1 /*
2  * davinci_nand.c - NAND Flash Driver for DaVinci family chips
3  *
4  * Copyright © 2006 Texas Instruments.
5  *
6  * Port to 2.6.23 Copyright © 2008 by:
7  *   Sander Huijsen <Shuijsen@optelecom-nkf.com>
8  *   Troy Kisky <troy.kisky@boundarydevices.com>
9  *   Dirk Behme <Dirk.Behme@gmail.com>
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2 of the License, or
14  * (at your option) any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24  */
25 
26 #include <linux/kernel.h>
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/platform_device.h>
30 #include <linux/err.h>
31 #include <linux/clk.h>
32 #include <linux/io.h>
33 #include <linux/mtd/nand.h>
34 #include <linux/mtd/partitions.h>
35 #include <linux/slab.h>
36 
37 #include <mach/nand.h>
38 #include <mach/aemif.h>
39 
40 /*
41  * This is a device driver for the NAND flash controller found on the
42  * various DaVinci family chips.  It handles up to four SoC chipselects,
43  * and some flavors of secondary chipselect (e.g. based on A12) as used
44  * with multichip packages.
45  *
46  * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC
47  * available on chips like the DM355 and OMAP-L137 and needed with the
48  * more error-prone MLC NAND chips.
49  *
50  * This driver assumes EM_WAIT connects all the NAND devices' RDY/nBUSY
51  * outputs in a "wire-AND" configuration, with no per-chip signals.
52  */
53 struct davinci_nand_info {
54 	struct mtd_info		mtd;
55 	struct nand_chip	chip;
56 	struct nand_ecclayout	ecclayout;
57 
58 	struct device		*dev;
59 	struct clk		*clk;
60 
61 	bool			is_readmode;
62 
63 	void __iomem		*base;
64 	void __iomem		*vaddr;
65 
66 	uint32_t		ioaddr;
67 	uint32_t		current_cs;
68 
69 	uint32_t		mask_chipsel;
70 	uint32_t		mask_ale;
71 	uint32_t		mask_cle;
72 
73 	uint32_t		core_chipsel;
74 
75 	struct davinci_aemif_timing	*timing;
76 };
77 
78 static DEFINE_SPINLOCK(davinci_nand_lock);
79 static bool ecc4_busy;
80 
81 #define to_davinci_nand(m) container_of(m, struct davinci_nand_info, mtd)
82 
83 
davinci_nand_readl(struct davinci_nand_info * info,int offset)84 static inline unsigned int davinci_nand_readl(struct davinci_nand_info *info,
85 		int offset)
86 {
87 	return __raw_readl(info->base + offset);
88 }
89 
davinci_nand_writel(struct davinci_nand_info * info,int offset,unsigned long value)90 static inline void davinci_nand_writel(struct davinci_nand_info *info,
91 		int offset, unsigned long value)
92 {
93 	__raw_writel(value, info->base + offset);
94 }
95 
96 /*----------------------------------------------------------------------*/
97 
98 /*
99  * Access to hardware control lines:  ALE, CLE, secondary chipselect.
100  */
101 
nand_davinci_hwcontrol(struct mtd_info * mtd,int cmd,unsigned int ctrl)102 static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd,
103 				   unsigned int ctrl)
104 {
105 	struct davinci_nand_info	*info = to_davinci_nand(mtd);
106 	uint32_t			addr = info->current_cs;
107 	struct nand_chip		*nand = mtd->priv;
108 
109 	/* Did the control lines change? */
110 	if (ctrl & NAND_CTRL_CHANGE) {
111 		if ((ctrl & NAND_CTRL_CLE) == NAND_CTRL_CLE)
112 			addr |= info->mask_cle;
113 		else if ((ctrl & NAND_CTRL_ALE) == NAND_CTRL_ALE)
114 			addr |= info->mask_ale;
115 
116 		nand->IO_ADDR_W = (void __iomem __force *)addr;
117 	}
118 
119 	if (cmd != NAND_CMD_NONE)
120 		iowrite8(cmd, nand->IO_ADDR_W);
121 }
122 
nand_davinci_select_chip(struct mtd_info * mtd,int chip)123 static void nand_davinci_select_chip(struct mtd_info *mtd, int chip)
124 {
125 	struct davinci_nand_info	*info = to_davinci_nand(mtd);
126 	uint32_t			addr = info->ioaddr;
127 
128 	/* maybe kick in a second chipselect */
129 	if (chip > 0)
130 		addr |= info->mask_chipsel;
131 	info->current_cs = addr;
132 
133 	info->chip.IO_ADDR_W = (void __iomem __force *)addr;
134 	info->chip.IO_ADDR_R = info->chip.IO_ADDR_W;
135 }
136 
137 /*----------------------------------------------------------------------*/
138 
139 /*
140  * 1-bit hardware ECC ... context maintained for each core chipselect
141  */
142 
nand_davinci_readecc_1bit(struct mtd_info * mtd)143 static inline uint32_t nand_davinci_readecc_1bit(struct mtd_info *mtd)
144 {
145 	struct davinci_nand_info *info = to_davinci_nand(mtd);
146 
147 	return davinci_nand_readl(info, NANDF1ECC_OFFSET
148 			+ 4 * info->core_chipsel);
149 }
150 
nand_davinci_hwctl_1bit(struct mtd_info * mtd,int mode)151 static void nand_davinci_hwctl_1bit(struct mtd_info *mtd, int mode)
152 {
153 	struct davinci_nand_info *info;
154 	uint32_t nandcfr;
155 	unsigned long flags;
156 
157 	info = to_davinci_nand(mtd);
158 
159 	/* Reset ECC hardware */
160 	nand_davinci_readecc_1bit(mtd);
161 
162 	spin_lock_irqsave(&davinci_nand_lock, flags);
163 
164 	/* Restart ECC hardware */
165 	nandcfr = davinci_nand_readl(info, NANDFCR_OFFSET);
166 	nandcfr |= BIT(8 + info->core_chipsel);
167 	davinci_nand_writel(info, NANDFCR_OFFSET, nandcfr);
168 
169 	spin_unlock_irqrestore(&davinci_nand_lock, flags);
170 }
171 
172 /*
173  * Read hardware ECC value and pack into three bytes
174  */
nand_davinci_calculate_1bit(struct mtd_info * mtd,const u_char * dat,u_char * ecc_code)175 static int nand_davinci_calculate_1bit(struct mtd_info *mtd,
176 				      const u_char *dat, u_char *ecc_code)
177 {
178 	unsigned int ecc_val = nand_davinci_readecc_1bit(mtd);
179 	unsigned int ecc24 = (ecc_val & 0x0fff) | ((ecc_val & 0x0fff0000) >> 4);
180 
181 	/* invert so that erased block ecc is correct */
182 	ecc24 = ~ecc24;
183 	ecc_code[0] = (u_char)(ecc24);
184 	ecc_code[1] = (u_char)(ecc24 >> 8);
185 	ecc_code[2] = (u_char)(ecc24 >> 16);
186 
187 	return 0;
188 }
189 
nand_davinci_correct_1bit(struct mtd_info * mtd,u_char * dat,u_char * read_ecc,u_char * calc_ecc)190 static int nand_davinci_correct_1bit(struct mtd_info *mtd, u_char *dat,
191 				     u_char *read_ecc, u_char *calc_ecc)
192 {
193 	struct nand_chip *chip = mtd->priv;
194 	uint32_t eccNand = read_ecc[0] | (read_ecc[1] << 8) |
195 					  (read_ecc[2] << 16);
196 	uint32_t eccCalc = calc_ecc[0] | (calc_ecc[1] << 8) |
197 					  (calc_ecc[2] << 16);
198 	uint32_t diff = eccCalc ^ eccNand;
199 
200 	if (diff) {
201 		if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
202 			/* Correctable error */
203 			if ((diff >> (12 + 3)) < chip->ecc.size) {
204 				dat[diff >> (12 + 3)] ^= BIT((diff >> 12) & 7);
205 				return 1;
206 			} else {
207 				return -1;
208 			}
209 		} else if (!(diff & (diff - 1))) {
210 			/* Single bit ECC error in the ECC itself,
211 			 * nothing to fix */
212 			return 1;
213 		} else {
214 			/* Uncorrectable error */
215 			return -1;
216 		}
217 
218 	}
219 	return 0;
220 }
221 
222 /*----------------------------------------------------------------------*/
223 
224 /*
225  * 4-bit hardware ECC ... context maintained over entire AEMIF
226  *
227  * This is a syndrome engine, but we avoid NAND_ECC_HW_SYNDROME
228  * since that forces use of a problematic "infix OOB" layout.
229  * Among other things, it trashes manufacturer bad block markers.
230  * Also, and specific to this hardware, it ECC-protects the "prepad"
231  * in the OOB ... while having ECC protection for parts of OOB would
232  * seem useful, the current MTD stack sometimes wants to update the
233  * OOB without recomputing ECC.
234  */
235 
nand_davinci_hwctl_4bit(struct mtd_info * mtd,int mode)236 static void nand_davinci_hwctl_4bit(struct mtd_info *mtd, int mode)
237 {
238 	struct davinci_nand_info *info = to_davinci_nand(mtd);
239 	unsigned long flags;
240 	u32 val;
241 
242 	spin_lock_irqsave(&davinci_nand_lock, flags);
243 
244 	/* Start 4-bit ECC calculation for read/write */
245 	val = davinci_nand_readl(info, NANDFCR_OFFSET);
246 	val &= ~(0x03 << 4);
247 	val |= (info->core_chipsel << 4) | BIT(12);
248 	davinci_nand_writel(info, NANDFCR_OFFSET, val);
249 
250 	info->is_readmode = (mode == NAND_ECC_READ);
251 
252 	spin_unlock_irqrestore(&davinci_nand_lock, flags);
253 }
254 
255 /* Read raw ECC code after writing to NAND. */
256 static void
nand_davinci_readecc_4bit(struct davinci_nand_info * info,u32 code[4])257 nand_davinci_readecc_4bit(struct davinci_nand_info *info, u32 code[4])
258 {
259 	const u32 mask = 0x03ff03ff;
260 
261 	code[0] = davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET) & mask;
262 	code[1] = davinci_nand_readl(info, NAND_4BIT_ECC2_OFFSET) & mask;
263 	code[2] = davinci_nand_readl(info, NAND_4BIT_ECC3_OFFSET) & mask;
264 	code[3] = davinci_nand_readl(info, NAND_4BIT_ECC4_OFFSET) & mask;
265 }
266 
267 /* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */
nand_davinci_calculate_4bit(struct mtd_info * mtd,const u_char * dat,u_char * ecc_code)268 static int nand_davinci_calculate_4bit(struct mtd_info *mtd,
269 		const u_char *dat, u_char *ecc_code)
270 {
271 	struct davinci_nand_info *info = to_davinci_nand(mtd);
272 	u32 raw_ecc[4], *p;
273 	unsigned i;
274 
275 	/* After a read, terminate ECC calculation by a dummy read
276 	 * of some 4-bit ECC register.  ECC covers everything that
277 	 * was read; correct() just uses the hardware state, so
278 	 * ecc_code is not needed.
279 	 */
280 	if (info->is_readmode) {
281 		davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
282 		return 0;
283 	}
284 
285 	/* Pack eight raw 10-bit ecc values into ten bytes, making
286 	 * two passes which each convert four values (in upper and
287 	 * lower halves of two 32-bit words) into five bytes.  The
288 	 * ROM boot loader uses this same packing scheme.
289 	 */
290 	nand_davinci_readecc_4bit(info, raw_ecc);
291 	for (i = 0, p = raw_ecc; i < 2; i++, p += 2) {
292 		*ecc_code++ =   p[0]        & 0xff;
293 		*ecc_code++ = ((p[0] >>  8) & 0x03) | ((p[0] >> 14) & 0xfc);
294 		*ecc_code++ = ((p[0] >> 22) & 0x0f) | ((p[1] <<  4) & 0xf0);
295 		*ecc_code++ = ((p[1] >>  4) & 0x3f) | ((p[1] >> 10) & 0xc0);
296 		*ecc_code++ =  (p[1] >> 18) & 0xff;
297 	}
298 
299 	return 0;
300 }
301 
302 /* Correct up to 4 bits in data we just read, using state left in the
303  * hardware plus the ecc_code computed when it was first written.
304  */
nand_davinci_correct_4bit(struct mtd_info * mtd,u_char * data,u_char * ecc_code,u_char * null)305 static int nand_davinci_correct_4bit(struct mtd_info *mtd,
306 		u_char *data, u_char *ecc_code, u_char *null)
307 {
308 	int i;
309 	struct davinci_nand_info *info = to_davinci_nand(mtd);
310 	unsigned short ecc10[8];
311 	unsigned short *ecc16;
312 	u32 syndrome[4];
313 	u32 ecc_state;
314 	unsigned num_errors, corrected;
315 	unsigned long timeo;
316 
317 	/* All bytes 0xff?  It's an erased page; ignore its ECC. */
318 	for (i = 0; i < 10; i++) {
319 		if (ecc_code[i] != 0xff)
320 			goto compare;
321 	}
322 	return 0;
323 
324 compare:
325 	/* Unpack ten bytes into eight 10 bit values.  We know we're
326 	 * little-endian, and use type punning for less shifting/masking.
327 	 */
328 	if (WARN_ON(0x01 & (unsigned) ecc_code))
329 		return -EINVAL;
330 	ecc16 = (unsigned short *)ecc_code;
331 
332 	ecc10[0] =  (ecc16[0] >>  0) & 0x3ff;
333 	ecc10[1] = ((ecc16[0] >> 10) & 0x3f) | ((ecc16[1] << 6) & 0x3c0);
334 	ecc10[2] =  (ecc16[1] >>  4) & 0x3ff;
335 	ecc10[3] = ((ecc16[1] >> 14) & 0x3)  | ((ecc16[2] << 2) & 0x3fc);
336 	ecc10[4] =  (ecc16[2] >>  8)         | ((ecc16[3] << 8) & 0x300);
337 	ecc10[5] =  (ecc16[3] >>  2) & 0x3ff;
338 	ecc10[6] = ((ecc16[3] >> 12) & 0xf)  | ((ecc16[4] << 4) & 0x3f0);
339 	ecc10[7] =  (ecc16[4] >>  6) & 0x3ff;
340 
341 	/* Tell ECC controller about the expected ECC codes. */
342 	for (i = 7; i >= 0; i--)
343 		davinci_nand_writel(info, NAND_4BIT_ECC_LOAD_OFFSET, ecc10[i]);
344 
345 	/* Allow time for syndrome calculation ... then read it.
346 	 * A syndrome of all zeroes 0 means no detected errors.
347 	 */
348 	davinci_nand_readl(info, NANDFSR_OFFSET);
349 	nand_davinci_readecc_4bit(info, syndrome);
350 	if (!(syndrome[0] | syndrome[1] | syndrome[2] | syndrome[3]))
351 		return 0;
352 
353 	/*
354 	 * Clear any previous address calculation by doing a dummy read of an
355 	 * error address register.
356 	 */
357 	davinci_nand_readl(info, NAND_ERR_ADD1_OFFSET);
358 
359 	/* Start address calculation, and wait for it to complete.
360 	 * We _could_ start reading more data while this is working,
361 	 * to speed up the overall page read.
362 	 */
363 	davinci_nand_writel(info, NANDFCR_OFFSET,
364 			davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13));
365 
366 	/*
367 	 * ECC_STATE field reads 0x3 (Error correction complete) immediately
368 	 * after setting the 4BITECC_ADD_CALC_START bit. So if you immediately
369 	 * begin trying to poll for the state, you may fall right out of your
370 	 * loop without any of the correction calculations having taken place.
371 	 * The recommendation from the hardware team is to initially delay as
372 	 * long as ECC_STATE reads less than 4. After that, ECC HW has entered
373 	 * correction state.
374 	 */
375 	timeo = jiffies + usecs_to_jiffies(100);
376 	do {
377 		ecc_state = (davinci_nand_readl(info,
378 				NANDFSR_OFFSET) >> 8) & 0x0f;
379 		cpu_relax();
380 	} while ((ecc_state < 4) && time_before(jiffies, timeo));
381 
382 	for (;;) {
383 		u32	fsr = davinci_nand_readl(info, NANDFSR_OFFSET);
384 
385 		switch ((fsr >> 8) & 0x0f) {
386 		case 0:		/* no error, should not happen */
387 			davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
388 			return 0;
389 		case 1:		/* five or more errors detected */
390 			davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
391 			return -EIO;
392 		case 2:		/* error addresses computed */
393 		case 3:
394 			num_errors = 1 + ((fsr >> 16) & 0x03);
395 			goto correct;
396 		default:	/* still working on it */
397 			cpu_relax();
398 			continue;
399 		}
400 	}
401 
402 correct:
403 	/* correct each error */
404 	for (i = 0, corrected = 0; i < num_errors; i++) {
405 		int error_address, error_value;
406 
407 		if (i > 1) {
408 			error_address = davinci_nand_readl(info,
409 						NAND_ERR_ADD2_OFFSET);
410 			error_value = davinci_nand_readl(info,
411 						NAND_ERR_ERRVAL2_OFFSET);
412 		} else {
413 			error_address = davinci_nand_readl(info,
414 						NAND_ERR_ADD1_OFFSET);
415 			error_value = davinci_nand_readl(info,
416 						NAND_ERR_ERRVAL1_OFFSET);
417 		}
418 
419 		if (i & 1) {
420 			error_address >>= 16;
421 			error_value >>= 16;
422 		}
423 		error_address &= 0x3ff;
424 		error_address = (512 + 7) - error_address;
425 
426 		if (error_address < 512) {
427 			data[error_address] ^= error_value;
428 			corrected++;
429 		}
430 	}
431 
432 	return corrected;
433 }
434 
435 /*----------------------------------------------------------------------*/
436 
437 /*
438  * NOTE:  NAND boot requires ALE == EM_A[1], CLE == EM_A[2], so that's
439  * how these chips are normally wired.  This translates to both 8 and 16
440  * bit busses using ALE == BIT(3) in byte addresses, and CLE == BIT(4).
441  *
442  * For now we assume that configuration, or any other one which ignores
443  * the two LSBs for NAND access ... so we can issue 32-bit reads/writes
444  * and have that transparently morphed into multiple NAND operations.
445  */
nand_davinci_read_buf(struct mtd_info * mtd,uint8_t * buf,int len)446 static void nand_davinci_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
447 {
448 	struct nand_chip *chip = mtd->priv;
449 
450 	if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0)
451 		ioread32_rep(chip->IO_ADDR_R, buf, len >> 2);
452 	else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0)
453 		ioread16_rep(chip->IO_ADDR_R, buf, len >> 1);
454 	else
455 		ioread8_rep(chip->IO_ADDR_R, buf, len);
456 }
457 
nand_davinci_write_buf(struct mtd_info * mtd,const uint8_t * buf,int len)458 static void nand_davinci_write_buf(struct mtd_info *mtd,
459 		const uint8_t *buf, int len)
460 {
461 	struct nand_chip *chip = mtd->priv;
462 
463 	if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0)
464 		iowrite32_rep(chip->IO_ADDR_R, buf, len >> 2);
465 	else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0)
466 		iowrite16_rep(chip->IO_ADDR_R, buf, len >> 1);
467 	else
468 		iowrite8_rep(chip->IO_ADDR_R, buf, len);
469 }
470 
471 /*
472  * Check hardware register for wait status. Returns 1 if device is ready,
473  * 0 if it is still busy.
474  */
nand_davinci_dev_ready(struct mtd_info * mtd)475 static int nand_davinci_dev_ready(struct mtd_info *mtd)
476 {
477 	struct davinci_nand_info *info = to_davinci_nand(mtd);
478 
479 	return davinci_nand_readl(info, NANDFSR_OFFSET) & BIT(0);
480 }
481 
482 /*----------------------------------------------------------------------*/
483 
484 /* An ECC layout for using 4-bit ECC with small-page flash, storing
485  * ten ECC bytes plus the manufacturer's bad block marker byte, and
486  * and not overlapping the default BBT markers.
487  */
488 static struct nand_ecclayout hwecc4_small __initconst = {
489 	.eccbytes = 10,
490 	.eccpos = { 0, 1, 2, 3, 4,
491 		/* offset 5 holds the badblock marker */
492 		6, 7,
493 		13, 14, 15, },
494 	.oobfree = {
495 		{.offset = 8, .length = 5, },
496 		{.offset = 16, },
497 	},
498 };
499 
500 /* An ECC layout for using 4-bit ECC with large-page (2048bytes) flash,
501  * storing ten ECC bytes plus the manufacturer's bad block marker byte,
502  * and not overlapping the default BBT markers.
503  */
504 static struct nand_ecclayout hwecc4_2048 __initconst = {
505 	.eccbytes = 40,
506 	.eccpos = {
507 		/* at the end of spare sector */
508 		24, 25, 26, 27, 28, 29,	30, 31, 32, 33,
509 		34, 35, 36, 37, 38, 39,	40, 41, 42, 43,
510 		44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
511 		54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
512 		},
513 	.oobfree = {
514 		/* 2 bytes at offset 0 hold manufacturer badblock markers */
515 		{.offset = 2, .length = 22, },
516 		/* 5 bytes at offset 8 hold BBT markers */
517 		/* 8 bytes at offset 16 hold JFFS2 clean markers */
518 	},
519 };
520 
nand_davinci_probe(struct platform_device * pdev)521 static int __init nand_davinci_probe(struct platform_device *pdev)
522 {
523 	struct davinci_nand_pdata	*pdata = pdev->dev.platform_data;
524 	struct davinci_nand_info	*info;
525 	struct resource			*res1;
526 	struct resource			*res2;
527 	void __iomem			*vaddr;
528 	void __iomem			*base;
529 	int				ret;
530 	uint32_t			val;
531 	nand_ecc_modes_t		ecc_mode;
532 
533 	/* insist on board-specific configuration */
534 	if (!pdata)
535 		return -ENODEV;
536 
537 	/* which external chipselect will we be managing? */
538 	if (pdev->id < 0 || pdev->id > 3)
539 		return -ENODEV;
540 
541 	info = kzalloc(sizeof(*info), GFP_KERNEL);
542 	if (!info) {
543 		dev_err(&pdev->dev, "unable to allocate memory\n");
544 		ret = -ENOMEM;
545 		goto err_nomem;
546 	}
547 
548 	platform_set_drvdata(pdev, info);
549 
550 	res1 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
551 	res2 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
552 	if (!res1 || !res2) {
553 		dev_err(&pdev->dev, "resource missing\n");
554 		ret = -EINVAL;
555 		goto err_nomem;
556 	}
557 
558 	vaddr = ioremap(res1->start, resource_size(res1));
559 	base = ioremap(res2->start, resource_size(res2));
560 	if (!vaddr || !base) {
561 		dev_err(&pdev->dev, "ioremap failed\n");
562 		ret = -EINVAL;
563 		goto err_ioremap;
564 	}
565 
566 	info->dev		= &pdev->dev;
567 	info->base		= base;
568 	info->vaddr		= vaddr;
569 
570 	info->mtd.priv		= &info->chip;
571 	info->mtd.name		= dev_name(&pdev->dev);
572 	info->mtd.owner		= THIS_MODULE;
573 
574 	info->mtd.dev.parent	= &pdev->dev;
575 
576 	info->chip.IO_ADDR_R	= vaddr;
577 	info->chip.IO_ADDR_W	= vaddr;
578 	info->chip.chip_delay	= 0;
579 	info->chip.select_chip	= nand_davinci_select_chip;
580 
581 	/* options such as NAND_BBT_USE_FLASH */
582 	info->chip.bbt_options	= pdata->bbt_options;
583 	/* options such as 16-bit widths */
584 	info->chip.options	= pdata->options;
585 	info->chip.bbt_td	= pdata->bbt_td;
586 	info->chip.bbt_md	= pdata->bbt_md;
587 	info->timing		= pdata->timing;
588 
589 	info->ioaddr		= (uint32_t __force) vaddr;
590 
591 	info->current_cs	= info->ioaddr;
592 	info->core_chipsel	= pdev->id;
593 	info->mask_chipsel	= pdata->mask_chipsel;
594 
595 	/* use nandboot-capable ALE/CLE masks by default */
596 	info->mask_ale		= pdata->mask_ale ? : MASK_ALE;
597 	info->mask_cle		= pdata->mask_cle ? : MASK_CLE;
598 
599 	/* Set address of hardware control function */
600 	info->chip.cmd_ctrl	= nand_davinci_hwcontrol;
601 	info->chip.dev_ready	= nand_davinci_dev_ready;
602 
603 	/* Speed up buffer I/O */
604 	info->chip.read_buf     = nand_davinci_read_buf;
605 	info->chip.write_buf    = nand_davinci_write_buf;
606 
607 	/* Use board-specific ECC config */
608 	ecc_mode		= pdata->ecc_mode;
609 
610 	ret = -EINVAL;
611 	switch (ecc_mode) {
612 	case NAND_ECC_NONE:
613 	case NAND_ECC_SOFT:
614 		pdata->ecc_bits = 0;
615 		break;
616 	case NAND_ECC_HW:
617 		if (pdata->ecc_bits == 4) {
618 			/* No sanity checks:  CPUs must support this,
619 			 * and the chips may not use NAND_BUSWIDTH_16.
620 			 */
621 
622 			/* No sharing 4-bit hardware between chipselects yet */
623 			spin_lock_irq(&davinci_nand_lock);
624 			if (ecc4_busy)
625 				ret = -EBUSY;
626 			else
627 				ecc4_busy = true;
628 			spin_unlock_irq(&davinci_nand_lock);
629 
630 			if (ret == -EBUSY)
631 				goto err_ecc;
632 
633 			info->chip.ecc.calculate = nand_davinci_calculate_4bit;
634 			info->chip.ecc.correct = nand_davinci_correct_4bit;
635 			info->chip.ecc.hwctl = nand_davinci_hwctl_4bit;
636 			info->chip.ecc.bytes = 10;
637 		} else {
638 			info->chip.ecc.calculate = nand_davinci_calculate_1bit;
639 			info->chip.ecc.correct = nand_davinci_correct_1bit;
640 			info->chip.ecc.hwctl = nand_davinci_hwctl_1bit;
641 			info->chip.ecc.bytes = 3;
642 		}
643 		info->chip.ecc.size = 512;
644 		break;
645 	default:
646 		ret = -EINVAL;
647 		goto err_ecc;
648 	}
649 	info->chip.ecc.mode = ecc_mode;
650 
651 	info->clk = clk_get(&pdev->dev, "aemif");
652 	if (IS_ERR(info->clk)) {
653 		ret = PTR_ERR(info->clk);
654 		dev_dbg(&pdev->dev, "unable to get AEMIF clock, err %d\n", ret);
655 		goto err_clk;
656 	}
657 
658 	ret = clk_enable(info->clk);
659 	if (ret < 0) {
660 		dev_dbg(&pdev->dev, "unable to enable AEMIF clock, err %d\n",
661 			ret);
662 		goto err_clk_enable;
663 	}
664 
665 	/*
666 	 * Setup Async configuration register in case we did not boot from
667 	 * NAND and so bootloader did not bother to set it up.
668 	 */
669 	val = davinci_nand_readl(info, A1CR_OFFSET + info->core_chipsel * 4);
670 
671 	/* Extended Wait is not valid and Select Strobe mode is not used */
672 	val &= ~(ACR_ASIZE_MASK | ACR_EW_MASK | ACR_SS_MASK);
673 	if (info->chip.options & NAND_BUSWIDTH_16)
674 		val |= 0x1;
675 
676 	davinci_nand_writel(info, A1CR_OFFSET + info->core_chipsel * 4, val);
677 
678 	ret = 0;
679 	if (info->timing)
680 		ret = davinci_aemif_setup_timing(info->timing, info->base,
681 							info->core_chipsel);
682 	if (ret < 0) {
683 		dev_dbg(&pdev->dev, "NAND timing values setup fail\n");
684 		goto err_timing;
685 	}
686 
687 	spin_lock_irq(&davinci_nand_lock);
688 
689 	/* put CSxNAND into NAND mode */
690 	val = davinci_nand_readl(info, NANDFCR_OFFSET);
691 	val |= BIT(info->core_chipsel);
692 	davinci_nand_writel(info, NANDFCR_OFFSET, val);
693 
694 	spin_unlock_irq(&davinci_nand_lock);
695 
696 	/* Scan to find existence of the device(s) */
697 	ret = nand_scan_ident(&info->mtd, pdata->mask_chipsel ? 2 : 1, NULL);
698 	if (ret < 0) {
699 		dev_dbg(&pdev->dev, "no NAND chip(s) found\n");
700 		goto err_scan;
701 	}
702 
703 	/* Update ECC layout if needed ... for 1-bit HW ECC, the default
704 	 * is OK, but it allocates 6 bytes when only 3 are needed (for
705 	 * each 512 bytes).  For the 4-bit HW ECC, that default is not
706 	 * usable:  10 bytes are needed, not 6.
707 	 */
708 	if (pdata->ecc_bits == 4) {
709 		int	chunks = info->mtd.writesize / 512;
710 
711 		if (!chunks || info->mtd.oobsize < 16) {
712 			dev_dbg(&pdev->dev, "too small\n");
713 			ret = -EINVAL;
714 			goto err_scan;
715 		}
716 
717 		/* For small page chips, preserve the manufacturer's
718 		 * badblock marking data ... and make sure a flash BBT
719 		 * table marker fits in the free bytes.
720 		 */
721 		if (chunks == 1) {
722 			info->ecclayout = hwecc4_small;
723 			info->ecclayout.oobfree[1].length =
724 				info->mtd.oobsize - 16;
725 			goto syndrome_done;
726 		}
727 		if (chunks == 4) {
728 			info->ecclayout = hwecc4_2048;
729 			info->chip.ecc.mode = NAND_ECC_HW_OOB_FIRST;
730 			goto syndrome_done;
731 		}
732 
733 		/* 4KiB page chips are not yet supported. The eccpos from
734 		 * nand_ecclayout cannot hold 80 bytes and change to eccpos[]
735 		 * breaks userspace ioctl interface with mtd-utils. Once we
736 		 * resolve this issue, NAND_ECC_HW_OOB_FIRST mode can be used
737 		 * for the 4KiB page chips.
738 		 *
739 		 * TODO: Note that nand_ecclayout has now been expanded and can
740 		 *  hold plenty of OOB entries.
741 		 */
742 		dev_warn(&pdev->dev, "no 4-bit ECC support yet "
743 				"for 4KiB-page NAND\n");
744 		ret = -EIO;
745 		goto err_scan;
746 
747 syndrome_done:
748 		info->chip.ecc.layout = &info->ecclayout;
749 	}
750 
751 	ret = nand_scan_tail(&info->mtd);
752 	if (ret < 0)
753 		goto err_scan;
754 
755 	ret = mtd_device_parse_register(&info->mtd, NULL, 0,
756 			pdata->parts, pdata->nr_parts);
757 
758 	if (ret < 0)
759 		goto err_scan;
760 
761 	val = davinci_nand_readl(info, NRCSR_OFFSET);
762 	dev_info(&pdev->dev, "controller rev. %d.%d\n",
763 	       (val >> 8) & 0xff, val & 0xff);
764 
765 	return 0;
766 
767 err_scan:
768 err_timing:
769 	clk_disable(info->clk);
770 
771 err_clk_enable:
772 	clk_put(info->clk);
773 
774 	spin_lock_irq(&davinci_nand_lock);
775 	if (ecc_mode == NAND_ECC_HW_SYNDROME)
776 		ecc4_busy = false;
777 	spin_unlock_irq(&davinci_nand_lock);
778 
779 err_ecc:
780 err_clk:
781 err_ioremap:
782 	if (base)
783 		iounmap(base);
784 	if (vaddr)
785 		iounmap(vaddr);
786 
787 err_nomem:
788 	kfree(info);
789 	return ret;
790 }
791 
nand_davinci_remove(struct platform_device * pdev)792 static int __exit nand_davinci_remove(struct platform_device *pdev)
793 {
794 	struct davinci_nand_info *info = platform_get_drvdata(pdev);
795 
796 	spin_lock_irq(&davinci_nand_lock);
797 	if (info->chip.ecc.mode == NAND_ECC_HW_SYNDROME)
798 		ecc4_busy = false;
799 	spin_unlock_irq(&davinci_nand_lock);
800 
801 	iounmap(info->base);
802 	iounmap(info->vaddr);
803 
804 	nand_release(&info->mtd);
805 
806 	clk_disable(info->clk);
807 	clk_put(info->clk);
808 
809 	kfree(info);
810 
811 	return 0;
812 }
813 
814 static struct platform_driver nand_davinci_driver = {
815 	.remove		= __exit_p(nand_davinci_remove),
816 	.driver		= {
817 		.name	= "davinci_nand",
818 	},
819 };
820 MODULE_ALIAS("platform:davinci_nand");
821 
nand_davinci_init(void)822 static int __init nand_davinci_init(void)
823 {
824 	return platform_driver_probe(&nand_davinci_driver, nand_davinci_probe);
825 }
826 module_init(nand_davinci_init);
827 
nand_davinci_exit(void)828 static void __exit nand_davinci_exit(void)
829 {
830 	platform_driver_unregister(&nand_davinci_driver);
831 }
832 module_exit(nand_davinci_exit);
833 
834 MODULE_LICENSE("GPL");
835 MODULE_AUTHOR("Texas Instruments");
836 MODULE_DESCRIPTION("Davinci NAND flash driver");
837 
838