_values)),
332 &sz);
333
334 if (IS_ERR(val))
335 return PTR_ERR(val);
336
337 if (!sz_max)
338 sz = sz_min;
339 else
340 sz /= sizeof(*out_values);
341
342 count = sz;
343 while (count--)
344 *out_values++ = be16_to_cpup(val++);
345
346 return sz;
347 }
348 EXPORT_SYMBOL_GPL(of_property_read_variable_u16_array);
349
350 /**
351 * of_property_read_variable_u32_array - Find and read an array of 32 bit
352 * integers from a property, with bounds on the minimum and maximum array size.
353 *
354 * @np: device node from which the property value is to be read.
355 * @propname: name of the property to be searched.
356 * @out_values: pointer to return found values.
357 * @sz_min: minimum number of array elements to read
358 * @sz_max: maximum number of array elements to read, if zero there is no
359 * upper limit on the number of elements in the dts entry but only
360 * sz_min will be read.
361 *
362 * Search for a property in a device node and read 32-bit value(s) from
363 * it.
364 *
365 * Return: The number of elements read on success, -EINVAL if the property
366 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
367 * if the property data is smaller than sz_min or longer than sz_max.
368 *
369 * The out_values is modified only if a valid u32 value can be decoded.
370 */
of_property_read_variable_u32_array(const struct device_node * np,const char * propname,u32 * out_values,size_t sz_min,size_t sz_max)371 int of_property_read_variable_u32_array(const struct device_node *np,
372 const char *propname, u32 *out_values,
373 size_t sz_min, size_t sz_max)
374 {
375 size_t sz, count;
376 const __be32 *val = of_find_property_value_of_size(np, propname,
377 (sz_min * sizeof(*out_values)),
378 (sz_max * sizeof(*out_values)),
379 &sz);
380
381 if (IS_ERR(val))
382 return PTR_ERR(val);
383
384 if (!sz_max)
385 sz = sz_min;
386 else
387 sz /= sizeof(*out_values);
388
389 count = sz;
390 while (count--)
391 *out_values++ = be32_to_cpup(val++);
392
393 return sz;
394 }
395 EXPORT_SYMBOL_GPL(of_property_read_variable_u32_array);
396
397 /**
398 * of_property_read_u64 - Find and read a 64 bit integer from a property
399 * @np: device node from which the property value is to be read.
400 * @propname: name of the property to be searched.
401 * @out_value: pointer to return value, modified only if return value is 0.
402 *
403 * Search for a property in a device node and read a 64-bit value from
404 * it.
405 *
406 * Return: 0 on success, -EINVAL if the property does not exist,
407 * -ENODATA if property does not have a value, and -EOVERFLOW if the
408 * property data isn't large enough.
409 *
410 * The out_value is modified only if a valid u64 value can be decoded.
411 */
of_property_read_u64(const struct device_node * np,const char * propname,u64 * out_value)412 int of_property_read_u64(const struct device_node *np, const char *propname,
413 u64 *out_value)
414 {
415 const __be32 *val = of_find_property_value_of_size(np, propname,
416 sizeof(*out_value),
417 0,
418 NULL);
419
420 if (IS_ERR(val))
421 return PTR_ERR(val);
422
423 *out_value = of_read_number(val, 2);
424 return 0;
425 }
426 EXPORT_SYMBOL_GPL(of_property_read_u64);
427
428 /**
429 * of_property_read_variable_u64_array - Find and read an array of 64 bit
430 * integers from a property, with bounds on the minimum and maximum array size.
431 *
432 * @np: device node from which the property value is to be read.
433 * @propname: name of the property to be searched.
434 * @out_values: pointer to found values.
435 * @sz_min: minimum number of array elements to read
436 * @sz_max: maximum number of array elements to read, if zero there is no
437 * upper limit on the number of elements in the dts entry but only
438 * sz_min will be read.
439 *
440 * Search for a property in a device node and read 64-bit value(s) from
441 * it.
442 *
443 * Return: The number of elements read on success, -EINVAL if the property
444 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
445 * if the property data is smaller than sz_min or longer than sz_max.
446 *
447 * The out_values is modified only if a valid u64 value can be decoded.
448 */
of_property_read_variable_u64_array(const struct device_node * np,const char * propname,u64 * out_values,size_t sz_min,size_t sz_max)449 int of_property_read_variable_u64_array(const struct device_node *np,
450 const char *propname, u64 *out_values,
451 size_t sz_min, size_t sz_max)
452 {
453 size_t sz, count;
454 const __be32 *val = of_find_property_value_of_size(np, propname,
455 (sz_min * sizeof(*out_values)),
456 (sz_max * sizeof(*out_values)),
457 &sz);
458
459 if (IS_ERR(val))
460 return PTR_ERR(val);
461
462 if (!sz_max)
463 sz = sz_min;
464 else
465 sz /= sizeof(*out_values);
466
467 count = sz;
468 while (count--) {
469 *out_values++ = of_read_number(val, 2);
470 val += 2;
471 }
472
473 return sz;
474 }
475 EXPORT_SYMBOL_GPL(of_property_read_variable_u64_array);
476
477 /**
478 * of_property_read_string - Find and read a string from a property
479 * @np: device node from which the property value is to be read.
480 * @propname: name of the property to be searched.
481 * @out_string: pointer to null terminated return string, modified only if
482 * return value is 0.
483 *
484 * Search for a property in a device tree node and retrieve a null
485 * terminated string value (pointer to data, not a copy).
486 *
487 * Return: 0 on success, -EINVAL if the property does not exist, -ENODATA if
488 * property does not have a value, and -EILSEQ if the string is not
489 * null-terminated within the length of the property data.
490 *
491 * Note that the empty string "" has length of 1, thus -ENODATA cannot
492 * be interpreted as an empty string.
493 *
494 * The out_string pointer is modified only if a valid string can be decoded.
495 */
of_property_read_string(const struct device_node * np,const char * propname,const char ** out_string)496 int of_property_read_string(const struct device_node *np, const char *propname,
497 const char **out_string)
498 {
499 const struct property *prop = of_find_property(np, propname, NULL);
500
501 if (!prop)
502 return -EINVAL;
503 if (!prop->length)
504 return -ENODATA;
505 if (strnlen(prop->value, prop->length) >= prop->length)
506 return -EILSEQ;
507 *out_string = prop->value;
508 return 0;
509 }
510 EXPORT_SYMBOL_GPL(of_property_read_string);
511
512 /**
513 * of_property_match_string() - Find string in a list and return index
514 * @np: pointer to the node containing the string list property
515 * @propname: string list property name
516 * @string: pointer to the string to search for in the string list
517 *
518 * Search for an exact match of string in a device node property which is a
519 * string of lists.
520 *
521 * Return: the index of the first occurrence of the string on success, -EINVAL
522 * if the property does not exist, -ENODATA if the property does not have a
523 * value, and -EILSEQ if the string is not null-terminated within the length of
524 * the property data.
525 */
of_property_match_string(const struct device_node * np,const char * propname,const char * string)526 int of_property_match_string(const struct device_node *np, const char *propname,
527 const char *string)
528 {
529 const struct property *prop = of_find_property(np, propname, NULL);
530 size_t l;
531 int i;
532 const char *p, *end;
533
534 if (!prop)
535 return -EINVAL;
536 if (!prop->value)
537 return -ENODATA;
538
539 p = prop->value;
540 end = p + prop->length;
541
542 for (i = 0; p < end; i++, p += l) {
543 l = strnlen(p, end - p) + 1;
544 if (p + l > end)
545 return -EILSEQ;
546 pr_debug("comparing %s with %s\n", string, p);
547 if (strcmp(string, p) == 0)
548 return i; /* Found it; return index */
549 }
550 return -ENODATA;
551 }
552 EXPORT_SYMBOL_GPL(of_property_match_string);
553
554 /**
555 * of_property_read_string_helper() - Utility helper for parsing string properties
556 * @np: device node from which the property value is to be read.
557 * @propname: name of the property to be searched.
558 * @out_strs: output array of string pointers.
559 * @sz: number of array elements to read.
560 * @skip: Number of strings to skip over at beginning of list.
561 *
562 * Don't call this function directly. It is a utility helper for the
563 * of_property_read_string*() family of functions.
564 */
of_property_read_string_helper(const struct device_node * np,const char * propname,const char ** out_strs,size_t sz,int skip)565 int of_property_read_string_helper(const struct device_node *np,
566 const char *propname, const char **out_strs,
567 size_t sz, int skip)
568 {
569 const struct property *prop = of_find_property(np, propname, NULL);
570 int l = 0, i = 0;
571 const char *p, *end;
572
573 if (!prop)
574 return -EINVAL;
575 if (!prop->value)
576 return -ENODATA;
577 p = prop->value;
578 end = p + prop->length;
579
580 for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) {
581 l = strnlen(p, end - p) + 1;
582 if (p + l > end)
583 return -EILSEQ;
584 if (out_strs && i >= skip)
585 *out_strs++ = p;
586 }
587 i -= skip;
588 return i <= 0 ? -ENODATA : i;
589 }
590 EXPORT_SYMBOL_GPL(of_property_read_string_helper);
591
of_prop_next_u32(const struct property * prop,const __be32 * cur,u32 * pu)592 const __be32 *of_prop_next_u32(const struct property *prop, const __be32 *cur,
593 u32 *pu)
594 {
595 const void *curv = cur;
596
597 if (!prop)
598 return NULL;
599
600 if (!cur) {
601 curv = prop->value;
602 goto out_val;
603 }
604
605 curv += sizeof(*cur);
606 if (curv >= prop->value + prop->length)
607 return NULL;
608
609 out_val:
610 *pu = be32_to_cpup(curv);
611 return curv;
612 }
613 EXPORT_SYMBOL_GPL(of_prop_next_u32);
614
of_prop_next_string(const struct property * prop,const char * cur)615 const char *of_prop_next_string(const struct property *prop, const char *cur)
616 {
617 const void *curv = cur;
618
619 if (!prop)
620 return NULL;
621
622 if (!cur)
623 return prop->value;
624
625 curv += strlen(cur) + 1;
626 if (curv >= prop->value + prop->length)
627 return NULL;
628
629 return curv;
630 }
631 EXPORT_SYMBOL_GPL(of_prop_next_string);
632
633 /**
634 * of_graph_parse_endpoint() - parse common endpoint node properties
635 * @node: pointer to endpoint device_node
636 * @endpoint: pointer to the OF endpoint data structure
637 *
638 * The caller should hold a reference to @node.
639 */
of_graph_parse_endpoint(const struct device_node * node,struct of_endpoint * endpoint)640 int of_graph_parse_endpoint(const struct device_node *node,
641 struct of_endpoint *endpoint)
642 {
643 struct device_node *port_node __free(device_node) =
644 of_get_parent(node);
645
646 WARN_ONCE(!port_node, "%s(): endpoint %pOF has no parent node\n",
647 __func__, node);
648
649 memset(endpoint, 0, sizeof(*endpoint));
650
651 endpoint->local_node = node;
652 /*
653 * It doesn't matter whether the two calls below succeed.
654 * If they don't then the default value 0 is used.
655 */
656 of_property_read_u32(port_node, "reg", &endpoint->port);
657 of_property_read_u32(node, "reg", &endpoint->id);
658
659 return 0;
660 }
661 EXPORT_SYMBOL(of_graph_parse_endpoint);
662
663 /**
664 * of_graph_get_port_by_id() - get the port matching a given id
665 * @parent: pointer to the parent device node
666 * @id: id of the port
667 *
668 * Return: A 'port' node pointer with refcount incremented. The caller
669 * has to use of_node_put() on it when done.
670 */
of_graph_get_port_by_id(struct device_node * parent,u32 id)671 struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id)
672 {
673 struct device_node *node __free(device_node) = of_get_child_by_name(parent, "ports");
674
675 if (node)
676 parent = node;
677
678 for_each_child_of_node_scoped(parent, port) {
679 u32 port_id = 0;
680
681 if (!of_node_name_eq(port, "port"))
682 continue;
683 of_property_read_u32(port, "reg", &port_id);
684 if (id == port_id)
685 return_ptr(port);
686 }
687
688 return NULL;
689 }
690 EXPORT_SYMBOL(of_graph_get_port_by_id);
691
692 /**
693 * of_graph_get_next_port() - get next port node.
694 * @parent: pointer to the parent device node, or parent ports node
695 * @prev: previous port node, or NULL to get first
696 *
697 * Parent device node can be used as @parent whether device node has ports node
698 * or not. It will work same as ports@0 node.
699 *
700 * Return: A 'port' node pointer with refcount incremented. Refcount
701 * of the passed @prev node is decremented.
702 */
of_graph_get_next_port(const struct device_node * parent,struct device_node * prev)703 struct device_node *of_graph_get_next_port(const struct device_node *parent,
704 struct device_node *prev)
705 {
706 if (!parent)
707 return NULL;
708
709 if (!prev) {
710 struct device_node *node __free(device_node) =
711 of_get_child_by_name(parent, "ports");
712
713 if (node)
714 parent = node;
715
716 return of_get_child_by_name(parent, "port");
717 }
718
719 do {
720 prev = of_get_next_child(parent, prev);
721 if (!prev)
722 break;
723 } while (!of_node_name_eq(prev, "port"));
724
725 return prev;
726 }
727 EXPORT_SYMBOL(of_graph_get_next_port);
728
729 /**
730 * of_graph_get_next_port_endpoint() - get next endpoint node in port.
731 * If it reached to end of the port, it will return NULL.
732 * @port: pointer to the target port node
733 * @prev: previous endpoint node, or NULL to get first
734 *
735 * Return: An 'endpoint' node pointer with refcount incremented. Refcount
736 * of the passed @prev node is decremented.
737 */
of_graph_get_next_port_endpoint(const struct device_node * port,struct device_node * prev)738 struct device_node *of_graph_get_next_port_endpoint(const struct device_node *port,
739 struct device_node *prev)
740 {
741 while (1) {
742 prev = of_get_next_child(port, prev);
743 if (!prev)
744 break;
745 if (WARN(!of_node_name_eq(prev, "endpoint"),
746 "non endpoint node is used (%pOF)", prev))
747 continue;
748
749 break;
750 }
751
752 return prev;
753 }
754 EXPORT_SYMBOL(of_graph_get_next_port_endpoint);
755
756 /**
757 * of_graph_get_next_endpoint() - get next endpoint node
758 * @parent: pointer to the parent device node
759 * @prev: previous endpoint node, or NULL to get first
760 *
761 * Return: An 'endpoint' node pointer with refcount incremented. Refcount
762 * of the passed @prev node is decremented.
763 */
of_graph_get_next_endpoint(const struct device_node * parent,struct device_node * prev)764 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
765 struct device_node *prev)
766 {
767 struct device_node *endpoint;
768 struct device_node *port;
769
770 if (!parent)
771 return NULL;
772
773 /*
774 * Start by locating the port node. If no previous endpoint is specified
775 * search for the first port node, otherwise get the previous endpoint
776 * parent port node.
777 */
778 if (!prev) {
779 port = of_graph_get_next_port(parent, NULL);
780 if (!port) {
781 pr_debug("graph: no port node found in %pOF\n", parent);
782 return NULL;
783 }
784 } else {
785 port = of_get_parent(prev);
786 if (WARN_ONCE(!port, "%s(): endpoint %pOF has no parent node\n",
787 __func__, prev))
788 return NULL;
789 }
790
791 while (1) {
792 /*
793 * Now that we have a port node, get the next endpoint by
794 * getting the next child. If the previous endpoint is NULL this
795 * will return the first child.
796 */
797 endpoint = of_graph_get_next_port_endpoint(port, prev);
798 if (endpoint) {
799 of_node_put(port);
800 return endpoint;
801 }
802
803 /* No more endpoints under this port, try the next one. */
804 prev = NULL;
805
806 port = of_graph_get_next_port(parent, port);
807 if (!port)
808 return NULL;
809 }
810 }
811 EXPORT_SYMBOL(of_graph_get_next_endpoint);
812
813 /**
814 * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers
815 * @parent: pointer to the parent device node
816 * @port_reg: identifier (value of reg property) of the parent port node
817 * @reg: identifier (value of reg property) of the endpoint node
818 *
819 * Return: An 'endpoint' node pointer which is identified by reg and at the same
820 * is the child of a port node identified by port_reg. reg and port_reg are
821 * ignored when they are -1. Use of_node_put() on the pointer when done.
822 */
of_graph_get_endpoint_by_regs(const struct device_node * parent,int port_reg,int reg)823 struct device_node *of_graph_get_endpoint_by_regs(
824 const struct device_node *parent, int port_reg, int reg)
825 {
826 struct of_endpoint endpoint;
827 struct device_node *node = NULL;
828
829 for_each_endpoint_of_node(parent, node) {
830 of_graph_parse_endpoint(node, &endpoint);
831 if (((port_reg == -1) || (endpoint.port == port_reg)) &&
832 ((reg == -1) || (endpoint.id == reg)))
833 return node;
834 }
835
836 return NULL;
837 }
838 EXPORT_SYMBOL(of_graph_get_endpoint_by_regs);
839
840 /**
841 * of_graph_get_remote_endpoint() - get remote endpoint node
842 * @node: pointer to a local endpoint device_node
843 *
844 * Return: Remote endpoint node associated with remote endpoint node linked
845 * to @node. Use of_node_put() on it when done.
846 */
of_graph_get_remote_endpoint(const struct device_node * node)847 struct device_node *of_graph_get_remote_endpoint(const struct device_node *node)
848 {
849 /* Get remote endpoint node. */
850 return of_parse_phandle(node, "remote-endpoint", 0);
851 }
852 EXPORT_SYMBOL(of_graph_get_remote_endpoint);
853
854 /**
855 * of_graph_get_port_parent() - get port's parent node
856 * @node: pointer to a local endpoint device_node
857 *
858 * Return: device node associated with endpoint node linked
859 * to @node. Use of_node_put() on it when done.
860 */
of_graph_get_port_parent(struct device_node * node)861 struct device_node *of_graph_get_port_parent(struct device_node *node)
862 {
863 unsigned int depth;
864
865 if (!node)
866 return NULL;
867
868 /*
869 * Preserve usecount for passed in node as of_get_next_parent()
870 * will do of_node_put() on it.
871 */
872 of_node_get(node);
873
874 /* Walk 3 levels up only if there is 'ports' node. */
875 for (depth = 3; depth && node; depth--) {
876 node = of_get_next_parent(node);
877 if (depth == 2 && !of_node_name_eq(node, "ports") &&
878 !of_node_name_eq(node, "in-ports") &&
879 !of_node_name_eq(node, "out-ports"))
880 break;
881 }
882 return node;
883 }
884 EXPORT_SYMBOL(of_graph_get_port_parent);
885
886 /**
887 * of_graph_get_remote_port_parent() - get remote port's parent node
888 * @node: pointer to a local endpoint device_node
889 *
890 * Return: Remote device node associated with remote endpoint node linked
891 * to @node. Use of_node_put() on it when done.
892 */
of_graph_get_remote_port_parent(const struct device_node * node)893 struct device_node *of_graph_get_remote_port_parent(
894 const struct device_node *node)
895 {
896 /* Get remote endpoint node. */
897 struct device_node *np __free(device_node) =
898 of_graph_get_remote_endpoint(node);
899
900 return of_graph_get_port_parent(np);
901 }
902 EXPORT_SYMBOL(of_graph_get_remote_port_parent);
903
904 /**
905 * of_graph_get_remote_port() - get remote port node
906 * @node: pointer to a local endpoint device_node
907 *
908 * Return: Remote port node associated with remote endpoint node linked
909 * to @node. Use of_node_put() on it when done.
910 */
of_graph_get_remote_port(const struct device_node * node)911 struct device_node *of_graph_get_remote_port(const struct device_node *node)
912 {
913 struct device_node *np;
914
915 /* Get remote endpoint node. */
916 np = of_graph_get_remote_endpoint(node);
917 if (!np)
918 return NULL;
919 return of_get_next_parent(np);
920 }
921 EXPORT_SYMBOL(of_graph_get_remote_port);
922
923 /**
924 * of_graph_get_endpoint_count() - get the number of endpoints in a device node
925 * @np: parent device node containing ports and endpoints
926 *
927 * Return: count of endpoint of this device node
928 */
of_graph_get_endpoint_count(const struct device_node * np)929 unsigned int of_graph_get_endpoint_count(const struct device_node *np)
930 {
931 struct device_node *endpoint;
932 unsigned int num = 0;
933
934 for_each_endpoint_of_node(np, endpoint)
935 num++;
936
937 return num;
938 }
939 EXPORT_SYMBOL(of_graph_get_endpoint_count);
940
941 /**
942 * of_graph_get_port_count() - get the number of port in a device or ports node
943 * @np: pointer to the device or ports node
944 *
945 * Return: count of port of this device or ports node
946 */
of_graph_get_port_count(struct device_node * np)947 unsigned int of_graph_get_port_count(struct device_node *np)
948 {
949 unsigned int num = 0;
950
951 for_each_of_graph_port(np, port)
952 num++;
953
954 return num;
955 }
956 EXPORT_SYMBOL(of_graph_get_port_count);
957
958 /**
959 * of_graph_get_remote_node() - get remote parent device_node for given port/endpoint
960 * @node: pointer to parent device_node containing graph port/endpoint
961 * @port: identifier (value of reg property) of the parent port node
962 * @endpoint: identifier (value of reg property) of the endpoint node
963 *
964 * Return: Remote device node associated with remote endpoint node linked
965 * to @node. Use of_node_put() on it when done.
966 */
of_graph_get_remote_node(const struct device_node * node,u32 port,u32 endpoint)967 struct device_node *of_graph_get_remote_node(const struct device_node *node,
968 u32 port, u32 endpoint)
969 {
970 struct device_node *endpoint_node, *remote;
971
972 endpoint_node = of_graph_get_endpoint_by_regs(node, port, endpoint);
973 if (!endpoint_node) {
974 pr_debug("no valid endpoint (%d, %d) for node %pOF\n",
975 port, endpoint, node);
976 return NULL;
977 }
978
979 remote = of_graph_get_remote_port_parent(endpoint_node);
980 of_node_put(endpoint_node);
981 if (!remote) {
982 pr_debug("no valid remote node\n");
983 return NULL;
984 }
985
986 if (!of_device_is_available(remote)) {
987 pr_debug("not available for remote node\n");
988 of_node_put(remote);
989 return NULL;
990 }
991
992 return remote;
993 }
994 EXPORT_SYMBOL(of_graph_get_remote_node);
995
of_fwnode_get(struct fwnode_handle * fwnode)996 static struct fwnode_handle *of_fwnode_get(struct fwnode_handle *fwnode)
997 {
998 return of_fwnode_handle(of_node_get(to_of_node(fwnode)));
999 }
1000
of_fwnode_put(struct fwnode_handle * fwnode)1001 static void of_fwnode_put(struct fwnode_handle *fwnode)
1002 {
1003 of_node_put(to_of_node(fwnode));
1004 }
1005
of_fwnode_device_is_available(const struct fwnode_handle * fwnode)1006 static bool of_fwnode_device_is_available(const struct fwnode_handle *fwnode)
1007 {
1008 return of_device_is_available(to_of_node(fwnode));
1009 }
1010
of_fwnode_device_dma_supported(const struct fwnode_handle * fwnode)1011 static bool of_fwnode_device_dma_supported(const struct fwnode_handle *fwnode)
1012 {
1013 return true;
1014 }
1015
1016 static enum dev_dma_attr
of_fwnode_device_get_dma_attr(const struct fwnode_handle * fwnode)1017 of_fwnode_device_get_dma_attr(const struct fwnode_handle *fwnode)
1018 {
1019 if (of_dma_is_coherent(to_of_node(fwnode)))
1020 return DEV_DMA_COHERENT;
1021 else
1022 return DEV_DMA_NON_COHERENT;
1023 }
1024
of_fwnode_property_present(const struct fwnode_handle * fwnode,const char * propname)1025 static bool of_fwnode_property_present(const struct fwnode_handle *fwnode,
1026 const char *propname)
1027 {
1028 return of_property_present(to_of_node(fwnode), propname);
1029 }
1030
of_fwnode_property_read_bool(const struct fwnode_handle * fwnode,const char * propname)1031 static bool of_fwnode_property_read_bool(const struct fwnode_handle *fwnode,
1032 const char *propname)
1033 {
1034 return of_property_read_bool(to_of_node(fwnode), propname);
1035 }
1036
of_fwnode_property_read_int_array(const struct fwnode_handle * fwnode,const char * propname,unsigned int elem_size,void * val,size_t nval)1037 static int of_fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
1038 const char *propname,
1039 unsigned int elem_size, void *val,
1040 size_t nval)
1041 {
1042 const struct device_node *node = to_of_node(fwnode);
1043
1044 if (!val)
1045 return of_property_count_elems_of_size(node, propname,
1046 elem_size);
1047
1048 switch (elem_size) {
1049 case sizeof(u8):
1050 return of_property_read_u8_array(node, propname, val, nval);
1051 case sizeof(u16):
1052 return of_property_read_u16_array(node, propname, val, nval);
1053 case sizeof(u32):
1054 return of_property_read_u32_array(node, propname, val, nval);
1055 case sizeof(u64):
1056 return of_property_read_u64_array(node, propname, val, nval);
1057 }
1058
1059 return -ENXIO;
1060 }
1061
1062 static int
of_fwnode_property_read_string_array(const struct fwnode_handle * fwnode,const char * propname,const char ** val,size_t nval)1063 of_fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
1064 const char *propname, const char **val,
1065 size_t nval)
1066 {
1067 const struct device_node *node = to_of_node(fwnode);
1068
1069 return val ?
1070 of_property_read_string_array(node, propname, val, nval) :
1071 of_property_count_strings(node, propname);
1072 }
1073
of_fwnode_get_name(const struct fwnode_handle * fwnode)1074 static const char *of_fwnode_get_name(const struct fwnode_handle *fwnode)
1075 {
1076 return kbasename(to_of_node(fwnode)->full_name);
1077 }
1078
of_fwnode_get_name_prefix(const struct fwnode_handle * fwnode)1079 static const char *of_fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
1080 {
1081 /* Root needs no prefix here (its name is "/"). */
1082 if (!to_of_node(fwnode)->parent)
1083 return "";
1084
1085 return "/";
1086 }
1087
1088 static struct fwnode_handle *
of_fwnode_get_parent(const struct fwnode_handle * fwnode)1089 of_fwnode_get_parent(const struct fwnode_handle *fwnode)
1090 {
1091 return of_fwnode_handle(of_get_parent(to_of_node(fwnode)));
1092 }
1093
1094 static struct fwnode_handle *
of_fwnode_get_next_child_node(const struct fwnode_handle * fwnode,struct fwnode_handle * child)1095 of_fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
1096 struct fwnode_handle *child)
1097 {
1098 return of_fwnode_handle(of_get_next_available_child(to_of_node(fwnode),
1099 to_of_node(child)));
1100 }
1101
1102 static struct fwnode_handle *
of_fwnode_get_named_child_node(const struct fwnode_handle * fwnode,const char * childname)1103 of_fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
1104 const char *childname)
1105 {
1106 const struct device_node *node = to_of_node(fwnode);
1107 struct device_node *child;
1108
1109 for_each_available_child_of_node(node, child)
1110 if (of_node_name_eq(child, childname))
1111 return of_fwnode_handle(child);
1112
1113 return NULL;
1114 }
1115
1116 static int
of_fwnode_get_reference_args(const struct fwnode_handle * fwnode,const char * prop,const char * nargs_prop,unsigned int nargs,unsigned int index,struct fwnode_reference_args * args)1117 of_fwnode_get_reference_args(const struct fwnode_handle *fwnode,
1118 const char *prop, const char *nargs_prop,
1119 unsigned int nargs, unsigned int index,
1120 struct fwnode_reference_args *args)
1121 {
1122 struct of_phandle_args of_args;
1123 unsigned int i;
1124 int ret;
1125
1126 if (nargs_prop)
1127 ret = of_parse_phandle_with_args(to_of_node(fwnode), prop,
1128 nargs_prop, index, &of_args);
1129 else
1130 ret = of_parse_phandle_with_fixed_args(to_of_node(fwnode), prop,
1131 nargs, index, &of_args);
1132 if (ret < 0)
1133 return ret;
1134 if (!args) {
1135 of_node_put(of_args.np);
1136 return 0;
1137 }
1138
1139 args->nargs = of_args.args_count;
1140 args->fwnode = of_fwnode_handle(of_args.np);
1141
1142 for (i = 0; i < NR_FWNODE_REFERENCE_ARGS; i++)
1143 args->args[i] = i < of_args.args_count ? of_args.args[i] : 0;
1144
1145 return 0;
1146 }
1147
1148 static struct fwnode_handle *
of_fwnode_graph_get_next_endpoint(const struct fwnode_handle * fwnode,struct fwnode_handle * prev)1149 of_fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
1150 struct fwnode_handle *prev)
1151 {
1152 return of_fwnode_handle(of_graph_get_next_endpoint(to_of_node(fwnode),
1153 to_of_node(prev)));
1154 }
1155
1156 static struct fwnode_handle *
of_fwnode_graph_get_remote_endpoint(const struct fwnode_handle * fwnode)1157 of_fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1158 {
1159 return of_fwnode_handle(
1160 of_graph_get_remote_endpoint(to_of_node(fwnode)));
1161 }
1162
1163 static struct fwnode_handle *
of_fwnode_graph_get_port_parent(struct fwnode_handle * fwnode)1164 of_fwnode_graph_get_port_parent(struct fwnode_handle *fwnode)
1165 {
1166 struct device_node *np;
1167
1168 /* Get the parent of the port */
1169 np = of_get_parent(to_of_node(fwnode));
1170 if (!np)
1171 return NULL;
1172
1173 /* Is this the "ports" node? If not, it's the port parent. */
1174 if (!of_node_name_eq(np, "ports"))
1175 return of_fwnode_handle(np);
1176
1177 return of_fwnode_handle(of_get_next_parent(np));
1178 }
1179
of_fwnode_graph_parse_endpoint(const struct fwnode_handle * fwnode,struct fwnode_endpoint * endpoint)1180 static int of_fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1181 struct fwnode_endpoint *endpoint)
1182 {
1183 const struct device_node *node = to_of_node(fwnode);
1184 struct device_node *port_node __free(device_node) = of_get_parent(node);
1185
1186 endpoint->local_fwnode = fwnode;
1187
1188 of_property_read_u32(port_node, "reg", &endpoint->port);
1189 of_property_read_u32(node, "reg", &endpoint->id);
1190
1191 return 0;
1192 }
1193
1194 static const void *
of_fwnode_device_get_match_data(const struct fwnode_handle * fwnode,const struct device * dev)1195 of_fwnode_device_get_match_data(const struct fwnode_handle *fwnode,
1196 const struct device *dev)
1197 {
1198 return of_device_get_match_data(dev);
1199 }
1200
of_link_to_phandle(struct device_node * con_np,struct device_node * sup_np,u8 flags)1201 static void of_link_to_phandle(struct device_node *con_np,
1202 struct device_node *sup_np,
1203 u8 flags)
1204 {
1205 struct device_node *tmp_np __free(device_node) = of_node_get(sup_np);
1206
1207 /* Check that sup_np and its ancestors are available. */
1208 while (tmp_np) {
1209 if (of_fwnode_handle(tmp_np)->dev)
1210 break;
1211
1212 if (!of_device_is_available(tmp_np))
1213 return;
1214
1215 tmp_np = of_get_next_parent(tmp_np);
1216 }
1217
1218 fwnode_link_add(of_fwnode_handle(con_np), of_fwnode_handle(sup_np), flags);
1219 }
1220
1221 /**
1222 * parse_prop_cells - Property parsing function for suppliers
1223 *
1224 * @np: Pointer to device tree node containing a list
1225 * @prop_name: Name of property to be parsed. Expected to hold phandle values
1226 * @index: For properties holding a list of phandles, this is the index
1227 * into the list.
1228 * @list_name: Property name that is known to contain list of phandle(s) to
1229 * supplier(s)
1230 * @cells_name: property name that specifies phandles' arguments count
1231 *
1232 * This is a helper function to parse properties that have a known fixed name
1233 * and are a list of phandles and phandle arguments.
1234 *
1235 * Returns:
1236 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1237 * on it when done.
1238 * - NULL if no phandle found at index
1239 */
parse_prop_cells(struct device_node * np,const char * prop_name,int index,const char * list_name,const char * cells_name)1240 static struct device_node *parse_prop_cells(struct device_node *np,
1241 const char *prop_name, int index,
1242 const char *list_name,
1243 const char *cells_name)
1244 {
1245 struct of_phandle_args sup_args;
1246
1247 if (strcmp(prop_name, list_name))
1248 return NULL;
1249
1250 if (__of_parse_phandle_with_args(np, list_name, cells_name, 0, index,
1251 &sup_args))
1252 return NULL;
1253
1254 return sup_args.np;
1255 }
1256
1257 #define DEFINE_SIMPLE_PROP(fname, name, cells) \
1258 static struct device_node *parse_##fname(struct device_node *np, \
1259 const char *prop_name, int index) \
1260 { \
1261 return parse_prop_cells(np, prop_name, index, name, cells); \
1262 }
1263
strcmp_suffix(const char * str,const char * suffix)1264 static int strcmp_suffix(const char *str, const char *suffix)
1265 {
1266 unsigned int len, suffix_len;
1267
1268 len = strlen(str);
1269 suffix_len = strlen(suffix);
1270 if (len <= suffix_len)
1271 return -1;
1272 return strcmp(str + len - suffix_len, suffix);
1273 }
1274
1275 /**
1276 * parse_suffix_prop_cells - Suffix property parsing function for suppliers
1277 *
1278 * @np: Pointer to device tree node containing a list
1279 * @prop_name: Name of property to be parsed. Expected to hold phandle values
1280 * @index: For properties holding a list of phandles, this is the index
1281 * into the list.
1282 * @suffix: Property suffix that is known to contain list of phandle(s) to
1283 * supplier(s)
1284 * @cells_name: property name that specifies phandles' arguments count
1285 *
1286 * This is a helper function to parse properties that have a known fixed suffix
1287 * and are a list of phandles and phandle arguments.
1288 *
1289 * Returns:
1290 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1291 * on it when done.
1292 * - NULL if no phandle found at index
1293 */
parse_suffix_prop_cells(struct device_node * np,const char * prop_name,int index,const char * suffix,const char * cells_name)1294 static struct device_node *parse_suffix_prop_cells(struct device_node *np,
1295 const char *prop_name, int index,
1296 const char *suffix,
1297 const char *cells_name)
1298 {
1299 struct of_phandle_args sup_args;
1300
1301 if (strcmp_suffix(prop_name, suffix))
1302 return NULL;
1303
1304 if (of_parse_phandle_with_args(np, prop_name, cells_name, index,
1305 &sup_args))
1306 return NULL;
1307
1308 return sup_args.np;
1309 }
1310
1311 #define DEFINE_SUFFIX_PROP(fname, suffix, cells) \
1312 static struct device_node *parse_##fname(struct device_node *np, \
1313 const char *prop_name, int index) \
1314 { \
1315 return parse_suffix_prop_cells(np, prop_name, index, suffix, cells); \
1316 }
1317
1318 /**
1319 * struct supplier_bindings - Property parsing functions for suppliers
1320 *
1321 * @parse_prop: function name
1322 * parse_prop() finds the node corresponding to a supplier phandle
1323 * parse_prop.np: Pointer to device node holding supplier phandle property
1324 * parse_prop.prop_name: Name of property holding a phandle value
1325 * parse_prop.index: For properties holding a list of phandles, this is the
1326 * index into the list
1327 * @get_con_dev: If the consumer node containing the property is never converted
1328 * to a struct device, implement this ops so fw_devlink can use it
1329 * to find the true consumer.
1330 * @optional: Describes whether a supplier is mandatory or not
1331 * @fwlink_flags: Optional fwnode link flags to use when creating a fwnode link
1332 * for this property.
1333 *
1334 * Returns:
1335 * parse_prop() return values are
1336 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1337 * on it when done.
1338 * - NULL if no phandle found at index
1339 */
1340 struct supplier_bindings {
1341 struct device_node *(*parse_prop)(struct device_node *np,
1342 const char *prop_name, int index);
1343 struct device_node *(*get_con_dev)(struct device_node *np);
1344 bool optional;
1345 u8 fwlink_flags;
1346 };
1347
1348 DEFINE_SIMPLE_PROP(clocks, "clocks", "#clock-cells")
1349 DEFINE_SIMPLE_PROP(interconnects, "interconnects", "#interconnect-cells")
1350 DEFINE_SIMPLE_PROP(iommus, "iommus", "#iommu-cells")
1351 DEFINE_SIMPLE_PROP(mboxes, "mboxes", "#mbox-cells")
1352 DEFINE_SIMPLE_PROP(io_channels, "io-channels", "#io-channel-cells")
1353 DEFINE_SIMPLE_PROP(io_backends, "io-backends", "#io-backend-cells")
1354 DEFINE_SIMPLE_PROP(dmas, "dmas", "#dma-cells")
1355 DEFINE_SIMPLE_PROP(power_domains, "power-domains", "#power-domain-cells")
1356 DEFINE_SIMPLE_PROP(hwlocks, "hwlocks", "#hwlock-cells")
1357 DEFINE_SIMPLE_PROP(extcon, "extcon", NULL)
1358 DEFINE_SIMPLE_PROP(nvmem_cells, "nvmem-cells", "#nvmem-cell-cells")
1359 DEFINE_SIMPLE_PROP(phys, "phys", "#phy-cells")
1360 DEFINE_SIMPLE_PROP(wakeup_parent, "wakeup-parent", NULL)
1361 DEFINE_SIMPLE_PROP(pinctrl0, "pinctrl-0", NULL)
1362 DEFINE_SIMPLE_PROP(pinctrl1, "pinctrl-1", NULL)
1363 DEFINE_SIMPLE_PROP(pinctrl2, "pinctrl-2", NULL)
1364 DEFINE_SIMPLE_PROP(pinctrl3, "pinctrl-3", NULL)
1365 DEFINE_SIMPLE_PROP(pinctrl4, "pinctrl-4", NULL)
1366 DEFINE_SIMPLE_PROP(pinctrl5, "pinctrl-5", NULL)
1367 DEFINE_SIMPLE_PROP(pinctrl6, "pinctrl-6", NULL)
1368 DEFINE_SIMPLE_PROP(pinctrl7, "pinctrl-7", NULL)
1369 DEFINE_SIMPLE_PROP(pinctrl8, "pinctrl-8", NULL)
1370 DEFINE_SIMPLE_PROP(pwms, "pwms", "#pwm-cells")
1371 DEFINE_SIMPLE_PROP(resets, "resets", "#reset-cells")
1372 DEFINE_SIMPLE_PROP(leds, "leds", NULL)
1373 DEFINE_SIMPLE_PROP(backlight, "backlight", NULL)
1374 DEFINE_SIMPLE_PROP(panel, "panel", NULL)
1375 DEFINE_SIMPLE_PROP(msi_parent, "msi-parent", "#msi-cells")
1376 DEFINE_SIMPLE_PROP(post_init_providers, "post-init-providers", NULL)
1377 DEFINE_SIMPLE_PROP(access_controllers, "access-controllers", "#access-controller-cells")
1378 DEFINE_SIMPLE_PROP(pses, "pses", "#pse-cells")
1379 DEFINE_SIMPLE_PROP(power_supplies, "power-supplies", NULL)
1380 DEFINE_SUFFIX_PROP(regulators, "-supply", NULL)
1381 DEFINE_SUFFIX_PROP(gpio, "-gpio", "#gpio-cells")
1382
parse_gpios(struct device_node * np,const char * prop_name,int index)1383 static struct device_node *parse_gpios(struct device_node *np,
1384 const char *prop_name, int index)
1385 {
1386 if (!strcmp_suffix(prop_name, ",nr-gpios"))
1387 return NULL;
1388
1389 return parse_suffix_prop_cells(np, prop_name, index, "-gpios",
1390 "#gpio-cells");
1391 }
1392
parse_iommu_maps(struct device_node * np,const char * prop_name,int index)1393 static struct device_node *parse_iommu_maps(struct device_node *np,
1394 const char *prop_name, int index)
1395 {
1396 if (strcmp(prop_name, "iommu-map"))
1397 return NULL;
1398
1399 return of_parse_phandle(np, prop_name, (index * 4) + 1);
1400 }
1401
parse_gpio_compat(struct device_node * np,const char * prop_name,int index)1402 static struct device_node *parse_gpio_compat(struct device_node *np,
1403 const char *prop_name, int index)
1404 {
1405 struct of_phandle_args sup_args;
1406
1407 if (strcmp(prop_name, "gpio") && strcmp(prop_name, "gpios"))
1408 return NULL;
1409
1410 /*
1411 * Ignore node with gpio-hog property since its gpios are all provided
1412 * by its parent.
1413 */
1414 if (of_property_read_bool(np, "gpio-hog"))
1415 return NULL;
1416
1417 if (of_parse_phandle_with_args(np, prop_name, "#gpio-cells", index,
1418 &sup_args))
1419 return NULL;
1420
1421 return sup_args.np;
1422 }
1423
parse_interrupts(struct device_node * np,const char * prop_name,int index)1424 static struct device_node *parse_interrupts(struct device_node *np,
1425 const char *prop_name, int index)
1426 {
1427 struct of_phandle_args sup_args;
1428
1429 if (!IS_ENABLED(CONFIG_OF_IRQ) || IS_ENABLED(CONFIG_PPC))
1430 return NULL;
1431
1432 if (strcmp(prop_name, "interrupts") &&
1433 strcmp(prop_name, "interrupts-extended"))
1434 return NULL;
1435
1436 return of_irq_parse_one(np, index, &sup_args) ? NULL : sup_args.np;
1437 }
1438
parse_interrupt_map(struct device_node * np,const char * prop_name,int index)1439 static struct device_node *parse_interrupt_map(struct device_node *np,
1440 const char *prop_name, int index)
1441 {
1442 const __be32 *imap, *imap_end;
1443 struct of_phandle_args sup_args;
1444 u32 addrcells, intcells;
1445 int imaplen;
1446
1447 if (!IS_ENABLED(CONFIG_OF_IRQ))
1448 return NULL;
1449
1450 if (strcmp(prop_name, "interrupt-map"))
1451 return NULL;
1452
1453 if (of_property_read_u32(np, "#interrupt-cells", &intcells))
1454 return NULL;
1455 addrcells = of_bus_n_addr_cells(np);
1456
1457 imap = of_get_property(np, "interrupt-map", &imaplen);
1458 if (!imap)
1459 return NULL;
1460 imaplen /= sizeof(*imap);
1461
1462 imap_end = imap + imaplen;
1463
1464 for (int i = 0; imap + addrcells + intcells + 1 < imap_end; i++) {
1465 imap += addrcells + intcells;
1466
1467 imap = of_irq_parse_imap_parent(imap, imap_end - imap, &sup_args);
1468 if (!imap)
1469 return NULL;
1470
1471 if (i == index)
1472 return sup_args.np;
1473
1474 of_node_put(sup_args.np);
1475 }
1476
1477 return NULL;
1478 }
1479
parse_remote_endpoint(struct device_node * np,const char * prop_name,int index)1480 static struct device_node *parse_remote_endpoint(struct device_node *np,
1481 const char *prop_name,
1482 int index)
1483 {
1484 /* Return NULL for index > 0 to signify end of remote-endpoints. */
1485 if (index > 0 || strcmp(prop_name, "remote-endpoint"))
1486 return NULL;
1487
1488 return of_graph_get_remote_port_parent(np);
1489 }
1490
1491 static const struct supplier_bindings of_supplier_bindings[] = {
1492 { .parse_prop = parse_clocks, },
1493 { .parse_prop = parse_interconnects, },
1494 { .parse_prop = parse_iommus, .optional = true, },
1495 { .parse_prop = parse_iommu_maps, .optional = true, },
1496 { .parse_prop = parse_mboxes, },
1497 { .parse_prop = parse_io_channels, },
1498 { .parse_prop = parse_io_backends, },
1499 { .parse_prop = parse_dmas, .optional = true, },
1500 { .parse_prop = parse_power_domains, },
1501 { .parse_prop = parse_hwlocks, },
1502 { .parse_prop = parse_extcon, },
1503 { .parse_prop = parse_nvmem_cells, },
1504 { .parse_prop = parse_phys, },
1505 { .parse_prop = parse_wakeup_parent, },
1506 { .parse_prop = parse_pinctrl0, },
1507 { .parse_prop = parse_pinctrl1, },
1508 { .parse_prop = parse_pinctrl2, },
1509 { .parse_prop = parse_pinctrl3, },
1510 { .parse_prop = parse_pinctrl4, },
1511 { .parse_prop = parse_pinctrl5, },
1512 { .parse_prop = parse_pinctrl6, },
1513 { .parse_prop = parse_pinctrl7, },
1514 { .parse_prop = parse_pinctrl8, },
1515 {
1516 .parse_prop = parse_remote_endpoint,
1517 .get_con_dev = of_graph_get_port_parent,
1518 },
1519 { .parse_prop = parse_pwms, },
1520 { .parse_prop = parse_resets, },
1521 { .parse_prop = parse_leds, },
1522 { .parse_prop = parse_backlight, },
1523 { .parse_prop = parse_panel, },
1524 { .parse_prop = parse_msi_parent, },
1525 { .parse_prop = parse_pses, },
1526 { .parse_prop = parse_power_supplies, },
1527 { .parse_prop = parse_gpio_compat, },
1528 { .parse_prop = parse_interrupts, },
1529 { .parse_prop = parse_interrupt_map, },
1530 { .parse_prop = parse_access_controllers, },
1531 { .parse_prop = parse_regulators, },
1532 { .parse_prop = parse_gpio, },
1533 { .parse_prop = parse_gpios, },
1534 {
1535 .parse_prop = parse_post_init_providers,
1536 .fwlink_flags = FWLINK_FLAG_IGNORE,
1537 },
1538 {}
1539 };
1540
1541 /**
1542 * of_link_property - Create device links to suppliers listed in a property
1543 * @con_np: The consumer device tree node which contains the property
1544 * @prop_name: Name of property to be parsed
1545 *
1546 * This function checks if the property @prop_name that is present in the
1547 * @con_np device tree node is one of the known common device tree bindings
1548 * that list phandles to suppliers. If @prop_name isn't one, this function
1549 * doesn't do anything.
1550 *
1551 * If @prop_name is one, this function attempts to create fwnode links from the
1552 * consumer device tree node @con_np to all the suppliers device tree nodes
1553 * listed in @prop_name.
1554 *
1555 * Any failed attempt to create a fwnode link will NOT result in an immediate
1556 * return. of_link_property() must create links to all the available supplier
1557 * device tree nodes even when attempts to create a link to one or more
1558 * suppliers fail.
1559 */
of_link_property(struct device_node * con_np,const char * prop_name)1560 static int of_link_property(struct device_node *con_np, const char *prop_name)
1561 {
1562 struct device_node *phandle;
1563 const struct supplier_bindings *s = of_supplier_bindings;
1564 unsigned int i = 0;
1565 bool matched = false;
1566
1567 /* Do not stop at first failed link, link all available suppliers. */
1568 while (!matched && s->parse_prop) {
1569 if (s->optional && !fw_devlink_is_strict()) {
1570 s++;
1571 continue;
1572 }
1573
1574 while ((phandle = s->parse_prop(con_np, prop_name, i))) {
1575 struct device_node *con_dev_np __free(device_node) =
1576 s->get_con_dev ? s->get_con_dev(con_np) : of_node_get(con_np);
1577
1578 matched = true;
1579 i++;
1580 of_link_to_phandle(con_dev_np, phandle, s->fwlink_flags);
1581 of_node_put(phandle);
1582 }
1583 s++;
1584 }
1585 return 0;
1586 }
1587
of_fwnode_iomap(struct fwnode_handle * fwnode,int index)1588 static void __iomem *of_fwnode_iomap(struct fwnode_handle *fwnode, int index)
1589 {
1590 #ifdef CONFIG_OF_ADDRESS
1591 return of_iomap(to_of_node(fwnode), index);
1592 #else
1593 return NULL;
1594 #endif
1595 }
1596
of_fwnode_irq_get(const struct fwnode_handle * fwnode,unsigned int index)1597 static int of_fwnode_irq_get(const struct fwnode_handle *fwnode,
1598 unsigned int index)
1599 {
1600 return of_irq_get(to_of_node(fwnode), index);
1601 }
1602
of_fwnode_add_links(struct fwnode_handle * fwnode)1603 static int of_fwnode_add_links(struct fwnode_handle *fwnode)
1604 {
1605 const struct property *p;
1606 struct device_node *con_np = to_of_node(fwnode);
1607
1608 if (IS_ENABLED(CONFIG_X86))
1609 return 0;
1610
1611 if (!con_np)
1612 return -EINVAL;
1613
1614 for_each_property_of_node(con_np, p)
1615 of_link_property(con_np, p->name);
1616
1617 return 0;
1618 }
1619
1620 const struct fwnode_operations of_fwnode_ops = {
1621 .get = of_fwnode_get,
1622 .put = of_fwnode_put,
1623 .device_is_available = of_fwnode_device_is_available,
1624 .device_get_match_data = of_fwnode_device_get_match_data,
1625 .device_dma_supported = of_fwnode_device_dma_supported,
1626 .device_get_dma_attr = of_fwnode_device_get_dma_attr,
1627 .property_present = of_fwnode_property_present,
1628 .property_read_bool = of_fwnode_property_read_bool,
1629 .property_read_int_array = of_fwnode_property_read_int_array,
1630 .property_read_string_array = of_fwnode_property_read_string_array,
1631 .get_name = of_fwnode_get_name,
1632 .get_name_prefix = of_fwnode_get_name_prefix,
1633 .get_parent = of_fwnode_get_parent,
1634 .get_next_child_node = of_fwnode_get_next_child_node,
1635 .get_named_child_node = of_fwnode_get_named_child_node,
1636 .get_reference_args = of_fwnode_get_reference_args,
1637 .graph_get_next_endpoint = of_fwnode_graph_get_next_endpoint,
1638 .graph_get_remote_endpoint = of_fwnode_graph_get_remote_endpoint,
1639 .graph_get_port_parent = of_fwnode_graph_get_port_parent,
1640 .graph_parse_endpoint = of_fwnode_graph_parse_endpoint,
1641 .iomap = of_fwnode_iomap,
1642 .irq_get = of_fwnode_irq_get,
1643 .add_links = of_fwnode_add_links,
1644 };
1645 EXPORT_SYMBOL_GPL(of_fwnode_ops);
1646