1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "monitor/monitor.h"
27 #include "qemu/coroutine-tls.h"
28 #include "qapi/error.h"
29 #include "qapi/qapi-commands-machine.h"
30 #include "qapi/qapi-commands-misc.h"
31 #include "qapi/qapi-events-run-state.h"
32 #include "qapi/qmp/qerror.h"
33 #include "exec/gdbstub.h"
34 #include "system/accel-ops.h"
35 #include "system/hw_accel.h"
36 #include "exec/cpu-common.h"
37 #include "qemu/thread.h"
38 #include "qemu/main-loop.h"
39 #include "qemu/plugin.h"
40 #include "system/cpus.h"
41 #include "qemu/guest-random.h"
42 #include "hw/nmi.h"
43 #include "system/replay.h"
44 #include "system/runstate.h"
45 #include "system/cpu-timers.h"
46 #include "system/whpx.h"
47 #include "hw/boards.h"
48 #include "hw/hw.h"
49 #include "trace.h"
50
51 #ifdef CONFIG_LINUX
52
53 #include <sys/prctl.h>
54
55 #ifndef PR_MCE_KILL
56 #define PR_MCE_KILL 33
57 #endif
58
59 #ifndef PR_MCE_KILL_SET
60 #define PR_MCE_KILL_SET 1
61 #endif
62
63 #ifndef PR_MCE_KILL_EARLY
64 #define PR_MCE_KILL_EARLY 1
65 #endif
66
67 #endif /* CONFIG_LINUX */
68
69 /* The Big QEMU Lock (BQL) */
70 static QemuMutex bql;
71
72 /*
73 * The chosen accelerator is supposed to register this.
74 */
75 static const AccelOpsClass *cpus_accel;
76
cpu_is_stopped(CPUState * cpu)77 bool cpu_is_stopped(CPUState *cpu)
78 {
79 return cpu->stopped || !runstate_is_running();
80 }
81
cpu_work_list_empty(CPUState * cpu)82 bool cpu_work_list_empty(CPUState *cpu)
83 {
84 return QSIMPLEQ_EMPTY_ATOMIC(&cpu->work_list);
85 }
86
cpu_thread_is_idle(CPUState * cpu)87 bool cpu_thread_is_idle(CPUState *cpu)
88 {
89 if (cpu->stop || !cpu_work_list_empty(cpu)) {
90 return false;
91 }
92 if (cpu_is_stopped(cpu)) {
93 return true;
94 }
95 if (!cpu->halted || cpu_has_work(cpu)) {
96 return false;
97 }
98 if (cpus_accel->cpu_thread_is_idle) {
99 return cpus_accel->cpu_thread_is_idle(cpu);
100 }
101 return true;
102 }
103
all_cpu_threads_idle(void)104 bool all_cpu_threads_idle(void)
105 {
106 CPUState *cpu;
107
108 CPU_FOREACH(cpu) {
109 if (!cpu_thread_is_idle(cpu)) {
110 return false;
111 }
112 }
113 return true;
114 }
115
116 /***********************************************************/
hw_error(const char * fmt,...)117 void hw_error(const char *fmt, ...)
118 {
119 va_list ap;
120 CPUState *cpu;
121
122 va_start(ap, fmt);
123 fprintf(stderr, "qemu: hardware error: ");
124 vfprintf(stderr, fmt, ap);
125 fprintf(stderr, "\n");
126 CPU_FOREACH(cpu) {
127 fprintf(stderr, "CPU #%d:\n", cpu->cpu_index);
128 cpu_dump_state(cpu, stderr, CPU_DUMP_FPU);
129 }
130 va_end(ap);
131 abort();
132 }
133
cpu_synchronize_all_states(void)134 void cpu_synchronize_all_states(void)
135 {
136 CPUState *cpu;
137
138 CPU_FOREACH(cpu) {
139 cpu_synchronize_state(cpu);
140 }
141 }
142
cpu_synchronize_all_post_reset(void)143 void cpu_synchronize_all_post_reset(void)
144 {
145 CPUState *cpu;
146
147 CPU_FOREACH(cpu) {
148 cpu_synchronize_post_reset(cpu);
149 }
150 }
151
cpu_synchronize_all_post_init(void)152 void cpu_synchronize_all_post_init(void)
153 {
154 CPUState *cpu;
155
156 CPU_FOREACH(cpu) {
157 cpu_synchronize_post_init(cpu);
158 }
159 }
160
cpu_synchronize_all_pre_loadvm(void)161 void cpu_synchronize_all_pre_loadvm(void)
162 {
163 CPUState *cpu;
164
165 CPU_FOREACH(cpu) {
166 cpu_synchronize_pre_loadvm(cpu);
167 }
168 }
169
cpu_synchronize_state(CPUState * cpu)170 void cpu_synchronize_state(CPUState *cpu)
171 {
172 if (cpus_accel->synchronize_state) {
173 cpus_accel->synchronize_state(cpu);
174 }
175 }
176
cpu_synchronize_post_reset(CPUState * cpu)177 void cpu_synchronize_post_reset(CPUState *cpu)
178 {
179 if (cpus_accel->synchronize_post_reset) {
180 cpus_accel->synchronize_post_reset(cpu);
181 }
182 }
183
cpu_synchronize_post_init(CPUState * cpu)184 void cpu_synchronize_post_init(CPUState *cpu)
185 {
186 if (cpus_accel->synchronize_post_init) {
187 cpus_accel->synchronize_post_init(cpu);
188 }
189 }
190
cpu_synchronize_pre_loadvm(CPUState * cpu)191 void cpu_synchronize_pre_loadvm(CPUState *cpu)
192 {
193 if (cpus_accel->synchronize_pre_loadvm) {
194 cpus_accel->synchronize_pre_loadvm(cpu);
195 }
196 }
197
cpus_are_resettable(void)198 bool cpus_are_resettable(void)
199 {
200 if (cpus_accel->cpus_are_resettable) {
201 return cpus_accel->cpus_are_resettable();
202 }
203 return true;
204 }
205
cpu_exec_reset_hold(CPUState * cpu)206 void cpu_exec_reset_hold(CPUState *cpu)
207 {
208 if (cpus_accel->cpu_reset_hold) {
209 cpus_accel->cpu_reset_hold(cpu);
210 }
211 }
212
cpus_get_virtual_clock(void)213 int64_t cpus_get_virtual_clock(void)
214 {
215 /*
216 * XXX
217 *
218 * need to check that cpus_accel is not NULL, because qcow2 calls
219 * qemu_get_clock_ns(CLOCK_VIRTUAL) without any accel initialized and
220 * with ticks disabled in some io-tests:
221 * 030 040 041 060 099 120 127 140 156 161 172 181 191 192 195 203 229 249 256 267
222 *
223 * is this expected?
224 *
225 * XXX
226 */
227 if (cpus_accel && cpus_accel->get_virtual_clock) {
228 return cpus_accel->get_virtual_clock();
229 }
230 return cpu_get_clock();
231 }
232
233 /*
234 * Signal the new virtual time to the accelerator. This is only needed
235 * by accelerators that need to track the changes as we warp time.
236 */
cpus_set_virtual_clock(int64_t new_time)237 void cpus_set_virtual_clock(int64_t new_time)
238 {
239 if (cpus_accel && cpus_accel->set_virtual_clock) {
240 cpus_accel->set_virtual_clock(new_time);
241 }
242 }
243
244 /*
245 * return the time elapsed in VM between vm_start and vm_stop. Unless
246 * icount is active, cpus_get_elapsed_ticks() uses units of the host CPU cycle
247 * counter.
248 */
cpus_get_elapsed_ticks(void)249 int64_t cpus_get_elapsed_ticks(void)
250 {
251 if (cpus_accel->get_elapsed_ticks) {
252 return cpus_accel->get_elapsed_ticks();
253 }
254 return cpu_get_ticks();
255 }
256
generic_handle_interrupt(CPUState * cpu,int mask)257 static void generic_handle_interrupt(CPUState *cpu, int mask)
258 {
259 cpu->interrupt_request |= mask;
260
261 if (!qemu_cpu_is_self(cpu)) {
262 qemu_cpu_kick(cpu);
263 }
264 }
265
cpu_interrupt(CPUState * cpu,int mask)266 void cpu_interrupt(CPUState *cpu, int mask)
267 {
268 if (cpus_accel->handle_interrupt) {
269 cpus_accel->handle_interrupt(cpu, mask);
270 } else {
271 generic_handle_interrupt(cpu, mask);
272 }
273 }
274
275 /*
276 * True if the vm was previously suspended, and has not been woken or reset.
277 */
278 static int vm_was_suspended;
279
vm_set_suspended(bool suspended)280 void vm_set_suspended(bool suspended)
281 {
282 vm_was_suspended = suspended;
283 }
284
vm_get_suspended(void)285 bool vm_get_suspended(void)
286 {
287 return vm_was_suspended;
288 }
289
do_vm_stop(RunState state,bool send_stop)290 static int do_vm_stop(RunState state, bool send_stop)
291 {
292 int ret = 0;
293 RunState oldstate = runstate_get();
294
295 if (runstate_is_live(oldstate)) {
296 vm_was_suspended = (oldstate == RUN_STATE_SUSPENDED);
297 runstate_set(state);
298 cpu_disable_ticks();
299 if (oldstate == RUN_STATE_RUNNING) {
300 pause_all_vcpus();
301 }
302 ret = vm_state_notify(0, state);
303 if (send_stop) {
304 qapi_event_send_stop();
305 }
306 }
307
308 bdrv_drain_all();
309 /*
310 * Even if vm_state_notify() return failure,
311 * it would be better to flush as before.
312 */
313 ret |= bdrv_flush_all();
314 trace_vm_stop_flush_all(ret);
315
316 return ret;
317 }
318
319 /* Special vm_stop() variant for terminating the process. Historically clients
320 * did not expect a QMP STOP event and so we need to retain compatibility.
321 */
vm_shutdown(void)322 int vm_shutdown(void)
323 {
324 return do_vm_stop(RUN_STATE_SHUTDOWN, false);
325 }
326
cpu_can_run(CPUState * cpu)327 bool cpu_can_run(CPUState *cpu)
328 {
329 if (cpu->stop) {
330 return false;
331 }
332 if (cpu_is_stopped(cpu)) {
333 return false;
334 }
335 return true;
336 }
337
cpu_handle_guest_debug(CPUState * cpu)338 void cpu_handle_guest_debug(CPUState *cpu)
339 {
340 if (replay_running_debug()) {
341 if (!cpu->singlestep_enabled) {
342 /*
343 * Report about the breakpoint and
344 * make a single step to skip it
345 */
346 replay_breakpoint();
347 cpu_single_step(cpu, SSTEP_ENABLE);
348 } else {
349 cpu_single_step(cpu, 0);
350 }
351 } else {
352 gdb_set_stop_cpu(cpu);
353 qemu_system_debug_request();
354 cpu->stopped = true;
355 }
356 }
357
358 #ifdef CONFIG_LINUX
sigbus_reraise(void)359 static void sigbus_reraise(void)
360 {
361 sigset_t set;
362 struct sigaction action;
363
364 memset(&action, 0, sizeof(action));
365 action.sa_handler = SIG_DFL;
366 if (!sigaction(SIGBUS, &action, NULL)) {
367 raise(SIGBUS);
368 sigemptyset(&set);
369 sigaddset(&set, SIGBUS);
370 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
371 }
372 perror("Failed to re-raise SIGBUS!");
373 abort();
374 }
375
sigbus_handler(int n,siginfo_t * siginfo,void * ctx)376 static void sigbus_handler(int n, siginfo_t *siginfo, void *ctx)
377 {
378 if (siginfo->si_code != BUS_MCEERR_AO && siginfo->si_code != BUS_MCEERR_AR) {
379 sigbus_reraise();
380 }
381
382 if (current_cpu) {
383 /* Called asynchronously in VCPU thread. */
384 if (kvm_on_sigbus_vcpu(current_cpu, siginfo->si_code, siginfo->si_addr)) {
385 sigbus_reraise();
386 }
387 } else {
388 /* Called synchronously (via signalfd) in main thread. */
389 if (kvm_on_sigbus(siginfo->si_code, siginfo->si_addr)) {
390 sigbus_reraise();
391 }
392 }
393 }
394
qemu_init_sigbus(void)395 static void qemu_init_sigbus(void)
396 {
397 struct sigaction action;
398
399 /*
400 * ALERT: when modifying this, take care that SIGBUS forwarding in
401 * qemu_prealloc_mem() will continue working as expected.
402 */
403 memset(&action, 0, sizeof(action));
404 action.sa_flags = SA_SIGINFO;
405 action.sa_sigaction = sigbus_handler;
406 sigaction(SIGBUS, &action, NULL);
407
408 prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0);
409 }
410 #else /* !CONFIG_LINUX */
qemu_init_sigbus(void)411 static void qemu_init_sigbus(void)
412 {
413 }
414 #endif /* !CONFIG_LINUX */
415
416 static QemuThread io_thread;
417
418 /* cpu creation */
419 static QemuCond qemu_cpu_cond;
420 /* system init */
421 static QemuCond qemu_pause_cond;
422
qemu_init_cpu_loop(void)423 void qemu_init_cpu_loop(void)
424 {
425 qemu_init_sigbus();
426 qemu_cond_init(&qemu_cpu_cond);
427 qemu_cond_init(&qemu_pause_cond);
428 qemu_mutex_init(&bql);
429
430 qemu_thread_get_self(&io_thread);
431 }
432
run_on_cpu(CPUState * cpu,run_on_cpu_func func,run_on_cpu_data data)433 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data)
434 {
435 do_run_on_cpu(cpu, func, data, &bql);
436 }
437
qemu_cpu_stop(CPUState * cpu,bool exit)438 static void qemu_cpu_stop(CPUState *cpu, bool exit)
439 {
440 g_assert(qemu_cpu_is_self(cpu));
441 cpu->stop = false;
442 cpu->stopped = true;
443 if (exit) {
444 cpu_exit(cpu);
445 }
446 qemu_cond_broadcast(&qemu_pause_cond);
447 }
448
qemu_wait_io_event_common(CPUState * cpu)449 void qemu_wait_io_event_common(CPUState *cpu)
450 {
451 qatomic_set_mb(&cpu->thread_kicked, false);
452 if (cpu->stop) {
453 qemu_cpu_stop(cpu, false);
454 }
455 process_queued_cpu_work(cpu);
456 }
457
qemu_wait_io_event(CPUState * cpu)458 void qemu_wait_io_event(CPUState *cpu)
459 {
460 bool slept = false;
461
462 while (cpu_thread_is_idle(cpu)) {
463 if (!slept) {
464 slept = true;
465 qemu_plugin_vcpu_idle_cb(cpu);
466 }
467 qemu_cond_wait(cpu->halt_cond, &bql);
468 }
469 if (slept) {
470 qemu_plugin_vcpu_resume_cb(cpu);
471 }
472
473 qemu_wait_io_event_common(cpu);
474 }
475
cpus_kick_thread(CPUState * cpu)476 void cpus_kick_thread(CPUState *cpu)
477 {
478 if (cpu->thread_kicked) {
479 return;
480 }
481 cpu->thread_kicked = true;
482
483 #ifndef _WIN32
484 int err = pthread_kill(cpu->thread->thread, SIG_IPI);
485 if (err && err != ESRCH) {
486 fprintf(stderr, "qemu:%s: %s", __func__, strerror(err));
487 exit(1);
488 }
489 #else
490 qemu_sem_post(&cpu->sem);
491 #endif
492 }
493
qemu_cpu_kick(CPUState * cpu)494 void qemu_cpu_kick(CPUState *cpu)
495 {
496 qemu_cond_broadcast(cpu->halt_cond);
497 if (cpus_accel->kick_vcpu_thread) {
498 cpus_accel->kick_vcpu_thread(cpu);
499 } else { /* default */
500 cpus_kick_thread(cpu);
501 }
502 }
503
qemu_cpu_kick_self(void)504 void qemu_cpu_kick_self(void)
505 {
506 assert(current_cpu);
507 cpus_kick_thread(current_cpu);
508 }
509
qemu_cpu_is_self(CPUState * cpu)510 bool qemu_cpu_is_self(CPUState *cpu)
511 {
512 return qemu_thread_is_self(cpu->thread);
513 }
514
qemu_in_vcpu_thread(void)515 bool qemu_in_vcpu_thread(void)
516 {
517 return current_cpu && qemu_cpu_is_self(current_cpu);
518 }
519
520 QEMU_DEFINE_STATIC_CO_TLS(bool, bql_locked)
521
522 static uint32_t bql_unlock_blocked;
523
bql_block_unlock(bool increase)524 void bql_block_unlock(bool increase)
525 {
526 uint32_t new_value;
527
528 assert(bql_locked());
529
530 /* check for overflow! */
531 new_value = bql_unlock_blocked + increase - !increase;
532 assert((new_value > bql_unlock_blocked) == increase);
533 bql_unlock_blocked = new_value;
534 }
535
bql_locked(void)536 bool bql_locked(void)
537 {
538 return get_bql_locked();
539 }
540
qemu_in_main_thread(void)541 bool qemu_in_main_thread(void)
542 {
543 return bql_locked();
544 }
545
rust_bql_mock_lock(void)546 void rust_bql_mock_lock(void)
547 {
548 error_report("This function should be used only from tests");
549 abort();
550 }
551
552 /*
553 * The BQL is taken from so many places that it is worth profiling the
554 * callers directly, instead of funneling them all through a single function.
555 */
bql_lock_impl(const char * file,int line)556 void bql_lock_impl(const char *file, int line)
557 {
558 QemuMutexLockFunc bql_lock_fn = qatomic_read(&bql_mutex_lock_func);
559
560 g_assert(!bql_locked());
561 bql_lock_fn(&bql, file, line);
562 set_bql_locked(true);
563 }
564
bql_unlock(void)565 void bql_unlock(void)
566 {
567 g_assert(bql_locked());
568 g_assert(!bql_unlock_blocked);
569 set_bql_locked(false);
570 qemu_mutex_unlock(&bql);
571 }
572
qemu_cond_wait_bql(QemuCond * cond)573 void qemu_cond_wait_bql(QemuCond *cond)
574 {
575 qemu_cond_wait(cond, &bql);
576 }
577
qemu_cond_timedwait_bql(QemuCond * cond,int ms)578 void qemu_cond_timedwait_bql(QemuCond *cond, int ms)
579 {
580 qemu_cond_timedwait(cond, &bql, ms);
581 }
582
583 /* signal CPU creation */
cpu_thread_signal_created(CPUState * cpu)584 void cpu_thread_signal_created(CPUState *cpu)
585 {
586 cpu->created = true;
587 qemu_cond_signal(&qemu_cpu_cond);
588 }
589
590 /* signal CPU destruction */
cpu_thread_signal_destroyed(CPUState * cpu)591 void cpu_thread_signal_destroyed(CPUState *cpu)
592 {
593 cpu->created = false;
594 qemu_cond_signal(&qemu_cpu_cond);
595 }
596
cpu_pause(CPUState * cpu)597 void cpu_pause(CPUState *cpu)
598 {
599 if (qemu_cpu_is_self(cpu)) {
600 qemu_cpu_stop(cpu, true);
601 } else {
602 cpu->stop = true;
603 qemu_cpu_kick(cpu);
604 }
605 }
606
cpu_resume(CPUState * cpu)607 void cpu_resume(CPUState *cpu)
608 {
609 cpu->stop = false;
610 cpu->stopped = false;
611 qemu_cpu_kick(cpu);
612 }
613
all_vcpus_paused(void)614 static bool all_vcpus_paused(void)
615 {
616 CPUState *cpu;
617
618 CPU_FOREACH(cpu) {
619 if (!cpu->stopped) {
620 return false;
621 }
622 }
623
624 return true;
625 }
626
pause_all_vcpus(void)627 void pause_all_vcpus(void)
628 {
629 CPUState *cpu;
630
631 qemu_clock_enable(QEMU_CLOCK_VIRTUAL, false);
632 CPU_FOREACH(cpu) {
633 cpu_pause(cpu);
634 }
635
636 /* We need to drop the replay_lock so any vCPU threads woken up
637 * can finish their replay tasks
638 */
639 replay_mutex_unlock();
640
641 while (!all_vcpus_paused()) {
642 qemu_cond_wait(&qemu_pause_cond, &bql);
643 CPU_FOREACH(cpu) {
644 qemu_cpu_kick(cpu);
645 }
646 }
647
648 bql_unlock();
649 replay_mutex_lock();
650 bql_lock();
651 }
652
resume_all_vcpus(void)653 void resume_all_vcpus(void)
654 {
655 CPUState *cpu;
656
657 if (!runstate_is_running()) {
658 return;
659 }
660
661 qemu_clock_enable(QEMU_CLOCK_VIRTUAL, true);
662 CPU_FOREACH(cpu) {
663 cpu_resume(cpu);
664 }
665 }
666
cpu_remove_sync(CPUState * cpu)667 void cpu_remove_sync(CPUState *cpu)
668 {
669 cpu->stop = true;
670 cpu->unplug = true;
671 qemu_cpu_kick(cpu);
672 bql_unlock();
673 qemu_thread_join(cpu->thread);
674 bql_lock();
675 }
676
cpus_register_accel(const AccelOpsClass * ops)677 void cpus_register_accel(const AccelOpsClass *ops)
678 {
679 assert(ops != NULL);
680 assert(ops->create_vcpu_thread != NULL); /* mandatory */
681 cpus_accel = ops;
682 }
683
cpus_get_accel(void)684 const AccelOpsClass *cpus_get_accel(void)
685 {
686 /* broken if we call this early */
687 assert(cpus_accel);
688 return cpus_accel;
689 }
690
qemu_init_vcpu(CPUState * cpu)691 void qemu_init_vcpu(CPUState *cpu)
692 {
693 MachineState *ms = MACHINE(qdev_get_machine());
694
695 cpu->nr_threads = ms->smp.threads;
696 cpu->stopped = true;
697 cpu->random_seed = qemu_guest_random_seed_thread_part1();
698
699 if (!cpu->as) {
700 /* If the target cpu hasn't set up any address spaces itself,
701 * give it the default one.
702 */
703 cpu->num_ases = 1;
704 cpu_address_space_init(cpu, 0, "cpu-memory", cpu->memory);
705 }
706
707 /* accelerators all implement the AccelOpsClass */
708 g_assert(cpus_accel != NULL && cpus_accel->create_vcpu_thread != NULL);
709 cpus_accel->create_vcpu_thread(cpu);
710
711 while (!cpu->created) {
712 qemu_cond_wait(&qemu_cpu_cond, &bql);
713 }
714 }
715
cpu_stop_current(void)716 void cpu_stop_current(void)
717 {
718 if (current_cpu) {
719 current_cpu->stop = true;
720 cpu_exit(current_cpu);
721 }
722 }
723
vm_stop(RunState state)724 int vm_stop(RunState state)
725 {
726 if (qemu_in_vcpu_thread()) {
727 qemu_system_vmstop_request_prepare();
728 qemu_system_vmstop_request(state);
729 /*
730 * FIXME: should not return to device code in case
731 * vm_stop() has been requested.
732 */
733 cpu_stop_current();
734 return 0;
735 }
736
737 return do_vm_stop(state, true);
738 }
739
740 /**
741 * Prepare for (re)starting the VM.
742 * Returns 0 if the vCPUs should be restarted, -1 on an error condition,
743 * and 1 otherwise.
744 */
vm_prepare_start(bool step_pending)745 int vm_prepare_start(bool step_pending)
746 {
747 int ret = vm_was_suspended ? 1 : 0;
748 RunState state = vm_was_suspended ? RUN_STATE_SUSPENDED : RUN_STATE_RUNNING;
749 RunState requested;
750
751 qemu_vmstop_requested(&requested);
752 if (runstate_is_running() && requested == RUN_STATE__MAX) {
753 return -1;
754 }
755
756 /* Ensure that a STOP/RESUME pair of events is emitted if a
757 * vmstop request was pending. The BLOCK_IO_ERROR event, for
758 * example, according to documentation is always followed by
759 * the STOP event.
760 */
761 if (runstate_is_running()) {
762 qapi_event_send_stop();
763 qapi_event_send_resume();
764 return -1;
765 }
766
767 /*
768 * WHPX accelerator needs to know whether we are going to step
769 * any CPUs, before starting the first one.
770 */
771 if (cpus_accel->synchronize_pre_resume) {
772 cpus_accel->synchronize_pre_resume(step_pending);
773 }
774
775 /* We are sending this now, but the CPUs will be resumed shortly later */
776 qapi_event_send_resume();
777
778 cpu_enable_ticks();
779 runstate_set(state);
780 vm_state_notify(1, state);
781 vm_was_suspended = false;
782 return ret;
783 }
784
vm_start(void)785 void vm_start(void)
786 {
787 if (!vm_prepare_start(false)) {
788 resume_all_vcpus();
789 }
790 }
791
vm_resume(RunState state)792 void vm_resume(RunState state)
793 {
794 if (runstate_is_live(state)) {
795 vm_start();
796 } else {
797 runstate_set(state);
798 }
799 }
800
801 /* does a state transition even if the VM is already stopped,
802 current state is forgotten forever */
vm_stop_force_state(RunState state)803 int vm_stop_force_state(RunState state)
804 {
805 if (runstate_is_live(runstate_get())) {
806 return vm_stop(state);
807 } else {
808 int ret;
809 runstate_set(state);
810
811 bdrv_drain_all();
812 /* Make sure to return an error if the flush in a previous vm_stop()
813 * failed. */
814 ret = bdrv_flush_all();
815 trace_vm_stop_flush_all(ret);
816 return ret;
817 }
818 }
819
qmp_memsave(uint64_t addr,uint64_t size,const char * filename,bool has_cpu,int64_t cpu_index,Error ** errp)820 void qmp_memsave(uint64_t addr, uint64_t size, const char *filename,
821 bool has_cpu, int64_t cpu_index, Error **errp)
822 {
823 FILE *f;
824 uint64_t l;
825 CPUState *cpu;
826 uint8_t buf[1024];
827 uint64_t orig_addr = addr, orig_size = size;
828
829 if (!has_cpu) {
830 cpu_index = 0;
831 }
832
833 cpu = qemu_get_cpu(cpu_index);
834 if (cpu == NULL) {
835 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cpu-index",
836 "a CPU number");
837 return;
838 }
839
840 f = fopen(filename, "wb");
841 if (!f) {
842 error_setg_file_open(errp, errno, filename);
843 return;
844 }
845
846 while (size != 0) {
847 l = sizeof(buf);
848 if (l > size)
849 l = size;
850 if (cpu_memory_rw_debug(cpu, addr, buf, l, 0) != 0) {
851 error_setg(errp, "Invalid addr 0x%016" PRIx64 "/size %" PRIu64
852 " specified", orig_addr, orig_size);
853 goto exit;
854 }
855 if (fwrite(buf, 1, l, f) != l) {
856 error_setg(errp, "writing memory to '%s' failed",
857 filename);
858 goto exit;
859 }
860 addr += l;
861 size -= l;
862 }
863
864 exit:
865 fclose(f);
866 }
867
qmp_pmemsave(uint64_t addr,uint64_t size,const char * filename,Error ** errp)868 void qmp_pmemsave(uint64_t addr, uint64_t size, const char *filename,
869 Error **errp)
870 {
871 FILE *f;
872 uint64_t l;
873 uint8_t buf[1024];
874
875 f = fopen(filename, "wb");
876 if (!f) {
877 error_setg_file_open(errp, errno, filename);
878 return;
879 }
880
881 while (size != 0) {
882 l = sizeof(buf);
883 if (l > size)
884 l = size;
885 cpu_physical_memory_read(addr, buf, l);
886 if (fwrite(buf, 1, l, f) != l) {
887 error_setg(errp, "writing memory to '%s' failed",
888 filename);
889 goto exit;
890 }
891 addr += l;
892 size -= l;
893 }
894
895 exit:
896 fclose(f);
897 }
898
qmp_inject_nmi(Error ** errp)899 void qmp_inject_nmi(Error **errp)
900 {
901 nmi_monitor_handle(monitor_get_cpu_index(monitor_cur()), errp);
902 }
903
904