xref: /linux/drivers/media/i2c/vd56g3.c (revision ab93e0dd72c37d378dd936f031ffb83ff2bd87ce)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * A V4L2 driver for ST VD56G3 (Mono) and VD66GY (RGB) global shutter cameras.
4  * Copyright (C) 2024, STMicroelectronics SA
5  */
6 
7 #include <linux/clk.h>
8 #include <linux/delay.h>
9 #include <linux/gpio/consumer.h>
10 #include <linux/i2c.h>
11 #include <linux/iopoll.h>
12 #include <linux/module.h>
13 #include <linux/pm_runtime.h>
14 #include <linux/regmap.h>
15 #include <linux/regulator/consumer.h>
16 #include <linux/unaligned.h>
17 #include <linux/units.h>
18 
19 #include <media/mipi-csi2.h>
20 #include <media/v4l2-async.h>
21 #include <media/v4l2-cci.h>
22 #include <media/v4l2-ctrls.h>
23 #include <media/v4l2-device.h>
24 #include <media/v4l2-fwnode.h>
25 #include <media/v4l2-subdev.h>
26 
27 /* Register Map */
28 #define VD56G3_REG_MODEL_ID				CCI_REG16_LE(0x0000)
29 #define VD56G3_MODEL_ID					0x5603
30 #define VD56G3_REG_REVISION				CCI_REG16_LE(0x0002)
31 #define VD56G3_REVISION_CUT3				0x31
32 #define VD56G3_REG_OPTICAL_REVISION			CCI_REG8(0x001a)
33 #define VD56G3_OPTICAL_REVISION_MONO			0
34 #define VD56G3_OPTICAL_REVISION_BAYER			1
35 #define VD56G3_REG_SYSTEM_FSM				CCI_REG8(0x0028)
36 #define VD56G3_SYSTEM_FSM_READY_TO_BOOT			0x01
37 #define VD56G3_SYSTEM_FSM_SW_STBY			0x02
38 #define VD56G3_SYSTEM_FSM_STREAMING			0x03
39 #define VD56G3_REG_APPLIED_COARSE_EXPOSURE		CCI_REG16_LE(0x0064)
40 #define VD56G3_REG_APPLIED_ANALOG_GAIN			CCI_REG8(0x0068)
41 #define VD56G3_REG_APPLIED_DIGITAL_GAIN			CCI_REG16_LE(0x006a)
42 #define VD56G3_REG_BOOT					CCI_REG8(0x0200)
43 #define VD56G3_CMD_ACK					0
44 #define VD56G3_CMD_BOOT					1
45 #define VD56G3_REG_STBY					CCI_REG8(0x0201)
46 #define VD56G3_CMD_START_STREAM				1
47 #define VD56G3_REG_STREAMING				CCI_REG8(0x0202)
48 #define VD56G3_CMD_STOP_STREAM				1
49 #define VD56G3_REG_EXT_CLOCK				CCI_REG32_LE(0x0220)
50 #define VD56G3_REG_CLK_PLL_PREDIV			CCI_REG8(0x0224)
51 #define VD56G3_REG_CLK_SYS_PLL_MULT			CCI_REG8(0x0226)
52 #define VD56G3_REG_ORIENTATION				CCI_REG8(0x0302)
53 #define VD56G3_REG_FORMAT_CTRL				CCI_REG8(0x030a)
54 #define VD56G3_REG_OIF_CTRL				CCI_REG16_LE(0x030c)
55 #define VD56G3_REG_OIF_IMG_CTRL				CCI_REG8(0x030f)
56 #define VD56G3_REG_OIF_CSI_BITRATE			CCI_REG16_LE(0x0312)
57 #define VD56G3_REG_DUSTER_CTRL				CCI_REG8(0x0318)
58 #define VD56G3_DUSTER_DISABLE				0
59 #define VD56G3_DUSTER_ENABLE_DEF_MODULES		0x13
60 #define VD56G3_REG_ISL_ENABLE				CCI_REG8(0x0333)
61 #define VD56G3_REG_DARKCAL_CTRL				CCI_REG8(0x0340)
62 #define VD56G3_DARKCAL_ENABLE				1
63 #define VD56G3_DARKCAL_DISABLE_DARKAVG			2
64 #define VD56G3_REG_PATGEN_CTRL				CCI_REG16_LE(0x0400)
65 #define VD56G3_PATGEN_ENABLE				1
66 #define VD56G3_PATGEN_TYPE_SHIFT			4
67 #define VD56G3_REG_AE_COLDSTART_COARSE_EXPOSURE		CCI_REG16_LE(0x042a)
68 #define VD56G3_REG_AE_COLDSTART_ANALOG_GAIN		CCI_REG8(0x042c)
69 #define VD56G3_REG_AE_COLDSTART_DIGITAL_GAIN		CCI_REG16_LE(0x042e)
70 #define VD56G3_REG_AE_ROI_START_H			CCI_REG16_LE(0x0432)
71 #define VD56G3_REG_AE_ROI_START_V			CCI_REG16_LE(0x0434)
72 #define VD56G3_REG_AE_ROI_END_H				CCI_REG16_LE(0x0436)
73 #define VD56G3_REG_AE_ROI_END_V				CCI_REG16_LE(0x0438)
74 #define VD56G3_REG_AE_COMPENSATION			CCI_REG16_LE(0x043a)
75 #define VD56G3_REG_EXP_MODE				CCI_REG8(0x044c)
76 #define VD56G3_EXP_MODE_AUTO				0
77 #define VD56G3_EXP_MODE_FREEZE				1
78 #define VD56G3_EXP_MODE_MANUAL				2
79 #define VD56G3_REG_MANUAL_ANALOG_GAIN			CCI_REG8(0x044d)
80 #define VD56G3_REG_MANUAL_COARSE_EXPOSURE		CCI_REG16_LE(0x044e)
81 #define VD56G3_REG_MANUAL_DIGITAL_GAIN_CH0		CCI_REG16_LE(0x0450)
82 #define VD56G3_REG_MANUAL_DIGITAL_GAIN_CH1		CCI_REG16_LE(0x0452)
83 #define VD56G3_REG_MANUAL_DIGITAL_GAIN_CH2		CCI_REG16_LE(0x0454)
84 #define VD56G3_REG_MANUAL_DIGITAL_GAIN_CH3		CCI_REG16_LE(0x0456)
85 #define VD56G3_REG_FRAME_LENGTH				CCI_REG16_LE(0x0458)
86 #define VD56G3_REG_Y_START				CCI_REG16_LE(0x045a)
87 #define VD56G3_REG_Y_END				CCI_REG16_LE(0x045c)
88 #define VD56G3_REG_OUT_ROI_X_START			CCI_REG16_LE(0x045e)
89 #define VD56G3_REG_OUT_ROI_X_END			CCI_REG16_LE(0x0460)
90 #define VD56G3_REG_OUT_ROI_Y_START			CCI_REG16_LE(0x0462)
91 #define VD56G3_REG_OUT_ROI_Y_END			CCI_REG16_LE(0x0464)
92 #define VD56G3_REG_GPIO_0_CTRL				CCI_REG8(0x0467)
93 #define VD56G3_GPIOX_GPIO_IN				0x01
94 #define VD56G3_GPIOX_STROBE_MODE			0x02
95 #define VD56G3_REG_READOUT_CTRL				CCI_REG8(0x047e)
96 #define READOUT_NORMAL					0x00
97 #define READOUT_DIGITAL_BINNING_X2			0x01
98 
99 /* The VD56G3 is a portrait image sensor with native resolution of 1124x1364. */
100 #define VD56G3_NATIVE_WIDTH				1124
101 #define VD56G3_NATIVE_HEIGHT				1364
102 #define VD56G3_DEFAULT_MODE				0
103 
104 /* PLL settings */
105 #define VD56G3_TARGET_PLL				804000000UL
106 #define VD56G3_VT_CLOCK_DIV				5
107 
108 /* External clock must be in [6Mhz-27Mhz] */
109 #define VD56G3_XCLK_FREQ_MIN				 (6 * HZ_PER_MHZ)
110 #define VD56G3_XCLK_FREQ_MAX				 (27 * HZ_PER_MHZ)
111 
112 /* Line length and Frame length (settings are for standard 10bits ADC mode) */
113 #define VD56G3_LINE_LENGTH_MIN				1236
114 #define VD56G3_VBLANK_MIN				110
115 #define VD56G3_FRAME_LENGTH_DEF_60FPS			2168
116 #define VD56G3_FRAME_LENGTH_MAX				0xffff
117 
118 /* Exposure settings */
119 #define VD56G3_EXPOSURE_MARGIN				75
120 #define VD56G3_EXPOSURE_MIN				5
121 #define VD56G3_EXPOSURE_DEFAULT				1420
122 
123 /* Output Interface settings */
124 #define VD56G3_MAX_CSI_DATA_LANES			2
125 #define VD56G3_LINK_FREQ_DEF_1LANE			750000000UL
126 #define VD56G3_LINK_FREQ_DEF_2LANES			402000000UL
127 
128 /* GPIOs */
129 #define VD56G3_NB_GPIOS					8
130 
131 /* regulator supplies */
132 static const char *const vd56g3_supply_names[] = {
133 	"vcore",
134 	"vddio",
135 	"vana",
136 };
137 
138 /* -----------------------------------------------------------------------------
139  * Models (VD56G3: Mono, VD66GY: Bayer RGB), Modes and formats
140  */
141 
142 enum vd56g3_models {
143 	VD56G3_MODEL_VD56G3,
144 	VD56G3_MODEL_VD66GY,
145 };
146 
147 struct vd56g3_mode {
148 	u32 width;
149 	u32 height;
150 };
151 
152 static const struct vd56g3_mode vd56g3_supported_modes[] = {
153 	{
154 		.width = VD56G3_NATIVE_WIDTH,
155 		.height = VD56G3_NATIVE_HEIGHT,
156 	},
157 	{
158 		.width = 1120,
159 		.height = 1360,
160 	},
161 	{
162 		.width = 1024,
163 		.height = 1280,
164 	},
165 	{
166 		.width = 1024,
167 		.height = 768,
168 	},
169 	{
170 		.width = 768,
171 		.height = 1024,
172 	},
173 	{
174 		.width = 720,
175 		.height = 1280,
176 	},
177 	{
178 		.width = 640,
179 		.height = 480,
180 	},
181 	{
182 		.width = 480,
183 		.height = 640,
184 	},
185 	{
186 		.width = 320,
187 		.height = 240,
188 	},
189 };
190 
191 /*
192  * Sensor support 8bits and 10bits output in both variants
193  *  - Monochrome
194  *  - RGB (with all H/V flip variations)
195  */
196 static const unsigned int vd56g3_mbus_codes[2][5] = {
197 	{
198 		MEDIA_BUS_FMT_Y8_1X8,
199 		MEDIA_BUS_FMT_SGRBG8_1X8,
200 		MEDIA_BUS_FMT_SRGGB8_1X8,
201 		MEDIA_BUS_FMT_SBGGR8_1X8,
202 		MEDIA_BUS_FMT_SGBRG8_1X8,
203 	},
204 	{
205 		MEDIA_BUS_FMT_Y10_1X10,
206 		MEDIA_BUS_FMT_SGRBG10_1X10,
207 		MEDIA_BUS_FMT_SRGGB10_1X10,
208 		MEDIA_BUS_FMT_SBGGR10_1X10,
209 		MEDIA_BUS_FMT_SGBRG10_1X10,
210 	},
211 };
212 
213 struct vd56g3 {
214 	struct device *dev;
215 	struct v4l2_subdev sd;
216 	struct media_pad pad;
217 	struct regulator_bulk_data supplies[ARRAY_SIZE(vd56g3_supply_names)];
218 	struct gpio_desc *reset_gpio;
219 	struct clk *xclk;
220 	struct regmap *regmap;
221 	u32 xclk_freq;
222 	u32 pll_prediv;
223 	u32 pll_mult;
224 	u32 pixel_clock;
225 	u16 oif_ctrl;
226 	u8 nb_of_lane;
227 	u32 gpios[VD56G3_NB_GPIOS];
228 	unsigned long ext_leds_mask;
229 	bool is_mono;
230 	struct v4l2_ctrl_handler ctrl_handler;
231 	struct v4l2_ctrl *hblank_ctrl;
232 	struct v4l2_ctrl *vblank_ctrl;
233 	struct {
234 		struct v4l2_ctrl *hflip_ctrl;
235 		struct v4l2_ctrl *vflip_ctrl;
236 	};
237 	struct v4l2_ctrl *patgen_ctrl;
238 	struct {
239 		struct v4l2_ctrl *ae_ctrl;
240 		struct v4l2_ctrl *expo_ctrl;
241 		struct v4l2_ctrl *again_ctrl;
242 		struct v4l2_ctrl *dgain_ctrl;
243 	};
244 	struct v4l2_ctrl *ae_lock_ctrl;
245 	struct v4l2_ctrl *ae_bias_ctrl;
246 	struct v4l2_ctrl *led_ctrl;
247 };
248 
to_vd56g3(struct v4l2_subdev * sd)249 static inline struct vd56g3 *to_vd56g3(struct v4l2_subdev *sd)
250 {
251 	return container_of_const(sd, struct vd56g3, sd);
252 }
253 
ctrl_to_vd56g3(struct v4l2_ctrl * ctrl)254 static inline struct vd56g3 *ctrl_to_vd56g3(struct v4l2_ctrl *ctrl)
255 {
256 	return container_of_const(ctrl->handler, struct vd56g3, ctrl_handler);
257 }
258 
259 /* -----------------------------------------------------------------------------
260  * Additional i2c register helpers
261  */
262 
vd56g3_poll_reg(struct vd56g3 * sensor,u32 reg,u8 poll_val,int * err)263 static int vd56g3_poll_reg(struct vd56g3 *sensor, u32 reg, u8 poll_val,
264 			   int *err)
265 {
266 	unsigned int val = 0;
267 	int ret;
268 
269 	if (err && *err)
270 		return *err;
271 
272 	/*
273 	 * Timeout must be higher than longuest frame duration. With current
274 	 * blanking constraints, frame duration can take up to 504ms.
275 	 */
276 	ret = regmap_read_poll_timeout(sensor->regmap, CCI_REG_ADDR(reg), val,
277 				       (val == poll_val), 2000,
278 				       600 * USEC_PER_MSEC);
279 
280 	if (ret && err)
281 		*err = ret;
282 
283 	return ret;
284 }
285 
vd56g3_wait_state(struct vd56g3 * sensor,int state,int * err)286 static int vd56g3_wait_state(struct vd56g3 *sensor, int state, int *err)
287 {
288 	return vd56g3_poll_reg(sensor, VD56G3_REG_SYSTEM_FSM, state, err);
289 }
290 
291 /* -----------------------------------------------------------------------------
292  * Controls: definitions, helpers and handlers
293  */
294 
295 static const char *const vd56g3_tp_menu[] = { "Disabled",
296 					      "Solid Color",
297 					      "Vertical Color Bars",
298 					      "Horizontal Gray Scale",
299 					      "Vertical Gray Scale",
300 					      "Diagonal Gray Scale",
301 					      "Pseudo Random" };
302 
303 static const s64 vd56g3_ev_bias_qmenu[] = { -4000, -3500, -3000, -2500, -2000,
304 					    -1500, -1000, -500,	 0,	500,
305 					    1000,  1500,  2000,	 2500,	3000,
306 					    3500,  4000 };
307 
308 static const s64 vd56g3_link_freq_1lane[] = { VD56G3_LINK_FREQ_DEF_1LANE };
309 
310 static const s64 vd56g3_link_freq_2lanes[] = { VD56G3_LINK_FREQ_DEF_2LANES };
311 
vd56g3_get_bpp(__u32 code)312 static u8 vd56g3_get_bpp(__u32 code)
313 {
314 	switch (code) {
315 	case MEDIA_BUS_FMT_Y8_1X8:
316 	case MEDIA_BUS_FMT_SGRBG8_1X8:
317 	case MEDIA_BUS_FMT_SRGGB8_1X8:
318 	case MEDIA_BUS_FMT_SBGGR8_1X8:
319 	case MEDIA_BUS_FMT_SGBRG8_1X8:
320 	default:
321 		return 8;
322 	case MEDIA_BUS_FMT_Y10_1X10:
323 	case MEDIA_BUS_FMT_SGRBG10_1X10:
324 	case MEDIA_BUS_FMT_SRGGB10_1X10:
325 	case MEDIA_BUS_FMT_SBGGR10_1X10:
326 	case MEDIA_BUS_FMT_SGBRG10_1X10:
327 		return 10;
328 	}
329 }
330 
vd56g3_get_datatype(__u32 code)331 static u8 vd56g3_get_datatype(__u32 code)
332 {
333 	switch (code) {
334 	case MEDIA_BUS_FMT_Y8_1X8:
335 	case MEDIA_BUS_FMT_SGRBG8_1X8:
336 	case MEDIA_BUS_FMT_SRGGB8_1X8:
337 	case MEDIA_BUS_FMT_SBGGR8_1X8:
338 	case MEDIA_BUS_FMT_SGBRG8_1X8:
339 	default:
340 		return MIPI_CSI2_DT_RAW8;
341 	case MEDIA_BUS_FMT_Y10_1X10:
342 	case MEDIA_BUS_FMT_SGRBG10_1X10:
343 	case MEDIA_BUS_FMT_SRGGB10_1X10:
344 	case MEDIA_BUS_FMT_SBGGR10_1X10:
345 	case MEDIA_BUS_FMT_SGBRG10_1X10:
346 		return MIPI_CSI2_DT_RAW10;
347 	}
348 }
349 
vd56g3_read_expo_cluster(struct vd56g3 * sensor,bool force_cur_val)350 static int vd56g3_read_expo_cluster(struct vd56g3 *sensor, bool force_cur_val)
351 {
352 	u64 exposure;
353 	u64 again;
354 	u64 dgain;
355 	int ret = 0;
356 
357 	/*
358 	 * When 'force_cur_val' is enabled, save the ctrl value in 'cur.val'
359 	 * instead of the normal 'val', this is used during poweroff to cache
360 	 * volatile ctrls and enable coldstart.
361 	 */
362 	cci_read(sensor->regmap, VD56G3_REG_APPLIED_COARSE_EXPOSURE, &exposure,
363 		 &ret);
364 	cci_read(sensor->regmap, VD56G3_REG_APPLIED_ANALOG_GAIN, &again, &ret);
365 	cci_read(sensor->regmap, VD56G3_REG_APPLIED_DIGITAL_GAIN, &dgain, &ret);
366 	if (ret)
367 		return ret;
368 
369 	if (force_cur_val) {
370 		sensor->expo_ctrl->cur.val = exposure;
371 		sensor->again_ctrl->cur.val = again;
372 		sensor->dgain_ctrl->cur.val = dgain;
373 	} else {
374 		sensor->expo_ctrl->val = exposure;
375 		sensor->again_ctrl->val = again;
376 		sensor->dgain_ctrl->val = dgain;
377 	}
378 
379 	return ret;
380 }
381 
vd56g3_update_patgen(struct vd56g3 * sensor,u32 patgen_index)382 static int vd56g3_update_patgen(struct vd56g3 *sensor, u32 patgen_index)
383 {
384 	u32 pattern = patgen_index <= 2 ? patgen_index : patgen_index + 13;
385 	u16 patgen = pattern << VD56G3_PATGEN_TYPE_SHIFT;
386 	u8 duster = VD56G3_DUSTER_ENABLE_DEF_MODULES;
387 	u8 darkcal = VD56G3_DARKCAL_ENABLE;
388 	int ret = 0;
389 
390 	if (patgen_index) {
391 		patgen |= VD56G3_PATGEN_ENABLE;
392 		duster = VD56G3_DUSTER_DISABLE;
393 		darkcal = VD56G3_DARKCAL_DISABLE_DARKAVG;
394 	}
395 
396 	cci_write(sensor->regmap, VD56G3_REG_DUSTER_CTRL, duster, &ret);
397 	cci_write(sensor->regmap, VD56G3_REG_DARKCAL_CTRL, darkcal, &ret);
398 	cci_write(sensor->regmap, VD56G3_REG_PATGEN_CTRL, patgen, &ret);
399 
400 	return ret;
401 }
402 
vd56g3_update_expo_cluster(struct vd56g3 * sensor,bool is_auto)403 static int vd56g3_update_expo_cluster(struct vd56g3 *sensor, bool is_auto)
404 {
405 	u8 expo_state = is_auto ? VD56G3_EXP_MODE_AUTO : VD56G3_EXP_MODE_MANUAL;
406 	int ret = 0;
407 
408 	if (sensor->ae_ctrl->is_new)
409 		cci_write(sensor->regmap, VD56G3_REG_EXP_MODE, expo_state,
410 			  &ret);
411 
412 	/* In Auto expo, set coldstart parameters */
413 	if (is_auto && sensor->ae_ctrl->is_new) {
414 		cci_write(sensor->regmap,
415 			  VD56G3_REG_AE_COLDSTART_COARSE_EXPOSURE,
416 			  sensor->expo_ctrl->val, &ret);
417 		cci_write(sensor->regmap, VD56G3_REG_AE_COLDSTART_ANALOG_GAIN,
418 			  sensor->again_ctrl->val, &ret);
419 		cci_write(sensor->regmap, VD56G3_REG_AE_COLDSTART_DIGITAL_GAIN,
420 			  sensor->dgain_ctrl->val, &ret);
421 	}
422 
423 	/* In Manual expo, set exposure, analog and digital gains */
424 	if (!is_auto && sensor->expo_ctrl->is_new)
425 		cci_write(sensor->regmap, VD56G3_REG_MANUAL_COARSE_EXPOSURE,
426 			  sensor->expo_ctrl->val, &ret);
427 
428 	if (!is_auto && sensor->again_ctrl->is_new)
429 		cci_write(sensor->regmap, VD56G3_REG_MANUAL_ANALOG_GAIN,
430 			  sensor->again_ctrl->val, &ret);
431 
432 	if (!is_auto && sensor->dgain_ctrl->is_new) {
433 		cci_write(sensor->regmap, VD56G3_REG_MANUAL_DIGITAL_GAIN_CH0,
434 			  sensor->dgain_ctrl->val, &ret);
435 		cci_write(sensor->regmap, VD56G3_REG_MANUAL_DIGITAL_GAIN_CH1,
436 			  sensor->dgain_ctrl->val, &ret);
437 		cci_write(sensor->regmap, VD56G3_REG_MANUAL_DIGITAL_GAIN_CH2,
438 			  sensor->dgain_ctrl->val, &ret);
439 		cci_write(sensor->regmap, VD56G3_REG_MANUAL_DIGITAL_GAIN_CH3,
440 			  sensor->dgain_ctrl->val, &ret);
441 	}
442 
443 	return ret;
444 }
445 
vd56g3_lock_exposure(struct vd56g3 * sensor,u32 lock_val)446 static int vd56g3_lock_exposure(struct vd56g3 *sensor, u32 lock_val)
447 {
448 	bool ae_lock = lock_val & V4L2_LOCK_EXPOSURE;
449 	u8 expo_state = ae_lock ? VD56G3_EXP_MODE_FREEZE : VD56G3_EXP_MODE_AUTO;
450 
451 	if (sensor->ae_ctrl->val == V4L2_EXPOSURE_AUTO)
452 		return cci_write(sensor->regmap, VD56G3_REG_EXP_MODE,
453 				 expo_state, NULL);
454 
455 	return 0;
456 }
457 
vd56g3_write_gpiox(struct vd56g3 * sensor,unsigned long gpio_mask)458 static int vd56g3_write_gpiox(struct vd56g3 *sensor, unsigned long gpio_mask)
459 {
460 	unsigned long io;
461 	u32 gpio_val;
462 	int ret = 0;
463 
464 	for_each_set_bit(io, &gpio_mask, VD56G3_NB_GPIOS) {
465 		gpio_val = sensor->gpios[io];
466 
467 		if (gpio_val == VD56G3_GPIOX_STROBE_MODE &&
468 		    sensor->led_ctrl->val == V4L2_FLASH_LED_MODE_NONE)
469 			gpio_val = VD56G3_GPIOX_GPIO_IN;
470 
471 		cci_write(sensor->regmap, VD56G3_REG_GPIO_0_CTRL + io, gpio_val,
472 			  &ret);
473 	}
474 
475 	return ret;
476 }
477 
vd56g3_g_volatile_ctrl(struct v4l2_ctrl * ctrl)478 static int vd56g3_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
479 {
480 	struct vd56g3 *sensor = ctrl_to_vd56g3(ctrl);
481 	int ret = 0;
482 
483 	/* Interact with HW only when it is powered ON */
484 	if (!pm_runtime_get_if_in_use(sensor->dev))
485 		return 0;
486 
487 	switch (ctrl->id) {
488 	case V4L2_CID_EXPOSURE_AUTO:
489 		ret = vd56g3_read_expo_cluster(sensor, false);
490 		break;
491 	default:
492 		ret = -EINVAL;
493 		break;
494 	}
495 
496 	pm_runtime_mark_last_busy(sensor->dev);
497 	pm_runtime_put_autosuspend(sensor->dev);
498 
499 	return ret;
500 }
501 
vd56g3_s_ctrl(struct v4l2_ctrl * ctrl)502 static int vd56g3_s_ctrl(struct v4l2_ctrl *ctrl)
503 {
504 	struct vd56g3 *sensor = ctrl_to_vd56g3(ctrl);
505 	struct v4l2_subdev_state *state;
506 	const struct v4l2_rect *crop;
507 	unsigned int frame_length = 0;
508 	unsigned int expo_max;
509 	unsigned int ae_compensation;
510 	bool is_auto = false;
511 	int ret = 0;
512 
513 	state = v4l2_subdev_get_locked_active_state(&sensor->sd);
514 	crop = v4l2_subdev_state_get_crop(state, 0);
515 
516 	if (ctrl->flags & V4L2_CTRL_FLAG_READ_ONLY)
517 		return 0;
518 
519 	/* Update controls state, range, etc. whatever the state of the HW */
520 	switch (ctrl->id) {
521 	case V4L2_CID_VBLANK:
522 		frame_length = crop->height + ctrl->val;
523 		expo_max = frame_length - VD56G3_EXPOSURE_MARGIN;
524 		ret = __v4l2_ctrl_modify_range(sensor->expo_ctrl,
525 					       VD56G3_EXPOSURE_MIN, expo_max, 1,
526 					       min(VD56G3_EXPOSURE_DEFAULT,
527 						   expo_max));
528 		break;
529 	case V4L2_CID_EXPOSURE_AUTO:
530 		is_auto = (ctrl->val == V4L2_EXPOSURE_AUTO);
531 		__v4l2_ctrl_grab(sensor->ae_lock_ctrl, !is_auto);
532 		__v4l2_ctrl_grab(sensor->ae_bias_ctrl, !is_auto);
533 		break;
534 	default:
535 		break;
536 	}
537 
538 	if (ret)
539 		return ret;
540 
541 	/* Interact with HW only when it is powered ON */
542 	if (!pm_runtime_get_if_in_use(sensor->dev))
543 		return 0;
544 
545 	switch (ctrl->id) {
546 	case V4L2_CID_HFLIP:
547 		ret = cci_write(sensor->regmap, VD56G3_REG_ORIENTATION,
548 				sensor->hflip_ctrl->val |
549 					(sensor->vflip_ctrl->val << 1),
550 				NULL);
551 		break;
552 	case V4L2_CID_TEST_PATTERN:
553 		ret = vd56g3_update_patgen(sensor, ctrl->val);
554 		break;
555 	case V4L2_CID_EXPOSURE_AUTO:
556 		ret = vd56g3_update_expo_cluster(sensor, is_auto);
557 		break;
558 	case V4L2_CID_3A_LOCK:
559 		ret = vd56g3_lock_exposure(sensor, ctrl->val);
560 		break;
561 	case V4L2_CID_AUTO_EXPOSURE_BIAS:
562 		ae_compensation =
563 			DIV_ROUND_CLOSEST((int)vd56g3_ev_bias_qmenu[ctrl->val] *
564 					  256, 1000);
565 		ret = cci_write(sensor->regmap, VD56G3_REG_AE_COMPENSATION,
566 				ae_compensation, NULL);
567 		break;
568 	case V4L2_CID_VBLANK:
569 		ret = cci_write(sensor->regmap, VD56G3_REG_FRAME_LENGTH,
570 				frame_length, NULL);
571 		break;
572 	case V4L2_CID_FLASH_LED_MODE:
573 		ret = vd56g3_write_gpiox(sensor, sensor->ext_leds_mask);
574 		break;
575 	default:
576 		ret = -EINVAL;
577 		break;
578 	}
579 
580 	pm_runtime_mark_last_busy(sensor->dev);
581 	pm_runtime_put_autosuspend(sensor->dev);
582 
583 	return ret;
584 }
585 
586 static const struct v4l2_ctrl_ops vd56g3_ctrl_ops = {
587 	.g_volatile_ctrl = vd56g3_g_volatile_ctrl,
588 	.s_ctrl = vd56g3_s_ctrl,
589 };
590 
vd56g3_update_controls(struct vd56g3 * sensor)591 static int vd56g3_update_controls(struct vd56g3 *sensor)
592 {
593 	struct v4l2_subdev_state *state;
594 	const struct v4l2_rect *crop;
595 	unsigned int hblank;
596 	unsigned int vblank_min, vblank, vblank_max;
597 	unsigned int frame_length;
598 	unsigned int expo_max;
599 	int ret;
600 
601 	state = v4l2_subdev_get_locked_active_state(&sensor->sd);
602 	crop = v4l2_subdev_state_get_crop(state, 0);
603 	hblank = VD56G3_LINE_LENGTH_MIN - crop->width;
604 	vblank_min = VD56G3_VBLANK_MIN;
605 	vblank = VD56G3_FRAME_LENGTH_DEF_60FPS - crop->height;
606 	vblank_max = VD56G3_FRAME_LENGTH_MAX - crop->height;
607 	frame_length = crop->height + vblank;
608 	expo_max = frame_length - VD56G3_EXPOSURE_MARGIN;
609 
610 	/* Update blanking and exposure (ranges + values) */
611 	ret = __v4l2_ctrl_modify_range(sensor->hblank_ctrl, hblank, hblank, 1,
612 				       hblank);
613 	if (ret)
614 		return ret;
615 
616 	ret = __v4l2_ctrl_modify_range(sensor->vblank_ctrl, vblank_min,
617 				       vblank_max, 1, vblank);
618 	if (ret)
619 		return ret;
620 
621 	ret = __v4l2_ctrl_s_ctrl(sensor->vblank_ctrl, vblank);
622 	if (ret)
623 		return ret;
624 
625 	ret = __v4l2_ctrl_modify_range(sensor->expo_ctrl, VD56G3_EXPOSURE_MIN,
626 				       expo_max, 1, VD56G3_EXPOSURE_DEFAULT);
627 	if (ret)
628 		return ret;
629 
630 	return __v4l2_ctrl_s_ctrl(sensor->expo_ctrl, VD56G3_EXPOSURE_DEFAULT);
631 }
632 
vd56g3_init_controls(struct vd56g3 * sensor)633 static int vd56g3_init_controls(struct vd56g3 *sensor)
634 {
635 	const struct v4l2_ctrl_ops *ops = &vd56g3_ctrl_ops;
636 	struct v4l2_ctrl_handler *hdl = &sensor->ctrl_handler;
637 	struct v4l2_fwnode_device_properties fwnode_props;
638 	struct v4l2_ctrl *ctrl;
639 	int ret;
640 
641 	v4l2_ctrl_handler_init(hdl, 25);
642 
643 	/* Horizontal & vertical flips modify bayer code on RGB variant */
644 	sensor->hflip_ctrl =
645 		v4l2_ctrl_new_std(hdl, ops, V4L2_CID_HFLIP, 0, 1, 1, 0);
646 	if (sensor->hflip_ctrl)
647 		sensor->hflip_ctrl->flags |= V4L2_CTRL_FLAG_MODIFY_LAYOUT;
648 
649 	sensor->vflip_ctrl =
650 		v4l2_ctrl_new_std(hdl, ops, V4L2_CID_VFLIP, 0, 1, 1, 0);
651 	if (sensor->vflip_ctrl)
652 		sensor->vflip_ctrl->flags |= V4L2_CTRL_FLAG_MODIFY_LAYOUT;
653 
654 	sensor->patgen_ctrl =
655 		v4l2_ctrl_new_std_menu_items(hdl, ops, V4L2_CID_TEST_PATTERN,
656 					     ARRAY_SIZE(vd56g3_tp_menu) - 1, 0,
657 					     0, vd56g3_tp_menu);
658 
659 	ctrl = v4l2_ctrl_new_int_menu(hdl, ops, V4L2_CID_LINK_FREQ,
660 				      ARRAY_SIZE(vd56g3_link_freq_1lane) - 1, 0,
661 				      (sensor->nb_of_lane == 2) ?
662 					      vd56g3_link_freq_2lanes :
663 					      vd56g3_link_freq_1lane);
664 	if (ctrl)
665 		ctrl->flags |= V4L2_CTRL_FLAG_READ_ONLY;
666 
667 	ctrl = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_PIXEL_RATE,
668 				 sensor->pixel_clock, sensor->pixel_clock, 1,
669 				 sensor->pixel_clock);
670 	if (ctrl)
671 		ctrl->flags |= V4L2_CTRL_FLAG_READ_ONLY;
672 
673 	sensor->ae_ctrl = v4l2_ctrl_new_std_menu(hdl, ops,
674 						 V4L2_CID_EXPOSURE_AUTO,
675 						 V4L2_EXPOSURE_MANUAL, 0,
676 						 V4L2_EXPOSURE_AUTO);
677 
678 	sensor->ae_lock_ctrl = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_3A_LOCK, 0,
679 						 GENMASK(2, 0), 0, 0);
680 
681 	sensor->ae_bias_ctrl =
682 		v4l2_ctrl_new_int_menu(hdl, ops, V4L2_CID_AUTO_EXPOSURE_BIAS,
683 				       ARRAY_SIZE(vd56g3_ev_bias_qmenu) - 1,
684 				       ARRAY_SIZE(vd56g3_ev_bias_qmenu) / 2,
685 				       vd56g3_ev_bias_qmenu);
686 
687 	/*
688 	 * Analog gain [1, 8] is computed with the following logic :
689 	 * 32/(32 - again_reg), with again_reg in the range [0:28]
690 	 * Digital gain [1.00, 8.00] is coded as a Fixed Point 5.8
691 	 */
692 	sensor->again_ctrl = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_ANALOGUE_GAIN,
693 					       0, 28, 1, 0);
694 	sensor->dgain_ctrl = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_DIGITAL_GAIN,
695 					       0x100, 0x800, 1, 0x100);
696 
697 	/*
698 	 * Set the exposure, horizontal and vertical blanking ctrls
699 	 * to hardcoded values, they will be updated in vd56g3_update_controls.
700 	 * Exposure being in an auto-cluster, set a significant value here.
701 	 */
702 	sensor->expo_ctrl = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_EXPOSURE,
703 					      VD56G3_EXPOSURE_DEFAULT,
704 					      VD56G3_EXPOSURE_DEFAULT, 1,
705 					      VD56G3_EXPOSURE_DEFAULT);
706 	sensor->hblank_ctrl =
707 		v4l2_ctrl_new_std(hdl, ops, V4L2_CID_HBLANK, 1, 1, 1, 1);
708 	if (sensor->hblank_ctrl)
709 		sensor->hblank_ctrl->flags |= V4L2_CTRL_FLAG_READ_ONLY;
710 	sensor->vblank_ctrl =
711 		v4l2_ctrl_new_std(hdl, ops, V4L2_CID_VBLANK, 1, 1, 1, 1);
712 
713 	/* Additional control based on device tree properties */
714 	if (sensor->ext_leds_mask)
715 		sensor->led_ctrl =
716 			v4l2_ctrl_new_std_menu(hdl, ops,
717 					       V4L2_CID_FLASH_LED_MODE,
718 					       V4L2_FLASH_LED_MODE_FLASH, 0,
719 					       V4L2_FLASH_LED_MODE_NONE);
720 
721 	if (hdl->error) {
722 		ret = hdl->error;
723 		goto free_ctrls;
724 	}
725 
726 	v4l2_ctrl_cluster(2, &sensor->hflip_ctrl);
727 	v4l2_ctrl_auto_cluster(4, &sensor->ae_ctrl, V4L2_EXPOSURE_MANUAL, true);
728 
729 	/* Optional controls coming from fwnode (e.g. rotation, orientation). */
730 	ret = v4l2_fwnode_device_parse(sensor->dev, &fwnode_props);
731 	if (ret)
732 		goto free_ctrls;
733 
734 	ret = v4l2_ctrl_new_fwnode_properties(hdl, ops, &fwnode_props);
735 	if (ret)
736 		goto free_ctrls;
737 
738 	sensor->sd.ctrl_handler = hdl;
739 
740 	return 0;
741 
742 free_ctrls:
743 	v4l2_ctrl_handler_free(hdl);
744 
745 	return ret;
746 }
747 
748 /* -----------------------------------------------------------------------------
749  * Pad ops
750  */
751 
752 /* Media bus code is dependent of :
753  *      - 8bits or 10bits output
754  *      - variant : Mono or RGB
755  *      - H/V flips parameters in case of RGB
756  */
vd56g3_get_mbus_code(struct vd56g3 * sensor,u32 code)757 static u32 vd56g3_get_mbus_code(struct vd56g3 *sensor, u32 code)
758 {
759 	unsigned int i_bpp;
760 	unsigned int j;
761 
762 	for (i_bpp = 0; i_bpp < ARRAY_SIZE(vd56g3_mbus_codes); i_bpp++) {
763 		for (j = 0; j < ARRAY_SIZE(vd56g3_mbus_codes[i_bpp]); j++) {
764 			if (vd56g3_mbus_codes[i_bpp][j] == code)
765 				goto endloops;
766 		}
767 	}
768 
769 endloops:
770 	if (i_bpp >= ARRAY_SIZE(vd56g3_mbus_codes))
771 		i_bpp = 0;
772 
773 	if (sensor->is_mono)
774 		j = 0;
775 	else
776 		j = 1 + (sensor->hflip_ctrl->val ? 1 : 0) +
777 		    (sensor->vflip_ctrl->val ? 2 : 0);
778 
779 	return vd56g3_mbus_codes[i_bpp][j];
780 }
781 
vd56g3_enum_mbus_code(struct v4l2_subdev * sd,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_mbus_code_enum * code)782 static int vd56g3_enum_mbus_code(struct v4l2_subdev *sd,
783 				 struct v4l2_subdev_state *sd_state,
784 				 struct v4l2_subdev_mbus_code_enum *code)
785 {
786 	struct vd56g3 *sensor = to_vd56g3(sd);
787 
788 	if (code->index >= ARRAY_SIZE(vd56g3_mbus_codes))
789 		return -EINVAL;
790 
791 	code->code =
792 		vd56g3_get_mbus_code(sensor, vd56g3_mbus_codes[code->index][0]);
793 
794 	return 0;
795 }
796 
vd56g3_enum_frame_size(struct v4l2_subdev * sd,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_frame_size_enum * fse)797 static int vd56g3_enum_frame_size(struct v4l2_subdev *sd,
798 				  struct v4l2_subdev_state *sd_state,
799 				  struct v4l2_subdev_frame_size_enum *fse)
800 {
801 	if (fse->index >= ARRAY_SIZE(vd56g3_supported_modes))
802 		return -EINVAL;
803 
804 	fse->min_width = vd56g3_supported_modes[fse->index].width;
805 	fse->max_width = fse->min_width;
806 	fse->min_height = vd56g3_supported_modes[fse->index].height;
807 	fse->max_height = fse->min_height;
808 
809 	return 0;
810 }
811 
vd56g3_update_img_pad_format(struct vd56g3 * sensor,const struct vd56g3_mode * mode,u32 mbus_code,struct v4l2_mbus_framefmt * mbus_fmt)812 static void vd56g3_update_img_pad_format(struct vd56g3 *sensor,
813 					 const struct vd56g3_mode *mode,
814 					 u32 mbus_code,
815 					 struct v4l2_mbus_framefmt *mbus_fmt)
816 {
817 	mbus_fmt->width = mode->width;
818 	mbus_fmt->height = mode->height;
819 	mbus_fmt->code = vd56g3_get_mbus_code(sensor, mbus_code);
820 	mbus_fmt->colorspace = V4L2_COLORSPACE_RAW;
821 	mbus_fmt->field = V4L2_FIELD_NONE;
822 	mbus_fmt->ycbcr_enc = V4L2_YCBCR_ENC_DEFAULT;
823 	mbus_fmt->quantization = V4L2_QUANTIZATION_FULL_RANGE;
824 	mbus_fmt->xfer_func = V4L2_XFER_FUNC_NONE;
825 }
826 
vd56g3_set_pad_fmt(struct v4l2_subdev * sd,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_format * sd_fmt)827 static int vd56g3_set_pad_fmt(struct v4l2_subdev *sd,
828 			      struct v4l2_subdev_state *sd_state,
829 			      struct v4l2_subdev_format *sd_fmt)
830 {
831 	struct vd56g3 *sensor = to_vd56g3(sd);
832 	const struct vd56g3_mode *new_mode;
833 	struct v4l2_rect pad_crop;
834 	unsigned int binning;
835 
836 	new_mode = v4l2_find_nearest_size(vd56g3_supported_modes,
837 					  ARRAY_SIZE(vd56g3_supported_modes),
838 					  width, height, sd_fmt->format.width,
839 					  sd_fmt->format.height);
840 
841 	vd56g3_update_img_pad_format(sensor, new_mode, sd_fmt->format.code,
842 				     &sd_fmt->format);
843 	*v4l2_subdev_state_get_format(sd_state, sd_fmt->pad) = sd_fmt->format;
844 
845 	/* Compute and update crop rectangle (maximized via binning) */
846 	binning = min(VD56G3_NATIVE_WIDTH / sd_fmt->format.width,
847 		      VD56G3_NATIVE_HEIGHT / sd_fmt->format.height);
848 	binning = min(binning, 2U);
849 	pad_crop.width = sd_fmt->format.width * binning;
850 	pad_crop.height = sd_fmt->format.height * binning;
851 	pad_crop.left = (VD56G3_NATIVE_WIDTH - pad_crop.width) / 2;
852 	pad_crop.top = (VD56G3_NATIVE_HEIGHT - pad_crop.height) / 2;
853 	*v4l2_subdev_state_get_crop(sd_state, sd_fmt->pad) = pad_crop;
854 
855 	/* Update controls in case of active state */
856 	if (sd_fmt->which == V4L2_SUBDEV_FORMAT_ACTIVE)
857 		return vd56g3_update_controls(sensor);
858 
859 	return 0;
860 }
861 
vd56g3_get_selection(struct v4l2_subdev * sd,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_selection * sel)862 static int vd56g3_get_selection(struct v4l2_subdev *sd,
863 				struct v4l2_subdev_state *sd_state,
864 				struct v4l2_subdev_selection *sel)
865 {
866 	switch (sel->target) {
867 	case V4L2_SEL_TGT_CROP:
868 		sel->r = *v4l2_subdev_state_get_crop(sd_state, 0);
869 		break;
870 	case V4L2_SEL_TGT_NATIVE_SIZE:
871 	case V4L2_SEL_TGT_CROP_DEFAULT:
872 	case V4L2_SEL_TGT_CROP_BOUNDS:
873 		sel->r.top = 0;
874 		sel->r.left = 0;
875 		sel->r.width = VD56G3_NATIVE_WIDTH;
876 		sel->r.height = VD56G3_NATIVE_HEIGHT;
877 		break;
878 	default:
879 		return -EINVAL;
880 	}
881 
882 	return 0;
883 }
884 
vd56g3_get_frame_desc(struct v4l2_subdev * sd,unsigned int pad,struct v4l2_mbus_frame_desc * fd)885 static int vd56g3_get_frame_desc(struct v4l2_subdev *sd, unsigned int pad,
886 				 struct v4l2_mbus_frame_desc *fd)
887 {
888 	struct v4l2_subdev_state *state;
889 	const struct v4l2_mbus_framefmt *format;
890 
891 	state = v4l2_subdev_lock_and_get_active_state(sd);
892 	format = v4l2_subdev_state_get_format(state, pad);
893 	v4l2_subdev_unlock_state(state);
894 
895 	fd->type = V4L2_MBUS_FRAME_DESC_TYPE_CSI2;
896 	fd->num_entries = 1;
897 	fd->entry[0].pixelcode = format->code;
898 	fd->entry[0].stream = 0;
899 	fd->entry[0].bus.csi2.vc = 0;
900 	fd->entry[0].bus.csi2.dt = vd56g3_get_datatype(format->code);
901 
902 	return 0;
903 }
904 
vd56g3_enable_streams(struct v4l2_subdev * sd,struct v4l2_subdev_state * state,u32 pad,u64 streams_mask)905 static int vd56g3_enable_streams(struct v4l2_subdev *sd,
906 				 struct v4l2_subdev_state *state, u32 pad,
907 				 u64 streams_mask)
908 {
909 	struct vd56g3 *sensor = to_vd56g3(sd);
910 	const struct v4l2_mbus_framefmt *format =
911 		v4l2_subdev_state_get_format(state, 0);
912 	const struct v4l2_rect *crop = v4l2_subdev_state_get_crop(state, 0);
913 	unsigned int csi_mbps = ((sensor->nb_of_lane == 2) ?
914 					 VD56G3_LINK_FREQ_DEF_2LANES :
915 					 VD56G3_LINK_FREQ_DEF_1LANE) *
916 				2 / MEGA;
917 	unsigned int binning;
918 	int ret;
919 
920 	ret = pm_runtime_resume_and_get(sensor->dev);
921 	if (ret < 0)
922 		return ret;
923 
924 	/* configure clocks */
925 	cci_write(sensor->regmap, VD56G3_REG_EXT_CLOCK, sensor->xclk_freq,
926 		  &ret);
927 	cci_write(sensor->regmap, VD56G3_REG_CLK_PLL_PREDIV, sensor->pll_prediv,
928 		  &ret);
929 	cci_write(sensor->regmap, VD56G3_REG_CLK_SYS_PLL_MULT, sensor->pll_mult,
930 		  &ret);
931 
932 	/* configure output */
933 	cci_write(sensor->regmap, VD56G3_REG_FORMAT_CTRL,
934 		  vd56g3_get_bpp(format->code), &ret);
935 	cci_write(sensor->regmap, VD56G3_REG_OIF_CTRL, sensor->oif_ctrl, &ret);
936 	cci_write(sensor->regmap, VD56G3_REG_OIF_CSI_BITRATE, csi_mbps, &ret);
937 	cci_write(sensor->regmap, VD56G3_REG_OIF_IMG_CTRL,
938 		  vd56g3_get_datatype(format->code), &ret);
939 	cci_write(sensor->regmap, VD56G3_REG_ISL_ENABLE, 0, &ret);
940 
941 	/* configure binning mode */
942 	switch (crop->width / format->width) {
943 	case 1:
944 	default:
945 		binning = READOUT_NORMAL;
946 		break;
947 	case 2:
948 		binning = READOUT_DIGITAL_BINNING_X2;
949 		break;
950 	}
951 	cci_write(sensor->regmap, VD56G3_REG_READOUT_CTRL, binning, &ret);
952 
953 	/* configure ROIs */
954 	cci_write(sensor->regmap, VD56G3_REG_Y_START, crop->top, &ret);
955 	cci_write(sensor->regmap, VD56G3_REG_Y_END,
956 		  crop->top + crop->height - 1, &ret);
957 	cci_write(sensor->regmap, VD56G3_REG_OUT_ROI_X_START, crop->left, &ret);
958 	cci_write(sensor->regmap, VD56G3_REG_OUT_ROI_X_END,
959 		  crop->left + crop->width - 1, &ret);
960 	cci_write(sensor->regmap, VD56G3_REG_OUT_ROI_Y_START, 0, &ret);
961 	cci_write(sensor->regmap, VD56G3_REG_OUT_ROI_Y_END, crop->height - 1,
962 		  &ret);
963 	cci_write(sensor->regmap, VD56G3_REG_AE_ROI_START_H, crop->left, &ret);
964 	cci_write(sensor->regmap, VD56G3_REG_AE_ROI_END_H,
965 		  crop->left + crop->width - 1, &ret);
966 	cci_write(sensor->regmap, VD56G3_REG_AE_ROI_START_V, 0, &ret);
967 	cci_write(sensor->regmap, VD56G3_REG_AE_ROI_END_V, crop->height - 1,
968 		  &ret);
969 	if (ret)
970 		goto rpm_put;
971 
972 	/* Setup default GPIO values; could be overridden by V4L2 ctrl setup */
973 	ret = vd56g3_write_gpiox(sensor, GENMASK(VD56G3_NB_GPIOS - 1, 0));
974 	if (ret)
975 		goto rpm_put;
976 
977 	/* Apply settings from V4L2 ctrls */
978 	ret = __v4l2_ctrl_handler_setup(&sensor->ctrl_handler);
979 	if (ret)
980 		goto rpm_put;
981 
982 	/* start streaming */
983 	cci_write(sensor->regmap, VD56G3_REG_STBY, VD56G3_CMD_START_STREAM,
984 		  &ret);
985 	vd56g3_poll_reg(sensor, VD56G3_REG_STBY, VD56G3_CMD_ACK, &ret);
986 	vd56g3_wait_state(sensor, VD56G3_SYSTEM_FSM_STREAMING, &ret);
987 	if (ret)
988 		goto rpm_put;
989 
990 	/* some controls are locked during streaming */
991 	__v4l2_ctrl_grab(sensor->hflip_ctrl, true);
992 	__v4l2_ctrl_grab(sensor->vflip_ctrl, true);
993 	__v4l2_ctrl_grab(sensor->patgen_ctrl, true);
994 
995 	return ret;
996 
997 rpm_put:
998 	dev_err(sensor->dev, "Failed to start streaming\n");
999 	pm_runtime_put_sync(sensor->dev);
1000 
1001 	return ret;
1002 }
1003 
vd56g3_disable_streams(struct v4l2_subdev * sd,struct v4l2_subdev_state * state,u32 pad,u64 streams_mask)1004 static int vd56g3_disable_streams(struct v4l2_subdev *sd,
1005 				  struct v4l2_subdev_state *state, u32 pad,
1006 				  u64 streams_mask)
1007 {
1008 	struct vd56g3 *sensor = to_vd56g3(sd);
1009 	int ret;
1010 
1011 	/* Retrieve Expo cluster to enable coldstart of AE */
1012 	ret = vd56g3_read_expo_cluster(sensor, true);
1013 
1014 	cci_write(sensor->regmap, VD56G3_REG_STREAMING, VD56G3_CMD_STOP_STREAM,
1015 		  &ret);
1016 	vd56g3_poll_reg(sensor, VD56G3_REG_STREAMING, VD56G3_CMD_ACK, &ret);
1017 	vd56g3_wait_state(sensor, VD56G3_SYSTEM_FSM_SW_STBY, &ret);
1018 
1019 	/* locked controls must be unlocked */
1020 	__v4l2_ctrl_grab(sensor->hflip_ctrl, false);
1021 	__v4l2_ctrl_grab(sensor->vflip_ctrl, false);
1022 	__v4l2_ctrl_grab(sensor->patgen_ctrl, false);
1023 
1024 	pm_runtime_mark_last_busy(sensor->dev);
1025 	pm_runtime_put_autosuspend(sensor->dev);
1026 
1027 	return ret;
1028 }
1029 
vd56g3_init_state(struct v4l2_subdev * sd,struct v4l2_subdev_state * sd_state)1030 static int vd56g3_init_state(struct v4l2_subdev *sd,
1031 			     struct v4l2_subdev_state *sd_state)
1032 {
1033 	unsigned int def_mode = VD56G3_DEFAULT_MODE;
1034 	struct v4l2_subdev_format fmt = {
1035 		.which = V4L2_SUBDEV_FORMAT_TRY,
1036 		.pad = 0,
1037 		.format = {
1038 			.code = vd56g3_mbus_codes[0][0],
1039 			.width = vd56g3_supported_modes[def_mode].width,
1040 			.height = vd56g3_supported_modes[def_mode].height,
1041 		},
1042 	};
1043 
1044 	return vd56g3_set_pad_fmt(sd, sd_state, &fmt);
1045 }
1046 
1047 static const struct v4l2_subdev_video_ops vd56g3_video_ops = {
1048 	.s_stream = v4l2_subdev_s_stream_helper,
1049 };
1050 
1051 static const struct v4l2_subdev_pad_ops vd56g3_pad_ops = {
1052 	.enum_mbus_code = vd56g3_enum_mbus_code,
1053 	.enum_frame_size = vd56g3_enum_frame_size,
1054 	.get_fmt = v4l2_subdev_get_fmt,
1055 	.set_fmt = vd56g3_set_pad_fmt,
1056 	.get_selection = vd56g3_get_selection,
1057 	.get_frame_desc = vd56g3_get_frame_desc,
1058 	.enable_streams = vd56g3_enable_streams,
1059 	.disable_streams = vd56g3_disable_streams,
1060 };
1061 
1062 static const struct v4l2_subdev_ops vd56g3_subdev_ops = {
1063 	.video = &vd56g3_video_ops,
1064 	.pad = &vd56g3_pad_ops,
1065 };
1066 
1067 static const struct media_entity_operations vd56g3_subdev_entity_ops = {
1068 	.link_validate = v4l2_subdev_link_validate,
1069 };
1070 
1071 static const struct v4l2_subdev_internal_ops vd56g3_internal_ops = {
1072 	.init_state = vd56g3_init_state,
1073 };
1074 
1075 /* -----------------------------------------------------------------------------
1076  * Power management
1077  */
1078 
vd56g3_power_on(struct device * dev)1079 static int vd56g3_power_on(struct device *dev)
1080 {
1081 	struct v4l2_subdev *sd = dev_get_drvdata(dev);
1082 	struct vd56g3 *sensor = to_vd56g3(sd);
1083 	int ret;
1084 
1085 	/* power on */
1086 	ret = regulator_bulk_enable(ARRAY_SIZE(sensor->supplies),
1087 				    sensor->supplies);
1088 	if (ret) {
1089 		dev_err(dev, "Failed to enable regulators: %d\n", ret);
1090 		return ret;
1091 	}
1092 
1093 	ret = clk_prepare_enable(sensor->xclk);
1094 	if (ret) {
1095 		dev_err(dev, "Failed to enable clock: %d\n", ret);
1096 		goto disable_reg;
1097 	}
1098 
1099 	gpiod_set_value_cansleep(sensor->reset_gpio, 0);
1100 	usleep_range(3500, 4000);
1101 	ret = vd56g3_wait_state(sensor, VD56G3_SYSTEM_FSM_READY_TO_BOOT, NULL);
1102 	if (ret) {
1103 		dev_err(dev, "Sensor reset failed: %d\n", ret);
1104 		goto disable_clock;
1105 	}
1106 
1107 	/* boot sensor */
1108 	cci_write(sensor->regmap, VD56G3_REG_BOOT, VD56G3_CMD_BOOT, &ret);
1109 	vd56g3_poll_reg(sensor, VD56G3_REG_BOOT, VD56G3_CMD_ACK, &ret);
1110 	vd56g3_wait_state(sensor, VD56G3_SYSTEM_FSM_SW_STBY, &ret);
1111 	if (ret) {
1112 		dev_err(dev, "Sensor boot failed: %d\n", ret);
1113 		goto disable_clock;
1114 	}
1115 
1116 	return 0;
1117 
1118 disable_clock:
1119 	gpiod_set_value_cansleep(sensor->reset_gpio, 1);
1120 	clk_disable_unprepare(sensor->xclk);
1121 disable_reg:
1122 	regulator_bulk_disable(ARRAY_SIZE(sensor->supplies), sensor->supplies);
1123 
1124 	return ret;
1125 }
1126 
vd56g3_power_off(struct device * dev)1127 static int vd56g3_power_off(struct device *dev)
1128 {
1129 	struct v4l2_subdev *sd = dev_get_drvdata(dev);
1130 	struct vd56g3 *sensor = to_vd56g3(sd);
1131 
1132 	gpiod_set_value_cansleep(sensor->reset_gpio, 1);
1133 	clk_disable_unprepare(sensor->xclk);
1134 	regulator_bulk_disable(ARRAY_SIZE(sensor->supplies), sensor->supplies);
1135 
1136 	return 0;
1137 }
1138 
1139 static const struct dev_pm_ops vd56g3_pm_ops = {
1140 	SET_RUNTIME_PM_OPS(vd56g3_power_off, vd56g3_power_on, NULL)
1141 };
1142 
1143 /* -----------------------------------------------------------------------------
1144  * Probe and initialization
1145  */
1146 
vd56g3_check_csi_conf(struct vd56g3 * sensor,struct fwnode_handle * endpoint)1147 static int vd56g3_check_csi_conf(struct vd56g3 *sensor,
1148 				 struct fwnode_handle *endpoint)
1149 {
1150 	struct v4l2_fwnode_endpoint ep = { .bus_type = V4L2_MBUS_CSI2_DPHY };
1151 	u32 phy_data_lanes[VD56G3_MAX_CSI_DATA_LANES] = { ~0, ~0 };
1152 	u8 n_lanes;
1153 	u64 frequency;
1154 	int p, l;
1155 	int ret = 0;
1156 
1157 	ret = v4l2_fwnode_endpoint_alloc_parse(endpoint, &ep);
1158 	if (ret)
1159 		return -EINVAL;
1160 
1161 	/* Check lanes number */
1162 	n_lanes = ep.bus.mipi_csi2.num_data_lanes;
1163 	if (n_lanes != 1 && n_lanes != 2) {
1164 		dev_err(sensor->dev, "Invalid data lane number: %d\n", n_lanes);
1165 		ret = -EINVAL;
1166 		goto done;
1167 	}
1168 	sensor->nb_of_lane = n_lanes;
1169 
1170 	/* Clock lane must be first */
1171 	if (ep.bus.mipi_csi2.clock_lane != 0) {
1172 		dev_err(sensor->dev, "Clock lane must be mapped to lane 0\n");
1173 		ret = -EINVAL;
1174 		goto done;
1175 	}
1176 
1177 	/*
1178 	 * Prepare Output Interface conf based on lane settings
1179 	 * logical to physical lane conversion (+ pad remaining slots)
1180 	 */
1181 	for (l = 0; l < n_lanes; l++)
1182 		phy_data_lanes[ep.bus.mipi_csi2.data_lanes[l] - 1] = l;
1183 	for (p = 0; p < VD56G3_MAX_CSI_DATA_LANES; p++) {
1184 		if (phy_data_lanes[p] != ~0)
1185 			continue;
1186 		phy_data_lanes[p] = l;
1187 		l++;
1188 	}
1189 	sensor->oif_ctrl = n_lanes |
1190 			   (ep.bus.mipi_csi2.lane_polarities[0] << 3) |
1191 			   ((phy_data_lanes[0]) << 4) |
1192 			   (ep.bus.mipi_csi2.lane_polarities[1] << 6) |
1193 			   ((phy_data_lanes[1]) << 7) |
1194 			   (ep.bus.mipi_csi2.lane_polarities[2] << 9);
1195 
1196 	/* Check link frequency */
1197 	if (!ep.nr_of_link_frequencies) {
1198 		dev_err(sensor->dev, "link-frequency not found in DT\n");
1199 		ret = -EINVAL;
1200 		goto done;
1201 	}
1202 	frequency = (n_lanes == 2) ? VD56G3_LINK_FREQ_DEF_2LANES :
1203 				     VD56G3_LINK_FREQ_DEF_1LANE;
1204 	if (ep.nr_of_link_frequencies != 1 ||
1205 	    ep.link_frequencies[0] != frequency) {
1206 		dev_err(sensor->dev, "Link frequency not supported: %lld\n",
1207 			ep.link_frequencies[0]);
1208 		ret = -EINVAL;
1209 		goto done;
1210 	}
1211 
1212 done:
1213 	v4l2_fwnode_endpoint_free(&ep);
1214 
1215 	return ret;
1216 }
1217 
vd56g3_parse_dt_gpios_array(struct vd56g3 * sensor,char * prop_name,u32 * array,unsigned int * nb)1218 static int vd56g3_parse_dt_gpios_array(struct vd56g3 *sensor, char *prop_name,
1219 				       u32 *array, unsigned int *nb)
1220 {
1221 	struct device *dev = sensor->dev;
1222 	unsigned int i;
1223 	int ret;
1224 
1225 	if (!device_property_present(dev, prop_name)) {
1226 		*nb = 0;
1227 		return 0;
1228 	}
1229 
1230 	ret = device_property_count_u32(dev, prop_name);
1231 	if (ret < 0) {
1232 		dev_err(dev, "Failed to read %s count\n", prop_name);
1233 		return ret;
1234 	}
1235 
1236 	*nb = ret;
1237 	ret = device_property_read_u32_array(dev, prop_name, array, *nb);
1238 	if (ret) {
1239 		dev_err(dev, "Failed to read %s prop\n", prop_name);
1240 		return ret;
1241 	}
1242 
1243 	for (i = 0; i < *nb; i++) {
1244 		if (array[i] >= VD56G3_NB_GPIOS) {
1245 			dev_err(dev, "Invalid GPIO: %d\n", array[i]);
1246 			return -EINVAL;
1247 		}
1248 	}
1249 
1250 	return 0;
1251 }
1252 
vd56g3_parse_dt_gpios(struct vd56g3 * sensor)1253 static int vd56g3_parse_dt_gpios(struct vd56g3 *sensor)
1254 {
1255 	u32 led_gpios[VD56G3_NB_GPIOS];
1256 	unsigned int nb_gpios_leds;
1257 	unsigned int i;
1258 	int ret;
1259 
1260 	/* Initialize GPIOs to default */
1261 	for (i = 0; i < VD56G3_NB_GPIOS; i++)
1262 		sensor->gpios[i] = VD56G3_GPIOX_GPIO_IN;
1263 	sensor->ext_leds_mask = 0;
1264 
1265 	/* Take into account optional 'st,leds' output for GPIOs */
1266 	ret = vd56g3_parse_dt_gpios_array(sensor, "st,leds", led_gpios,
1267 					  &nb_gpios_leds);
1268 	if (ret)
1269 		return ret;
1270 	for (i = 0; i < nb_gpios_leds; i++) {
1271 		sensor->gpios[led_gpios[i]] = VD56G3_GPIOX_STROBE_MODE;
1272 		set_bit(led_gpios[i], &sensor->ext_leds_mask);
1273 	}
1274 
1275 	return 0;
1276 }
1277 
vd56g3_parse_dt(struct vd56g3 * sensor)1278 static int vd56g3_parse_dt(struct vd56g3 *sensor)
1279 {
1280 	struct fwnode_handle *endpoint;
1281 	int ret;
1282 
1283 	endpoint = fwnode_graph_get_endpoint_by_id(dev_fwnode(sensor->dev), 0,
1284 						   0, 0);
1285 	if (!endpoint) {
1286 		dev_err(sensor->dev, "Endpoint node not found\n");
1287 		return -EINVAL;
1288 	}
1289 
1290 	ret = vd56g3_check_csi_conf(sensor, endpoint);
1291 	fwnode_handle_put(endpoint);
1292 	if (ret)
1293 		return ret;
1294 
1295 	return vd56g3_parse_dt_gpios(sensor);
1296 }
1297 
vd56g3_get_regulators(struct vd56g3 * sensor)1298 static int vd56g3_get_regulators(struct vd56g3 *sensor)
1299 {
1300 	unsigned int i;
1301 
1302 	for (i = 0; i < ARRAY_SIZE(sensor->supplies); i++)
1303 		sensor->supplies[i].supply = vd56g3_supply_names[i];
1304 
1305 	return devm_regulator_bulk_get(sensor->dev,
1306 				       ARRAY_SIZE(sensor->supplies),
1307 				       sensor->supplies);
1308 }
1309 
vd56g3_prepare_clock_tree(struct vd56g3 * sensor)1310 static int vd56g3_prepare_clock_tree(struct vd56g3 *sensor)
1311 {
1312 	const unsigned int predivs[] = { 1, 2, 4 };
1313 	u32 pll_out;
1314 	int i;
1315 
1316 	/* External clock must be in [6Mhz-27Mhz] */
1317 	if (sensor->xclk_freq < VD56G3_XCLK_FREQ_MIN ||
1318 	    sensor->xclk_freq > VD56G3_XCLK_FREQ_MAX) {
1319 		dev_err(sensor->dev,
1320 			"Only 6Mhz-27Mhz clock range supported. Provided %lu MHz\n",
1321 			sensor->xclk_freq / HZ_PER_MHZ);
1322 		return -EINVAL;
1323 	}
1324 
1325 	/* PLL input should be in [6Mhz-12Mhz[ */
1326 	for (i = 0; i < ARRAY_SIZE(predivs); i++) {
1327 		sensor->pll_prediv = predivs[i];
1328 		if (sensor->xclk_freq / sensor->pll_prediv < 12 * HZ_PER_MHZ)
1329 			break;
1330 	}
1331 
1332 	/* PLL output clock must be as close as possible to 804Mhz */
1333 	sensor->pll_mult = (VD56G3_TARGET_PLL * sensor->pll_prediv +
1334 			    sensor->xclk_freq / 2) /
1335 			   sensor->xclk_freq;
1336 	pll_out = sensor->xclk_freq * sensor->pll_mult / sensor->pll_prediv;
1337 
1338 	/* Target Pixel Clock for standard 10bit ADC mode : 160.8Mhz */
1339 	sensor->pixel_clock = pll_out / VD56G3_VT_CLOCK_DIV;
1340 
1341 	return 0;
1342 }
1343 
vd56g3_detect(struct vd56g3 * sensor)1344 static int vd56g3_detect(struct vd56g3 *sensor)
1345 {
1346 	struct device *dev = sensor->dev;
1347 	unsigned int model;
1348 	u64 model_id;
1349 	u64 device_revision;
1350 	u64 optical_revision;
1351 	int ret = 0;
1352 
1353 	model = (uintptr_t)device_get_match_data(dev);
1354 
1355 	ret = cci_read(sensor->regmap, VD56G3_REG_MODEL_ID, &model_id, NULL);
1356 	if (ret)
1357 		return ret;
1358 
1359 	if (model_id != VD56G3_MODEL_ID) {
1360 		dev_err(dev, "Unsupported sensor id: %x\n", (u16)model_id);
1361 		return -ENODEV;
1362 	}
1363 
1364 	ret = cci_read(sensor->regmap, VD56G3_REG_REVISION, &device_revision,
1365 		       NULL);
1366 	if (ret)
1367 		return ret;
1368 
1369 	if ((device_revision >> 8) != VD56G3_REVISION_CUT3) {
1370 		dev_err(dev, "Unsupported version: %x\n", (u16)device_revision);
1371 		return -ENODEV;
1372 	}
1373 
1374 	ret = cci_read(sensor->regmap, VD56G3_REG_OPTICAL_REVISION,
1375 		       &optical_revision, NULL);
1376 	if (ret)
1377 		return ret;
1378 
1379 	sensor->is_mono =
1380 		((optical_revision & 1) == VD56G3_OPTICAL_REVISION_MONO);
1381 	if ((sensor->is_mono && model == VD56G3_MODEL_VD66GY) ||
1382 	    (!sensor->is_mono && model == VD56G3_MODEL_VD56G3)) {
1383 		dev_err(dev, "Found %s sensor, while %s model is defined in DT\n",
1384 			(sensor->is_mono) ? "Mono" : "Bayer",
1385 			(model == VD56G3_MODEL_VD56G3) ? "vd56g3" : "vd66gy");
1386 		return -ENODEV;
1387 	}
1388 
1389 	return 0;
1390 }
1391 
vd56g3_subdev_init(struct vd56g3 * sensor)1392 static int vd56g3_subdev_init(struct vd56g3 *sensor)
1393 {
1394 	struct v4l2_subdev_state *state;
1395 	int ret;
1396 
1397 	/* Init remaining sub device ops */
1398 	sensor->sd.internal_ops = &vd56g3_internal_ops;
1399 	sensor->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
1400 	sensor->sd.entity.ops = &vd56g3_subdev_entity_ops;
1401 
1402 	/* Init source pad */
1403 	sensor->pad.flags = MEDIA_PAD_FL_SOURCE;
1404 	sensor->sd.entity.function = MEDIA_ENT_F_CAM_SENSOR;
1405 	ret = media_entity_pads_init(&sensor->sd.entity, 1, &sensor->pad);
1406 	if (ret) {
1407 		dev_err(sensor->dev, "Failed to init media entity: %d\n", ret);
1408 		return ret;
1409 	}
1410 
1411 	/* Init controls */
1412 	ret = vd56g3_init_controls(sensor);
1413 	if (ret) {
1414 		dev_err(sensor->dev, "Controls initialization failed: %d\n",
1415 			ret);
1416 		goto err_media;
1417 	}
1418 
1419 	/* Init vd56g3 struct : default resolution + raw8 */
1420 	sensor->sd.state_lock = sensor->ctrl_handler.lock;
1421 	ret = v4l2_subdev_init_finalize(&sensor->sd);
1422 	if (ret) {
1423 		dev_err(sensor->dev, "Subdev init failed: %d\n", ret);
1424 		goto err_ctrls;
1425 	}
1426 
1427 	/* Update controls according to the resolution set */
1428 	state = v4l2_subdev_lock_and_get_active_state(&sensor->sd);
1429 	ret = vd56g3_update_controls(sensor);
1430 	v4l2_subdev_unlock_state(state);
1431 	if (ret) {
1432 		dev_err(sensor->dev, "Controls update failed: %d\n", ret);
1433 		goto err_ctrls;
1434 	}
1435 
1436 	return 0;
1437 
1438 err_ctrls:
1439 	v4l2_ctrl_handler_free(sensor->sd.ctrl_handler);
1440 
1441 err_media:
1442 	media_entity_cleanup(&sensor->sd.entity);
1443 
1444 	return ret;
1445 }
1446 
vd56g3_subdev_cleanup(struct vd56g3 * sensor)1447 static void vd56g3_subdev_cleanup(struct vd56g3 *sensor)
1448 {
1449 	v4l2_async_unregister_subdev(&sensor->sd);
1450 	v4l2_subdev_cleanup(&sensor->sd);
1451 	media_entity_cleanup(&sensor->sd.entity);
1452 	v4l2_ctrl_handler_free(sensor->sd.ctrl_handler);
1453 }
1454 
vd56g3_probe(struct i2c_client * client)1455 static int vd56g3_probe(struct i2c_client *client)
1456 {
1457 	struct device *dev = &client->dev;
1458 	struct vd56g3 *sensor;
1459 	int ret;
1460 
1461 	sensor = devm_kzalloc(dev, sizeof(*sensor), GFP_KERNEL);
1462 	if (!sensor)
1463 		return -ENOMEM;
1464 
1465 	v4l2_i2c_subdev_init(&sensor->sd, client, &vd56g3_subdev_ops);
1466 	sensor->dev = dev;
1467 
1468 	ret = vd56g3_parse_dt(sensor);
1469 	if (ret)
1470 		return dev_err_probe(dev, ret, "Failed to parse Device Tree\n");
1471 
1472 	/* Get (and check) resources : power regs, ext clock, reset gpio */
1473 	ret = vd56g3_get_regulators(sensor);
1474 	if (ret)
1475 		return dev_err_probe(dev, ret, "Failed to get regulators\n");
1476 
1477 	sensor->xclk = devm_clk_get(dev, NULL);
1478 	if (IS_ERR(sensor->xclk))
1479 		return dev_err_probe(dev, PTR_ERR(sensor->xclk),
1480 				     "Failed to get xclk\n");
1481 	sensor->xclk_freq = clk_get_rate(sensor->xclk);
1482 	ret = vd56g3_prepare_clock_tree(sensor);
1483 	if (ret)
1484 		return ret;
1485 
1486 	sensor->reset_gpio = devm_gpiod_get_optional(dev, "reset",
1487 						     GPIOD_OUT_HIGH);
1488 	if (IS_ERR(sensor->reset_gpio))
1489 		return dev_err_probe(dev, PTR_ERR(sensor->reset_gpio),
1490 				     "Failed to get reset gpio\n");
1491 
1492 	sensor->regmap = devm_cci_regmap_init_i2c(client, 16);
1493 	if (IS_ERR(sensor->regmap))
1494 		return dev_err_probe(dev, PTR_ERR(sensor->regmap),
1495 				     "Failed to init regmap\n");
1496 
1497 	/* Power ON */
1498 	ret = vd56g3_power_on(dev);
1499 	if (ret)
1500 		return dev_err_probe(dev, ret, "Sensor power on failed\n");
1501 
1502 	/* Enable PM runtime with autosuspend (sensor being ON, set active) */
1503 	pm_runtime_set_active(dev);
1504 	pm_runtime_get_noresume(dev);
1505 	pm_runtime_enable(dev);
1506 	pm_runtime_set_autosuspend_delay(dev, 1000);
1507 	pm_runtime_use_autosuspend(dev);
1508 
1509 	/* Check HW model/version */
1510 	ret = vd56g3_detect(sensor);
1511 	if (ret) {
1512 		dev_err(dev, "Sensor detect failed: %d\n", ret);
1513 		goto err_power_off;
1514 	}
1515 
1516 	/* Initialize & register subdev (v4l2_i2c subdev already initialized) */
1517 	ret = vd56g3_subdev_init(sensor);
1518 	if (ret) {
1519 		dev_err(dev, "V4l2 init failed: %d\n", ret);
1520 		goto err_power_off;
1521 	}
1522 
1523 	ret = v4l2_async_register_subdev(&sensor->sd);
1524 	if (ret) {
1525 		dev_err(dev, "Async subdev register failed: %d\n", ret);
1526 		goto err_subdev;
1527 	}
1528 
1529 	/* Sensor could now be powered off (after the autosuspend delay) */
1530 	pm_runtime_mark_last_busy(dev);
1531 	pm_runtime_put_autosuspend(dev);
1532 
1533 	dev_dbg(dev, "Successfully probe %s sensor\n",
1534 		(sensor->is_mono) ? "vd56g3" : "vd66gy");
1535 
1536 	return 0;
1537 
1538 err_subdev:
1539 	vd56g3_subdev_cleanup(sensor);
1540 err_power_off:
1541 	pm_runtime_disable(dev);
1542 	pm_runtime_put_noidle(dev);
1543 	pm_runtime_dont_use_autosuspend(dev);
1544 	vd56g3_power_off(dev);
1545 
1546 	return ret;
1547 }
1548 
vd56g3_remove(struct i2c_client * client)1549 static void vd56g3_remove(struct i2c_client *client)
1550 {
1551 	struct v4l2_subdev *sd = i2c_get_clientdata(client);
1552 	struct vd56g3 *sensor = to_vd56g3(sd);
1553 
1554 	vd56g3_subdev_cleanup(sensor);
1555 
1556 	pm_runtime_disable(sensor->dev);
1557 	if (!pm_runtime_status_suspended(sensor->dev))
1558 		vd56g3_power_off(sensor->dev);
1559 	pm_runtime_set_suspended(sensor->dev);
1560 	pm_runtime_dont_use_autosuspend(sensor->dev);
1561 }
1562 
1563 static const struct of_device_id vd56g3_dt_ids[] = {
1564 	{ .compatible = "st,vd56g3", .data = (void *)VD56G3_MODEL_VD56G3 },
1565 	{ .compatible = "st,vd66gy", .data = (void *)VD56G3_MODEL_VD66GY },
1566 	{ /* sentinel */ }
1567 };
1568 MODULE_DEVICE_TABLE(of, vd56g3_dt_ids);
1569 
1570 static struct i2c_driver vd56g3_i2c_driver = {
1571 	.driver = {
1572 		.name  = "vd56g3",
1573 		.of_match_table = vd56g3_dt_ids,
1574 		.pm = &vd56g3_pm_ops,
1575 	},
1576 	.probe = vd56g3_probe,
1577 	.remove = vd56g3_remove,
1578 };
1579 
1580 module_i2c_driver(vd56g3_i2c_driver);
1581 
1582 MODULE_AUTHOR("Benjamin Mugnier <benjamin.mugnier@foss.st.com>");
1583 MODULE_AUTHOR("Mickael Guene <mickael.guene@st.com>");
1584 MODULE_AUTHOR("Sylvain Petinot <sylvain.petinot@foss.st.com>");
1585 MODULE_DESCRIPTION("ST VD56G3 sensor driver");
1586 MODULE_LICENSE("GPL");
1587