1 /*
2  * Copyright (c) 2006 - 2009 Mellanox Technology Inc.  All rights reserved.
3  * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  *
33  */
34 
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/err.h>
39 #include <linux/ctype.h>
40 #include <linux/kthread.h>
41 #include <linux/string.h>
42 #include <linux/delay.h>
43 #include <linux/atomic.h>
44 #include <scsi/scsi_tcq.h>
45 #include <target/configfs_macros.h>
46 #include <target/target_core_base.h>
47 #include <target/target_core_fabric_configfs.h>
48 #include <target/target_core_fabric.h>
49 #include <target/target_core_configfs.h>
50 #include "ib_srpt.h"
51 
52 /* Name of this kernel module. */
53 #define DRV_NAME		"ib_srpt"
54 #define DRV_VERSION		"2.0.0"
55 #define DRV_RELDATE		"2011-02-14"
56 
57 #define SRPT_ID_STRING	"Linux SRP target"
58 
59 #undef pr_fmt
60 #define pr_fmt(fmt) DRV_NAME " " fmt
61 
62 MODULE_AUTHOR("Vu Pham and Bart Van Assche");
63 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target "
64 		   "v" DRV_VERSION " (" DRV_RELDATE ")");
65 MODULE_LICENSE("Dual BSD/GPL");
66 
67 /*
68  * Global Variables
69  */
70 
71 static u64 srpt_service_guid;
72 static DEFINE_SPINLOCK(srpt_dev_lock);	/* Protects srpt_dev_list. */
73 static LIST_HEAD(srpt_dev_list);	/* List of srpt_device structures. */
74 
75 static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE;
76 module_param(srp_max_req_size, int, 0444);
77 MODULE_PARM_DESC(srp_max_req_size,
78 		 "Maximum size of SRP request messages in bytes.");
79 
80 static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE;
81 module_param(srpt_srq_size, int, 0444);
82 MODULE_PARM_DESC(srpt_srq_size,
83 		 "Shared receive queue (SRQ) size.");
84 
srpt_get_u64_x(char * buffer,struct kernel_param * kp)85 static int srpt_get_u64_x(char *buffer, struct kernel_param *kp)
86 {
87 	return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg);
88 }
89 module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid,
90 		  0444);
91 MODULE_PARM_DESC(srpt_service_guid,
92 		 "Using this value for ioc_guid, id_ext, and cm_listen_id"
93 		 " instead of using the node_guid of the first HCA.");
94 
95 static struct ib_client srpt_client;
96 static struct target_fabric_configfs *srpt_target;
97 static void srpt_release_channel(struct srpt_rdma_ch *ch);
98 static int srpt_queue_status(struct se_cmd *cmd);
99 
100 /**
101  * opposite_dma_dir() - Swap DMA_TO_DEVICE and DMA_FROM_DEVICE.
102  */
103 static inline
opposite_dma_dir(enum dma_data_direction dir)104 enum dma_data_direction opposite_dma_dir(enum dma_data_direction dir)
105 {
106 	switch (dir) {
107 	case DMA_TO_DEVICE:	return DMA_FROM_DEVICE;
108 	case DMA_FROM_DEVICE:	return DMA_TO_DEVICE;
109 	default:		return dir;
110 	}
111 }
112 
113 /**
114  * srpt_sdev_name() - Return the name associated with the HCA.
115  *
116  * Examples are ib0, ib1, ...
117  */
srpt_sdev_name(struct srpt_device * sdev)118 static inline const char *srpt_sdev_name(struct srpt_device *sdev)
119 {
120 	return sdev->device->name;
121 }
122 
srpt_get_ch_state(struct srpt_rdma_ch * ch)123 static enum rdma_ch_state srpt_get_ch_state(struct srpt_rdma_ch *ch)
124 {
125 	unsigned long flags;
126 	enum rdma_ch_state state;
127 
128 	spin_lock_irqsave(&ch->spinlock, flags);
129 	state = ch->state;
130 	spin_unlock_irqrestore(&ch->spinlock, flags);
131 	return state;
132 }
133 
134 static enum rdma_ch_state
srpt_set_ch_state(struct srpt_rdma_ch * ch,enum rdma_ch_state new_state)135 srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new_state)
136 {
137 	unsigned long flags;
138 	enum rdma_ch_state prev;
139 
140 	spin_lock_irqsave(&ch->spinlock, flags);
141 	prev = ch->state;
142 	ch->state = new_state;
143 	spin_unlock_irqrestore(&ch->spinlock, flags);
144 	return prev;
145 }
146 
147 /**
148  * srpt_test_and_set_ch_state() - Test and set the channel state.
149  *
150  * Returns true if and only if the channel state has been set to the new state.
151  */
152 static bool
srpt_test_and_set_ch_state(struct srpt_rdma_ch * ch,enum rdma_ch_state old,enum rdma_ch_state new)153 srpt_test_and_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state old,
154 			   enum rdma_ch_state new)
155 {
156 	unsigned long flags;
157 	enum rdma_ch_state prev;
158 
159 	spin_lock_irqsave(&ch->spinlock, flags);
160 	prev = ch->state;
161 	if (prev == old)
162 		ch->state = new;
163 	spin_unlock_irqrestore(&ch->spinlock, flags);
164 	return prev == old;
165 }
166 
167 /**
168  * srpt_event_handler() - Asynchronous IB event callback function.
169  *
170  * Callback function called by the InfiniBand core when an asynchronous IB
171  * event occurs. This callback may occur in interrupt context. See also
172  * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand
173  * Architecture Specification.
174  */
srpt_event_handler(struct ib_event_handler * handler,struct ib_event * event)175 static void srpt_event_handler(struct ib_event_handler *handler,
176 			       struct ib_event *event)
177 {
178 	struct srpt_device *sdev;
179 	struct srpt_port *sport;
180 
181 	sdev = ib_get_client_data(event->device, &srpt_client);
182 	if (!sdev || sdev->device != event->device)
183 		return;
184 
185 	pr_debug("ASYNC event= %d on device= %s\n", event->event,
186 		 srpt_sdev_name(sdev));
187 
188 	switch (event->event) {
189 	case IB_EVENT_PORT_ERR:
190 		if (event->element.port_num <= sdev->device->phys_port_cnt) {
191 			sport = &sdev->port[event->element.port_num - 1];
192 			sport->lid = 0;
193 			sport->sm_lid = 0;
194 		}
195 		break;
196 	case IB_EVENT_PORT_ACTIVE:
197 	case IB_EVENT_LID_CHANGE:
198 	case IB_EVENT_PKEY_CHANGE:
199 	case IB_EVENT_SM_CHANGE:
200 	case IB_EVENT_CLIENT_REREGISTER:
201 		/* Refresh port data asynchronously. */
202 		if (event->element.port_num <= sdev->device->phys_port_cnt) {
203 			sport = &sdev->port[event->element.port_num - 1];
204 			if (!sport->lid && !sport->sm_lid)
205 				schedule_work(&sport->work);
206 		}
207 		break;
208 	default:
209 		printk(KERN_ERR "received unrecognized IB event %d\n",
210 		       event->event);
211 		break;
212 	}
213 }
214 
215 /**
216  * srpt_srq_event() - SRQ event callback function.
217  */
srpt_srq_event(struct ib_event * event,void * ctx)218 static void srpt_srq_event(struct ib_event *event, void *ctx)
219 {
220 	printk(KERN_INFO "SRQ event %d\n", event->event);
221 }
222 
223 /**
224  * srpt_qp_event() - QP event callback function.
225  */
srpt_qp_event(struct ib_event * event,struct srpt_rdma_ch * ch)226 static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch)
227 {
228 	pr_debug("QP event %d on cm_id=%p sess_name=%s state=%d\n",
229 		 event->event, ch->cm_id, ch->sess_name, srpt_get_ch_state(ch));
230 
231 	switch (event->event) {
232 	case IB_EVENT_COMM_EST:
233 		ib_cm_notify(ch->cm_id, event->event);
234 		break;
235 	case IB_EVENT_QP_LAST_WQE_REACHED:
236 		if (srpt_test_and_set_ch_state(ch, CH_DRAINING,
237 					       CH_RELEASING))
238 			srpt_release_channel(ch);
239 		else
240 			pr_debug("%s: state %d - ignored LAST_WQE.\n",
241 				 ch->sess_name, srpt_get_ch_state(ch));
242 		break;
243 	default:
244 		printk(KERN_ERR "received unrecognized IB QP event %d\n",
245 		       event->event);
246 		break;
247 	}
248 }
249 
250 /**
251  * srpt_set_ioc() - Helper function for initializing an IOUnitInfo structure.
252  *
253  * @slot: one-based slot number.
254  * @value: four-bit value.
255  *
256  * Copies the lowest four bits of value in element slot of the array of four
257  * bit elements called c_list (controller list). The index slot is one-based.
258  */
srpt_set_ioc(u8 * c_list,u32 slot,u8 value)259 static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value)
260 {
261 	u16 id;
262 	u8 tmp;
263 
264 	id = (slot - 1) / 2;
265 	if (slot & 0x1) {
266 		tmp = c_list[id] & 0xf;
267 		c_list[id] = (value << 4) | tmp;
268 	} else {
269 		tmp = c_list[id] & 0xf0;
270 		c_list[id] = (value & 0xf) | tmp;
271 	}
272 }
273 
274 /**
275  * srpt_get_class_port_info() - Copy ClassPortInfo to a management datagram.
276  *
277  * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture
278  * Specification.
279  */
srpt_get_class_port_info(struct ib_dm_mad * mad)280 static void srpt_get_class_port_info(struct ib_dm_mad *mad)
281 {
282 	struct ib_class_port_info *cif;
283 
284 	cif = (struct ib_class_port_info *)mad->data;
285 	memset(cif, 0, sizeof *cif);
286 	cif->base_version = 1;
287 	cif->class_version = 1;
288 	cif->resp_time_value = 20;
289 
290 	mad->mad_hdr.status = 0;
291 }
292 
293 /**
294  * srpt_get_iou() - Write IOUnitInfo to a management datagram.
295  *
296  * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture
297  * Specification. See also section B.7, table B.6 in the SRP r16a document.
298  */
srpt_get_iou(struct ib_dm_mad * mad)299 static void srpt_get_iou(struct ib_dm_mad *mad)
300 {
301 	struct ib_dm_iou_info *ioui;
302 	u8 slot;
303 	int i;
304 
305 	ioui = (struct ib_dm_iou_info *)mad->data;
306 	ioui->change_id = __constant_cpu_to_be16(1);
307 	ioui->max_controllers = 16;
308 
309 	/* set present for slot 1 and empty for the rest */
310 	srpt_set_ioc(ioui->controller_list, 1, 1);
311 	for (i = 1, slot = 2; i < 16; i++, slot++)
312 		srpt_set_ioc(ioui->controller_list, slot, 0);
313 
314 	mad->mad_hdr.status = 0;
315 }
316 
317 /**
318  * srpt_get_ioc() - Write IOControllerprofile to a management datagram.
319  *
320  * See also section 16.3.3.4 IOControllerProfile in the InfiniBand
321  * Architecture Specification. See also section B.7, table B.7 in the SRP
322  * r16a document.
323  */
srpt_get_ioc(struct srpt_port * sport,u32 slot,struct ib_dm_mad * mad)324 static void srpt_get_ioc(struct srpt_port *sport, u32 slot,
325 			 struct ib_dm_mad *mad)
326 {
327 	struct srpt_device *sdev = sport->sdev;
328 	struct ib_dm_ioc_profile *iocp;
329 
330 	iocp = (struct ib_dm_ioc_profile *)mad->data;
331 
332 	if (!slot || slot > 16) {
333 		mad->mad_hdr.status
334 			= __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
335 		return;
336 	}
337 
338 	if (slot > 2) {
339 		mad->mad_hdr.status
340 			= __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC);
341 		return;
342 	}
343 
344 	memset(iocp, 0, sizeof *iocp);
345 	strcpy(iocp->id_string, SRPT_ID_STRING);
346 	iocp->guid = cpu_to_be64(srpt_service_guid);
347 	iocp->vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id);
348 	iocp->device_id = cpu_to_be32(sdev->dev_attr.vendor_part_id);
349 	iocp->device_version = cpu_to_be16(sdev->dev_attr.hw_ver);
350 	iocp->subsys_vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id);
351 	iocp->subsys_device_id = 0x0;
352 	iocp->io_class = __constant_cpu_to_be16(SRP_REV16A_IB_IO_CLASS);
353 	iocp->io_subclass = __constant_cpu_to_be16(SRP_IO_SUBCLASS);
354 	iocp->protocol = __constant_cpu_to_be16(SRP_PROTOCOL);
355 	iocp->protocol_version = __constant_cpu_to_be16(SRP_PROTOCOL_VERSION);
356 	iocp->send_queue_depth = cpu_to_be16(sdev->srq_size);
357 	iocp->rdma_read_depth = 4;
358 	iocp->send_size = cpu_to_be32(srp_max_req_size);
359 	iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size,
360 					  1U << 24));
361 	iocp->num_svc_entries = 1;
362 	iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC |
363 		SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC;
364 
365 	mad->mad_hdr.status = 0;
366 }
367 
368 /**
369  * srpt_get_svc_entries() - Write ServiceEntries to a management datagram.
370  *
371  * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture
372  * Specification. See also section B.7, table B.8 in the SRP r16a document.
373  */
srpt_get_svc_entries(u64 ioc_guid,u16 slot,u8 hi,u8 lo,struct ib_dm_mad * mad)374 static void srpt_get_svc_entries(u64 ioc_guid,
375 				 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad)
376 {
377 	struct ib_dm_svc_entries *svc_entries;
378 
379 	WARN_ON(!ioc_guid);
380 
381 	if (!slot || slot > 16) {
382 		mad->mad_hdr.status
383 			= __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
384 		return;
385 	}
386 
387 	if (slot > 2 || lo > hi || hi > 1) {
388 		mad->mad_hdr.status
389 			= __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC);
390 		return;
391 	}
392 
393 	svc_entries = (struct ib_dm_svc_entries *)mad->data;
394 	memset(svc_entries, 0, sizeof *svc_entries);
395 	svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid);
396 	snprintf(svc_entries->service_entries[0].name,
397 		 sizeof(svc_entries->service_entries[0].name),
398 		 "%s%016llx",
399 		 SRP_SERVICE_NAME_PREFIX,
400 		 ioc_guid);
401 
402 	mad->mad_hdr.status = 0;
403 }
404 
405 /**
406  * srpt_mgmt_method_get() - Process a received management datagram.
407  * @sp:      source port through which the MAD has been received.
408  * @rq_mad:  received MAD.
409  * @rsp_mad: response MAD.
410  */
srpt_mgmt_method_get(struct srpt_port * sp,struct ib_mad * rq_mad,struct ib_dm_mad * rsp_mad)411 static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad,
412 				 struct ib_dm_mad *rsp_mad)
413 {
414 	u16 attr_id;
415 	u32 slot;
416 	u8 hi, lo;
417 
418 	attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id);
419 	switch (attr_id) {
420 	case DM_ATTR_CLASS_PORT_INFO:
421 		srpt_get_class_port_info(rsp_mad);
422 		break;
423 	case DM_ATTR_IOU_INFO:
424 		srpt_get_iou(rsp_mad);
425 		break;
426 	case DM_ATTR_IOC_PROFILE:
427 		slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
428 		srpt_get_ioc(sp, slot, rsp_mad);
429 		break;
430 	case DM_ATTR_SVC_ENTRIES:
431 		slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
432 		hi = (u8) ((slot >> 8) & 0xff);
433 		lo = (u8) (slot & 0xff);
434 		slot = (u16) ((slot >> 16) & 0xffff);
435 		srpt_get_svc_entries(srpt_service_guid,
436 				     slot, hi, lo, rsp_mad);
437 		break;
438 	default:
439 		rsp_mad->mad_hdr.status =
440 		    __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
441 		break;
442 	}
443 }
444 
445 /**
446  * srpt_mad_send_handler() - Post MAD-send callback function.
447  */
srpt_mad_send_handler(struct ib_mad_agent * mad_agent,struct ib_mad_send_wc * mad_wc)448 static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent,
449 				  struct ib_mad_send_wc *mad_wc)
450 {
451 	ib_destroy_ah(mad_wc->send_buf->ah);
452 	ib_free_send_mad(mad_wc->send_buf);
453 }
454 
455 /**
456  * srpt_mad_recv_handler() - MAD reception callback function.
457  */
srpt_mad_recv_handler(struct ib_mad_agent * mad_agent,struct ib_mad_recv_wc * mad_wc)458 static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent,
459 				  struct ib_mad_recv_wc *mad_wc)
460 {
461 	struct srpt_port *sport = (struct srpt_port *)mad_agent->context;
462 	struct ib_ah *ah;
463 	struct ib_mad_send_buf *rsp;
464 	struct ib_dm_mad *dm_mad;
465 
466 	if (!mad_wc || !mad_wc->recv_buf.mad)
467 		return;
468 
469 	ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc,
470 				  mad_wc->recv_buf.grh, mad_agent->port_num);
471 	if (IS_ERR(ah))
472 		goto err;
473 
474 	BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR);
475 
476 	rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp,
477 				 mad_wc->wc->pkey_index, 0,
478 				 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA,
479 				 GFP_KERNEL);
480 	if (IS_ERR(rsp))
481 		goto err_rsp;
482 
483 	rsp->ah = ah;
484 
485 	dm_mad = rsp->mad;
486 	memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof *dm_mad);
487 	dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP;
488 	dm_mad->mad_hdr.status = 0;
489 
490 	switch (mad_wc->recv_buf.mad->mad_hdr.method) {
491 	case IB_MGMT_METHOD_GET:
492 		srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad);
493 		break;
494 	case IB_MGMT_METHOD_SET:
495 		dm_mad->mad_hdr.status =
496 		    __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
497 		break;
498 	default:
499 		dm_mad->mad_hdr.status =
500 		    __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD);
501 		break;
502 	}
503 
504 	if (!ib_post_send_mad(rsp, NULL)) {
505 		ib_free_recv_mad(mad_wc);
506 		/* will destroy_ah & free_send_mad in send completion */
507 		return;
508 	}
509 
510 	ib_free_send_mad(rsp);
511 
512 err_rsp:
513 	ib_destroy_ah(ah);
514 err:
515 	ib_free_recv_mad(mad_wc);
516 }
517 
518 /**
519  * srpt_refresh_port() - Configure a HCA port.
520  *
521  * Enable InfiniBand management datagram processing, update the cached sm_lid,
522  * lid and gid values, and register a callback function for processing MADs
523  * on the specified port.
524  *
525  * Note: It is safe to call this function more than once for the same port.
526  */
srpt_refresh_port(struct srpt_port * sport)527 static int srpt_refresh_port(struct srpt_port *sport)
528 {
529 	struct ib_mad_reg_req reg_req;
530 	struct ib_port_modify port_modify;
531 	struct ib_port_attr port_attr;
532 	int ret;
533 
534 	memset(&port_modify, 0, sizeof port_modify);
535 	port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
536 	port_modify.clr_port_cap_mask = 0;
537 
538 	ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
539 	if (ret)
540 		goto err_mod_port;
541 
542 	ret = ib_query_port(sport->sdev->device, sport->port, &port_attr);
543 	if (ret)
544 		goto err_query_port;
545 
546 	sport->sm_lid = port_attr.sm_lid;
547 	sport->lid = port_attr.lid;
548 
549 	ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid);
550 	if (ret)
551 		goto err_query_port;
552 
553 	if (!sport->mad_agent) {
554 		memset(&reg_req, 0, sizeof reg_req);
555 		reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT;
556 		reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION;
557 		set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask);
558 		set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask);
559 
560 		sport->mad_agent = ib_register_mad_agent(sport->sdev->device,
561 							 sport->port,
562 							 IB_QPT_GSI,
563 							 &reg_req, 0,
564 							 srpt_mad_send_handler,
565 							 srpt_mad_recv_handler,
566 							 sport);
567 		if (IS_ERR(sport->mad_agent)) {
568 			ret = PTR_ERR(sport->mad_agent);
569 			sport->mad_agent = NULL;
570 			goto err_query_port;
571 		}
572 	}
573 
574 	return 0;
575 
576 err_query_port:
577 
578 	port_modify.set_port_cap_mask = 0;
579 	port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
580 	ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
581 
582 err_mod_port:
583 
584 	return ret;
585 }
586 
587 /**
588  * srpt_unregister_mad_agent() - Unregister MAD callback functions.
589  *
590  * Note: It is safe to call this function more than once for the same device.
591  */
srpt_unregister_mad_agent(struct srpt_device * sdev)592 static void srpt_unregister_mad_agent(struct srpt_device *sdev)
593 {
594 	struct ib_port_modify port_modify = {
595 		.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP,
596 	};
597 	struct srpt_port *sport;
598 	int i;
599 
600 	for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
601 		sport = &sdev->port[i - 1];
602 		WARN_ON(sport->port != i);
603 		if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0)
604 			printk(KERN_ERR "disabling MAD processing failed.\n");
605 		if (sport->mad_agent) {
606 			ib_unregister_mad_agent(sport->mad_agent);
607 			sport->mad_agent = NULL;
608 		}
609 	}
610 }
611 
612 /**
613  * srpt_alloc_ioctx() - Allocate an SRPT I/O context structure.
614  */
srpt_alloc_ioctx(struct srpt_device * sdev,int ioctx_size,int dma_size,enum dma_data_direction dir)615 static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev,
616 					   int ioctx_size, int dma_size,
617 					   enum dma_data_direction dir)
618 {
619 	struct srpt_ioctx *ioctx;
620 
621 	ioctx = kmalloc(ioctx_size, GFP_KERNEL);
622 	if (!ioctx)
623 		goto err;
624 
625 	ioctx->buf = kmalloc(dma_size, GFP_KERNEL);
626 	if (!ioctx->buf)
627 		goto err_free_ioctx;
628 
629 	ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir);
630 	if (ib_dma_mapping_error(sdev->device, ioctx->dma))
631 		goto err_free_buf;
632 
633 	return ioctx;
634 
635 err_free_buf:
636 	kfree(ioctx->buf);
637 err_free_ioctx:
638 	kfree(ioctx);
639 err:
640 	return NULL;
641 }
642 
643 /**
644  * srpt_free_ioctx() - Free an SRPT I/O context structure.
645  */
srpt_free_ioctx(struct srpt_device * sdev,struct srpt_ioctx * ioctx,int dma_size,enum dma_data_direction dir)646 static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx,
647 			    int dma_size, enum dma_data_direction dir)
648 {
649 	if (!ioctx)
650 		return;
651 
652 	ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir);
653 	kfree(ioctx->buf);
654 	kfree(ioctx);
655 }
656 
657 /**
658  * srpt_alloc_ioctx_ring() - Allocate a ring of SRPT I/O context structures.
659  * @sdev:       Device to allocate the I/O context ring for.
660  * @ring_size:  Number of elements in the I/O context ring.
661  * @ioctx_size: I/O context size.
662  * @dma_size:   DMA buffer size.
663  * @dir:        DMA data direction.
664  */
srpt_alloc_ioctx_ring(struct srpt_device * sdev,int ring_size,int ioctx_size,int dma_size,enum dma_data_direction dir)665 static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev,
666 				int ring_size, int ioctx_size,
667 				int dma_size, enum dma_data_direction dir)
668 {
669 	struct srpt_ioctx **ring;
670 	int i;
671 
672 	WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx)
673 		&& ioctx_size != sizeof(struct srpt_send_ioctx));
674 
675 	ring = kmalloc(ring_size * sizeof(ring[0]), GFP_KERNEL);
676 	if (!ring)
677 		goto out;
678 	for (i = 0; i < ring_size; ++i) {
679 		ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir);
680 		if (!ring[i])
681 			goto err;
682 		ring[i]->index = i;
683 	}
684 	goto out;
685 
686 err:
687 	while (--i >= 0)
688 		srpt_free_ioctx(sdev, ring[i], dma_size, dir);
689 	kfree(ring);
690 	ring = NULL;
691 out:
692 	return ring;
693 }
694 
695 /**
696  * srpt_free_ioctx_ring() - Free the ring of SRPT I/O context structures.
697  */
srpt_free_ioctx_ring(struct srpt_ioctx ** ioctx_ring,struct srpt_device * sdev,int ring_size,int dma_size,enum dma_data_direction dir)698 static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring,
699 				 struct srpt_device *sdev, int ring_size,
700 				 int dma_size, enum dma_data_direction dir)
701 {
702 	int i;
703 
704 	for (i = 0; i < ring_size; ++i)
705 		srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir);
706 	kfree(ioctx_ring);
707 }
708 
709 /**
710  * srpt_get_cmd_state() - Get the state of a SCSI command.
711  */
srpt_get_cmd_state(struct srpt_send_ioctx * ioctx)712 static enum srpt_command_state srpt_get_cmd_state(struct srpt_send_ioctx *ioctx)
713 {
714 	enum srpt_command_state state;
715 	unsigned long flags;
716 
717 	BUG_ON(!ioctx);
718 
719 	spin_lock_irqsave(&ioctx->spinlock, flags);
720 	state = ioctx->state;
721 	spin_unlock_irqrestore(&ioctx->spinlock, flags);
722 	return state;
723 }
724 
725 /**
726  * srpt_set_cmd_state() - Set the state of a SCSI command.
727  *
728  * Does not modify the state of aborted commands. Returns the previous command
729  * state.
730  */
srpt_set_cmd_state(struct srpt_send_ioctx * ioctx,enum srpt_command_state new)731 static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx,
732 						  enum srpt_command_state new)
733 {
734 	enum srpt_command_state previous;
735 	unsigned long flags;
736 
737 	BUG_ON(!ioctx);
738 
739 	spin_lock_irqsave(&ioctx->spinlock, flags);
740 	previous = ioctx->state;
741 	if (previous != SRPT_STATE_DONE)
742 		ioctx->state = new;
743 	spin_unlock_irqrestore(&ioctx->spinlock, flags);
744 
745 	return previous;
746 }
747 
748 /**
749  * srpt_test_and_set_cmd_state() - Test and set the state of a command.
750  *
751  * Returns true if and only if the previous command state was equal to 'old'.
752  */
srpt_test_and_set_cmd_state(struct srpt_send_ioctx * ioctx,enum srpt_command_state old,enum srpt_command_state new)753 static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx,
754 					enum srpt_command_state old,
755 					enum srpt_command_state new)
756 {
757 	enum srpt_command_state previous;
758 	unsigned long flags;
759 
760 	WARN_ON(!ioctx);
761 	WARN_ON(old == SRPT_STATE_DONE);
762 	WARN_ON(new == SRPT_STATE_NEW);
763 
764 	spin_lock_irqsave(&ioctx->spinlock, flags);
765 	previous = ioctx->state;
766 	if (previous == old)
767 		ioctx->state = new;
768 	spin_unlock_irqrestore(&ioctx->spinlock, flags);
769 	return previous == old;
770 }
771 
772 /**
773  * srpt_post_recv() - Post an IB receive request.
774  */
srpt_post_recv(struct srpt_device * sdev,struct srpt_recv_ioctx * ioctx)775 static int srpt_post_recv(struct srpt_device *sdev,
776 			  struct srpt_recv_ioctx *ioctx)
777 {
778 	struct ib_sge list;
779 	struct ib_recv_wr wr, *bad_wr;
780 
781 	BUG_ON(!sdev);
782 	wr.wr_id = encode_wr_id(SRPT_RECV, ioctx->ioctx.index);
783 
784 	list.addr = ioctx->ioctx.dma;
785 	list.length = srp_max_req_size;
786 	list.lkey = sdev->mr->lkey;
787 
788 	wr.next = NULL;
789 	wr.sg_list = &list;
790 	wr.num_sge = 1;
791 
792 	return ib_post_srq_recv(sdev->srq, &wr, &bad_wr);
793 }
794 
795 /**
796  * srpt_post_send() - Post an IB send request.
797  *
798  * Returns zero upon success and a non-zero value upon failure.
799  */
srpt_post_send(struct srpt_rdma_ch * ch,struct srpt_send_ioctx * ioctx,int len)800 static int srpt_post_send(struct srpt_rdma_ch *ch,
801 			  struct srpt_send_ioctx *ioctx, int len)
802 {
803 	struct ib_sge list;
804 	struct ib_send_wr wr, *bad_wr;
805 	struct srpt_device *sdev = ch->sport->sdev;
806 	int ret;
807 
808 	atomic_inc(&ch->req_lim);
809 
810 	ret = -ENOMEM;
811 	if (unlikely(atomic_dec_return(&ch->sq_wr_avail) < 0)) {
812 		printk(KERN_WARNING "IB send queue full (needed 1)\n");
813 		goto out;
814 	}
815 
816 	ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, len,
817 				      DMA_TO_DEVICE);
818 
819 	list.addr = ioctx->ioctx.dma;
820 	list.length = len;
821 	list.lkey = sdev->mr->lkey;
822 
823 	wr.next = NULL;
824 	wr.wr_id = encode_wr_id(SRPT_SEND, ioctx->ioctx.index);
825 	wr.sg_list = &list;
826 	wr.num_sge = 1;
827 	wr.opcode = IB_WR_SEND;
828 	wr.send_flags = IB_SEND_SIGNALED;
829 
830 	ret = ib_post_send(ch->qp, &wr, &bad_wr);
831 
832 out:
833 	if (ret < 0) {
834 		atomic_inc(&ch->sq_wr_avail);
835 		atomic_dec(&ch->req_lim);
836 	}
837 	return ret;
838 }
839 
840 /**
841  * srpt_get_desc_tbl() - Parse the data descriptors of an SRP_CMD request.
842  * @ioctx: Pointer to the I/O context associated with the request.
843  * @srp_cmd: Pointer to the SRP_CMD request data.
844  * @dir: Pointer to the variable to which the transfer direction will be
845  *   written.
846  * @data_len: Pointer to the variable to which the total data length of all
847  *   descriptors in the SRP_CMD request will be written.
848  *
849  * This function initializes ioctx->nrbuf and ioctx->r_bufs.
850  *
851  * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors;
852  * -ENOMEM when memory allocation fails and zero upon success.
853  */
srpt_get_desc_tbl(struct srpt_send_ioctx * ioctx,struct srp_cmd * srp_cmd,enum dma_data_direction * dir,u64 * data_len)854 static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx,
855 			     struct srp_cmd *srp_cmd,
856 			     enum dma_data_direction *dir, u64 *data_len)
857 {
858 	struct srp_indirect_buf *idb;
859 	struct srp_direct_buf *db;
860 	unsigned add_cdb_offset;
861 	int ret;
862 
863 	/*
864 	 * The pointer computations below will only be compiled correctly
865 	 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check
866 	 * whether srp_cmd::add_data has been declared as a byte pointer.
867 	 */
868 	BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0)
869 		     && !__same_type(srp_cmd->add_data[0], (u8)0));
870 
871 	BUG_ON(!dir);
872 	BUG_ON(!data_len);
873 
874 	ret = 0;
875 	*data_len = 0;
876 
877 	/*
878 	 * The lower four bits of the buffer format field contain the DATA-IN
879 	 * buffer descriptor format, and the highest four bits contain the
880 	 * DATA-OUT buffer descriptor format.
881 	 */
882 	*dir = DMA_NONE;
883 	if (srp_cmd->buf_fmt & 0xf)
884 		/* DATA-IN: transfer data from target to initiator (read). */
885 		*dir = DMA_FROM_DEVICE;
886 	else if (srp_cmd->buf_fmt >> 4)
887 		/* DATA-OUT: transfer data from initiator to target (write). */
888 		*dir = DMA_TO_DEVICE;
889 
890 	/*
891 	 * According to the SRP spec, the lower two bits of the 'ADDITIONAL
892 	 * CDB LENGTH' field are reserved and the size in bytes of this field
893 	 * is four times the value specified in bits 3..7. Hence the "& ~3".
894 	 */
895 	add_cdb_offset = srp_cmd->add_cdb_len & ~3;
896 	if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) ||
897 	    ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) {
898 		ioctx->n_rbuf = 1;
899 		ioctx->rbufs = &ioctx->single_rbuf;
900 
901 		db = (struct srp_direct_buf *)(srp_cmd->add_data
902 					       + add_cdb_offset);
903 		memcpy(ioctx->rbufs, db, sizeof *db);
904 		*data_len = be32_to_cpu(db->len);
905 	} else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) ||
906 		   ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) {
907 		idb = (struct srp_indirect_buf *)(srp_cmd->add_data
908 						  + add_cdb_offset);
909 
910 		ioctx->n_rbuf = be32_to_cpu(idb->table_desc.len) / sizeof *db;
911 
912 		if (ioctx->n_rbuf >
913 		    (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) {
914 			printk(KERN_ERR "received unsupported SRP_CMD request"
915 			       " type (%u out + %u in != %u / %zu)\n",
916 			       srp_cmd->data_out_desc_cnt,
917 			       srp_cmd->data_in_desc_cnt,
918 			       be32_to_cpu(idb->table_desc.len),
919 			       sizeof(*db));
920 			ioctx->n_rbuf = 0;
921 			ret = -EINVAL;
922 			goto out;
923 		}
924 
925 		if (ioctx->n_rbuf == 1)
926 			ioctx->rbufs = &ioctx->single_rbuf;
927 		else {
928 			ioctx->rbufs =
929 				kmalloc(ioctx->n_rbuf * sizeof *db, GFP_ATOMIC);
930 			if (!ioctx->rbufs) {
931 				ioctx->n_rbuf = 0;
932 				ret = -ENOMEM;
933 				goto out;
934 			}
935 		}
936 
937 		db = idb->desc_list;
938 		memcpy(ioctx->rbufs, db, ioctx->n_rbuf * sizeof *db);
939 		*data_len = be32_to_cpu(idb->len);
940 	}
941 out:
942 	return ret;
943 }
944 
945 /**
946  * srpt_init_ch_qp() - Initialize queue pair attributes.
947  *
948  * Initialized the attributes of queue pair 'qp' by allowing local write,
949  * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT.
950  */
srpt_init_ch_qp(struct srpt_rdma_ch * ch,struct ib_qp * qp)951 static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp)
952 {
953 	struct ib_qp_attr *attr;
954 	int ret;
955 
956 	attr = kzalloc(sizeof *attr, GFP_KERNEL);
957 	if (!attr)
958 		return -ENOMEM;
959 
960 	attr->qp_state = IB_QPS_INIT;
961 	attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_READ |
962 	    IB_ACCESS_REMOTE_WRITE;
963 	attr->port_num = ch->sport->port;
964 	attr->pkey_index = 0;
965 
966 	ret = ib_modify_qp(qp, attr,
967 			   IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT |
968 			   IB_QP_PKEY_INDEX);
969 
970 	kfree(attr);
971 	return ret;
972 }
973 
974 /**
975  * srpt_ch_qp_rtr() - Change the state of a channel to 'ready to receive' (RTR).
976  * @ch: channel of the queue pair.
977  * @qp: queue pair to change the state of.
978  *
979  * Returns zero upon success and a negative value upon failure.
980  *
981  * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
982  * If this structure ever becomes larger, it might be necessary to allocate
983  * it dynamically instead of on the stack.
984  */
srpt_ch_qp_rtr(struct srpt_rdma_ch * ch,struct ib_qp * qp)985 static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp)
986 {
987 	struct ib_qp_attr qp_attr;
988 	int attr_mask;
989 	int ret;
990 
991 	qp_attr.qp_state = IB_QPS_RTR;
992 	ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
993 	if (ret)
994 		goto out;
995 
996 	qp_attr.max_dest_rd_atomic = 4;
997 
998 	ret = ib_modify_qp(qp, &qp_attr, attr_mask);
999 
1000 out:
1001 	return ret;
1002 }
1003 
1004 /**
1005  * srpt_ch_qp_rts() - Change the state of a channel to 'ready to send' (RTS).
1006  * @ch: channel of the queue pair.
1007  * @qp: queue pair to change the state of.
1008  *
1009  * Returns zero upon success and a negative value upon failure.
1010  *
1011  * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1012  * If this structure ever becomes larger, it might be necessary to allocate
1013  * it dynamically instead of on the stack.
1014  */
srpt_ch_qp_rts(struct srpt_rdma_ch * ch,struct ib_qp * qp)1015 static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1016 {
1017 	struct ib_qp_attr qp_attr;
1018 	int attr_mask;
1019 	int ret;
1020 
1021 	qp_attr.qp_state = IB_QPS_RTS;
1022 	ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
1023 	if (ret)
1024 		goto out;
1025 
1026 	qp_attr.max_rd_atomic = 4;
1027 
1028 	ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1029 
1030 out:
1031 	return ret;
1032 }
1033 
1034 /**
1035  * srpt_ch_qp_err() - Set the channel queue pair state to 'error'.
1036  */
srpt_ch_qp_err(struct srpt_rdma_ch * ch)1037 static int srpt_ch_qp_err(struct srpt_rdma_ch *ch)
1038 {
1039 	struct ib_qp_attr qp_attr;
1040 
1041 	qp_attr.qp_state = IB_QPS_ERR;
1042 	return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE);
1043 }
1044 
1045 /**
1046  * srpt_unmap_sg_to_ib_sge() - Unmap an IB SGE list.
1047  */
srpt_unmap_sg_to_ib_sge(struct srpt_rdma_ch * ch,struct srpt_send_ioctx * ioctx)1048 static void srpt_unmap_sg_to_ib_sge(struct srpt_rdma_ch *ch,
1049 				    struct srpt_send_ioctx *ioctx)
1050 {
1051 	struct scatterlist *sg;
1052 	enum dma_data_direction dir;
1053 
1054 	BUG_ON(!ch);
1055 	BUG_ON(!ioctx);
1056 	BUG_ON(ioctx->n_rdma && !ioctx->rdma_ius);
1057 
1058 	while (ioctx->n_rdma)
1059 		kfree(ioctx->rdma_ius[--ioctx->n_rdma].sge);
1060 
1061 	kfree(ioctx->rdma_ius);
1062 	ioctx->rdma_ius = NULL;
1063 
1064 	if (ioctx->mapped_sg_count) {
1065 		sg = ioctx->sg;
1066 		WARN_ON(!sg);
1067 		dir = ioctx->cmd.data_direction;
1068 		BUG_ON(dir == DMA_NONE);
1069 		ib_dma_unmap_sg(ch->sport->sdev->device, sg, ioctx->sg_cnt,
1070 				opposite_dma_dir(dir));
1071 		ioctx->mapped_sg_count = 0;
1072 	}
1073 }
1074 
1075 /**
1076  * srpt_map_sg_to_ib_sge() - Map an SG list to an IB SGE list.
1077  */
srpt_map_sg_to_ib_sge(struct srpt_rdma_ch * ch,struct srpt_send_ioctx * ioctx)1078 static int srpt_map_sg_to_ib_sge(struct srpt_rdma_ch *ch,
1079 				 struct srpt_send_ioctx *ioctx)
1080 {
1081 	struct se_cmd *cmd;
1082 	struct scatterlist *sg, *sg_orig;
1083 	int sg_cnt;
1084 	enum dma_data_direction dir;
1085 	struct rdma_iu *riu;
1086 	struct srp_direct_buf *db;
1087 	dma_addr_t dma_addr;
1088 	struct ib_sge *sge;
1089 	u64 raddr;
1090 	u32 rsize;
1091 	u32 tsize;
1092 	u32 dma_len;
1093 	int count, nrdma;
1094 	int i, j, k;
1095 
1096 	BUG_ON(!ch);
1097 	BUG_ON(!ioctx);
1098 	cmd = &ioctx->cmd;
1099 	dir = cmd->data_direction;
1100 	BUG_ON(dir == DMA_NONE);
1101 
1102 	transport_do_task_sg_chain(cmd);
1103 	ioctx->sg = sg = sg_orig = cmd->t_tasks_sg_chained;
1104 	ioctx->sg_cnt = sg_cnt = cmd->t_tasks_sg_chained_no;
1105 
1106 	count = ib_dma_map_sg(ch->sport->sdev->device, sg, sg_cnt,
1107 			      opposite_dma_dir(dir));
1108 	if (unlikely(!count))
1109 		return -EAGAIN;
1110 
1111 	ioctx->mapped_sg_count = count;
1112 
1113 	if (ioctx->rdma_ius && ioctx->n_rdma_ius)
1114 		nrdma = ioctx->n_rdma_ius;
1115 	else {
1116 		nrdma = (count + SRPT_DEF_SG_PER_WQE - 1) / SRPT_DEF_SG_PER_WQE
1117 			+ ioctx->n_rbuf;
1118 
1119 		ioctx->rdma_ius = kzalloc(nrdma * sizeof *riu, GFP_KERNEL);
1120 		if (!ioctx->rdma_ius)
1121 			goto free_mem;
1122 
1123 		ioctx->n_rdma_ius = nrdma;
1124 	}
1125 
1126 	db = ioctx->rbufs;
1127 	tsize = cmd->data_length;
1128 	dma_len = sg_dma_len(&sg[0]);
1129 	riu = ioctx->rdma_ius;
1130 
1131 	/*
1132 	 * For each remote desc - calculate the #ib_sge.
1133 	 * If #ib_sge < SRPT_DEF_SG_PER_WQE per rdma operation then
1134 	 *      each remote desc rdma_iu is required a rdma wr;
1135 	 * else
1136 	 *      we need to allocate extra rdma_iu to carry extra #ib_sge in
1137 	 *      another rdma wr
1138 	 */
1139 	for (i = 0, j = 0;
1140 	     j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) {
1141 		rsize = be32_to_cpu(db->len);
1142 		raddr = be64_to_cpu(db->va);
1143 		riu->raddr = raddr;
1144 		riu->rkey = be32_to_cpu(db->key);
1145 		riu->sge_cnt = 0;
1146 
1147 		/* calculate how many sge required for this remote_buf */
1148 		while (rsize > 0 && tsize > 0) {
1149 
1150 			if (rsize >= dma_len) {
1151 				tsize -= dma_len;
1152 				rsize -= dma_len;
1153 				raddr += dma_len;
1154 
1155 				if (tsize > 0) {
1156 					++j;
1157 					if (j < count) {
1158 						sg = sg_next(sg);
1159 						dma_len = sg_dma_len(sg);
1160 					}
1161 				}
1162 			} else {
1163 				tsize -= rsize;
1164 				dma_len -= rsize;
1165 				rsize = 0;
1166 			}
1167 
1168 			++riu->sge_cnt;
1169 
1170 			if (rsize > 0 && riu->sge_cnt == SRPT_DEF_SG_PER_WQE) {
1171 				++ioctx->n_rdma;
1172 				riu->sge =
1173 				    kmalloc(riu->sge_cnt * sizeof *riu->sge,
1174 					    GFP_KERNEL);
1175 				if (!riu->sge)
1176 					goto free_mem;
1177 
1178 				++riu;
1179 				riu->sge_cnt = 0;
1180 				riu->raddr = raddr;
1181 				riu->rkey = be32_to_cpu(db->key);
1182 			}
1183 		}
1184 
1185 		++ioctx->n_rdma;
1186 		riu->sge = kmalloc(riu->sge_cnt * sizeof *riu->sge,
1187 				   GFP_KERNEL);
1188 		if (!riu->sge)
1189 			goto free_mem;
1190 	}
1191 
1192 	db = ioctx->rbufs;
1193 	tsize = cmd->data_length;
1194 	riu = ioctx->rdma_ius;
1195 	sg = sg_orig;
1196 	dma_len = sg_dma_len(&sg[0]);
1197 	dma_addr = sg_dma_address(&sg[0]);
1198 
1199 	/* this second loop is really mapped sg_addres to rdma_iu->ib_sge */
1200 	for (i = 0, j = 0;
1201 	     j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) {
1202 		rsize = be32_to_cpu(db->len);
1203 		sge = riu->sge;
1204 		k = 0;
1205 
1206 		while (rsize > 0 && tsize > 0) {
1207 			sge->addr = dma_addr;
1208 			sge->lkey = ch->sport->sdev->mr->lkey;
1209 
1210 			if (rsize >= dma_len) {
1211 				sge->length =
1212 					(tsize < dma_len) ? tsize : dma_len;
1213 				tsize -= dma_len;
1214 				rsize -= dma_len;
1215 
1216 				if (tsize > 0) {
1217 					++j;
1218 					if (j < count) {
1219 						sg = sg_next(sg);
1220 						dma_len = sg_dma_len(sg);
1221 						dma_addr = sg_dma_address(sg);
1222 					}
1223 				}
1224 			} else {
1225 				sge->length = (tsize < rsize) ? tsize : rsize;
1226 				tsize -= rsize;
1227 				dma_len -= rsize;
1228 				dma_addr += rsize;
1229 				rsize = 0;
1230 			}
1231 
1232 			++k;
1233 			if (k == riu->sge_cnt && rsize > 0 && tsize > 0) {
1234 				++riu;
1235 				sge = riu->sge;
1236 				k = 0;
1237 			} else if (rsize > 0 && tsize > 0)
1238 				++sge;
1239 		}
1240 	}
1241 
1242 	return 0;
1243 
1244 free_mem:
1245 	srpt_unmap_sg_to_ib_sge(ch, ioctx);
1246 
1247 	return -ENOMEM;
1248 }
1249 
1250 /**
1251  * srpt_get_send_ioctx() - Obtain an I/O context for sending to the initiator.
1252  */
srpt_get_send_ioctx(struct srpt_rdma_ch * ch)1253 static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch)
1254 {
1255 	struct srpt_send_ioctx *ioctx;
1256 	unsigned long flags;
1257 
1258 	BUG_ON(!ch);
1259 
1260 	ioctx = NULL;
1261 	spin_lock_irqsave(&ch->spinlock, flags);
1262 	if (!list_empty(&ch->free_list)) {
1263 		ioctx = list_first_entry(&ch->free_list,
1264 					 struct srpt_send_ioctx, free_list);
1265 		list_del(&ioctx->free_list);
1266 	}
1267 	spin_unlock_irqrestore(&ch->spinlock, flags);
1268 
1269 	if (!ioctx)
1270 		return ioctx;
1271 
1272 	BUG_ON(ioctx->ch != ch);
1273 	kref_init(&ioctx->kref);
1274 	spin_lock_init(&ioctx->spinlock);
1275 	ioctx->state = SRPT_STATE_NEW;
1276 	ioctx->n_rbuf = 0;
1277 	ioctx->rbufs = NULL;
1278 	ioctx->n_rdma = 0;
1279 	ioctx->n_rdma_ius = 0;
1280 	ioctx->rdma_ius = NULL;
1281 	ioctx->mapped_sg_count = 0;
1282 	init_completion(&ioctx->tx_done);
1283 	ioctx->queue_status_only = false;
1284 	/*
1285 	 * transport_init_se_cmd() does not initialize all fields, so do it
1286 	 * here.
1287 	 */
1288 	memset(&ioctx->cmd, 0, sizeof(ioctx->cmd));
1289 	memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data));
1290 
1291 	return ioctx;
1292 }
1293 
1294 /**
1295  * srpt_put_send_ioctx() - Free up resources.
1296  */
srpt_put_send_ioctx(struct srpt_send_ioctx * ioctx)1297 static void srpt_put_send_ioctx(struct srpt_send_ioctx *ioctx)
1298 {
1299 	struct srpt_rdma_ch *ch;
1300 	unsigned long flags;
1301 
1302 	BUG_ON(!ioctx);
1303 	ch = ioctx->ch;
1304 	BUG_ON(!ch);
1305 
1306 	WARN_ON(srpt_get_cmd_state(ioctx) != SRPT_STATE_DONE);
1307 
1308 	srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx);
1309 	transport_generic_free_cmd(&ioctx->cmd, 0);
1310 
1311 	if (ioctx->n_rbuf > 1) {
1312 		kfree(ioctx->rbufs);
1313 		ioctx->rbufs = NULL;
1314 		ioctx->n_rbuf = 0;
1315 	}
1316 
1317 	spin_lock_irqsave(&ch->spinlock, flags);
1318 	list_add(&ioctx->free_list, &ch->free_list);
1319 	spin_unlock_irqrestore(&ch->spinlock, flags);
1320 }
1321 
srpt_put_send_ioctx_kref(struct kref * kref)1322 static void srpt_put_send_ioctx_kref(struct kref *kref)
1323 {
1324 	srpt_put_send_ioctx(container_of(kref, struct srpt_send_ioctx, kref));
1325 }
1326 
1327 /**
1328  * srpt_abort_cmd() - Abort a SCSI command.
1329  * @ioctx:   I/O context associated with the SCSI command.
1330  * @context: Preferred execution context.
1331  */
srpt_abort_cmd(struct srpt_send_ioctx * ioctx)1332 static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx)
1333 {
1334 	enum srpt_command_state state;
1335 	unsigned long flags;
1336 
1337 	BUG_ON(!ioctx);
1338 
1339 	/*
1340 	 * If the command is in a state where the target core is waiting for
1341 	 * the ib_srpt driver, change the state to the next state. Changing
1342 	 * the state of the command from SRPT_STATE_NEED_DATA to
1343 	 * SRPT_STATE_DATA_IN ensures that srpt_xmit_response() will call this
1344 	 * function a second time.
1345 	 */
1346 
1347 	spin_lock_irqsave(&ioctx->spinlock, flags);
1348 	state = ioctx->state;
1349 	switch (state) {
1350 	case SRPT_STATE_NEED_DATA:
1351 		ioctx->state = SRPT_STATE_DATA_IN;
1352 		break;
1353 	case SRPT_STATE_DATA_IN:
1354 	case SRPT_STATE_CMD_RSP_SENT:
1355 	case SRPT_STATE_MGMT_RSP_SENT:
1356 		ioctx->state = SRPT_STATE_DONE;
1357 		break;
1358 	default:
1359 		break;
1360 	}
1361 	spin_unlock_irqrestore(&ioctx->spinlock, flags);
1362 
1363 	if (state == SRPT_STATE_DONE)
1364 		goto out;
1365 
1366 	pr_debug("Aborting cmd with state %d and tag %lld\n", state,
1367 		 ioctx->tag);
1368 
1369 	switch (state) {
1370 	case SRPT_STATE_NEW:
1371 	case SRPT_STATE_DATA_IN:
1372 	case SRPT_STATE_MGMT:
1373 		/*
1374 		 * Do nothing - defer abort processing until
1375 		 * srpt_queue_response() is invoked.
1376 		 */
1377 		WARN_ON(!transport_check_aborted_status(&ioctx->cmd, false));
1378 		break;
1379 	case SRPT_STATE_NEED_DATA:
1380 		/* DMA_TO_DEVICE (write) - RDMA read error. */
1381 		atomic_set(&ioctx->cmd.transport_lun_stop, 1);
1382 		transport_generic_handle_data(&ioctx->cmd);
1383 		break;
1384 	case SRPT_STATE_CMD_RSP_SENT:
1385 		/*
1386 		 * SRP_RSP sending failed or the SRP_RSP send completion has
1387 		 * not been received in time.
1388 		 */
1389 		srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx);
1390 		atomic_set(&ioctx->cmd.transport_lun_stop, 1);
1391 		kref_put(&ioctx->kref, srpt_put_send_ioctx_kref);
1392 		break;
1393 	case SRPT_STATE_MGMT_RSP_SENT:
1394 		srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1395 		kref_put(&ioctx->kref, srpt_put_send_ioctx_kref);
1396 		break;
1397 	default:
1398 		WARN_ON("ERROR: unexpected command state");
1399 		break;
1400 	}
1401 
1402 out:
1403 	return state;
1404 }
1405 
1406 /**
1407  * srpt_handle_send_err_comp() - Process an IB_WC_SEND error completion.
1408  */
srpt_handle_send_err_comp(struct srpt_rdma_ch * ch,u64 wr_id)1409 static void srpt_handle_send_err_comp(struct srpt_rdma_ch *ch, u64 wr_id)
1410 {
1411 	struct srpt_send_ioctx *ioctx;
1412 	enum srpt_command_state state;
1413 	struct se_cmd *cmd;
1414 	u32 index;
1415 
1416 	atomic_inc(&ch->sq_wr_avail);
1417 
1418 	index = idx_from_wr_id(wr_id);
1419 	ioctx = ch->ioctx_ring[index];
1420 	state = srpt_get_cmd_state(ioctx);
1421 	cmd = &ioctx->cmd;
1422 
1423 	WARN_ON(state != SRPT_STATE_CMD_RSP_SENT
1424 		&& state != SRPT_STATE_MGMT_RSP_SENT
1425 		&& state != SRPT_STATE_NEED_DATA
1426 		&& state != SRPT_STATE_DONE);
1427 
1428 	/* If SRP_RSP sending failed, undo the ch->req_lim change. */
1429 	if (state == SRPT_STATE_CMD_RSP_SENT
1430 	    || state == SRPT_STATE_MGMT_RSP_SENT)
1431 		atomic_dec(&ch->req_lim);
1432 
1433 	srpt_abort_cmd(ioctx);
1434 }
1435 
1436 /**
1437  * srpt_handle_send_comp() - Process an IB send completion notification.
1438  */
srpt_handle_send_comp(struct srpt_rdma_ch * ch,struct srpt_send_ioctx * ioctx)1439 static void srpt_handle_send_comp(struct srpt_rdma_ch *ch,
1440 				  struct srpt_send_ioctx *ioctx)
1441 {
1442 	enum srpt_command_state state;
1443 
1444 	atomic_inc(&ch->sq_wr_avail);
1445 
1446 	state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1447 
1448 	if (WARN_ON(state != SRPT_STATE_CMD_RSP_SENT
1449 		    && state != SRPT_STATE_MGMT_RSP_SENT
1450 		    && state != SRPT_STATE_DONE))
1451 		pr_debug("state = %d\n", state);
1452 
1453 	if (state != SRPT_STATE_DONE)
1454 		kref_put(&ioctx->kref, srpt_put_send_ioctx_kref);
1455 	else
1456 		printk(KERN_ERR "IB completion has been received too late for"
1457 		       " wr_id = %u.\n", ioctx->ioctx.index);
1458 }
1459 
1460 /**
1461  * srpt_handle_rdma_comp() - Process an IB RDMA completion notification.
1462  *
1463  * Note: transport_generic_handle_data() is asynchronous so unmapping the
1464  * data that has been transferred via IB RDMA must be postponed until the
1465  * check_stop_free() callback.
1466  */
srpt_handle_rdma_comp(struct srpt_rdma_ch * ch,struct srpt_send_ioctx * ioctx,enum srpt_opcode opcode)1467 static void srpt_handle_rdma_comp(struct srpt_rdma_ch *ch,
1468 				  struct srpt_send_ioctx *ioctx,
1469 				  enum srpt_opcode opcode)
1470 {
1471 	WARN_ON(ioctx->n_rdma <= 0);
1472 	atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1473 
1474 	if (opcode == SRPT_RDMA_READ_LAST) {
1475 		if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA,
1476 						SRPT_STATE_DATA_IN))
1477 			transport_generic_handle_data(&ioctx->cmd);
1478 		else
1479 			printk(KERN_ERR "%s[%d]: wrong state = %d\n", __func__,
1480 			       __LINE__, srpt_get_cmd_state(ioctx));
1481 	} else if (opcode == SRPT_RDMA_ABORT) {
1482 		ioctx->rdma_aborted = true;
1483 	} else {
1484 		WARN(true, "unexpected opcode %d\n", opcode);
1485 	}
1486 }
1487 
1488 /**
1489  * srpt_handle_rdma_err_comp() - Process an IB RDMA error completion.
1490  */
srpt_handle_rdma_err_comp(struct srpt_rdma_ch * ch,struct srpt_send_ioctx * ioctx,enum srpt_opcode opcode)1491 static void srpt_handle_rdma_err_comp(struct srpt_rdma_ch *ch,
1492 				      struct srpt_send_ioctx *ioctx,
1493 				      enum srpt_opcode opcode)
1494 {
1495 	struct se_cmd *cmd;
1496 	enum srpt_command_state state;
1497 
1498 	cmd = &ioctx->cmd;
1499 	state = srpt_get_cmd_state(ioctx);
1500 	switch (opcode) {
1501 	case SRPT_RDMA_READ_LAST:
1502 		if (ioctx->n_rdma <= 0) {
1503 			printk(KERN_ERR "Received invalid RDMA read"
1504 			       " error completion with idx %d\n",
1505 			       ioctx->ioctx.index);
1506 			break;
1507 		}
1508 		atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1509 		if (state == SRPT_STATE_NEED_DATA)
1510 			srpt_abort_cmd(ioctx);
1511 		else
1512 			printk(KERN_ERR "%s[%d]: wrong state = %d\n",
1513 			       __func__, __LINE__, state);
1514 		break;
1515 	case SRPT_RDMA_WRITE_LAST:
1516 		atomic_set(&ioctx->cmd.transport_lun_stop, 1);
1517 		break;
1518 	default:
1519 		printk(KERN_ERR "%s[%d]: opcode = %u\n", __func__,
1520 		       __LINE__, opcode);
1521 		break;
1522 	}
1523 }
1524 
1525 /**
1526  * srpt_build_cmd_rsp() - Build an SRP_RSP response.
1527  * @ch: RDMA channel through which the request has been received.
1528  * @ioctx: I/O context associated with the SRP_CMD request. The response will
1529  *   be built in the buffer ioctx->buf points at and hence this function will
1530  *   overwrite the request data.
1531  * @tag: tag of the request for which this response is being generated.
1532  * @status: value for the STATUS field of the SRP_RSP information unit.
1533  *
1534  * Returns the size in bytes of the SRP_RSP response.
1535  *
1536  * An SRP_RSP response contains a SCSI status or service response. See also
1537  * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1538  * response. See also SPC-2 for more information about sense data.
1539  */
srpt_build_cmd_rsp(struct srpt_rdma_ch * ch,struct srpt_send_ioctx * ioctx,u64 tag,int status)1540 static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch,
1541 			      struct srpt_send_ioctx *ioctx, u64 tag,
1542 			      int status)
1543 {
1544 	struct srp_rsp *srp_rsp;
1545 	const u8 *sense_data;
1546 	int sense_data_len, max_sense_len;
1547 
1548 	/*
1549 	 * The lowest bit of all SAM-3 status codes is zero (see also
1550 	 * paragraph 5.3 in SAM-3).
1551 	 */
1552 	WARN_ON(status & 1);
1553 
1554 	srp_rsp = ioctx->ioctx.buf;
1555 	BUG_ON(!srp_rsp);
1556 
1557 	sense_data = ioctx->sense_data;
1558 	sense_data_len = ioctx->cmd.scsi_sense_length;
1559 	WARN_ON(sense_data_len > sizeof(ioctx->sense_data));
1560 
1561 	memset(srp_rsp, 0, sizeof *srp_rsp);
1562 	srp_rsp->opcode = SRP_RSP;
1563 	srp_rsp->req_lim_delta =
1564 		__constant_cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1565 	srp_rsp->tag = tag;
1566 	srp_rsp->status = status;
1567 
1568 	if (sense_data_len) {
1569 		BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp));
1570 		max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp);
1571 		if (sense_data_len > max_sense_len) {
1572 			printk(KERN_WARNING "truncated sense data from %d to %d"
1573 			       " bytes\n", sense_data_len, max_sense_len);
1574 			sense_data_len = max_sense_len;
1575 		}
1576 
1577 		srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID;
1578 		srp_rsp->sense_data_len = cpu_to_be32(sense_data_len);
1579 		memcpy(srp_rsp + 1, sense_data, sense_data_len);
1580 	}
1581 
1582 	return sizeof(*srp_rsp) + sense_data_len;
1583 }
1584 
1585 /**
1586  * srpt_build_tskmgmt_rsp() - Build a task management response.
1587  * @ch:       RDMA channel through which the request has been received.
1588  * @ioctx:    I/O context in which the SRP_RSP response will be built.
1589  * @rsp_code: RSP_CODE that will be stored in the response.
1590  * @tag:      Tag of the request for which this response is being generated.
1591  *
1592  * Returns the size in bytes of the SRP_RSP response.
1593  *
1594  * An SRP_RSP response contains a SCSI status or service response. See also
1595  * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1596  * response.
1597  */
srpt_build_tskmgmt_rsp(struct srpt_rdma_ch * ch,struct srpt_send_ioctx * ioctx,u8 rsp_code,u64 tag)1598 static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch,
1599 				  struct srpt_send_ioctx *ioctx,
1600 				  u8 rsp_code, u64 tag)
1601 {
1602 	struct srp_rsp *srp_rsp;
1603 	int resp_data_len;
1604 	int resp_len;
1605 
1606 	resp_data_len = (rsp_code == SRP_TSK_MGMT_SUCCESS) ? 0 : 4;
1607 	resp_len = sizeof(*srp_rsp) + resp_data_len;
1608 
1609 	srp_rsp = ioctx->ioctx.buf;
1610 	BUG_ON(!srp_rsp);
1611 	memset(srp_rsp, 0, sizeof *srp_rsp);
1612 
1613 	srp_rsp->opcode = SRP_RSP;
1614 	srp_rsp->req_lim_delta = __constant_cpu_to_be32(1
1615 				    + atomic_xchg(&ch->req_lim_delta, 0));
1616 	srp_rsp->tag = tag;
1617 
1618 	if (rsp_code != SRP_TSK_MGMT_SUCCESS) {
1619 		srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID;
1620 		srp_rsp->resp_data_len = cpu_to_be32(resp_data_len);
1621 		srp_rsp->data[3] = rsp_code;
1622 	}
1623 
1624 	return resp_len;
1625 }
1626 
1627 #define NO_SUCH_LUN ((uint64_t)-1LL)
1628 
1629 /*
1630  * SCSI LUN addressing method. See also SAM-2 and the section about
1631  * eight byte LUNs.
1632  */
1633 enum scsi_lun_addr_method {
1634 	SCSI_LUN_ADDR_METHOD_PERIPHERAL   = 0,
1635 	SCSI_LUN_ADDR_METHOD_FLAT         = 1,
1636 	SCSI_LUN_ADDR_METHOD_LUN          = 2,
1637 	SCSI_LUN_ADDR_METHOD_EXTENDED_LUN = 3,
1638 };
1639 
1640 /*
1641  * srpt_unpack_lun() - Convert from network LUN to linear LUN.
1642  *
1643  * Convert an 2-byte, 4-byte, 6-byte or 8-byte LUN structure in network byte
1644  * order (big endian) to a linear LUN. Supports three LUN addressing methods:
1645  * peripheral, flat and logical unit. See also SAM-2, section 4.9.4 (page 40).
1646  */
srpt_unpack_lun(const uint8_t * lun,int len)1647 static uint64_t srpt_unpack_lun(const uint8_t *lun, int len)
1648 {
1649 	uint64_t res = NO_SUCH_LUN;
1650 	int addressing_method;
1651 
1652 	if (unlikely(len < 2)) {
1653 		printk(KERN_ERR "Illegal LUN length %d, expected 2 bytes or "
1654 		       "more", len);
1655 		goto out;
1656 	}
1657 
1658 	switch (len) {
1659 	case 8:
1660 		if ((*((__be64 *)lun) &
1661 		     __constant_cpu_to_be64(0x0000FFFFFFFFFFFFLL)) != 0)
1662 			goto out_err;
1663 		break;
1664 	case 4:
1665 		if (*((__be16 *)&lun[2]) != 0)
1666 			goto out_err;
1667 		break;
1668 	case 6:
1669 		if (*((__be32 *)&lun[2]) != 0)
1670 			goto out_err;
1671 		break;
1672 	case 2:
1673 		break;
1674 	default:
1675 		goto out_err;
1676 	}
1677 
1678 	addressing_method = (*lun) >> 6; /* highest two bits of byte 0 */
1679 	switch (addressing_method) {
1680 	case SCSI_LUN_ADDR_METHOD_PERIPHERAL:
1681 	case SCSI_LUN_ADDR_METHOD_FLAT:
1682 	case SCSI_LUN_ADDR_METHOD_LUN:
1683 		res = *(lun + 1) | (((*lun) & 0x3f) << 8);
1684 		break;
1685 
1686 	case SCSI_LUN_ADDR_METHOD_EXTENDED_LUN:
1687 	default:
1688 		printk(KERN_ERR "Unimplemented LUN addressing method %u",
1689 		       addressing_method);
1690 		break;
1691 	}
1692 
1693 out:
1694 	return res;
1695 
1696 out_err:
1697 	printk(KERN_ERR "Support for multi-level LUNs has not yet been"
1698 	       " implemented");
1699 	goto out;
1700 }
1701 
srpt_check_stop_free(struct se_cmd * cmd)1702 static int srpt_check_stop_free(struct se_cmd *cmd)
1703 {
1704 	struct srpt_send_ioctx *ioctx;
1705 
1706 	ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
1707 	return kref_put(&ioctx->kref, srpt_put_send_ioctx_kref);
1708 }
1709 
1710 /**
1711  * srpt_handle_cmd() - Process SRP_CMD.
1712  */
srpt_handle_cmd(struct srpt_rdma_ch * ch,struct srpt_recv_ioctx * recv_ioctx,struct srpt_send_ioctx * send_ioctx)1713 static int srpt_handle_cmd(struct srpt_rdma_ch *ch,
1714 			   struct srpt_recv_ioctx *recv_ioctx,
1715 			   struct srpt_send_ioctx *send_ioctx)
1716 {
1717 	struct se_cmd *cmd;
1718 	struct srp_cmd *srp_cmd;
1719 	uint64_t unpacked_lun;
1720 	u64 data_len;
1721 	enum dma_data_direction dir;
1722 	int ret;
1723 
1724 	BUG_ON(!send_ioctx);
1725 
1726 	srp_cmd = recv_ioctx->ioctx.buf;
1727 	kref_get(&send_ioctx->kref);
1728 	cmd = &send_ioctx->cmd;
1729 	send_ioctx->tag = srp_cmd->tag;
1730 
1731 	switch (srp_cmd->task_attr) {
1732 	case SRP_CMD_SIMPLE_Q:
1733 		cmd->sam_task_attr = MSG_SIMPLE_TAG;
1734 		break;
1735 	case SRP_CMD_ORDERED_Q:
1736 	default:
1737 		cmd->sam_task_attr = MSG_ORDERED_TAG;
1738 		break;
1739 	case SRP_CMD_HEAD_OF_Q:
1740 		cmd->sam_task_attr = MSG_HEAD_TAG;
1741 		break;
1742 	case SRP_CMD_ACA:
1743 		cmd->sam_task_attr = MSG_ACA_TAG;
1744 		break;
1745 	}
1746 
1747 	ret = srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &data_len);
1748 	if (ret) {
1749 		printk(KERN_ERR "0x%llx: parsing SRP descriptor table failed.\n",
1750 		       srp_cmd->tag);
1751 		cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1752 		cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1753 		goto send_sense;
1754 	}
1755 
1756 	cmd->data_length = data_len;
1757 	cmd->data_direction = dir;
1758 	unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_cmd->lun,
1759 				       sizeof(srp_cmd->lun));
1760 	if (transport_lookup_cmd_lun(cmd, unpacked_lun) < 0)
1761 		goto send_sense;
1762 	ret = transport_generic_allocate_tasks(cmd, srp_cmd->cdb);
1763 	if (cmd->se_cmd_flags & SCF_SCSI_RESERVATION_CONFLICT)
1764 		srpt_queue_status(cmd);
1765 	else if (cmd->se_cmd_flags & SCF_SCSI_CDB_EXCEPTION)
1766 		goto send_sense;
1767 	else
1768 		WARN_ON_ONCE(ret);
1769 
1770 	transport_handle_cdb_direct(cmd);
1771 	return 0;
1772 
1773 send_sense:
1774 	transport_send_check_condition_and_sense(cmd, cmd->scsi_sense_reason,
1775 						 0);
1776 	return -1;
1777 }
1778 
1779 /**
1780  * srpt_rx_mgmt_fn_tag() - Process a task management function by tag.
1781  * @ch: RDMA channel of the task management request.
1782  * @fn: Task management function to perform.
1783  * @req_tag: Tag of the SRP task management request.
1784  * @mgmt_ioctx: I/O context of the task management request.
1785  *
1786  * Returns zero if the target core will process the task management
1787  * request asynchronously.
1788  *
1789  * Note: It is assumed that the initiator serializes tag-based task management
1790  * requests.
1791  */
srpt_rx_mgmt_fn_tag(struct srpt_send_ioctx * ioctx,u64 tag)1792 static int srpt_rx_mgmt_fn_tag(struct srpt_send_ioctx *ioctx, u64 tag)
1793 {
1794 	struct srpt_device *sdev;
1795 	struct srpt_rdma_ch *ch;
1796 	struct srpt_send_ioctx *target;
1797 	int ret, i;
1798 
1799 	ret = -EINVAL;
1800 	ch = ioctx->ch;
1801 	BUG_ON(!ch);
1802 	BUG_ON(!ch->sport);
1803 	sdev = ch->sport->sdev;
1804 	BUG_ON(!sdev);
1805 	spin_lock_irq(&sdev->spinlock);
1806 	for (i = 0; i < ch->rq_size; ++i) {
1807 		target = ch->ioctx_ring[i];
1808 		if (target->cmd.se_lun == ioctx->cmd.se_lun &&
1809 		    target->tag == tag &&
1810 		    srpt_get_cmd_state(target) != SRPT_STATE_DONE) {
1811 			ret = 0;
1812 			/* now let the target core abort &target->cmd; */
1813 			break;
1814 		}
1815 	}
1816 	spin_unlock_irq(&sdev->spinlock);
1817 	return ret;
1818 }
1819 
srp_tmr_to_tcm(int fn)1820 static int srp_tmr_to_tcm(int fn)
1821 {
1822 	switch (fn) {
1823 	case SRP_TSK_ABORT_TASK:
1824 		return TMR_ABORT_TASK;
1825 	case SRP_TSK_ABORT_TASK_SET:
1826 		return TMR_ABORT_TASK_SET;
1827 	case SRP_TSK_CLEAR_TASK_SET:
1828 		return TMR_CLEAR_TASK_SET;
1829 	case SRP_TSK_LUN_RESET:
1830 		return TMR_LUN_RESET;
1831 	case SRP_TSK_CLEAR_ACA:
1832 		return TMR_CLEAR_ACA;
1833 	default:
1834 		return -1;
1835 	}
1836 }
1837 
1838 /**
1839  * srpt_handle_tsk_mgmt() - Process an SRP_TSK_MGMT information unit.
1840  *
1841  * Returns 0 if and only if the request will be processed by the target core.
1842  *
1843  * For more information about SRP_TSK_MGMT information units, see also section
1844  * 6.7 in the SRP r16a document.
1845  */
srpt_handle_tsk_mgmt(struct srpt_rdma_ch * ch,struct srpt_recv_ioctx * recv_ioctx,struct srpt_send_ioctx * send_ioctx)1846 static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch,
1847 				 struct srpt_recv_ioctx *recv_ioctx,
1848 				 struct srpt_send_ioctx *send_ioctx)
1849 {
1850 	struct srp_tsk_mgmt *srp_tsk;
1851 	struct se_cmd *cmd;
1852 	uint64_t unpacked_lun;
1853 	int tcm_tmr;
1854 	int res;
1855 
1856 	BUG_ON(!send_ioctx);
1857 
1858 	srp_tsk = recv_ioctx->ioctx.buf;
1859 	cmd = &send_ioctx->cmd;
1860 
1861 	pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld"
1862 		 " cm_id %p sess %p\n", srp_tsk->tsk_mgmt_func,
1863 		 srp_tsk->task_tag, srp_tsk->tag, ch->cm_id, ch->sess);
1864 
1865 	srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT);
1866 	send_ioctx->tag = srp_tsk->tag;
1867 	tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func);
1868 	if (tcm_tmr < 0) {
1869 		send_ioctx->cmd.se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1870 		send_ioctx->cmd.se_tmr_req->response =
1871 			TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
1872 		goto process_tmr;
1873 	}
1874 	cmd->se_tmr_req = core_tmr_alloc_req(cmd, NULL, tcm_tmr, GFP_KERNEL);
1875 	if (!cmd->se_tmr_req) {
1876 		send_ioctx->cmd.se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1877 		send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED;
1878 		goto process_tmr;
1879 	}
1880 
1881 	unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_tsk->lun,
1882 				       sizeof(srp_tsk->lun));
1883 	res = transport_lookup_tmr_lun(&send_ioctx->cmd, unpacked_lun);
1884 	if (res) {
1885 		pr_debug("rejecting TMR for LUN %lld\n", unpacked_lun);
1886 		send_ioctx->cmd.se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1887 		send_ioctx->cmd.se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1888 		goto process_tmr;
1889 	}
1890 
1891 	if (srp_tsk->tsk_mgmt_func == SRP_TSK_ABORT_TASK)
1892 		srpt_rx_mgmt_fn_tag(send_ioctx, srp_tsk->task_tag);
1893 
1894 process_tmr:
1895 	kref_get(&send_ioctx->kref);
1896 	if (!(send_ioctx->cmd.se_cmd_flags & SCF_SCSI_CDB_EXCEPTION))
1897 		transport_generic_handle_tmr(&send_ioctx->cmd);
1898 	else
1899 		transport_send_check_condition_and_sense(cmd,
1900 						cmd->scsi_sense_reason, 0);
1901 
1902 }
1903 
1904 /**
1905  * srpt_handle_new_iu() - Process a newly received information unit.
1906  * @ch:    RDMA channel through which the information unit has been received.
1907  * @ioctx: SRPT I/O context associated with the information unit.
1908  */
srpt_handle_new_iu(struct srpt_rdma_ch * ch,struct srpt_recv_ioctx * recv_ioctx,struct srpt_send_ioctx * send_ioctx)1909 static void srpt_handle_new_iu(struct srpt_rdma_ch *ch,
1910 			       struct srpt_recv_ioctx *recv_ioctx,
1911 			       struct srpt_send_ioctx *send_ioctx)
1912 {
1913 	struct srp_cmd *srp_cmd;
1914 	enum rdma_ch_state ch_state;
1915 
1916 	BUG_ON(!ch);
1917 	BUG_ON(!recv_ioctx);
1918 
1919 	ib_dma_sync_single_for_cpu(ch->sport->sdev->device,
1920 				   recv_ioctx->ioctx.dma, srp_max_req_size,
1921 				   DMA_FROM_DEVICE);
1922 
1923 	ch_state = srpt_get_ch_state(ch);
1924 	if (unlikely(ch_state == CH_CONNECTING)) {
1925 		list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list);
1926 		goto out;
1927 	}
1928 
1929 	if (unlikely(ch_state != CH_LIVE))
1930 		goto out;
1931 
1932 	srp_cmd = recv_ioctx->ioctx.buf;
1933 	if (srp_cmd->opcode == SRP_CMD || srp_cmd->opcode == SRP_TSK_MGMT) {
1934 		if (!send_ioctx)
1935 			send_ioctx = srpt_get_send_ioctx(ch);
1936 		if (unlikely(!send_ioctx)) {
1937 			list_add_tail(&recv_ioctx->wait_list,
1938 				      &ch->cmd_wait_list);
1939 			goto out;
1940 		}
1941 	}
1942 
1943 	transport_init_se_cmd(&send_ioctx->cmd, &srpt_target->tf_ops, ch->sess,
1944 			      0, DMA_NONE, MSG_SIMPLE_TAG,
1945 			      send_ioctx->sense_data);
1946 
1947 	switch (srp_cmd->opcode) {
1948 	case SRP_CMD:
1949 		srpt_handle_cmd(ch, recv_ioctx, send_ioctx);
1950 		break;
1951 	case SRP_TSK_MGMT:
1952 		srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx);
1953 		break;
1954 	case SRP_I_LOGOUT:
1955 		printk(KERN_ERR "Not yet implemented: SRP_I_LOGOUT\n");
1956 		break;
1957 	case SRP_CRED_RSP:
1958 		pr_debug("received SRP_CRED_RSP\n");
1959 		break;
1960 	case SRP_AER_RSP:
1961 		pr_debug("received SRP_AER_RSP\n");
1962 		break;
1963 	case SRP_RSP:
1964 		printk(KERN_ERR "Received SRP_RSP\n");
1965 		break;
1966 	default:
1967 		printk(KERN_ERR "received IU with unknown opcode 0x%x\n",
1968 		       srp_cmd->opcode);
1969 		break;
1970 	}
1971 
1972 	srpt_post_recv(ch->sport->sdev, recv_ioctx);
1973 out:
1974 	return;
1975 }
1976 
srpt_process_rcv_completion(struct ib_cq * cq,struct srpt_rdma_ch * ch,struct ib_wc * wc)1977 static void srpt_process_rcv_completion(struct ib_cq *cq,
1978 					struct srpt_rdma_ch *ch,
1979 					struct ib_wc *wc)
1980 {
1981 	struct srpt_device *sdev = ch->sport->sdev;
1982 	struct srpt_recv_ioctx *ioctx;
1983 	u32 index;
1984 
1985 	index = idx_from_wr_id(wc->wr_id);
1986 	if (wc->status == IB_WC_SUCCESS) {
1987 		int req_lim;
1988 
1989 		req_lim = atomic_dec_return(&ch->req_lim);
1990 		if (unlikely(req_lim < 0))
1991 			printk(KERN_ERR "req_lim = %d < 0\n", req_lim);
1992 		ioctx = sdev->ioctx_ring[index];
1993 		srpt_handle_new_iu(ch, ioctx, NULL);
1994 	} else {
1995 		printk(KERN_INFO "receiving failed for idx %u with status %d\n",
1996 		       index, wc->status);
1997 	}
1998 }
1999 
2000 /**
2001  * srpt_process_send_completion() - Process an IB send completion.
2002  *
2003  * Note: Although this has not yet been observed during tests, at least in
2004  * theory it is possible that the srpt_get_send_ioctx() call invoked by
2005  * srpt_handle_new_iu() fails. This is possible because the req_lim_delta
2006  * value in each response is set to one, and it is possible that this response
2007  * makes the initiator send a new request before the send completion for that
2008  * response has been processed. This could e.g. happen if the call to
2009  * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or
2010  * if IB retransmission causes generation of the send completion to be
2011  * delayed. Incoming information units for which srpt_get_send_ioctx() fails
2012  * are queued on cmd_wait_list. The code below processes these delayed
2013  * requests one at a time.
2014  */
srpt_process_send_completion(struct ib_cq * cq,struct srpt_rdma_ch * ch,struct ib_wc * wc)2015 static void srpt_process_send_completion(struct ib_cq *cq,
2016 					 struct srpt_rdma_ch *ch,
2017 					 struct ib_wc *wc)
2018 {
2019 	struct srpt_send_ioctx *send_ioctx;
2020 	uint32_t index;
2021 	enum srpt_opcode opcode;
2022 
2023 	index = idx_from_wr_id(wc->wr_id);
2024 	opcode = opcode_from_wr_id(wc->wr_id);
2025 	send_ioctx = ch->ioctx_ring[index];
2026 	if (wc->status == IB_WC_SUCCESS) {
2027 		if (opcode == SRPT_SEND)
2028 			srpt_handle_send_comp(ch, send_ioctx);
2029 		else {
2030 			WARN_ON(opcode != SRPT_RDMA_ABORT &&
2031 				wc->opcode != IB_WC_RDMA_READ);
2032 			srpt_handle_rdma_comp(ch, send_ioctx, opcode);
2033 		}
2034 	} else {
2035 		if (opcode == SRPT_SEND) {
2036 			printk(KERN_INFO "sending response for idx %u failed"
2037 			       " with status %d\n", index, wc->status);
2038 			srpt_handle_send_err_comp(ch, wc->wr_id);
2039 		} else if (opcode != SRPT_RDMA_MID) {
2040 			printk(KERN_INFO "RDMA t %d for idx %u failed with"
2041 				" status %d", opcode, index, wc->status);
2042 			srpt_handle_rdma_err_comp(ch, send_ioctx, opcode);
2043 		}
2044 	}
2045 
2046 	while (unlikely(opcode == SRPT_SEND
2047 			&& !list_empty(&ch->cmd_wait_list)
2048 			&& srpt_get_ch_state(ch) == CH_LIVE
2049 			&& (send_ioctx = srpt_get_send_ioctx(ch)) != NULL)) {
2050 		struct srpt_recv_ioctx *recv_ioctx;
2051 
2052 		recv_ioctx = list_first_entry(&ch->cmd_wait_list,
2053 					      struct srpt_recv_ioctx,
2054 					      wait_list);
2055 		list_del(&recv_ioctx->wait_list);
2056 		srpt_handle_new_iu(ch, recv_ioctx, send_ioctx);
2057 	}
2058 }
2059 
srpt_process_completion(struct ib_cq * cq,struct srpt_rdma_ch * ch)2060 static void srpt_process_completion(struct ib_cq *cq, struct srpt_rdma_ch *ch)
2061 {
2062 	struct ib_wc *const wc = ch->wc;
2063 	int i, n;
2064 
2065 	WARN_ON(cq != ch->cq);
2066 
2067 	ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
2068 	while ((n = ib_poll_cq(cq, ARRAY_SIZE(ch->wc), wc)) > 0) {
2069 		for (i = 0; i < n; i++) {
2070 			if (opcode_from_wr_id(wc[i].wr_id) == SRPT_RECV)
2071 				srpt_process_rcv_completion(cq, ch, &wc[i]);
2072 			else
2073 				srpt_process_send_completion(cq, ch, &wc[i]);
2074 		}
2075 	}
2076 }
2077 
2078 /**
2079  * srpt_completion() - IB completion queue callback function.
2080  *
2081  * Notes:
2082  * - It is guaranteed that a completion handler will never be invoked
2083  *   concurrently on two different CPUs for the same completion queue. See also
2084  *   Documentation/infiniband/core_locking.txt and the implementation of
2085  *   handle_edge_irq() in kernel/irq/chip.c.
2086  * - When threaded IRQs are enabled, completion handlers are invoked in thread
2087  *   context instead of interrupt context.
2088  */
srpt_completion(struct ib_cq * cq,void * ctx)2089 static void srpt_completion(struct ib_cq *cq, void *ctx)
2090 {
2091 	struct srpt_rdma_ch *ch = ctx;
2092 
2093 	wake_up_interruptible(&ch->wait_queue);
2094 }
2095 
srpt_compl_thread(void * arg)2096 static int srpt_compl_thread(void *arg)
2097 {
2098 	struct srpt_rdma_ch *ch;
2099 
2100 	/* Hibernation / freezing of the SRPT kernel thread is not supported. */
2101 	current->flags |= PF_NOFREEZE;
2102 
2103 	ch = arg;
2104 	BUG_ON(!ch);
2105 	printk(KERN_INFO "Session %s: kernel thread %s (PID %d) started\n",
2106 	       ch->sess_name, ch->thread->comm, current->pid);
2107 	while (!kthread_should_stop()) {
2108 		wait_event_interruptible(ch->wait_queue,
2109 			(srpt_process_completion(ch->cq, ch),
2110 			 kthread_should_stop()));
2111 	}
2112 	printk(KERN_INFO "Session %s: kernel thread %s (PID %d) stopped\n",
2113 	       ch->sess_name, ch->thread->comm, current->pid);
2114 	return 0;
2115 }
2116 
2117 /**
2118  * srpt_create_ch_ib() - Create receive and send completion queues.
2119  */
srpt_create_ch_ib(struct srpt_rdma_ch * ch)2120 static int srpt_create_ch_ib(struct srpt_rdma_ch *ch)
2121 {
2122 	struct ib_qp_init_attr *qp_init;
2123 	struct srpt_port *sport = ch->sport;
2124 	struct srpt_device *sdev = sport->sdev;
2125 	u32 srp_sq_size = sport->port_attrib.srp_sq_size;
2126 	int ret;
2127 
2128 	WARN_ON(ch->rq_size < 1);
2129 
2130 	ret = -ENOMEM;
2131 	qp_init = kzalloc(sizeof *qp_init, GFP_KERNEL);
2132 	if (!qp_init)
2133 		goto out;
2134 
2135 	ch->cq = ib_create_cq(sdev->device, srpt_completion, NULL, ch,
2136 			      ch->rq_size + srp_sq_size, 0);
2137 	if (IS_ERR(ch->cq)) {
2138 		ret = PTR_ERR(ch->cq);
2139 		printk(KERN_ERR "failed to create CQ cqe= %d ret= %d\n",
2140 		       ch->rq_size + srp_sq_size, ret);
2141 		goto out;
2142 	}
2143 
2144 	qp_init->qp_context = (void *)ch;
2145 	qp_init->event_handler
2146 		= (void(*)(struct ib_event *, void*))srpt_qp_event;
2147 	qp_init->send_cq = ch->cq;
2148 	qp_init->recv_cq = ch->cq;
2149 	qp_init->srq = sdev->srq;
2150 	qp_init->sq_sig_type = IB_SIGNAL_REQ_WR;
2151 	qp_init->qp_type = IB_QPT_RC;
2152 	qp_init->cap.max_send_wr = srp_sq_size;
2153 	qp_init->cap.max_send_sge = SRPT_DEF_SG_PER_WQE;
2154 
2155 	ch->qp = ib_create_qp(sdev->pd, qp_init);
2156 	if (IS_ERR(ch->qp)) {
2157 		ret = PTR_ERR(ch->qp);
2158 		printk(KERN_ERR "failed to create_qp ret= %d\n", ret);
2159 		goto err_destroy_cq;
2160 	}
2161 
2162 	atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr);
2163 
2164 	pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
2165 		 __func__, ch->cq->cqe, qp_init->cap.max_send_sge,
2166 		 qp_init->cap.max_send_wr, ch->cm_id);
2167 
2168 	ret = srpt_init_ch_qp(ch, ch->qp);
2169 	if (ret)
2170 		goto err_destroy_qp;
2171 
2172 	init_waitqueue_head(&ch->wait_queue);
2173 
2174 	pr_debug("creating thread for session %s\n", ch->sess_name);
2175 
2176 	ch->thread = kthread_run(srpt_compl_thread, ch, "ib_srpt_compl");
2177 	if (IS_ERR(ch->thread)) {
2178 		printk(KERN_ERR "failed to create kernel thread %ld\n",
2179 		       PTR_ERR(ch->thread));
2180 		ch->thread = NULL;
2181 		goto err_destroy_qp;
2182 	}
2183 
2184 out:
2185 	kfree(qp_init);
2186 	return ret;
2187 
2188 err_destroy_qp:
2189 	ib_destroy_qp(ch->qp);
2190 err_destroy_cq:
2191 	ib_destroy_cq(ch->cq);
2192 	goto out;
2193 }
2194 
srpt_destroy_ch_ib(struct srpt_rdma_ch * ch)2195 static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch)
2196 {
2197 	if (ch->thread)
2198 		kthread_stop(ch->thread);
2199 
2200 	ib_destroy_qp(ch->qp);
2201 	ib_destroy_cq(ch->cq);
2202 }
2203 
2204 /**
2205  * __srpt_close_ch() - Close an RDMA channel by setting the QP error state.
2206  *
2207  * Reset the QP and make sure all resources associated with the channel will
2208  * be deallocated at an appropriate time.
2209  *
2210  * Note: The caller must hold ch->sport->sdev->spinlock.
2211  */
__srpt_close_ch(struct srpt_rdma_ch * ch)2212 static void __srpt_close_ch(struct srpt_rdma_ch *ch)
2213 {
2214 	struct srpt_device *sdev;
2215 	enum rdma_ch_state prev_state;
2216 	unsigned long flags;
2217 
2218 	sdev = ch->sport->sdev;
2219 
2220 	spin_lock_irqsave(&ch->spinlock, flags);
2221 	prev_state = ch->state;
2222 	switch (prev_state) {
2223 	case CH_CONNECTING:
2224 	case CH_LIVE:
2225 		ch->state = CH_DISCONNECTING;
2226 		break;
2227 	default:
2228 		break;
2229 	}
2230 	spin_unlock_irqrestore(&ch->spinlock, flags);
2231 
2232 	switch (prev_state) {
2233 	case CH_CONNECTING:
2234 		ib_send_cm_rej(ch->cm_id, IB_CM_REJ_NO_RESOURCES, NULL, 0,
2235 			       NULL, 0);
2236 		/* fall through */
2237 	case CH_LIVE:
2238 		if (ib_send_cm_dreq(ch->cm_id, NULL, 0) < 0)
2239 			printk(KERN_ERR "sending CM DREQ failed.\n");
2240 		break;
2241 	case CH_DISCONNECTING:
2242 		break;
2243 	case CH_DRAINING:
2244 	case CH_RELEASING:
2245 		break;
2246 	}
2247 }
2248 
2249 /**
2250  * srpt_close_ch() - Close an RDMA channel.
2251  */
srpt_close_ch(struct srpt_rdma_ch * ch)2252 static void srpt_close_ch(struct srpt_rdma_ch *ch)
2253 {
2254 	struct srpt_device *sdev;
2255 
2256 	sdev = ch->sport->sdev;
2257 	spin_lock_irq(&sdev->spinlock);
2258 	__srpt_close_ch(ch);
2259 	spin_unlock_irq(&sdev->spinlock);
2260 }
2261 
2262 /**
2263  * srpt_drain_channel() - Drain a channel by resetting the IB queue pair.
2264  * @cm_id: Pointer to the CM ID of the channel to be drained.
2265  *
2266  * Note: Must be called from inside srpt_cm_handler to avoid a race between
2267  * accessing sdev->spinlock and the call to kfree(sdev) in srpt_remove_one()
2268  * (the caller of srpt_cm_handler holds the cm_id spinlock; srpt_remove_one()
2269  * waits until all target sessions for the associated IB device have been
2270  * unregistered and target session registration involves a call to
2271  * ib_destroy_cm_id(), which locks the cm_id spinlock and hence waits until
2272  * this function has finished).
2273  */
srpt_drain_channel(struct ib_cm_id * cm_id)2274 static void srpt_drain_channel(struct ib_cm_id *cm_id)
2275 {
2276 	struct srpt_device *sdev;
2277 	struct srpt_rdma_ch *ch;
2278 	int ret;
2279 	bool do_reset = false;
2280 
2281 	WARN_ON_ONCE(irqs_disabled());
2282 
2283 	sdev = cm_id->context;
2284 	BUG_ON(!sdev);
2285 	spin_lock_irq(&sdev->spinlock);
2286 	list_for_each_entry(ch, &sdev->rch_list, list) {
2287 		if (ch->cm_id == cm_id) {
2288 			do_reset = srpt_test_and_set_ch_state(ch,
2289 					CH_CONNECTING, CH_DRAINING) ||
2290 				   srpt_test_and_set_ch_state(ch,
2291 					CH_LIVE, CH_DRAINING) ||
2292 				   srpt_test_and_set_ch_state(ch,
2293 					CH_DISCONNECTING, CH_DRAINING);
2294 			break;
2295 		}
2296 	}
2297 	spin_unlock_irq(&sdev->spinlock);
2298 
2299 	if (do_reset) {
2300 		ret = srpt_ch_qp_err(ch);
2301 		if (ret < 0)
2302 			printk(KERN_ERR "Setting queue pair in error state"
2303 			       " failed: %d\n", ret);
2304 	}
2305 }
2306 
2307 /**
2308  * srpt_find_channel() - Look up an RDMA channel.
2309  * @cm_id: Pointer to the CM ID of the channel to be looked up.
2310  *
2311  * Return NULL if no matching RDMA channel has been found.
2312  */
srpt_find_channel(struct srpt_device * sdev,struct ib_cm_id * cm_id)2313 static struct srpt_rdma_ch *srpt_find_channel(struct srpt_device *sdev,
2314 					      struct ib_cm_id *cm_id)
2315 {
2316 	struct srpt_rdma_ch *ch;
2317 	bool found;
2318 
2319 	WARN_ON_ONCE(irqs_disabled());
2320 	BUG_ON(!sdev);
2321 
2322 	found = false;
2323 	spin_lock_irq(&sdev->spinlock);
2324 	list_for_each_entry(ch, &sdev->rch_list, list) {
2325 		if (ch->cm_id == cm_id) {
2326 			found = true;
2327 			break;
2328 		}
2329 	}
2330 	spin_unlock_irq(&sdev->spinlock);
2331 
2332 	return found ? ch : NULL;
2333 }
2334 
2335 /**
2336  * srpt_release_channel() - Release channel resources.
2337  *
2338  * Schedules the actual release because:
2339  * - Calling the ib_destroy_cm_id() call from inside an IB CM callback would
2340  *   trigger a deadlock.
2341  * - It is not safe to call TCM transport_* functions from interrupt context.
2342  */
srpt_release_channel(struct srpt_rdma_ch * ch)2343 static void srpt_release_channel(struct srpt_rdma_ch *ch)
2344 {
2345 	schedule_work(&ch->release_work);
2346 }
2347 
srpt_release_channel_work(struct work_struct * w)2348 static void srpt_release_channel_work(struct work_struct *w)
2349 {
2350 	struct srpt_rdma_ch *ch;
2351 	struct srpt_device *sdev;
2352 
2353 	ch = container_of(w, struct srpt_rdma_ch, release_work);
2354 	pr_debug("ch = %p; ch->sess = %p; release_done = %p\n", ch, ch->sess,
2355 		 ch->release_done);
2356 
2357 	sdev = ch->sport->sdev;
2358 	BUG_ON(!sdev);
2359 
2360 	transport_deregister_session_configfs(ch->sess);
2361 	transport_deregister_session(ch->sess);
2362 	ch->sess = NULL;
2363 
2364 	srpt_destroy_ch_ib(ch);
2365 
2366 	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2367 			     ch->sport->sdev, ch->rq_size,
2368 			     ch->rsp_size, DMA_TO_DEVICE);
2369 
2370 	spin_lock_irq(&sdev->spinlock);
2371 	list_del(&ch->list);
2372 	spin_unlock_irq(&sdev->spinlock);
2373 
2374 	ib_destroy_cm_id(ch->cm_id);
2375 
2376 	if (ch->release_done)
2377 		complete(ch->release_done);
2378 
2379 	wake_up(&sdev->ch_releaseQ);
2380 
2381 	kfree(ch);
2382 }
2383 
__srpt_lookup_acl(struct srpt_port * sport,u8 i_port_id[16])2384 static struct srpt_node_acl *__srpt_lookup_acl(struct srpt_port *sport,
2385 					       u8 i_port_id[16])
2386 {
2387 	struct srpt_node_acl *nacl;
2388 
2389 	list_for_each_entry(nacl, &sport->port_acl_list, list)
2390 		if (memcmp(nacl->i_port_id, i_port_id,
2391 			   sizeof(nacl->i_port_id)) == 0)
2392 			return nacl;
2393 
2394 	return NULL;
2395 }
2396 
srpt_lookup_acl(struct srpt_port * sport,u8 i_port_id[16])2397 static struct srpt_node_acl *srpt_lookup_acl(struct srpt_port *sport,
2398 					     u8 i_port_id[16])
2399 {
2400 	struct srpt_node_acl *nacl;
2401 
2402 	spin_lock_irq(&sport->port_acl_lock);
2403 	nacl = __srpt_lookup_acl(sport, i_port_id);
2404 	spin_unlock_irq(&sport->port_acl_lock);
2405 
2406 	return nacl;
2407 }
2408 
2409 /**
2410  * srpt_cm_req_recv() - Process the event IB_CM_REQ_RECEIVED.
2411  *
2412  * Ownership of the cm_id is transferred to the target session if this
2413  * functions returns zero. Otherwise the caller remains the owner of cm_id.
2414  */
srpt_cm_req_recv(struct ib_cm_id * cm_id,struct ib_cm_req_event_param * param,void * private_data)2415 static int srpt_cm_req_recv(struct ib_cm_id *cm_id,
2416 			    struct ib_cm_req_event_param *param,
2417 			    void *private_data)
2418 {
2419 	struct srpt_device *sdev = cm_id->context;
2420 	struct srpt_port *sport = &sdev->port[param->port - 1];
2421 	struct srp_login_req *req;
2422 	struct srp_login_rsp *rsp;
2423 	struct srp_login_rej *rej;
2424 	struct ib_cm_rep_param *rep_param;
2425 	struct srpt_rdma_ch *ch, *tmp_ch;
2426 	struct srpt_node_acl *nacl;
2427 	u32 it_iu_len;
2428 	int i;
2429 	int ret = 0;
2430 
2431 	WARN_ON_ONCE(irqs_disabled());
2432 
2433 	if (WARN_ON(!sdev || !private_data))
2434 		return -EINVAL;
2435 
2436 	req = (struct srp_login_req *)private_data;
2437 
2438 	it_iu_len = be32_to_cpu(req->req_it_iu_len);
2439 
2440 	printk(KERN_INFO "Received SRP_LOGIN_REQ with i_port_id 0x%llx:0x%llx,"
2441 	       " t_port_id 0x%llx:0x%llx and it_iu_len %d on port %d"
2442 	       " (guid=0x%llx:0x%llx)\n",
2443 	       be64_to_cpu(*(__be64 *)&req->initiator_port_id[0]),
2444 	       be64_to_cpu(*(__be64 *)&req->initiator_port_id[8]),
2445 	       be64_to_cpu(*(__be64 *)&req->target_port_id[0]),
2446 	       be64_to_cpu(*(__be64 *)&req->target_port_id[8]),
2447 	       it_iu_len,
2448 	       param->port,
2449 	       be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[0]),
2450 	       be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[8]));
2451 
2452 	rsp = kzalloc(sizeof *rsp, GFP_KERNEL);
2453 	rej = kzalloc(sizeof *rej, GFP_KERNEL);
2454 	rep_param = kzalloc(sizeof *rep_param, GFP_KERNEL);
2455 
2456 	if (!rsp || !rej || !rep_param) {
2457 		ret = -ENOMEM;
2458 		goto out;
2459 	}
2460 
2461 	if (it_iu_len > srp_max_req_size || it_iu_len < 64) {
2462 		rej->reason = __constant_cpu_to_be32(
2463 				SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE);
2464 		ret = -EINVAL;
2465 		printk(KERN_ERR "rejected SRP_LOGIN_REQ because its"
2466 		       " length (%d bytes) is out of range (%d .. %d)\n",
2467 		       it_iu_len, 64, srp_max_req_size);
2468 		goto reject;
2469 	}
2470 
2471 	if (!sport->enabled) {
2472 		rej->reason = __constant_cpu_to_be32(
2473 			     SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2474 		ret = -EINVAL;
2475 		printk(KERN_ERR "rejected SRP_LOGIN_REQ because the target port"
2476 		       " has not yet been enabled\n");
2477 		goto reject;
2478 	}
2479 
2480 	if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) {
2481 		rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN;
2482 
2483 		spin_lock_irq(&sdev->spinlock);
2484 
2485 		list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) {
2486 			if (!memcmp(ch->i_port_id, req->initiator_port_id, 16)
2487 			    && !memcmp(ch->t_port_id, req->target_port_id, 16)
2488 			    && param->port == ch->sport->port
2489 			    && param->listen_id == ch->sport->sdev->cm_id
2490 			    && ch->cm_id) {
2491 				enum rdma_ch_state ch_state;
2492 
2493 				ch_state = srpt_get_ch_state(ch);
2494 				if (ch_state != CH_CONNECTING
2495 				    && ch_state != CH_LIVE)
2496 					continue;
2497 
2498 				/* found an existing channel */
2499 				pr_debug("Found existing channel %s"
2500 					 " cm_id= %p state= %d\n",
2501 					 ch->sess_name, ch->cm_id, ch_state);
2502 
2503 				__srpt_close_ch(ch);
2504 
2505 				rsp->rsp_flags =
2506 					SRP_LOGIN_RSP_MULTICHAN_TERMINATED;
2507 			}
2508 		}
2509 
2510 		spin_unlock_irq(&sdev->spinlock);
2511 
2512 	} else
2513 		rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED;
2514 
2515 	if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid)
2516 	    || *(__be64 *)(req->target_port_id + 8) !=
2517 	       cpu_to_be64(srpt_service_guid)) {
2518 		rej->reason = __constant_cpu_to_be32(
2519 				SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL);
2520 		ret = -ENOMEM;
2521 		printk(KERN_ERR "rejected SRP_LOGIN_REQ because it"
2522 		       " has an invalid target port identifier.\n");
2523 		goto reject;
2524 	}
2525 
2526 	ch = kzalloc(sizeof *ch, GFP_KERNEL);
2527 	if (!ch) {
2528 		rej->reason = __constant_cpu_to_be32(
2529 					SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2530 		printk(KERN_ERR "rejected SRP_LOGIN_REQ because no memory.\n");
2531 		ret = -ENOMEM;
2532 		goto reject;
2533 	}
2534 
2535 	INIT_WORK(&ch->release_work, srpt_release_channel_work);
2536 	memcpy(ch->i_port_id, req->initiator_port_id, 16);
2537 	memcpy(ch->t_port_id, req->target_port_id, 16);
2538 	ch->sport = &sdev->port[param->port - 1];
2539 	ch->cm_id = cm_id;
2540 	/*
2541 	 * Avoid QUEUE_FULL conditions by limiting the number of buffers used
2542 	 * for the SRP protocol to the command queue size.
2543 	 */
2544 	ch->rq_size = SRPT_RQ_SIZE;
2545 	spin_lock_init(&ch->spinlock);
2546 	ch->state = CH_CONNECTING;
2547 	INIT_LIST_HEAD(&ch->cmd_wait_list);
2548 	ch->rsp_size = ch->sport->port_attrib.srp_max_rsp_size;
2549 
2550 	ch->ioctx_ring = (struct srpt_send_ioctx **)
2551 		srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
2552 				      sizeof(*ch->ioctx_ring[0]),
2553 				      ch->rsp_size, DMA_TO_DEVICE);
2554 	if (!ch->ioctx_ring)
2555 		goto free_ch;
2556 
2557 	INIT_LIST_HEAD(&ch->free_list);
2558 	for (i = 0; i < ch->rq_size; i++) {
2559 		ch->ioctx_ring[i]->ch = ch;
2560 		list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list);
2561 	}
2562 
2563 	ret = srpt_create_ch_ib(ch);
2564 	if (ret) {
2565 		rej->reason = __constant_cpu_to_be32(
2566 				SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2567 		printk(KERN_ERR "rejected SRP_LOGIN_REQ because creating"
2568 		       " a new RDMA channel failed.\n");
2569 		goto free_ring;
2570 	}
2571 
2572 	ret = srpt_ch_qp_rtr(ch, ch->qp);
2573 	if (ret) {
2574 		rej->reason = __constant_cpu_to_be32(
2575 				SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2576 		printk(KERN_ERR "rejected SRP_LOGIN_REQ because enabling"
2577 		       " RTR failed (error code = %d)\n", ret);
2578 		goto destroy_ib;
2579 	}
2580 	/*
2581 	 * Use the initator port identifier as the session name.
2582 	 */
2583 	snprintf(ch->sess_name, sizeof(ch->sess_name), "0x%016llx%016llx",
2584 			be64_to_cpu(*(__be64 *)ch->i_port_id),
2585 			be64_to_cpu(*(__be64 *)(ch->i_port_id + 8)));
2586 
2587 	pr_debug("registering session %s\n", ch->sess_name);
2588 
2589 	nacl = srpt_lookup_acl(sport, ch->i_port_id);
2590 	if (!nacl) {
2591 		printk(KERN_INFO "Rejected login because no ACL has been"
2592 		       " configured yet for initiator %s.\n", ch->sess_name);
2593 		rej->reason = __constant_cpu_to_be32(
2594 				SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED);
2595 		goto destroy_ib;
2596 	}
2597 
2598 	ch->sess = transport_init_session();
2599 	if (IS_ERR(ch->sess)) {
2600 		rej->reason = __constant_cpu_to_be32(
2601 				SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2602 		pr_debug("Failed to create session\n");
2603 		goto deregister_session;
2604 	}
2605 	ch->sess->se_node_acl = &nacl->nacl;
2606 	transport_register_session(&sport->port_tpg_1, &nacl->nacl, ch->sess, ch);
2607 
2608 	pr_debug("Establish connection sess=%p name=%s cm_id=%p\n", ch->sess,
2609 		 ch->sess_name, ch->cm_id);
2610 
2611 	/* create srp_login_response */
2612 	rsp->opcode = SRP_LOGIN_RSP;
2613 	rsp->tag = req->tag;
2614 	rsp->max_it_iu_len = req->req_it_iu_len;
2615 	rsp->max_ti_iu_len = req->req_it_iu_len;
2616 	ch->max_ti_iu_len = it_iu_len;
2617 	rsp->buf_fmt = __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2618 					      | SRP_BUF_FORMAT_INDIRECT);
2619 	rsp->req_lim_delta = cpu_to_be32(ch->rq_size);
2620 	atomic_set(&ch->req_lim, ch->rq_size);
2621 	atomic_set(&ch->req_lim_delta, 0);
2622 
2623 	/* create cm reply */
2624 	rep_param->qp_num = ch->qp->qp_num;
2625 	rep_param->private_data = (void *)rsp;
2626 	rep_param->private_data_len = sizeof *rsp;
2627 	rep_param->rnr_retry_count = 7;
2628 	rep_param->flow_control = 1;
2629 	rep_param->failover_accepted = 0;
2630 	rep_param->srq = 1;
2631 	rep_param->responder_resources = 4;
2632 	rep_param->initiator_depth = 4;
2633 
2634 	ret = ib_send_cm_rep(cm_id, rep_param);
2635 	if (ret) {
2636 		printk(KERN_ERR "sending SRP_LOGIN_REQ response failed"
2637 		       " (error code = %d)\n", ret);
2638 		goto release_channel;
2639 	}
2640 
2641 	spin_lock_irq(&sdev->spinlock);
2642 	list_add_tail(&ch->list, &sdev->rch_list);
2643 	spin_unlock_irq(&sdev->spinlock);
2644 
2645 	goto out;
2646 
2647 release_channel:
2648 	srpt_set_ch_state(ch, CH_RELEASING);
2649 	transport_deregister_session_configfs(ch->sess);
2650 
2651 deregister_session:
2652 	transport_deregister_session(ch->sess);
2653 	ch->sess = NULL;
2654 
2655 destroy_ib:
2656 	srpt_destroy_ch_ib(ch);
2657 
2658 free_ring:
2659 	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2660 			     ch->sport->sdev, ch->rq_size,
2661 			     ch->rsp_size, DMA_TO_DEVICE);
2662 free_ch:
2663 	kfree(ch);
2664 
2665 reject:
2666 	rej->opcode = SRP_LOGIN_REJ;
2667 	rej->tag = req->tag;
2668 	rej->buf_fmt = __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2669 					      | SRP_BUF_FORMAT_INDIRECT);
2670 
2671 	ib_send_cm_rej(cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0,
2672 			     (void *)rej, sizeof *rej);
2673 
2674 out:
2675 	kfree(rep_param);
2676 	kfree(rsp);
2677 	kfree(rej);
2678 
2679 	return ret;
2680 }
2681 
srpt_cm_rej_recv(struct ib_cm_id * cm_id)2682 static void srpt_cm_rej_recv(struct ib_cm_id *cm_id)
2683 {
2684 	printk(KERN_INFO "Received IB REJ for cm_id %p.\n", cm_id);
2685 	srpt_drain_channel(cm_id);
2686 }
2687 
2688 /**
2689  * srpt_cm_rtu_recv() - Process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event.
2690  *
2691  * An IB_CM_RTU_RECEIVED message indicates that the connection is established
2692  * and that the recipient may begin transmitting (RTU = ready to use).
2693  */
srpt_cm_rtu_recv(struct ib_cm_id * cm_id)2694 static void srpt_cm_rtu_recv(struct ib_cm_id *cm_id)
2695 {
2696 	struct srpt_rdma_ch *ch;
2697 	int ret;
2698 
2699 	ch = srpt_find_channel(cm_id->context, cm_id);
2700 	BUG_ON(!ch);
2701 
2702 	if (srpt_test_and_set_ch_state(ch, CH_CONNECTING, CH_LIVE)) {
2703 		struct srpt_recv_ioctx *ioctx, *ioctx_tmp;
2704 
2705 		ret = srpt_ch_qp_rts(ch, ch->qp);
2706 
2707 		list_for_each_entry_safe(ioctx, ioctx_tmp, &ch->cmd_wait_list,
2708 					 wait_list) {
2709 			list_del(&ioctx->wait_list);
2710 			srpt_handle_new_iu(ch, ioctx, NULL);
2711 		}
2712 		if (ret)
2713 			srpt_close_ch(ch);
2714 	}
2715 }
2716 
srpt_cm_timewait_exit(struct ib_cm_id * cm_id)2717 static void srpt_cm_timewait_exit(struct ib_cm_id *cm_id)
2718 {
2719 	printk(KERN_INFO "Received IB TimeWait exit for cm_id %p.\n", cm_id);
2720 	srpt_drain_channel(cm_id);
2721 }
2722 
srpt_cm_rep_error(struct ib_cm_id * cm_id)2723 static void srpt_cm_rep_error(struct ib_cm_id *cm_id)
2724 {
2725 	printk(KERN_INFO "Received IB REP error for cm_id %p.\n", cm_id);
2726 	srpt_drain_channel(cm_id);
2727 }
2728 
2729 /**
2730  * srpt_cm_dreq_recv() - Process reception of a DREQ message.
2731  */
srpt_cm_dreq_recv(struct ib_cm_id * cm_id)2732 static void srpt_cm_dreq_recv(struct ib_cm_id *cm_id)
2733 {
2734 	struct srpt_rdma_ch *ch;
2735 	unsigned long flags;
2736 	bool send_drep = false;
2737 
2738 	ch = srpt_find_channel(cm_id->context, cm_id);
2739 	BUG_ON(!ch);
2740 
2741 	pr_debug("cm_id= %p ch->state= %d\n", cm_id, srpt_get_ch_state(ch));
2742 
2743 	spin_lock_irqsave(&ch->spinlock, flags);
2744 	switch (ch->state) {
2745 	case CH_CONNECTING:
2746 	case CH_LIVE:
2747 		send_drep = true;
2748 		ch->state = CH_DISCONNECTING;
2749 		break;
2750 	case CH_DISCONNECTING:
2751 	case CH_DRAINING:
2752 	case CH_RELEASING:
2753 		WARN(true, "unexpected channel state %d\n", ch->state);
2754 		break;
2755 	}
2756 	spin_unlock_irqrestore(&ch->spinlock, flags);
2757 
2758 	if (send_drep) {
2759 		if (ib_send_cm_drep(ch->cm_id, NULL, 0) < 0)
2760 			printk(KERN_ERR "Sending IB DREP failed.\n");
2761 		printk(KERN_INFO "Received DREQ and sent DREP for session %s.\n",
2762 		       ch->sess_name);
2763 	}
2764 }
2765 
2766 /**
2767  * srpt_cm_drep_recv() - Process reception of a DREP message.
2768  */
srpt_cm_drep_recv(struct ib_cm_id * cm_id)2769 static void srpt_cm_drep_recv(struct ib_cm_id *cm_id)
2770 {
2771 	printk(KERN_INFO "Received InfiniBand DREP message for cm_id %p.\n",
2772 	       cm_id);
2773 	srpt_drain_channel(cm_id);
2774 }
2775 
2776 /**
2777  * srpt_cm_handler() - IB connection manager callback function.
2778  *
2779  * A non-zero return value will cause the caller destroy the CM ID.
2780  *
2781  * Note: srpt_cm_handler() must only return a non-zero value when transferring
2782  * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning
2783  * a non-zero value in any other case will trigger a race with the
2784  * ib_destroy_cm_id() call in srpt_release_channel().
2785  */
srpt_cm_handler(struct ib_cm_id * cm_id,struct ib_cm_event * event)2786 static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event)
2787 {
2788 	int ret;
2789 
2790 	ret = 0;
2791 	switch (event->event) {
2792 	case IB_CM_REQ_RECEIVED:
2793 		ret = srpt_cm_req_recv(cm_id, &event->param.req_rcvd,
2794 				       event->private_data);
2795 		break;
2796 	case IB_CM_REJ_RECEIVED:
2797 		srpt_cm_rej_recv(cm_id);
2798 		break;
2799 	case IB_CM_RTU_RECEIVED:
2800 	case IB_CM_USER_ESTABLISHED:
2801 		srpt_cm_rtu_recv(cm_id);
2802 		break;
2803 	case IB_CM_DREQ_RECEIVED:
2804 		srpt_cm_dreq_recv(cm_id);
2805 		break;
2806 	case IB_CM_DREP_RECEIVED:
2807 		srpt_cm_drep_recv(cm_id);
2808 		break;
2809 	case IB_CM_TIMEWAIT_EXIT:
2810 		srpt_cm_timewait_exit(cm_id);
2811 		break;
2812 	case IB_CM_REP_ERROR:
2813 		srpt_cm_rep_error(cm_id);
2814 		break;
2815 	case IB_CM_DREQ_ERROR:
2816 		printk(KERN_INFO "Received IB DREQ ERROR event.\n");
2817 		break;
2818 	case IB_CM_MRA_RECEIVED:
2819 		printk(KERN_INFO "Received IB MRA event\n");
2820 		break;
2821 	default:
2822 		printk(KERN_ERR "received unrecognized IB CM event %d\n",
2823 		       event->event);
2824 		break;
2825 	}
2826 
2827 	return ret;
2828 }
2829 
2830 /**
2831  * srpt_perform_rdmas() - Perform IB RDMA.
2832  *
2833  * Returns zero upon success or a negative number upon failure.
2834  */
srpt_perform_rdmas(struct srpt_rdma_ch * ch,struct srpt_send_ioctx * ioctx)2835 static int srpt_perform_rdmas(struct srpt_rdma_ch *ch,
2836 			      struct srpt_send_ioctx *ioctx)
2837 {
2838 	struct ib_send_wr wr;
2839 	struct ib_send_wr *bad_wr;
2840 	struct rdma_iu *riu;
2841 	int i;
2842 	int ret;
2843 	int sq_wr_avail;
2844 	enum dma_data_direction dir;
2845 	const int n_rdma = ioctx->n_rdma;
2846 
2847 	dir = ioctx->cmd.data_direction;
2848 	if (dir == DMA_TO_DEVICE) {
2849 		/* write */
2850 		ret = -ENOMEM;
2851 		sq_wr_avail = atomic_sub_return(n_rdma, &ch->sq_wr_avail);
2852 		if (sq_wr_avail < 0) {
2853 			printk(KERN_WARNING "IB send queue full (needed %d)\n",
2854 			       n_rdma);
2855 			goto out;
2856 		}
2857 	}
2858 
2859 	ioctx->rdma_aborted = false;
2860 	ret = 0;
2861 	riu = ioctx->rdma_ius;
2862 	memset(&wr, 0, sizeof wr);
2863 
2864 	for (i = 0; i < n_rdma; ++i, ++riu) {
2865 		if (dir == DMA_FROM_DEVICE) {
2866 			wr.opcode = IB_WR_RDMA_WRITE;
2867 			wr.wr_id = encode_wr_id(i == n_rdma - 1 ?
2868 						SRPT_RDMA_WRITE_LAST :
2869 						SRPT_RDMA_MID,
2870 						ioctx->ioctx.index);
2871 		} else {
2872 			wr.opcode = IB_WR_RDMA_READ;
2873 			wr.wr_id = encode_wr_id(i == n_rdma - 1 ?
2874 						SRPT_RDMA_READ_LAST :
2875 						SRPT_RDMA_MID,
2876 						ioctx->ioctx.index);
2877 		}
2878 		wr.next = NULL;
2879 		wr.wr.rdma.remote_addr = riu->raddr;
2880 		wr.wr.rdma.rkey = riu->rkey;
2881 		wr.num_sge = riu->sge_cnt;
2882 		wr.sg_list = riu->sge;
2883 
2884 		/* only get completion event for the last rdma write */
2885 		if (i == (n_rdma - 1) && dir == DMA_TO_DEVICE)
2886 			wr.send_flags = IB_SEND_SIGNALED;
2887 
2888 		ret = ib_post_send(ch->qp, &wr, &bad_wr);
2889 		if (ret)
2890 			break;
2891 	}
2892 
2893 	if (ret)
2894 		printk(KERN_ERR "%s[%d]: ib_post_send() returned %d for %d/%d",
2895 				 __func__, __LINE__, ret, i, n_rdma);
2896 	if (ret && i > 0) {
2897 		wr.num_sge = 0;
2898 		wr.wr_id = encode_wr_id(SRPT_RDMA_ABORT, ioctx->ioctx.index);
2899 		wr.send_flags = IB_SEND_SIGNALED;
2900 		while (ch->state == CH_LIVE &&
2901 			ib_post_send(ch->qp, &wr, &bad_wr) != 0) {
2902 			printk(KERN_INFO "Trying to abort failed RDMA transfer [%d]",
2903 				ioctx->ioctx.index);
2904 			msleep(1000);
2905 		}
2906 		while (ch->state != CH_RELEASING && !ioctx->rdma_aborted) {
2907 			printk(KERN_INFO "Waiting until RDMA abort finished [%d]",
2908 				ioctx->ioctx.index);
2909 			msleep(1000);
2910 		}
2911 	}
2912 out:
2913 	if (unlikely(dir == DMA_TO_DEVICE && ret < 0))
2914 		atomic_add(n_rdma, &ch->sq_wr_avail);
2915 	return ret;
2916 }
2917 
2918 /**
2919  * srpt_xfer_data() - Start data transfer from initiator to target.
2920  */
srpt_xfer_data(struct srpt_rdma_ch * ch,struct srpt_send_ioctx * ioctx)2921 static int srpt_xfer_data(struct srpt_rdma_ch *ch,
2922 			  struct srpt_send_ioctx *ioctx)
2923 {
2924 	int ret;
2925 
2926 	ret = srpt_map_sg_to_ib_sge(ch, ioctx);
2927 	if (ret) {
2928 		printk(KERN_ERR "%s[%d] ret=%d\n", __func__, __LINE__, ret);
2929 		goto out;
2930 	}
2931 
2932 	ret = srpt_perform_rdmas(ch, ioctx);
2933 	if (ret) {
2934 		if (ret == -EAGAIN || ret == -ENOMEM)
2935 			printk(KERN_INFO "%s[%d] queue full -- ret=%d\n",
2936 				   __func__, __LINE__, ret);
2937 		else
2938 			printk(KERN_ERR "%s[%d] fatal error -- ret=%d\n",
2939 			       __func__, __LINE__, ret);
2940 		goto out_unmap;
2941 	}
2942 
2943 out:
2944 	return ret;
2945 out_unmap:
2946 	srpt_unmap_sg_to_ib_sge(ch, ioctx);
2947 	goto out;
2948 }
2949 
srpt_write_pending_status(struct se_cmd * se_cmd)2950 static int srpt_write_pending_status(struct se_cmd *se_cmd)
2951 {
2952 	struct srpt_send_ioctx *ioctx;
2953 
2954 	ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2955 	return srpt_get_cmd_state(ioctx) == SRPT_STATE_NEED_DATA;
2956 }
2957 
2958 /*
2959  * srpt_write_pending() - Start data transfer from initiator to target (write).
2960  */
srpt_write_pending(struct se_cmd * se_cmd)2961 static int srpt_write_pending(struct se_cmd *se_cmd)
2962 {
2963 	struct srpt_rdma_ch *ch;
2964 	struct srpt_send_ioctx *ioctx;
2965 	enum srpt_command_state new_state;
2966 	enum rdma_ch_state ch_state;
2967 	int ret;
2968 
2969 	ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2970 
2971 	new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA);
2972 	WARN_ON(new_state == SRPT_STATE_DONE);
2973 
2974 	ch = ioctx->ch;
2975 	BUG_ON(!ch);
2976 
2977 	ch_state = srpt_get_ch_state(ch);
2978 	switch (ch_state) {
2979 	case CH_CONNECTING:
2980 		WARN(true, "unexpected channel state %d\n", ch_state);
2981 		ret = -EINVAL;
2982 		goto out;
2983 	case CH_LIVE:
2984 		break;
2985 	case CH_DISCONNECTING:
2986 	case CH_DRAINING:
2987 	case CH_RELEASING:
2988 		pr_debug("cmd with tag %lld: channel disconnecting\n",
2989 			 ioctx->tag);
2990 		srpt_set_cmd_state(ioctx, SRPT_STATE_DATA_IN);
2991 		ret = -EINVAL;
2992 		goto out;
2993 	}
2994 	ret = srpt_xfer_data(ch, ioctx);
2995 
2996 out:
2997 	return ret;
2998 }
2999 
tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)3000 static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)
3001 {
3002 	switch (tcm_mgmt_status) {
3003 	case TMR_FUNCTION_COMPLETE:
3004 		return SRP_TSK_MGMT_SUCCESS;
3005 	case TMR_FUNCTION_REJECTED:
3006 		return SRP_TSK_MGMT_FUNC_NOT_SUPP;
3007 	}
3008 	return SRP_TSK_MGMT_FAILED;
3009 }
3010 
3011 /**
3012  * srpt_queue_response() - Transmits the response to a SCSI command.
3013  *
3014  * Callback function called by the TCM core. Must not block since it can be
3015  * invoked on the context of the IB completion handler.
3016  */
srpt_queue_response(struct se_cmd * cmd)3017 static int srpt_queue_response(struct se_cmd *cmd)
3018 {
3019 	struct srpt_rdma_ch *ch;
3020 	struct srpt_send_ioctx *ioctx;
3021 	enum srpt_command_state state;
3022 	unsigned long flags;
3023 	int ret;
3024 	enum dma_data_direction dir;
3025 	int resp_len;
3026 	u8 srp_tm_status;
3027 
3028 	ret = 0;
3029 
3030 	ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
3031 	ch = ioctx->ch;
3032 	BUG_ON(!ch);
3033 
3034 	spin_lock_irqsave(&ioctx->spinlock, flags);
3035 	state = ioctx->state;
3036 	switch (state) {
3037 	case SRPT_STATE_NEW:
3038 	case SRPT_STATE_DATA_IN:
3039 		ioctx->state = SRPT_STATE_CMD_RSP_SENT;
3040 		break;
3041 	case SRPT_STATE_MGMT:
3042 		ioctx->state = SRPT_STATE_MGMT_RSP_SENT;
3043 		break;
3044 	default:
3045 		WARN(true, "ch %p; cmd %d: unexpected command state %d\n",
3046 			ch, ioctx->ioctx.index, ioctx->state);
3047 		break;
3048 	}
3049 	spin_unlock_irqrestore(&ioctx->spinlock, flags);
3050 
3051 	if (unlikely(transport_check_aborted_status(&ioctx->cmd, false)
3052 		     || WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT))) {
3053 		atomic_inc(&ch->req_lim_delta);
3054 		srpt_abort_cmd(ioctx);
3055 		goto out;
3056 	}
3057 
3058 	dir = ioctx->cmd.data_direction;
3059 
3060 	/* For read commands, transfer the data to the initiator. */
3061 	if (dir == DMA_FROM_DEVICE && ioctx->cmd.data_length &&
3062 	    !ioctx->queue_status_only) {
3063 		ret = srpt_xfer_data(ch, ioctx);
3064 		if (ret) {
3065 			printk(KERN_ERR "xfer_data failed for tag %llu\n",
3066 			       ioctx->tag);
3067 			goto out;
3068 		}
3069 	}
3070 
3071 	if (state != SRPT_STATE_MGMT)
3072 		resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->tag,
3073 					      cmd->scsi_status);
3074 	else {
3075 		srp_tm_status
3076 			= tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response);
3077 		resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status,
3078 						 ioctx->tag);
3079 	}
3080 	ret = srpt_post_send(ch, ioctx, resp_len);
3081 	if (ret) {
3082 		printk(KERN_ERR "sending cmd response failed for tag %llu\n",
3083 		       ioctx->tag);
3084 		srpt_unmap_sg_to_ib_sge(ch, ioctx);
3085 		srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
3086 		kref_put(&ioctx->kref, srpt_put_send_ioctx_kref);
3087 	}
3088 
3089 out:
3090 	return ret;
3091 }
3092 
srpt_queue_status(struct se_cmd * cmd)3093 static int srpt_queue_status(struct se_cmd *cmd)
3094 {
3095 	struct srpt_send_ioctx *ioctx;
3096 
3097 	ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
3098 	BUG_ON(ioctx->sense_data != cmd->sense_buffer);
3099 	if (cmd->se_cmd_flags &
3100 	    (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE))
3101 		WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION);
3102 	ioctx->queue_status_only = true;
3103 	return srpt_queue_response(cmd);
3104 }
3105 
srpt_refresh_port_work(struct work_struct * work)3106 static void srpt_refresh_port_work(struct work_struct *work)
3107 {
3108 	struct srpt_port *sport = container_of(work, struct srpt_port, work);
3109 
3110 	srpt_refresh_port(sport);
3111 }
3112 
srpt_ch_list_empty(struct srpt_device * sdev)3113 static int srpt_ch_list_empty(struct srpt_device *sdev)
3114 {
3115 	int res;
3116 
3117 	spin_lock_irq(&sdev->spinlock);
3118 	res = list_empty(&sdev->rch_list);
3119 	spin_unlock_irq(&sdev->spinlock);
3120 
3121 	return res;
3122 }
3123 
3124 /**
3125  * srpt_release_sdev() - Free the channel resources associated with a target.
3126  */
srpt_release_sdev(struct srpt_device * sdev)3127 static int srpt_release_sdev(struct srpt_device *sdev)
3128 {
3129 	struct srpt_rdma_ch *ch, *tmp_ch;
3130 	int res;
3131 
3132 	WARN_ON_ONCE(irqs_disabled());
3133 
3134 	BUG_ON(!sdev);
3135 
3136 	spin_lock_irq(&sdev->spinlock);
3137 	list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list)
3138 		__srpt_close_ch(ch);
3139 	spin_unlock_irq(&sdev->spinlock);
3140 
3141 	res = wait_event_interruptible(sdev->ch_releaseQ,
3142 				       srpt_ch_list_empty(sdev));
3143 	if (res)
3144 		printk(KERN_ERR "%s: interrupted.\n", __func__);
3145 
3146 	return 0;
3147 }
3148 
__srpt_lookup_port(const char * name)3149 static struct srpt_port *__srpt_lookup_port(const char *name)
3150 {
3151 	struct ib_device *dev;
3152 	struct srpt_device *sdev;
3153 	struct srpt_port *sport;
3154 	int i;
3155 
3156 	list_for_each_entry(sdev, &srpt_dev_list, list) {
3157 		dev = sdev->device;
3158 		if (!dev)
3159 			continue;
3160 
3161 		for (i = 0; i < dev->phys_port_cnt; i++) {
3162 			sport = &sdev->port[i];
3163 
3164 			if (!strcmp(sport->port_guid, name))
3165 				return sport;
3166 		}
3167 	}
3168 
3169 	return NULL;
3170 }
3171 
srpt_lookup_port(const char * name)3172 static struct srpt_port *srpt_lookup_port(const char *name)
3173 {
3174 	struct srpt_port *sport;
3175 
3176 	spin_lock(&srpt_dev_lock);
3177 	sport = __srpt_lookup_port(name);
3178 	spin_unlock(&srpt_dev_lock);
3179 
3180 	return sport;
3181 }
3182 
3183 /**
3184  * srpt_add_one() - Infiniband device addition callback function.
3185  */
srpt_add_one(struct ib_device * device)3186 static void srpt_add_one(struct ib_device *device)
3187 {
3188 	struct srpt_device *sdev;
3189 	struct srpt_port *sport;
3190 	struct ib_srq_init_attr srq_attr;
3191 	int i;
3192 
3193 	pr_debug("device = %p, device->dma_ops = %p\n", device,
3194 		 device->dma_ops);
3195 
3196 	sdev = kzalloc(sizeof *sdev, GFP_KERNEL);
3197 	if (!sdev)
3198 		goto err;
3199 
3200 	sdev->device = device;
3201 	INIT_LIST_HEAD(&sdev->rch_list);
3202 	init_waitqueue_head(&sdev->ch_releaseQ);
3203 	spin_lock_init(&sdev->spinlock);
3204 
3205 	if (ib_query_device(device, &sdev->dev_attr))
3206 		goto free_dev;
3207 
3208 	sdev->pd = ib_alloc_pd(device);
3209 	if (IS_ERR(sdev->pd))
3210 		goto free_dev;
3211 
3212 	sdev->mr = ib_get_dma_mr(sdev->pd, IB_ACCESS_LOCAL_WRITE);
3213 	if (IS_ERR(sdev->mr))
3214 		goto err_pd;
3215 
3216 	sdev->srq_size = min(srpt_srq_size, sdev->dev_attr.max_srq_wr);
3217 
3218 	srq_attr.event_handler = srpt_srq_event;
3219 	srq_attr.srq_context = (void *)sdev;
3220 	srq_attr.attr.max_wr = sdev->srq_size;
3221 	srq_attr.attr.max_sge = 1;
3222 	srq_attr.attr.srq_limit = 0;
3223 
3224 	sdev->srq = ib_create_srq(sdev->pd, &srq_attr);
3225 	if (IS_ERR(sdev->srq))
3226 		goto err_mr;
3227 
3228 	pr_debug("%s: create SRQ #wr= %d max_allow=%d dev= %s\n",
3229 		 __func__, sdev->srq_size, sdev->dev_attr.max_srq_wr,
3230 		 device->name);
3231 
3232 	if (!srpt_service_guid)
3233 		srpt_service_guid = be64_to_cpu(device->node_guid);
3234 
3235 	sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev);
3236 	if (IS_ERR(sdev->cm_id))
3237 		goto err_srq;
3238 
3239 	/* print out target login information */
3240 	pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx,"
3241 		 "pkey=ffff,service_id=%016llx\n", srpt_service_guid,
3242 		 srpt_service_guid, srpt_service_guid);
3243 
3244 	/*
3245 	 * We do not have a consistent service_id (ie. also id_ext of target_id)
3246 	 * to identify this target. We currently use the guid of the first HCA
3247 	 * in the system as service_id; therefore, the target_id will change
3248 	 * if this HCA is gone bad and replaced by different HCA
3249 	 */
3250 	if (ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0, NULL))
3251 		goto err_cm;
3252 
3253 	INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device,
3254 			      srpt_event_handler);
3255 	if (ib_register_event_handler(&sdev->event_handler))
3256 		goto err_cm;
3257 
3258 	sdev->ioctx_ring = (struct srpt_recv_ioctx **)
3259 		srpt_alloc_ioctx_ring(sdev, sdev->srq_size,
3260 				      sizeof(*sdev->ioctx_ring[0]),
3261 				      srp_max_req_size, DMA_FROM_DEVICE);
3262 	if (!sdev->ioctx_ring)
3263 		goto err_event;
3264 
3265 	for (i = 0; i < sdev->srq_size; ++i)
3266 		srpt_post_recv(sdev, sdev->ioctx_ring[i]);
3267 
3268 	WARN_ON(sdev->device->phys_port_cnt > ARRAY_SIZE(sdev->port));
3269 
3270 	for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
3271 		sport = &sdev->port[i - 1];
3272 		sport->sdev = sdev;
3273 		sport->port = i;
3274 		sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE;
3275 		sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE;
3276 		sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE;
3277 		INIT_WORK(&sport->work, srpt_refresh_port_work);
3278 		INIT_LIST_HEAD(&sport->port_acl_list);
3279 		spin_lock_init(&sport->port_acl_lock);
3280 
3281 		if (srpt_refresh_port(sport)) {
3282 			printk(KERN_ERR "MAD registration failed for %s-%d.\n",
3283 			       srpt_sdev_name(sdev), i);
3284 			goto err_ring;
3285 		}
3286 		snprintf(sport->port_guid, sizeof(sport->port_guid),
3287 			"0x%016llx%016llx",
3288 			be64_to_cpu(sport->gid.global.subnet_prefix),
3289 			be64_to_cpu(sport->gid.global.interface_id));
3290 	}
3291 
3292 	spin_lock(&srpt_dev_lock);
3293 	list_add_tail(&sdev->list, &srpt_dev_list);
3294 	spin_unlock(&srpt_dev_lock);
3295 
3296 out:
3297 	ib_set_client_data(device, &srpt_client, sdev);
3298 	pr_debug("added %s.\n", device->name);
3299 	return;
3300 
3301 err_ring:
3302 	srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3303 			     sdev->srq_size, srp_max_req_size,
3304 			     DMA_FROM_DEVICE);
3305 err_event:
3306 	ib_unregister_event_handler(&sdev->event_handler);
3307 err_cm:
3308 	ib_destroy_cm_id(sdev->cm_id);
3309 err_srq:
3310 	ib_destroy_srq(sdev->srq);
3311 err_mr:
3312 	ib_dereg_mr(sdev->mr);
3313 err_pd:
3314 	ib_dealloc_pd(sdev->pd);
3315 free_dev:
3316 	kfree(sdev);
3317 err:
3318 	sdev = NULL;
3319 	printk(KERN_INFO "%s(%s) failed.\n", __func__, device->name);
3320 	goto out;
3321 }
3322 
3323 /**
3324  * srpt_remove_one() - InfiniBand device removal callback function.
3325  */
srpt_remove_one(struct ib_device * device)3326 static void srpt_remove_one(struct ib_device *device)
3327 {
3328 	struct srpt_device *sdev;
3329 	int i;
3330 
3331 	sdev = ib_get_client_data(device, &srpt_client);
3332 	if (!sdev) {
3333 		printk(KERN_INFO "%s(%s): nothing to do.\n", __func__,
3334 		       device->name);
3335 		return;
3336 	}
3337 
3338 	srpt_unregister_mad_agent(sdev);
3339 
3340 	ib_unregister_event_handler(&sdev->event_handler);
3341 
3342 	/* Cancel any work queued by the just unregistered IB event handler. */
3343 	for (i = 0; i < sdev->device->phys_port_cnt; i++)
3344 		cancel_work_sync(&sdev->port[i].work);
3345 
3346 	ib_destroy_cm_id(sdev->cm_id);
3347 
3348 	/*
3349 	 * Unregistering a target must happen after destroying sdev->cm_id
3350 	 * such that no new SRP_LOGIN_REQ information units can arrive while
3351 	 * destroying the target.
3352 	 */
3353 	spin_lock(&srpt_dev_lock);
3354 	list_del(&sdev->list);
3355 	spin_unlock(&srpt_dev_lock);
3356 	srpt_release_sdev(sdev);
3357 
3358 	ib_destroy_srq(sdev->srq);
3359 	ib_dereg_mr(sdev->mr);
3360 	ib_dealloc_pd(sdev->pd);
3361 
3362 	srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3363 			     sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE);
3364 	sdev->ioctx_ring = NULL;
3365 	kfree(sdev);
3366 }
3367 
3368 static struct ib_client srpt_client = {
3369 	.name = DRV_NAME,
3370 	.add = srpt_add_one,
3371 	.remove = srpt_remove_one
3372 };
3373 
srpt_check_true(struct se_portal_group * se_tpg)3374 static int srpt_check_true(struct se_portal_group *se_tpg)
3375 {
3376 	return 1;
3377 }
3378 
srpt_check_false(struct se_portal_group * se_tpg)3379 static int srpt_check_false(struct se_portal_group *se_tpg)
3380 {
3381 	return 0;
3382 }
3383 
srpt_get_fabric_name(void)3384 static char *srpt_get_fabric_name(void)
3385 {
3386 	return "srpt";
3387 }
3388 
srpt_get_fabric_proto_ident(struct se_portal_group * se_tpg)3389 static u8 srpt_get_fabric_proto_ident(struct se_portal_group *se_tpg)
3390 {
3391 	return SCSI_TRANSPORTID_PROTOCOLID_SRP;
3392 }
3393 
srpt_get_fabric_wwn(struct se_portal_group * tpg)3394 static char *srpt_get_fabric_wwn(struct se_portal_group *tpg)
3395 {
3396 	struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1);
3397 
3398 	return sport->port_guid;
3399 }
3400 
srpt_get_tag(struct se_portal_group * tpg)3401 static u16 srpt_get_tag(struct se_portal_group *tpg)
3402 {
3403 	return 1;
3404 }
3405 
srpt_get_default_depth(struct se_portal_group * se_tpg)3406 static u32 srpt_get_default_depth(struct se_portal_group *se_tpg)
3407 {
3408 	return 1;
3409 }
3410 
srpt_get_pr_transport_id(struct se_portal_group * se_tpg,struct se_node_acl * se_nacl,struct t10_pr_registration * pr_reg,int * format_code,unsigned char * buf)3411 static u32 srpt_get_pr_transport_id(struct se_portal_group *se_tpg,
3412 				    struct se_node_acl *se_nacl,
3413 				    struct t10_pr_registration *pr_reg,
3414 				    int *format_code, unsigned char *buf)
3415 {
3416 	struct srpt_node_acl *nacl;
3417 	struct spc_rdma_transport_id *tr_id;
3418 
3419 	nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3420 	tr_id = (void *)buf;
3421 	tr_id->protocol_identifier = SCSI_TRANSPORTID_PROTOCOLID_SRP;
3422 	memcpy(tr_id->i_port_id, nacl->i_port_id, sizeof(tr_id->i_port_id));
3423 	return sizeof(*tr_id);
3424 }
3425 
srpt_get_pr_transport_id_len(struct se_portal_group * se_tpg,struct se_node_acl * se_nacl,struct t10_pr_registration * pr_reg,int * format_code)3426 static u32 srpt_get_pr_transport_id_len(struct se_portal_group *se_tpg,
3427 					struct se_node_acl *se_nacl,
3428 					struct t10_pr_registration *pr_reg,
3429 					int *format_code)
3430 {
3431 	*format_code = 0;
3432 	return sizeof(struct spc_rdma_transport_id);
3433 }
3434 
srpt_parse_pr_out_transport_id(struct se_portal_group * se_tpg,const char * buf,u32 * out_tid_len,char ** port_nexus_ptr)3435 static char *srpt_parse_pr_out_transport_id(struct se_portal_group *se_tpg,
3436 					    const char *buf, u32 *out_tid_len,
3437 					    char **port_nexus_ptr)
3438 {
3439 	struct spc_rdma_transport_id *tr_id;
3440 
3441 	*port_nexus_ptr = NULL;
3442 	*out_tid_len = sizeof(struct spc_rdma_transport_id);
3443 	tr_id = (void *)buf;
3444 	return (char *)tr_id->i_port_id;
3445 }
3446 
srpt_alloc_fabric_acl(struct se_portal_group * se_tpg)3447 static struct se_node_acl *srpt_alloc_fabric_acl(struct se_portal_group *se_tpg)
3448 {
3449 	struct srpt_node_acl *nacl;
3450 
3451 	nacl = kzalloc(sizeof(struct srpt_node_acl), GFP_KERNEL);
3452 	if (!nacl) {
3453 		printk(KERN_ERR "Unable to alocate struct srpt_node_acl\n");
3454 		return NULL;
3455 	}
3456 
3457 	return &nacl->nacl;
3458 }
3459 
srpt_release_fabric_acl(struct se_portal_group * se_tpg,struct se_node_acl * se_nacl)3460 static void srpt_release_fabric_acl(struct se_portal_group *se_tpg,
3461 				    struct se_node_acl *se_nacl)
3462 {
3463 	struct srpt_node_acl *nacl;
3464 
3465 	nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3466 	kfree(nacl);
3467 }
3468 
srpt_tpg_get_inst_index(struct se_portal_group * se_tpg)3469 static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg)
3470 {
3471 	return 1;
3472 }
3473 
srpt_release_cmd(struct se_cmd * se_cmd)3474 static void srpt_release_cmd(struct se_cmd *se_cmd)
3475 {
3476 }
3477 
3478 /**
3479  * srpt_shutdown_session() - Whether or not a session may be shut down.
3480  */
srpt_shutdown_session(struct se_session * se_sess)3481 static int srpt_shutdown_session(struct se_session *se_sess)
3482 {
3483 	return true;
3484 }
3485 
3486 /**
3487  * srpt_close_session() - Forcibly close a session.
3488  *
3489  * Callback function invoked by the TCM core to clean up sessions associated
3490  * with a node ACL when the user invokes
3491  * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3492  */
srpt_close_session(struct se_session * se_sess)3493 static void srpt_close_session(struct se_session *se_sess)
3494 {
3495 	DECLARE_COMPLETION_ONSTACK(release_done);
3496 	struct srpt_rdma_ch *ch;
3497 	struct srpt_device *sdev;
3498 	int res;
3499 
3500 	ch = se_sess->fabric_sess_ptr;
3501 	WARN_ON(ch->sess != se_sess);
3502 
3503 	pr_debug("ch %p state %d\n", ch, srpt_get_ch_state(ch));
3504 
3505 	sdev = ch->sport->sdev;
3506 	spin_lock_irq(&sdev->spinlock);
3507 	BUG_ON(ch->release_done);
3508 	ch->release_done = &release_done;
3509 	__srpt_close_ch(ch);
3510 	spin_unlock_irq(&sdev->spinlock);
3511 
3512 	res = wait_for_completion_timeout(&release_done, 60 * HZ);
3513 	WARN_ON(res <= 0);
3514 }
3515 
3516 /**
3517  * To do: Find out whether stop_session() has a meaning for transports
3518  * other than iSCSI.
3519  */
srpt_stop_session(struct se_session * se_sess,int sess_sleep,int conn_sleep)3520 static void srpt_stop_session(struct se_session *se_sess, int sess_sleep,
3521 			      int conn_sleep)
3522 {
3523 }
3524 
srpt_reset_nexus(struct se_session * sess)3525 static void srpt_reset_nexus(struct se_session *sess)
3526 {
3527 	printk(KERN_ERR "This is the SRP protocol, not iSCSI\n");
3528 }
3529 
srpt_sess_logged_in(struct se_session * se_sess)3530 static int srpt_sess_logged_in(struct se_session *se_sess)
3531 {
3532 	return true;
3533 }
3534 
3535 /**
3536  * srpt_sess_get_index() - Return the value of scsiAttIntrPortIndex (SCSI-MIB).
3537  *
3538  * A quote from RFC 4455 (SCSI-MIB) about this MIB object:
3539  * This object represents an arbitrary integer used to uniquely identify a
3540  * particular attached remote initiator port to a particular SCSI target port
3541  * within a particular SCSI target device within a particular SCSI instance.
3542  */
srpt_sess_get_index(struct se_session * se_sess)3543 static u32 srpt_sess_get_index(struct se_session *se_sess)
3544 {
3545 	return 0;
3546 }
3547 
srpt_set_default_node_attrs(struct se_node_acl * nacl)3548 static void srpt_set_default_node_attrs(struct se_node_acl *nacl)
3549 {
3550 }
3551 
srpt_get_task_tag(struct se_cmd * se_cmd)3552 static u32 srpt_get_task_tag(struct se_cmd *se_cmd)
3553 {
3554 	struct srpt_send_ioctx *ioctx;
3555 
3556 	ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
3557 	return ioctx->tag;
3558 }
3559 
3560 /* Note: only used from inside debug printk's by the TCM core. */
srpt_get_tcm_cmd_state(struct se_cmd * se_cmd)3561 static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd)
3562 {
3563 	struct srpt_send_ioctx *ioctx;
3564 
3565 	ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
3566 	return srpt_get_cmd_state(ioctx);
3567 }
3568 
srpt_set_fabric_sense_len(struct se_cmd * cmd,u32 sense_length)3569 static u16 srpt_set_fabric_sense_len(struct se_cmd *cmd, u32 sense_length)
3570 {
3571 	return 0;
3572 }
3573 
srpt_get_fabric_sense_len(void)3574 static u16 srpt_get_fabric_sense_len(void)
3575 {
3576 	return 0;
3577 }
3578 
srpt_is_state_remove(struct se_cmd * se_cmd)3579 static int srpt_is_state_remove(struct se_cmd *se_cmd)
3580 {
3581 	return 0;
3582 }
3583 
3584 /**
3585  * srpt_parse_i_port_id() - Parse an initiator port ID.
3586  * @name: ASCII representation of a 128-bit initiator port ID.
3587  * @i_port_id: Binary 128-bit port ID.
3588  */
srpt_parse_i_port_id(u8 i_port_id[16],const char * name)3589 static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name)
3590 {
3591 	const char *p;
3592 	unsigned len, count, leading_zero_bytes;
3593 	int ret, rc;
3594 
3595 	p = name;
3596 	if (strnicmp(p, "0x", 2) == 0)
3597 		p += 2;
3598 	ret = -EINVAL;
3599 	len = strlen(p);
3600 	if (len % 2)
3601 		goto out;
3602 	count = min(len / 2, 16U);
3603 	leading_zero_bytes = 16 - count;
3604 	memset(i_port_id, 0, leading_zero_bytes);
3605 	rc = hex2bin(i_port_id + leading_zero_bytes, p, count);
3606 	if (rc < 0)
3607 		pr_debug("hex2bin failed for srpt_parse_i_port_id: %d\n", rc);
3608 	ret = 0;
3609 out:
3610 	return ret;
3611 }
3612 
3613 /*
3614  * configfs callback function invoked for
3615  * mkdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3616  */
srpt_make_nodeacl(struct se_portal_group * tpg,struct config_group * group,const char * name)3617 static struct se_node_acl *srpt_make_nodeacl(struct se_portal_group *tpg,
3618 					     struct config_group *group,
3619 					     const char *name)
3620 {
3621 	struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1);
3622 	struct se_node_acl *se_nacl, *se_nacl_new;
3623 	struct srpt_node_acl *nacl;
3624 	int ret = 0;
3625 	u32 nexus_depth = 1;
3626 	u8 i_port_id[16];
3627 
3628 	if (srpt_parse_i_port_id(i_port_id, name) < 0) {
3629 		printk(KERN_ERR "invalid initiator port ID %s\n", name);
3630 		ret = -EINVAL;
3631 		goto err;
3632 	}
3633 
3634 	se_nacl_new = srpt_alloc_fabric_acl(tpg);
3635 	if (!se_nacl_new) {
3636 		ret = -ENOMEM;
3637 		goto err;
3638 	}
3639 	/*
3640 	 * nacl_new may be released by core_tpg_add_initiator_node_acl()
3641 	 * when converting a node ACL from demo mode to explict
3642 	 */
3643 	se_nacl = core_tpg_add_initiator_node_acl(tpg, se_nacl_new, name,
3644 						  nexus_depth);
3645 	if (IS_ERR(se_nacl)) {
3646 		ret = PTR_ERR(se_nacl);
3647 		goto err;
3648 	}
3649 	/* Locate our struct srpt_node_acl and set sdev and i_port_id. */
3650 	nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3651 	memcpy(&nacl->i_port_id[0], &i_port_id[0], 16);
3652 	nacl->sport = sport;
3653 
3654 	spin_lock_irq(&sport->port_acl_lock);
3655 	list_add_tail(&nacl->list, &sport->port_acl_list);
3656 	spin_unlock_irq(&sport->port_acl_lock);
3657 
3658 	return se_nacl;
3659 err:
3660 	return ERR_PTR(ret);
3661 }
3662 
3663 /*
3664  * configfs callback function invoked for
3665  * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3666  */
srpt_drop_nodeacl(struct se_node_acl * se_nacl)3667 static void srpt_drop_nodeacl(struct se_node_acl *se_nacl)
3668 {
3669 	struct srpt_node_acl *nacl;
3670 	struct srpt_device *sdev;
3671 	struct srpt_port *sport;
3672 
3673 	nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3674 	sport = nacl->sport;
3675 	sdev = sport->sdev;
3676 	spin_lock_irq(&sport->port_acl_lock);
3677 	list_del(&nacl->list);
3678 	spin_unlock_irq(&sport->port_acl_lock);
3679 	core_tpg_del_initiator_node_acl(&sport->port_tpg_1, se_nacl, 1);
3680 	srpt_release_fabric_acl(NULL, se_nacl);
3681 }
3682 
srpt_tpg_attrib_show_srp_max_rdma_size(struct se_portal_group * se_tpg,char * page)3683 static ssize_t srpt_tpg_attrib_show_srp_max_rdma_size(
3684 	struct se_portal_group *se_tpg,
3685 	char *page)
3686 {
3687 	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3688 
3689 	return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size);
3690 }
3691 
srpt_tpg_attrib_store_srp_max_rdma_size(struct se_portal_group * se_tpg,const char * page,size_t count)3692 static ssize_t srpt_tpg_attrib_store_srp_max_rdma_size(
3693 	struct se_portal_group *se_tpg,
3694 	const char *page,
3695 	size_t count)
3696 {
3697 	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3698 	unsigned long val;
3699 	int ret;
3700 
3701 	ret = strict_strtoul(page, 0, &val);
3702 	if (ret < 0) {
3703 		pr_err("strict_strtoul() failed with ret: %d\n", ret);
3704 		return -EINVAL;
3705 	}
3706 	if (val > MAX_SRPT_RDMA_SIZE) {
3707 		pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val,
3708 			MAX_SRPT_RDMA_SIZE);
3709 		return -EINVAL;
3710 	}
3711 	if (val < DEFAULT_MAX_RDMA_SIZE) {
3712 		pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n",
3713 			val, DEFAULT_MAX_RDMA_SIZE);
3714 		return -EINVAL;
3715 	}
3716 	sport->port_attrib.srp_max_rdma_size = val;
3717 
3718 	return count;
3719 }
3720 
3721 TF_TPG_ATTRIB_ATTR(srpt, srp_max_rdma_size, S_IRUGO | S_IWUSR);
3722 
srpt_tpg_attrib_show_srp_max_rsp_size(struct se_portal_group * se_tpg,char * page)3723 static ssize_t srpt_tpg_attrib_show_srp_max_rsp_size(
3724 	struct se_portal_group *se_tpg,
3725 	char *page)
3726 {
3727 	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3728 
3729 	return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size);
3730 }
3731 
srpt_tpg_attrib_store_srp_max_rsp_size(struct se_portal_group * se_tpg,const char * page,size_t count)3732 static ssize_t srpt_tpg_attrib_store_srp_max_rsp_size(
3733 	struct se_portal_group *se_tpg,
3734 	const char *page,
3735 	size_t count)
3736 {
3737 	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3738 	unsigned long val;
3739 	int ret;
3740 
3741 	ret = strict_strtoul(page, 0, &val);
3742 	if (ret < 0) {
3743 		pr_err("strict_strtoul() failed with ret: %d\n", ret);
3744 		return -EINVAL;
3745 	}
3746 	if (val > MAX_SRPT_RSP_SIZE) {
3747 		pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val,
3748 			MAX_SRPT_RSP_SIZE);
3749 		return -EINVAL;
3750 	}
3751 	if (val < MIN_MAX_RSP_SIZE) {
3752 		pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val,
3753 			MIN_MAX_RSP_SIZE);
3754 		return -EINVAL;
3755 	}
3756 	sport->port_attrib.srp_max_rsp_size = val;
3757 
3758 	return count;
3759 }
3760 
3761 TF_TPG_ATTRIB_ATTR(srpt, srp_max_rsp_size, S_IRUGO | S_IWUSR);
3762 
srpt_tpg_attrib_show_srp_sq_size(struct se_portal_group * se_tpg,char * page)3763 static ssize_t srpt_tpg_attrib_show_srp_sq_size(
3764 	struct se_portal_group *se_tpg,
3765 	char *page)
3766 {
3767 	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3768 
3769 	return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size);
3770 }
3771 
srpt_tpg_attrib_store_srp_sq_size(struct se_portal_group * se_tpg,const char * page,size_t count)3772 static ssize_t srpt_tpg_attrib_store_srp_sq_size(
3773 	struct se_portal_group *se_tpg,
3774 	const char *page,
3775 	size_t count)
3776 {
3777 	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3778 	unsigned long val;
3779 	int ret;
3780 
3781 	ret = strict_strtoul(page, 0, &val);
3782 	if (ret < 0) {
3783 		pr_err("strict_strtoul() failed with ret: %d\n", ret);
3784 		return -EINVAL;
3785 	}
3786 	if (val > MAX_SRPT_SRQ_SIZE) {
3787 		pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val,
3788 			MAX_SRPT_SRQ_SIZE);
3789 		return -EINVAL;
3790 	}
3791 	if (val < MIN_SRPT_SRQ_SIZE) {
3792 		pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val,
3793 			MIN_SRPT_SRQ_SIZE);
3794 		return -EINVAL;
3795 	}
3796 	sport->port_attrib.srp_sq_size = val;
3797 
3798 	return count;
3799 }
3800 
3801 TF_TPG_ATTRIB_ATTR(srpt, srp_sq_size, S_IRUGO | S_IWUSR);
3802 
3803 static struct configfs_attribute *srpt_tpg_attrib_attrs[] = {
3804 	&srpt_tpg_attrib_srp_max_rdma_size.attr,
3805 	&srpt_tpg_attrib_srp_max_rsp_size.attr,
3806 	&srpt_tpg_attrib_srp_sq_size.attr,
3807 	NULL,
3808 };
3809 
srpt_tpg_show_enable(struct se_portal_group * se_tpg,char * page)3810 static ssize_t srpt_tpg_show_enable(
3811 	struct se_portal_group *se_tpg,
3812 	char *page)
3813 {
3814 	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3815 
3816 	return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0);
3817 }
3818 
srpt_tpg_store_enable(struct se_portal_group * se_tpg,const char * page,size_t count)3819 static ssize_t srpt_tpg_store_enable(
3820 	struct se_portal_group *se_tpg,
3821 	const char *page,
3822 	size_t count)
3823 {
3824 	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3825 	unsigned long tmp;
3826         int ret;
3827 
3828 	ret = strict_strtoul(page, 0, &tmp);
3829 	if (ret < 0) {
3830 		printk(KERN_ERR "Unable to extract srpt_tpg_store_enable\n");
3831 		return -EINVAL;
3832 	}
3833 
3834 	if ((tmp != 0) && (tmp != 1)) {
3835 		printk(KERN_ERR "Illegal value for srpt_tpg_store_enable: %lu\n", tmp);
3836 		return -EINVAL;
3837 	}
3838 	if (tmp == 1)
3839 		sport->enabled = true;
3840 	else
3841 		sport->enabled = false;
3842 
3843 	return count;
3844 }
3845 
3846 TF_TPG_BASE_ATTR(srpt, enable, S_IRUGO | S_IWUSR);
3847 
3848 static struct configfs_attribute *srpt_tpg_attrs[] = {
3849 	&srpt_tpg_enable.attr,
3850 	NULL,
3851 };
3852 
3853 /**
3854  * configfs callback invoked for
3855  * mkdir /sys/kernel/config/target/$driver/$port/$tpg
3856  */
srpt_make_tpg(struct se_wwn * wwn,struct config_group * group,const char * name)3857 static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn,
3858 					     struct config_group *group,
3859 					     const char *name)
3860 {
3861 	struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);
3862 	int res;
3863 
3864 	/* Initialize sport->port_wwn and sport->port_tpg_1 */
3865 	res = core_tpg_register(&srpt_target->tf_ops, &sport->port_wwn,
3866 			&sport->port_tpg_1, sport, TRANSPORT_TPG_TYPE_NORMAL);
3867 	if (res)
3868 		return ERR_PTR(res);
3869 
3870 	return &sport->port_tpg_1;
3871 }
3872 
3873 /**
3874  * configfs callback invoked for
3875  * rmdir /sys/kernel/config/target/$driver/$port/$tpg
3876  */
srpt_drop_tpg(struct se_portal_group * tpg)3877 static void srpt_drop_tpg(struct se_portal_group *tpg)
3878 {
3879 	struct srpt_port *sport = container_of(tpg,
3880 				struct srpt_port, port_tpg_1);
3881 
3882 	sport->enabled = false;
3883 	core_tpg_deregister(&sport->port_tpg_1);
3884 }
3885 
3886 /**
3887  * configfs callback invoked for
3888  * mkdir /sys/kernel/config/target/$driver/$port
3889  */
srpt_make_tport(struct target_fabric_configfs * tf,struct config_group * group,const char * name)3890 static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf,
3891 				      struct config_group *group,
3892 				      const char *name)
3893 {
3894 	struct srpt_port *sport;
3895 	int ret;
3896 
3897 	sport = srpt_lookup_port(name);
3898 	pr_debug("make_tport(%s)\n", name);
3899 	ret = -EINVAL;
3900 	if (!sport)
3901 		goto err;
3902 
3903 	return &sport->port_wwn;
3904 
3905 err:
3906 	return ERR_PTR(ret);
3907 }
3908 
3909 /**
3910  * configfs callback invoked for
3911  * rmdir /sys/kernel/config/target/$driver/$port
3912  */
srpt_drop_tport(struct se_wwn * wwn)3913 static void srpt_drop_tport(struct se_wwn *wwn)
3914 {
3915 	struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);
3916 
3917 	pr_debug("drop_tport(%s\n", config_item_name(&sport->port_wwn.wwn_group.cg_item));
3918 }
3919 
srpt_wwn_show_attr_version(struct target_fabric_configfs * tf,char * buf)3920 static ssize_t srpt_wwn_show_attr_version(struct target_fabric_configfs *tf,
3921 					      char *buf)
3922 {
3923 	return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION);
3924 }
3925 
3926 TF_WWN_ATTR_RO(srpt, version);
3927 
3928 static struct configfs_attribute *srpt_wwn_attrs[] = {
3929 	&srpt_wwn_version.attr,
3930 	NULL,
3931 };
3932 
3933 static struct target_core_fabric_ops srpt_template = {
3934 	.get_fabric_name		= srpt_get_fabric_name,
3935 	.get_fabric_proto_ident		= srpt_get_fabric_proto_ident,
3936 	.tpg_get_wwn			= srpt_get_fabric_wwn,
3937 	.tpg_get_tag			= srpt_get_tag,
3938 	.tpg_get_default_depth		= srpt_get_default_depth,
3939 	.tpg_get_pr_transport_id	= srpt_get_pr_transport_id,
3940 	.tpg_get_pr_transport_id_len	= srpt_get_pr_transport_id_len,
3941 	.tpg_parse_pr_out_transport_id	= srpt_parse_pr_out_transport_id,
3942 	.tpg_check_demo_mode		= srpt_check_false,
3943 	.tpg_check_demo_mode_cache	= srpt_check_true,
3944 	.tpg_check_demo_mode_write_protect = srpt_check_true,
3945 	.tpg_check_prod_mode_write_protect = srpt_check_false,
3946 	.tpg_alloc_fabric_acl		= srpt_alloc_fabric_acl,
3947 	.tpg_release_fabric_acl		= srpt_release_fabric_acl,
3948 	.tpg_get_inst_index		= srpt_tpg_get_inst_index,
3949 	.release_cmd			= srpt_release_cmd,
3950 	.check_stop_free		= srpt_check_stop_free,
3951 	.shutdown_session		= srpt_shutdown_session,
3952 	.close_session			= srpt_close_session,
3953 	.stop_session			= srpt_stop_session,
3954 	.fall_back_to_erl0		= srpt_reset_nexus,
3955 	.sess_logged_in			= srpt_sess_logged_in,
3956 	.sess_get_index			= srpt_sess_get_index,
3957 	.sess_get_initiator_sid		= NULL,
3958 	.write_pending			= srpt_write_pending,
3959 	.write_pending_status		= srpt_write_pending_status,
3960 	.set_default_node_attributes	= srpt_set_default_node_attrs,
3961 	.get_task_tag			= srpt_get_task_tag,
3962 	.get_cmd_state			= srpt_get_tcm_cmd_state,
3963 	.queue_data_in			= srpt_queue_response,
3964 	.queue_status			= srpt_queue_status,
3965 	.queue_tm_rsp			= srpt_queue_response,
3966 	.get_fabric_sense_len		= srpt_get_fabric_sense_len,
3967 	.set_fabric_sense_len		= srpt_set_fabric_sense_len,
3968 	.is_state_remove		= srpt_is_state_remove,
3969 	/*
3970 	 * Setup function pointers for generic logic in
3971 	 * target_core_fabric_configfs.c
3972 	 */
3973 	.fabric_make_wwn		= srpt_make_tport,
3974 	.fabric_drop_wwn		= srpt_drop_tport,
3975 	.fabric_make_tpg		= srpt_make_tpg,
3976 	.fabric_drop_tpg		= srpt_drop_tpg,
3977 	.fabric_post_link		= NULL,
3978 	.fabric_pre_unlink		= NULL,
3979 	.fabric_make_np			= NULL,
3980 	.fabric_drop_np			= NULL,
3981 	.fabric_make_nodeacl		= srpt_make_nodeacl,
3982 	.fabric_drop_nodeacl		= srpt_drop_nodeacl,
3983 };
3984 
3985 /**
3986  * srpt_init_module() - Kernel module initialization.
3987  *
3988  * Note: Since ib_register_client() registers callback functions, and since at
3989  * least one of these callback functions (srpt_add_one()) calls target core
3990  * functions, this driver must be registered with the target core before
3991  * ib_register_client() is called.
3992  */
srpt_init_module(void)3993 static int __init srpt_init_module(void)
3994 {
3995 	int ret;
3996 
3997 	ret = -EINVAL;
3998 	if (srp_max_req_size < MIN_MAX_REQ_SIZE) {
3999 		printk(KERN_ERR "invalid value %d for kernel module parameter"
4000 		       " srp_max_req_size -- must be at least %d.\n",
4001 		       srp_max_req_size, MIN_MAX_REQ_SIZE);
4002 		goto out;
4003 	}
4004 
4005 	if (srpt_srq_size < MIN_SRPT_SRQ_SIZE
4006 	    || srpt_srq_size > MAX_SRPT_SRQ_SIZE) {
4007 		printk(KERN_ERR "invalid value %d for kernel module parameter"
4008 		       " srpt_srq_size -- must be in the range [%d..%d].\n",
4009 		       srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE);
4010 		goto out;
4011 	}
4012 
4013 	srpt_target = target_fabric_configfs_init(THIS_MODULE, "srpt");
4014 	if (IS_ERR(srpt_target)) {
4015 		printk(KERN_ERR "couldn't register\n");
4016 		ret = PTR_ERR(srpt_target);
4017 		goto out;
4018 	}
4019 
4020 	srpt_target->tf_ops = srpt_template;
4021 
4022 	/* Enable SG chaining */
4023 	srpt_target->tf_ops.task_sg_chaining = true;
4024 
4025 	/*
4026 	 * Set up default attribute lists.
4027 	 */
4028 	srpt_target->tf_cit_tmpl.tfc_wwn_cit.ct_attrs = srpt_wwn_attrs;
4029 	srpt_target->tf_cit_tmpl.tfc_tpg_base_cit.ct_attrs = srpt_tpg_attrs;
4030 	srpt_target->tf_cit_tmpl.tfc_tpg_attrib_cit.ct_attrs = srpt_tpg_attrib_attrs;
4031 	srpt_target->tf_cit_tmpl.tfc_tpg_param_cit.ct_attrs = NULL;
4032 	srpt_target->tf_cit_tmpl.tfc_tpg_np_base_cit.ct_attrs = NULL;
4033 	srpt_target->tf_cit_tmpl.tfc_tpg_nacl_base_cit.ct_attrs = NULL;
4034 	srpt_target->tf_cit_tmpl.tfc_tpg_nacl_attrib_cit.ct_attrs = NULL;
4035 	srpt_target->tf_cit_tmpl.tfc_tpg_nacl_auth_cit.ct_attrs = NULL;
4036 	srpt_target->tf_cit_tmpl.tfc_tpg_nacl_param_cit.ct_attrs = NULL;
4037 
4038 	ret = target_fabric_configfs_register(srpt_target);
4039 	if (ret < 0) {
4040 		printk(KERN_ERR "couldn't register\n");
4041 		goto out_free_target;
4042 	}
4043 
4044 	ret = ib_register_client(&srpt_client);
4045 	if (ret) {
4046 		printk(KERN_ERR "couldn't register IB client\n");
4047 		goto out_unregister_target;
4048 	}
4049 
4050 	return 0;
4051 
4052 out_unregister_target:
4053 	target_fabric_configfs_deregister(srpt_target);
4054 	srpt_target = NULL;
4055 out_free_target:
4056 	if (srpt_target)
4057 		target_fabric_configfs_free(srpt_target);
4058 out:
4059 	return ret;
4060 }
4061 
srpt_cleanup_module(void)4062 static void __exit srpt_cleanup_module(void)
4063 {
4064 	ib_unregister_client(&srpt_client);
4065 	target_fabric_configfs_deregister(srpt_target);
4066 	srpt_target = NULL;
4067 }
4068 
4069 module_init(srpt_init_module);
4070 module_exit(srpt_cleanup_module);
4071