1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * A fairly generic DMA-API to IOMMU-API glue layer.
4 *
5 * Copyright (C) 2014-2015 ARM Ltd.
6 *
7 * based in part on arch/arm/mm/dma-mapping.c:
8 * Copyright (C) 2000-2004 Russell King
9 */
10
11 #include <linux/acpi_iort.h>
12 #include <linux/device.h>
13 #include <linux/dma-map-ops.h>
14 #include <linux/dma-iommu.h>
15 #include <linux/gfp.h>
16 #include <linux/huge_mm.h>
17 #include <linux/iommu.h>
18 #include <linux/iova.h>
19 #include <linux/irq.h>
20 #include <linux/mm.h>
21 #include <linux/mutex.h>
22 #include <linux/pci.h>
23 #include <linux/scatterlist.h>
24 #include <linux/vmalloc.h>
25 #include <linux/crash_dump.h>
26
27 struct iommu_dma_msi_page {
28 struct list_head list;
29 dma_addr_t iova;
30 phys_addr_t phys;
31 };
32
33 enum iommu_dma_cookie_type {
34 IOMMU_DMA_IOVA_COOKIE,
35 IOMMU_DMA_MSI_COOKIE,
36 };
37
38 struct iommu_dma_cookie {
39 enum iommu_dma_cookie_type type;
40 union {
41 /* Full allocator for IOMMU_DMA_IOVA_COOKIE */
42 struct iova_domain iovad;
43 /* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
44 dma_addr_t msi_iova;
45 };
46 struct list_head msi_page_list;
47
48 /* Domain for flush queue callback; NULL if flush queue not in use */
49 struct iommu_domain *fq_domain;
50 };
51
cookie_msi_granule(struct iommu_dma_cookie * cookie)52 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
53 {
54 if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
55 return cookie->iovad.granule;
56 return PAGE_SIZE;
57 }
58
cookie_alloc(enum iommu_dma_cookie_type type)59 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
60 {
61 struct iommu_dma_cookie *cookie;
62
63 cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
64 if (cookie) {
65 INIT_LIST_HEAD(&cookie->msi_page_list);
66 cookie->type = type;
67 }
68 return cookie;
69 }
70
71 /**
72 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
73 * @domain: IOMMU domain to prepare for DMA-API usage
74 *
75 * IOMMU drivers should normally call this from their domain_alloc
76 * callback when domain->type == IOMMU_DOMAIN_DMA.
77 */
iommu_get_dma_cookie(struct iommu_domain * domain)78 int iommu_get_dma_cookie(struct iommu_domain *domain)
79 {
80 if (domain->iova_cookie)
81 return -EEXIST;
82
83 domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
84 if (!domain->iova_cookie)
85 return -ENOMEM;
86
87 return 0;
88 }
89 EXPORT_SYMBOL(iommu_get_dma_cookie);
90
91 /**
92 * iommu_get_msi_cookie - Acquire just MSI remapping resources
93 * @domain: IOMMU domain to prepare
94 * @base: Start address of IOVA region for MSI mappings
95 *
96 * Users who manage their own IOVA allocation and do not want DMA API support,
97 * but would still like to take advantage of automatic MSI remapping, can use
98 * this to initialise their own domain appropriately. Users should reserve a
99 * contiguous IOVA region, starting at @base, large enough to accommodate the
100 * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
101 * used by the devices attached to @domain.
102 */
iommu_get_msi_cookie(struct iommu_domain * domain,dma_addr_t base)103 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
104 {
105 struct iommu_dma_cookie *cookie;
106
107 if (domain->type != IOMMU_DOMAIN_UNMANAGED)
108 return -EINVAL;
109
110 if (domain->iova_cookie)
111 return -EEXIST;
112
113 cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
114 if (!cookie)
115 return -ENOMEM;
116
117 cookie->msi_iova = base;
118 domain->iova_cookie = cookie;
119 return 0;
120 }
121 EXPORT_SYMBOL(iommu_get_msi_cookie);
122
123 /**
124 * iommu_put_dma_cookie - Release a domain's DMA mapping resources
125 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
126 * iommu_get_msi_cookie()
127 *
128 * IOMMU drivers should normally call this from their domain_free callback.
129 */
iommu_put_dma_cookie(struct iommu_domain * domain)130 void iommu_put_dma_cookie(struct iommu_domain *domain)
131 {
132 struct iommu_dma_cookie *cookie = domain->iova_cookie;
133 struct iommu_dma_msi_page *msi, *tmp;
134
135 if (!cookie)
136 return;
137
138 if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule)
139 put_iova_domain(&cookie->iovad);
140
141 list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
142 list_del(&msi->list);
143 kfree(msi);
144 }
145 kfree(cookie);
146 domain->iova_cookie = NULL;
147 }
148 EXPORT_SYMBOL(iommu_put_dma_cookie);
149
150 /**
151 * iommu_dma_get_resv_regions - Reserved region driver helper
152 * @dev: Device from iommu_get_resv_regions()
153 * @list: Reserved region list from iommu_get_resv_regions()
154 *
155 * IOMMU drivers can use this to implement their .get_resv_regions callback
156 * for general non-IOMMU-specific reservations. Currently, this covers GICv3
157 * ITS region reservation on ACPI based ARM platforms that may require HW MSI
158 * reservation.
159 */
iommu_dma_get_resv_regions(struct device * dev,struct list_head * list)160 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
161 {
162
163 if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode))
164 iort_iommu_msi_get_resv_regions(dev, list);
165
166 }
167 EXPORT_SYMBOL(iommu_dma_get_resv_regions);
168
cookie_init_hw_msi_region(struct iommu_dma_cookie * cookie,phys_addr_t start,phys_addr_t end)169 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
170 phys_addr_t start, phys_addr_t end)
171 {
172 struct iova_domain *iovad = &cookie->iovad;
173 struct iommu_dma_msi_page *msi_page;
174 int i, num_pages;
175
176 start -= iova_offset(iovad, start);
177 num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
178
179 for (i = 0; i < num_pages; i++) {
180 msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL);
181 if (!msi_page)
182 return -ENOMEM;
183
184 msi_page->phys = start;
185 msi_page->iova = start;
186 INIT_LIST_HEAD(&msi_page->list);
187 list_add(&msi_page->list, &cookie->msi_page_list);
188 start += iovad->granule;
189 }
190
191 return 0;
192 }
193
iova_reserve_pci_windows(struct pci_dev * dev,struct iova_domain * iovad)194 static int iova_reserve_pci_windows(struct pci_dev *dev,
195 struct iova_domain *iovad)
196 {
197 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
198 struct resource_entry *window;
199 unsigned long lo, hi;
200 phys_addr_t start = 0, end;
201
202 resource_list_for_each_entry(window, &bridge->windows) {
203 if (resource_type(window->res) != IORESOURCE_MEM)
204 continue;
205
206 lo = iova_pfn(iovad, window->res->start - window->offset);
207 hi = iova_pfn(iovad, window->res->end - window->offset);
208 reserve_iova(iovad, lo, hi);
209 }
210
211 /* Get reserved DMA windows from host bridge */
212 resource_list_for_each_entry(window, &bridge->dma_ranges) {
213 end = window->res->start - window->offset;
214 resv_iova:
215 if (end > start) {
216 lo = iova_pfn(iovad, start);
217 hi = iova_pfn(iovad, end);
218 reserve_iova(iovad, lo, hi);
219 } else {
220 /* dma_ranges list should be sorted */
221 dev_err(&dev->dev, "Failed to reserve IOVA\n");
222 return -EINVAL;
223 }
224
225 start = window->res->end - window->offset + 1;
226 /* If window is last entry */
227 if (window->node.next == &bridge->dma_ranges &&
228 end != ~(phys_addr_t)0) {
229 end = ~(phys_addr_t)0;
230 goto resv_iova;
231 }
232 }
233
234 return 0;
235 }
236
iova_reserve_iommu_regions(struct device * dev,struct iommu_domain * domain)237 static int iova_reserve_iommu_regions(struct device *dev,
238 struct iommu_domain *domain)
239 {
240 struct iommu_dma_cookie *cookie = domain->iova_cookie;
241 struct iova_domain *iovad = &cookie->iovad;
242 struct iommu_resv_region *region;
243 LIST_HEAD(resv_regions);
244 int ret = 0;
245
246 if (dev_is_pci(dev)) {
247 ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad);
248 if (ret)
249 return ret;
250 }
251
252 iommu_get_resv_regions(dev, &resv_regions);
253 list_for_each_entry(region, &resv_regions, list) {
254 unsigned long lo, hi;
255
256 /* We ARE the software that manages these! */
257 if (region->type == IOMMU_RESV_SW_MSI)
258 continue;
259
260 lo = iova_pfn(iovad, region->start);
261 hi = iova_pfn(iovad, region->start + region->length - 1);
262 reserve_iova(iovad, lo, hi);
263
264 if (region->type == IOMMU_RESV_MSI)
265 ret = cookie_init_hw_msi_region(cookie, region->start,
266 region->start + region->length);
267 if (ret)
268 break;
269 }
270 iommu_put_resv_regions(dev, &resv_regions);
271
272 return ret;
273 }
274
iommu_dma_flush_iotlb_all(struct iova_domain * iovad)275 static void iommu_dma_flush_iotlb_all(struct iova_domain *iovad)
276 {
277 struct iommu_dma_cookie *cookie;
278 struct iommu_domain *domain;
279
280 cookie = container_of(iovad, struct iommu_dma_cookie, iovad);
281 domain = cookie->fq_domain;
282 /*
283 * The IOMMU driver supporting DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE
284 * implies that ops->flush_iotlb_all must be non-NULL.
285 */
286 domain->ops->flush_iotlb_all(domain);
287 }
288
289 /**
290 * iommu_dma_init_domain - Initialise a DMA mapping domain
291 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
292 * @base: IOVA at which the mappable address space starts
293 * @size: Size of IOVA space
294 * @dev: Device the domain is being initialised for
295 *
296 * @base and @size should be exact multiples of IOMMU page granularity to
297 * avoid rounding surprises. If necessary, we reserve the page at address 0
298 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
299 * any change which could make prior IOVAs invalid will fail.
300 */
iommu_dma_init_domain(struct iommu_domain * domain,dma_addr_t base,u64 size,struct device * dev)301 static int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
302 u64 size, struct device *dev)
303 {
304 struct iommu_dma_cookie *cookie = domain->iova_cookie;
305 unsigned long order, base_pfn;
306 struct iova_domain *iovad;
307 int attr;
308
309 if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
310 return -EINVAL;
311
312 iovad = &cookie->iovad;
313
314 /* Use the smallest supported page size for IOVA granularity */
315 order = __ffs(domain->pgsize_bitmap);
316 base_pfn = max_t(unsigned long, 1, base >> order);
317
318 /* Check the domain allows at least some access to the device... */
319 if (domain->geometry.force_aperture) {
320 if (base > domain->geometry.aperture_end ||
321 base + size <= domain->geometry.aperture_start) {
322 pr_warn("specified DMA range outside IOMMU capability\n");
323 return -EFAULT;
324 }
325 /* ...then finally give it a kicking to make sure it fits */
326 base_pfn = max_t(unsigned long, base_pfn,
327 domain->geometry.aperture_start >> order);
328 }
329
330 /* start_pfn is always nonzero for an already-initialised domain */
331 if (iovad->start_pfn) {
332 if (1UL << order != iovad->granule ||
333 base_pfn != iovad->start_pfn) {
334 pr_warn("Incompatible range for DMA domain\n");
335 return -EFAULT;
336 }
337
338 return 0;
339 }
340
341 init_iova_domain(iovad, 1UL << order, base_pfn);
342
343 if (!cookie->fq_domain && !iommu_domain_get_attr(domain,
344 DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE, &attr) && attr) {
345 if (init_iova_flush_queue(iovad, iommu_dma_flush_iotlb_all,
346 NULL))
347 pr_warn("iova flush queue initialization failed\n");
348 else
349 cookie->fq_domain = domain;
350 }
351
352 if (!dev)
353 return 0;
354
355 return iova_reserve_iommu_regions(dev, domain);
356 }
357
iommu_dma_deferred_attach(struct device * dev,struct iommu_domain * domain)358 static int iommu_dma_deferred_attach(struct device *dev,
359 struct iommu_domain *domain)
360 {
361 const struct iommu_ops *ops = domain->ops;
362
363 if (!is_kdump_kernel())
364 return 0;
365
366 if (unlikely(ops->is_attach_deferred &&
367 ops->is_attach_deferred(domain, dev)))
368 return iommu_attach_device(domain, dev);
369
370 return 0;
371 }
372
373 /**
374 * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
375 * page flags.
376 * @dir: Direction of DMA transfer
377 * @coherent: Is the DMA master cache-coherent?
378 * @attrs: DMA attributes for the mapping
379 *
380 * Return: corresponding IOMMU API page protection flags
381 */
dma_info_to_prot(enum dma_data_direction dir,bool coherent,unsigned long attrs)382 static int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
383 unsigned long attrs)
384 {
385 int prot = coherent ? IOMMU_CACHE : 0;
386
387 if (attrs & DMA_ATTR_PRIVILEGED)
388 prot |= IOMMU_PRIV;
389
390 switch (dir) {
391 case DMA_BIDIRECTIONAL:
392 return prot | IOMMU_READ | IOMMU_WRITE;
393 case DMA_TO_DEVICE:
394 return prot | IOMMU_READ;
395 case DMA_FROM_DEVICE:
396 return prot | IOMMU_WRITE;
397 default:
398 return 0;
399 }
400 }
401
iommu_dma_alloc_iova(struct iommu_domain * domain,size_t size,u64 dma_limit,struct device * dev)402 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
403 size_t size, u64 dma_limit, struct device *dev)
404 {
405 struct iommu_dma_cookie *cookie = domain->iova_cookie;
406 struct iova_domain *iovad = &cookie->iovad;
407 unsigned long shift, iova_len, iova = 0;
408
409 if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
410 cookie->msi_iova += size;
411 return cookie->msi_iova - size;
412 }
413
414 shift = iova_shift(iovad);
415 iova_len = size >> shift;
416 /*
417 * Freeing non-power-of-two-sized allocations back into the IOVA caches
418 * will come back to bite us badly, so we have to waste a bit of space
419 * rounding up anything cacheable to make sure that can't happen. The
420 * order of the unadjusted size will still match upon freeing.
421 */
422 if (iova_len < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1)))
423 iova_len = roundup_pow_of_two(iova_len);
424
425 dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit);
426
427 if (domain->geometry.force_aperture)
428 dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end);
429
430 /* Try to get PCI devices a SAC address */
431 if (dma_limit > DMA_BIT_MASK(32) && dev_is_pci(dev))
432 iova = alloc_iova_fast(iovad, iova_len,
433 DMA_BIT_MASK(32) >> shift, false);
434
435 if (!iova)
436 iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift,
437 true);
438
439 return (dma_addr_t)iova << shift;
440 }
441
iommu_dma_free_iova(struct iommu_dma_cookie * cookie,dma_addr_t iova,size_t size)442 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
443 dma_addr_t iova, size_t size)
444 {
445 struct iova_domain *iovad = &cookie->iovad;
446
447 /* The MSI case is only ever cleaning up its most recent allocation */
448 if (cookie->type == IOMMU_DMA_MSI_COOKIE)
449 cookie->msi_iova -= size;
450 else if (cookie->fq_domain) /* non-strict mode */
451 queue_iova(iovad, iova_pfn(iovad, iova),
452 size >> iova_shift(iovad), 0);
453 else
454 free_iova_fast(iovad, iova_pfn(iovad, iova),
455 size >> iova_shift(iovad));
456 }
457
__iommu_dma_unmap(struct device * dev,dma_addr_t dma_addr,size_t size)458 static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr,
459 size_t size)
460 {
461 struct iommu_domain *domain = iommu_get_dma_domain(dev);
462 struct iommu_dma_cookie *cookie = domain->iova_cookie;
463 struct iova_domain *iovad = &cookie->iovad;
464 size_t iova_off = iova_offset(iovad, dma_addr);
465 struct iommu_iotlb_gather iotlb_gather;
466 size_t unmapped;
467
468 dma_addr -= iova_off;
469 size = iova_align(iovad, size + iova_off);
470 iommu_iotlb_gather_init(&iotlb_gather);
471
472 unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather);
473 WARN_ON(unmapped != size);
474
475 if (!cookie->fq_domain)
476 iommu_iotlb_sync(domain, &iotlb_gather);
477 iommu_dma_free_iova(cookie, dma_addr, size);
478 }
479
__iommu_dma_map(struct device * dev,phys_addr_t phys,size_t size,int prot,u64 dma_mask)480 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
481 size_t size, int prot, u64 dma_mask)
482 {
483 struct iommu_domain *domain = iommu_get_dma_domain(dev);
484 struct iommu_dma_cookie *cookie = domain->iova_cookie;
485 struct iova_domain *iovad = &cookie->iovad;
486 size_t iova_off = iova_offset(iovad, phys);
487 dma_addr_t iova;
488
489 if (unlikely(iommu_dma_deferred_attach(dev, domain)))
490 return DMA_MAPPING_ERROR;
491
492 size = iova_align(iovad, size + iova_off);
493
494 iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev);
495 if (!iova)
496 return DMA_MAPPING_ERROR;
497
498 if (iommu_map_atomic(domain, iova, phys - iova_off, size, prot)) {
499 iommu_dma_free_iova(cookie, iova, size);
500 return DMA_MAPPING_ERROR;
501 }
502 return iova + iova_off;
503 }
504
__iommu_dma_free_pages(struct page ** pages,int count)505 static void __iommu_dma_free_pages(struct page **pages, int count)
506 {
507 while (count--)
508 __free_page(pages[count]);
509 kvfree(pages);
510 }
511
__iommu_dma_alloc_pages(struct device * dev,unsigned int count,unsigned long order_mask,gfp_t gfp)512 static struct page **__iommu_dma_alloc_pages(struct device *dev,
513 unsigned int count, unsigned long order_mask, gfp_t gfp)
514 {
515 struct page **pages;
516 unsigned int i = 0, nid = dev_to_node(dev);
517
518 order_mask &= (2U << MAX_ORDER) - 1;
519 if (!order_mask)
520 return NULL;
521
522 pages = kvzalloc(count * sizeof(*pages), GFP_KERNEL);
523 if (!pages)
524 return NULL;
525
526 /* IOMMU can map any pages, so himem can also be used here */
527 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
528
529 /* It makes no sense to muck about with huge pages */
530 gfp &= ~__GFP_COMP;
531
532 while (count) {
533 struct page *page = NULL;
534 unsigned int order_size;
535
536 /*
537 * Higher-order allocations are a convenience rather
538 * than a necessity, hence using __GFP_NORETRY until
539 * falling back to minimum-order allocations.
540 */
541 for (order_mask &= (2U << __fls(count)) - 1;
542 order_mask; order_mask &= ~order_size) {
543 unsigned int order = __fls(order_mask);
544 gfp_t alloc_flags = gfp;
545
546 order_size = 1U << order;
547 if (order_mask > order_size)
548 alloc_flags |= __GFP_NORETRY;
549 page = alloc_pages_node(nid, alloc_flags, order);
550 if (!page)
551 continue;
552 if (order)
553 split_page(page, order);
554 break;
555 }
556 if (!page) {
557 __iommu_dma_free_pages(pages, i);
558 return NULL;
559 }
560 count -= order_size;
561 while (order_size--)
562 pages[i++] = page++;
563 }
564 return pages;
565 }
566
567 /**
568 * iommu_dma_alloc_remap - Allocate and map a buffer contiguous in IOVA space
569 * @dev: Device to allocate memory for. Must be a real device
570 * attached to an iommu_dma_domain
571 * @size: Size of buffer in bytes
572 * @dma_handle: Out argument for allocated DMA handle
573 * @gfp: Allocation flags
574 * @prot: pgprot_t to use for the remapped mapping
575 * @attrs: DMA attributes for this allocation
576 *
577 * If @size is less than PAGE_SIZE, then a full CPU page will be allocated,
578 * but an IOMMU which supports smaller pages might not map the whole thing.
579 *
580 * Return: Mapped virtual address, or NULL on failure.
581 */
iommu_dma_alloc_remap(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp,pgprot_t prot,unsigned long attrs)582 static void *iommu_dma_alloc_remap(struct device *dev, size_t size,
583 dma_addr_t *dma_handle, gfp_t gfp, pgprot_t prot,
584 unsigned long attrs)
585 {
586 struct iommu_domain *domain = iommu_get_dma_domain(dev);
587 struct iommu_dma_cookie *cookie = domain->iova_cookie;
588 struct iova_domain *iovad = &cookie->iovad;
589 bool coherent = dev_is_dma_coherent(dev);
590 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
591 unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
592 struct page **pages;
593 struct sg_table sgt;
594 dma_addr_t iova;
595 void *vaddr;
596
597 *dma_handle = DMA_MAPPING_ERROR;
598
599 if (unlikely(iommu_dma_deferred_attach(dev, domain)))
600 return NULL;
601
602 min_size = alloc_sizes & -alloc_sizes;
603 if (min_size < PAGE_SIZE) {
604 min_size = PAGE_SIZE;
605 alloc_sizes |= PAGE_SIZE;
606 } else {
607 size = ALIGN(size, min_size);
608 }
609 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
610 alloc_sizes = min_size;
611
612 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
613 pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT,
614 gfp);
615 if (!pages)
616 return NULL;
617
618 size = iova_align(iovad, size);
619 iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
620 if (!iova)
621 goto out_free_pages;
622
623 if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL))
624 goto out_free_iova;
625
626 if (!(ioprot & IOMMU_CACHE)) {
627 struct scatterlist *sg;
628 int i;
629
630 for_each_sg(sgt.sgl, sg, sgt.orig_nents, i)
631 arch_dma_prep_coherent(sg_page(sg), sg->length);
632 }
633
634 if (iommu_map_sg_atomic(domain, iova, sgt.sgl, sgt.orig_nents, ioprot)
635 < size)
636 goto out_free_sg;
637
638 vaddr = dma_common_pages_remap(pages, size, prot,
639 __builtin_return_address(0));
640 if (!vaddr)
641 goto out_unmap;
642
643 *dma_handle = iova;
644 sg_free_table(&sgt);
645 return vaddr;
646
647 out_unmap:
648 __iommu_dma_unmap(dev, iova, size);
649 out_free_sg:
650 sg_free_table(&sgt);
651 out_free_iova:
652 iommu_dma_free_iova(cookie, iova, size);
653 out_free_pages:
654 __iommu_dma_free_pages(pages, count);
655 return NULL;
656 }
657
658 /**
659 * __iommu_dma_mmap - Map a buffer into provided user VMA
660 * @pages: Array representing buffer from __iommu_dma_alloc()
661 * @size: Size of buffer in bytes
662 * @vma: VMA describing requested userspace mapping
663 *
664 * Maps the pages of the buffer in @pages into @vma. The caller is responsible
665 * for verifying the correct size and protection of @vma beforehand.
666 */
__iommu_dma_mmap(struct page ** pages,size_t size,struct vm_area_struct * vma)667 static int __iommu_dma_mmap(struct page **pages, size_t size,
668 struct vm_area_struct *vma)
669 {
670 return vm_map_pages(vma, pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
671 }
672
iommu_dma_sync_single_for_cpu(struct device * dev,dma_addr_t dma_handle,size_t size,enum dma_data_direction dir)673 static void iommu_dma_sync_single_for_cpu(struct device *dev,
674 dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
675 {
676 phys_addr_t phys;
677
678 if (dev_is_dma_coherent(dev))
679 return;
680
681 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
682 arch_sync_dma_for_cpu(phys, size, dir);
683 }
684
iommu_dma_sync_single_for_device(struct device * dev,dma_addr_t dma_handle,size_t size,enum dma_data_direction dir)685 static void iommu_dma_sync_single_for_device(struct device *dev,
686 dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
687 {
688 phys_addr_t phys;
689
690 if (dev_is_dma_coherent(dev))
691 return;
692
693 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
694 arch_sync_dma_for_device(phys, size, dir);
695 }
696
iommu_dma_sync_sg_for_cpu(struct device * dev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir)697 static void iommu_dma_sync_sg_for_cpu(struct device *dev,
698 struct scatterlist *sgl, int nelems,
699 enum dma_data_direction dir)
700 {
701 struct scatterlist *sg;
702 int i;
703
704 if (dev_is_dma_coherent(dev))
705 return;
706
707 for_each_sg(sgl, sg, nelems, i)
708 arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir);
709 }
710
iommu_dma_sync_sg_for_device(struct device * dev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir)711 static void iommu_dma_sync_sg_for_device(struct device *dev,
712 struct scatterlist *sgl, int nelems,
713 enum dma_data_direction dir)
714 {
715 struct scatterlist *sg;
716 int i;
717
718 if (dev_is_dma_coherent(dev))
719 return;
720
721 for_each_sg(sgl, sg, nelems, i)
722 arch_sync_dma_for_device(sg_phys(sg), sg->length, dir);
723 }
724
iommu_dma_map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir,unsigned long attrs)725 static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
726 unsigned long offset, size_t size, enum dma_data_direction dir,
727 unsigned long attrs)
728 {
729 phys_addr_t phys = page_to_phys(page) + offset;
730 bool coherent = dev_is_dma_coherent(dev);
731 int prot = dma_info_to_prot(dir, coherent, attrs);
732 dma_addr_t dma_handle;
733
734 dma_handle = __iommu_dma_map(dev, phys, size, prot, dma_get_mask(dev));
735 if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
736 dma_handle != DMA_MAPPING_ERROR)
737 arch_sync_dma_for_device(phys, size, dir);
738 return dma_handle;
739 }
740
iommu_dma_unmap_page(struct device * dev,dma_addr_t dma_handle,size_t size,enum dma_data_direction dir,unsigned long attrs)741 static void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle,
742 size_t size, enum dma_data_direction dir, unsigned long attrs)
743 {
744 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
745 iommu_dma_sync_single_for_cpu(dev, dma_handle, size, dir);
746 __iommu_dma_unmap(dev, dma_handle, size);
747 }
748
749 /*
750 * Prepare a successfully-mapped scatterlist to give back to the caller.
751 *
752 * At this point the segments are already laid out by iommu_dma_map_sg() to
753 * avoid individually crossing any boundaries, so we merely need to check a
754 * segment's start address to avoid concatenating across one.
755 */
__finalise_sg(struct device * dev,struct scatterlist * sg,int nents,dma_addr_t dma_addr)756 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
757 dma_addr_t dma_addr)
758 {
759 struct scatterlist *s, *cur = sg;
760 unsigned long seg_mask = dma_get_seg_boundary(dev);
761 unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
762 int i, count = 0;
763
764 for_each_sg(sg, s, nents, i) {
765 /* Restore this segment's original unaligned fields first */
766 unsigned int s_iova_off = sg_dma_address(s);
767 unsigned int s_length = sg_dma_len(s);
768 unsigned int s_iova_len = s->length;
769
770 s->offset += s_iova_off;
771 s->length = s_length;
772 sg_dma_address(s) = DMA_MAPPING_ERROR;
773 sg_dma_len(s) = 0;
774
775 /*
776 * Now fill in the real DMA data. If...
777 * - there is a valid output segment to append to
778 * - and this segment starts on an IOVA page boundary
779 * - but doesn't fall at a segment boundary
780 * - and wouldn't make the resulting output segment too long
781 */
782 if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
783 (max_len - cur_len >= s_length)) {
784 /* ...then concatenate it with the previous one */
785 cur_len += s_length;
786 } else {
787 /* Otherwise start the next output segment */
788 if (i > 0)
789 cur = sg_next(cur);
790 cur_len = s_length;
791 count++;
792
793 sg_dma_address(cur) = dma_addr + s_iova_off;
794 }
795
796 sg_dma_len(cur) = cur_len;
797 dma_addr += s_iova_len;
798
799 if (s_length + s_iova_off < s_iova_len)
800 cur_len = 0;
801 }
802 return count;
803 }
804
805 /*
806 * If mapping failed, then just restore the original list,
807 * but making sure the DMA fields are invalidated.
808 */
__invalidate_sg(struct scatterlist * sg,int nents)809 static void __invalidate_sg(struct scatterlist *sg, int nents)
810 {
811 struct scatterlist *s;
812 int i;
813
814 for_each_sg(sg, s, nents, i) {
815 if (sg_dma_address(s) != DMA_MAPPING_ERROR)
816 s->offset += sg_dma_address(s);
817 if (sg_dma_len(s))
818 s->length = sg_dma_len(s);
819 sg_dma_address(s) = DMA_MAPPING_ERROR;
820 sg_dma_len(s) = 0;
821 }
822 }
823
824 /*
825 * The DMA API client is passing in a scatterlist which could describe
826 * any old buffer layout, but the IOMMU API requires everything to be
827 * aligned to IOMMU pages. Hence the need for this complicated bit of
828 * impedance-matching, to be able to hand off a suitably-aligned list,
829 * but still preserve the original offsets and sizes for the caller.
830 */
iommu_dma_map_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)831 static int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
832 int nents, enum dma_data_direction dir, unsigned long attrs)
833 {
834 struct iommu_domain *domain = iommu_get_dma_domain(dev);
835 struct iommu_dma_cookie *cookie = domain->iova_cookie;
836 struct iova_domain *iovad = &cookie->iovad;
837 struct scatterlist *s, *prev = NULL;
838 int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs);
839 dma_addr_t iova;
840 size_t iova_len = 0;
841 unsigned long mask = dma_get_seg_boundary(dev);
842 int i;
843
844 if (unlikely(iommu_dma_deferred_attach(dev, domain)))
845 return 0;
846
847 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
848 iommu_dma_sync_sg_for_device(dev, sg, nents, dir);
849
850 /*
851 * Work out how much IOVA space we need, and align the segments to
852 * IOVA granules for the IOMMU driver to handle. With some clever
853 * trickery we can modify the list in-place, but reversibly, by
854 * stashing the unaligned parts in the as-yet-unused DMA fields.
855 */
856 for_each_sg(sg, s, nents, i) {
857 size_t s_iova_off = iova_offset(iovad, s->offset);
858 size_t s_length = s->length;
859 size_t pad_len = (mask - iova_len + 1) & mask;
860
861 sg_dma_address(s) = s_iova_off;
862 sg_dma_len(s) = s_length;
863 s->offset -= s_iova_off;
864 s_length = iova_align(iovad, s_length + s_iova_off);
865 s->length = s_length;
866
867 /*
868 * Due to the alignment of our single IOVA allocation, we can
869 * depend on these assumptions about the segment boundary mask:
870 * - If mask size >= IOVA size, then the IOVA range cannot
871 * possibly fall across a boundary, so we don't care.
872 * - If mask size < IOVA size, then the IOVA range must start
873 * exactly on a boundary, therefore we can lay things out
874 * based purely on segment lengths without needing to know
875 * the actual addresses beforehand.
876 * - The mask must be a power of 2, so pad_len == 0 if
877 * iova_len == 0, thus we cannot dereference prev the first
878 * time through here (i.e. before it has a meaningful value).
879 */
880 if (pad_len && pad_len < s_length - 1) {
881 prev->length += pad_len;
882 iova_len += pad_len;
883 }
884
885 iova_len += s_length;
886 prev = s;
887 }
888
889 iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
890 if (!iova)
891 goto out_restore_sg;
892
893 /*
894 * We'll leave any physical concatenation to the IOMMU driver's
895 * implementation - it knows better than we do.
896 */
897 if (iommu_map_sg_atomic(domain, iova, sg, nents, prot) < iova_len)
898 goto out_free_iova;
899
900 return __finalise_sg(dev, sg, nents, iova);
901
902 out_free_iova:
903 iommu_dma_free_iova(cookie, iova, iova_len);
904 out_restore_sg:
905 __invalidate_sg(sg, nents);
906 return 0;
907 }
908
iommu_dma_unmap_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)909 static void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
910 int nents, enum dma_data_direction dir, unsigned long attrs)
911 {
912 dma_addr_t start, end;
913 struct scatterlist *tmp;
914 int i;
915
916 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
917 iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir);
918
919 /*
920 * The scatterlist segments are mapped into a single
921 * contiguous IOVA allocation, so this is incredibly easy.
922 */
923 start = sg_dma_address(sg);
924 for_each_sg(sg_next(sg), tmp, nents - 1, i) {
925 if (sg_dma_len(tmp) == 0)
926 break;
927 sg = tmp;
928 }
929 end = sg_dma_address(sg) + sg_dma_len(sg);
930 __iommu_dma_unmap(dev, start, end - start);
931 }
932
iommu_dma_map_resource(struct device * dev,phys_addr_t phys,size_t size,enum dma_data_direction dir,unsigned long attrs)933 static dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
934 size_t size, enum dma_data_direction dir, unsigned long attrs)
935 {
936 return __iommu_dma_map(dev, phys, size,
937 dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO,
938 dma_get_mask(dev));
939 }
940
iommu_dma_unmap_resource(struct device * dev,dma_addr_t handle,size_t size,enum dma_data_direction dir,unsigned long attrs)941 static void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
942 size_t size, enum dma_data_direction dir, unsigned long attrs)
943 {
944 __iommu_dma_unmap(dev, handle, size);
945 }
946
__iommu_dma_free(struct device * dev,size_t size,void * cpu_addr)947 static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr)
948 {
949 size_t alloc_size = PAGE_ALIGN(size);
950 int count = alloc_size >> PAGE_SHIFT;
951 struct page *page = NULL, **pages = NULL;
952
953 /* Non-coherent atomic allocation? Easy */
954 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
955 dma_free_from_pool(dev, cpu_addr, alloc_size))
956 return;
957
958 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
959 /*
960 * If it the address is remapped, then it's either non-coherent
961 * or highmem CMA, or an iommu_dma_alloc_remap() construction.
962 */
963 pages = dma_common_find_pages(cpu_addr);
964 if (!pages)
965 page = vmalloc_to_page(cpu_addr);
966 dma_common_free_remap(cpu_addr, alloc_size);
967 } else {
968 /* Lowmem means a coherent atomic or CMA allocation */
969 page = virt_to_page(cpu_addr);
970 }
971
972 if (pages)
973 __iommu_dma_free_pages(pages, count);
974 if (page)
975 dma_free_contiguous(dev, page, alloc_size);
976 }
977
iommu_dma_free(struct device * dev,size_t size,void * cpu_addr,dma_addr_t handle,unsigned long attrs)978 static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr,
979 dma_addr_t handle, unsigned long attrs)
980 {
981 __iommu_dma_unmap(dev, handle, size);
982 __iommu_dma_free(dev, size, cpu_addr);
983 }
984
iommu_dma_alloc_pages(struct device * dev,size_t size,struct page ** pagep,gfp_t gfp,unsigned long attrs)985 static void *iommu_dma_alloc_pages(struct device *dev, size_t size,
986 struct page **pagep, gfp_t gfp, unsigned long attrs)
987 {
988 bool coherent = dev_is_dma_coherent(dev);
989 size_t alloc_size = PAGE_ALIGN(size);
990 int node = dev_to_node(dev);
991 struct page *page = NULL;
992 void *cpu_addr;
993
994 page = dma_alloc_contiguous(dev, alloc_size, gfp);
995 if (!page)
996 page = alloc_pages_node(node, gfp, get_order(alloc_size));
997 if (!page)
998 return NULL;
999
1000 if (IS_ENABLED(CONFIG_DMA_REMAP) && (!coherent || PageHighMem(page))) {
1001 pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
1002
1003 cpu_addr = dma_common_contiguous_remap(page, alloc_size,
1004 prot, __builtin_return_address(0));
1005 if (!cpu_addr)
1006 goto out_free_pages;
1007
1008 if (!coherent)
1009 arch_dma_prep_coherent(page, size);
1010 } else {
1011 cpu_addr = page_address(page);
1012 }
1013
1014 *pagep = page;
1015 memset(cpu_addr, 0, alloc_size);
1016 return cpu_addr;
1017 out_free_pages:
1018 dma_free_contiguous(dev, page, alloc_size);
1019 return NULL;
1020 }
1021
iommu_dma_alloc(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp,unsigned long attrs)1022 static void *iommu_dma_alloc(struct device *dev, size_t size,
1023 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1024 {
1025 bool coherent = dev_is_dma_coherent(dev);
1026 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
1027 struct page *page = NULL;
1028 void *cpu_addr;
1029
1030 gfp |= __GFP_ZERO;
1031
1032 if (IS_ENABLED(CONFIG_DMA_REMAP) && gfpflags_allow_blocking(gfp) &&
1033 !(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) {
1034 return iommu_dma_alloc_remap(dev, size, handle, gfp,
1035 dma_pgprot(dev, PAGE_KERNEL, attrs), attrs);
1036 }
1037
1038 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1039 !gfpflags_allow_blocking(gfp) && !coherent)
1040 page = dma_alloc_from_pool(dev, PAGE_ALIGN(size), &cpu_addr,
1041 gfp, NULL);
1042 else
1043 cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs);
1044 if (!cpu_addr)
1045 return NULL;
1046
1047 *handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot,
1048 dev->coherent_dma_mask);
1049 if (*handle == DMA_MAPPING_ERROR) {
1050 __iommu_dma_free(dev, size, cpu_addr);
1051 return NULL;
1052 }
1053
1054 return cpu_addr;
1055 }
1056
1057 #ifdef CONFIG_DMA_REMAP
iommu_dma_alloc_noncoherent(struct device * dev,size_t size,dma_addr_t * handle,enum dma_data_direction dir,gfp_t gfp)1058 static void *iommu_dma_alloc_noncoherent(struct device *dev, size_t size,
1059 dma_addr_t *handle, enum dma_data_direction dir, gfp_t gfp)
1060 {
1061 if (!gfpflags_allow_blocking(gfp)) {
1062 struct page *page;
1063
1064 page = dma_common_alloc_pages(dev, size, handle, dir, gfp);
1065 if (!page)
1066 return NULL;
1067 return page_address(page);
1068 }
1069
1070 return iommu_dma_alloc_remap(dev, size, handle, gfp | __GFP_ZERO,
1071 PAGE_KERNEL, 0);
1072 }
1073
iommu_dma_free_noncoherent(struct device * dev,size_t size,void * cpu_addr,dma_addr_t handle,enum dma_data_direction dir)1074 static void iommu_dma_free_noncoherent(struct device *dev, size_t size,
1075 void *cpu_addr, dma_addr_t handle, enum dma_data_direction dir)
1076 {
1077 __iommu_dma_unmap(dev, handle, size);
1078 __iommu_dma_free(dev, size, cpu_addr);
1079 }
1080 #else
1081 #define iommu_dma_alloc_noncoherent NULL
1082 #define iommu_dma_free_noncoherent NULL
1083 #endif /* CONFIG_DMA_REMAP */
1084
iommu_dma_mmap(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)1085 static int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma,
1086 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1087 unsigned long attrs)
1088 {
1089 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1090 unsigned long pfn, off = vma->vm_pgoff;
1091 int ret;
1092
1093 vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
1094
1095 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
1096 return ret;
1097
1098 if (off >= nr_pages || vma_pages(vma) > nr_pages - off)
1099 return -ENXIO;
1100
1101 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
1102 struct page **pages = dma_common_find_pages(cpu_addr);
1103
1104 if (pages)
1105 return __iommu_dma_mmap(pages, size, vma);
1106 pfn = vmalloc_to_pfn(cpu_addr);
1107 } else {
1108 pfn = page_to_pfn(virt_to_page(cpu_addr));
1109 }
1110
1111 return remap_pfn_range(vma, vma->vm_start, pfn + off,
1112 vma->vm_end - vma->vm_start,
1113 vma->vm_page_prot);
1114 }
1115
iommu_dma_get_sgtable(struct device * dev,struct sg_table * sgt,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)1116 static int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
1117 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1118 unsigned long attrs)
1119 {
1120 struct page *page;
1121 int ret;
1122
1123 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
1124 struct page **pages = dma_common_find_pages(cpu_addr);
1125
1126 if (pages) {
1127 return sg_alloc_table_from_pages(sgt, pages,
1128 PAGE_ALIGN(size) >> PAGE_SHIFT,
1129 0, size, GFP_KERNEL);
1130 }
1131
1132 page = vmalloc_to_page(cpu_addr);
1133 } else {
1134 page = virt_to_page(cpu_addr);
1135 }
1136
1137 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
1138 if (!ret)
1139 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
1140 return ret;
1141 }
1142
iommu_dma_get_merge_boundary(struct device * dev)1143 static unsigned long iommu_dma_get_merge_boundary(struct device *dev)
1144 {
1145 struct iommu_domain *domain = iommu_get_dma_domain(dev);
1146
1147 return (1UL << __ffs(domain->pgsize_bitmap)) - 1;
1148 }
1149
1150 static const struct dma_map_ops iommu_dma_ops = {
1151 .alloc = iommu_dma_alloc,
1152 .free = iommu_dma_free,
1153 .alloc_pages = dma_common_alloc_pages,
1154 .free_pages = dma_common_free_pages,
1155 .alloc_noncoherent = iommu_dma_alloc_noncoherent,
1156 .free_noncoherent = iommu_dma_free_noncoherent,
1157 .mmap = iommu_dma_mmap,
1158 .get_sgtable = iommu_dma_get_sgtable,
1159 .map_page = iommu_dma_map_page,
1160 .unmap_page = iommu_dma_unmap_page,
1161 .map_sg = iommu_dma_map_sg,
1162 .unmap_sg = iommu_dma_unmap_sg,
1163 .sync_single_for_cpu = iommu_dma_sync_single_for_cpu,
1164 .sync_single_for_device = iommu_dma_sync_single_for_device,
1165 .sync_sg_for_cpu = iommu_dma_sync_sg_for_cpu,
1166 .sync_sg_for_device = iommu_dma_sync_sg_for_device,
1167 .map_resource = iommu_dma_map_resource,
1168 .unmap_resource = iommu_dma_unmap_resource,
1169 .get_merge_boundary = iommu_dma_get_merge_boundary,
1170 };
1171
1172 /*
1173 * The IOMMU core code allocates the default DMA domain, which the underlying
1174 * IOMMU driver needs to support via the dma-iommu layer.
1175 */
iommu_setup_dma_ops(struct device * dev,u64 dma_base,u64 size)1176 void iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size)
1177 {
1178 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1179
1180 if (!domain)
1181 goto out_err;
1182
1183 /*
1184 * The IOMMU core code allocates the default DMA domain, which the
1185 * underlying IOMMU driver needs to support via the dma-iommu layer.
1186 */
1187 if (domain->type == IOMMU_DOMAIN_DMA) {
1188 if (iommu_dma_init_domain(domain, dma_base, size, dev))
1189 goto out_err;
1190 dev->dma_ops = &iommu_dma_ops;
1191 }
1192
1193 return;
1194 out_err:
1195 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
1196 dev_name(dev));
1197 }
1198
iommu_dma_get_msi_page(struct device * dev,phys_addr_t msi_addr,struct iommu_domain * domain)1199 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
1200 phys_addr_t msi_addr, struct iommu_domain *domain)
1201 {
1202 struct iommu_dma_cookie *cookie = domain->iova_cookie;
1203 struct iommu_dma_msi_page *msi_page;
1204 dma_addr_t iova;
1205 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1206 size_t size = cookie_msi_granule(cookie);
1207
1208 msi_addr &= ~(phys_addr_t)(size - 1);
1209 list_for_each_entry(msi_page, &cookie->msi_page_list, list)
1210 if (msi_page->phys == msi_addr)
1211 return msi_page;
1212
1213 msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL);
1214 if (!msi_page)
1215 return NULL;
1216
1217 iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
1218 if (!iova)
1219 goto out_free_page;
1220
1221 if (iommu_map(domain, iova, msi_addr, size, prot))
1222 goto out_free_iova;
1223
1224 INIT_LIST_HEAD(&msi_page->list);
1225 msi_page->phys = msi_addr;
1226 msi_page->iova = iova;
1227 list_add(&msi_page->list, &cookie->msi_page_list);
1228 return msi_page;
1229
1230 out_free_iova:
1231 iommu_dma_free_iova(cookie, iova, size);
1232 out_free_page:
1233 kfree(msi_page);
1234 return NULL;
1235 }
1236
iommu_dma_prepare_msi(struct msi_desc * desc,phys_addr_t msi_addr)1237 int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr)
1238 {
1239 struct device *dev = msi_desc_to_dev(desc);
1240 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1241 struct iommu_dma_msi_page *msi_page;
1242 static DEFINE_MUTEX(msi_prepare_lock); /* see below */
1243
1244 if (!domain || !domain->iova_cookie) {
1245 desc->iommu_cookie = NULL;
1246 return 0;
1247 }
1248
1249 /*
1250 * In fact the whole prepare operation should already be serialised by
1251 * irq_domain_mutex further up the callchain, but that's pretty subtle
1252 * on its own, so consider this locking as failsafe documentation...
1253 */
1254 mutex_lock(&msi_prepare_lock);
1255 msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
1256 mutex_unlock(&msi_prepare_lock);
1257
1258 msi_desc_set_iommu_cookie(desc, msi_page);
1259
1260 if (!msi_page)
1261 return -ENOMEM;
1262 return 0;
1263 }
1264
iommu_dma_compose_msi_msg(struct msi_desc * desc,struct msi_msg * msg)1265 void iommu_dma_compose_msi_msg(struct msi_desc *desc,
1266 struct msi_msg *msg)
1267 {
1268 struct device *dev = msi_desc_to_dev(desc);
1269 const struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1270 const struct iommu_dma_msi_page *msi_page;
1271
1272 msi_page = msi_desc_get_iommu_cookie(desc);
1273
1274 if (!domain || !domain->iova_cookie || WARN_ON(!msi_page))
1275 return;
1276
1277 msg->address_hi = upper_32_bits(msi_page->iova);
1278 msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1;
1279 msg->address_lo += lower_32_bits(msi_page->iova);
1280 }
1281
iommu_dma_init(void)1282 static int iommu_dma_init(void)
1283 {
1284 return iova_cache_get();
1285 }
1286 arch_initcall(iommu_dma_init);
1287