xref: /qemu/hw/acpi/cpu_hotplug.c (revision 5136598e2667f35ef3dc1d757616a266bd5eb3a2)
1 /*
2  * QEMU ACPI hotplug utilities
3  *
4  * Copyright (C) 2013 Red Hat Inc
5  *
6  * Authors:
7  *   Igor Mammedov <imammedo@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  */
12 #include "qemu/osdep.h"
13 #include "hw/acpi/cpu_hotplug.h"
14 #include "qapi/error.h"
15 #include "hw/core/cpu.h"
16 #include "hw/i386/x86.h"
17 #include "hw/pci/pci_device.h"
18 #include "qemu/error-report.h"
19 
20 #define CPU_EJECT_METHOD "CPEJ"
21 #define CPU_MAT_METHOD "CPMA"
22 #define CPU_ON_BITMAP "CPON"
23 #define CPU_STATUS_METHOD "CPST"
24 #define CPU_STATUS_MAP "PRS"
25 #define CPU_SCAN_METHOD "PRSC"
26 
cpu_status_read(void * opaque,hwaddr addr,unsigned int size)27 static uint64_t cpu_status_read(void *opaque, hwaddr addr, unsigned int size)
28 {
29     AcpiCpuHotplug *cpus = opaque;
30     uint64_t val = cpus->sts[addr];
31 
32     return val;
33 }
34 
cpu_status_write(void * opaque,hwaddr addr,uint64_t data,unsigned int size)35 static void cpu_status_write(void *opaque, hwaddr addr, uint64_t data,
36                              unsigned int size)
37 {
38     /* firmware never used to write in CPU present bitmap so use
39        this fact as means to switch QEMU into modern CPU hotplug
40        mode by writing 0 at the beginning of legacy CPU bitmap
41      */
42     if (addr == 0 && data == 0) {
43         AcpiCpuHotplug *cpus = opaque;
44         object_property_set_bool(cpus->device, "cpu-hotplug-legacy", false,
45                                  &error_abort);
46     }
47 }
48 
49 static const MemoryRegionOps AcpiCpuHotplug_ops = {
50     .read = cpu_status_read,
51     .write = cpu_status_write,
52     .endianness = DEVICE_LITTLE_ENDIAN,
53     .valid = {
54         .min_access_size = 1,
55         .max_access_size = 4,
56     },
57     .impl = {
58         .max_access_size = 1,
59     },
60 };
61 
acpi_set_cpu_present_bit(AcpiCpuHotplug * g,CPUState * cpu,bool * swtchd_to_modern)62 static void acpi_set_cpu_present_bit(AcpiCpuHotplug *g, CPUState *cpu,
63                                      bool *swtchd_to_modern)
64 {
65     int64_t cpu_id;
66 
67     cpu_id = cpu->cc->get_arch_id(cpu);
68     if ((cpu_id / 8) >= ACPI_GPE_PROC_LEN) {
69         object_property_set_bool(g->device, "cpu-hotplug-legacy", false,
70                                  &error_abort);
71         *swtchd_to_modern = true;
72         return;
73     }
74 
75     *swtchd_to_modern = false;
76     g->sts[cpu_id / 8] |= (1 << (cpu_id % 8));
77 }
78 
legacy_acpi_cpu_plug_cb(HotplugHandler * hotplug_dev,AcpiCpuHotplug * g,DeviceState * dev,Error ** errp)79 void legacy_acpi_cpu_plug_cb(HotplugHandler *hotplug_dev,
80                              AcpiCpuHotplug *g, DeviceState *dev, Error **errp)
81 {
82     bool swtchd_to_modern;
83     Error *local_err = NULL;
84 
85     acpi_set_cpu_present_bit(g, CPU(dev), &swtchd_to_modern);
86     if (swtchd_to_modern) {
87         /* propagate the hotplug to the modern interface */
88         hotplug_handler_plug(hotplug_dev, dev, &local_err);
89     } else {
90         acpi_send_event(DEVICE(hotplug_dev), ACPI_CPU_HOTPLUG_STATUS);
91     }
92 }
93 
legacy_acpi_cpu_hotplug_init(MemoryRegion * parent,Object * owner,AcpiCpuHotplug * gpe_cpu,uint16_t base)94 void legacy_acpi_cpu_hotplug_init(MemoryRegion *parent, Object *owner,
95                                   AcpiCpuHotplug *gpe_cpu, uint16_t base)
96 {
97     CPUState *cpu;
98     bool swtchd_to_modern;
99 
100     memory_region_init_io(&gpe_cpu->io, owner, &AcpiCpuHotplug_ops,
101                           gpe_cpu, "acpi-cpu-hotplug", ACPI_GPE_PROC_LEN);
102     memory_region_add_subregion(parent, base, &gpe_cpu->io);
103     gpe_cpu->device = owner;
104 
105     CPU_FOREACH(cpu) {
106         acpi_set_cpu_present_bit(gpe_cpu, cpu, &swtchd_to_modern);
107     }
108 }
109 
acpi_switch_to_modern_cphp(AcpiCpuHotplug * gpe_cpu,CPUHotplugState * cpuhp_state,uint16_t io_port)110 void acpi_switch_to_modern_cphp(AcpiCpuHotplug *gpe_cpu,
111                                 CPUHotplugState *cpuhp_state,
112                                 uint16_t io_port)
113 {
114     MemoryRegion *parent = pci_address_space_io(PCI_DEVICE(gpe_cpu->device));
115 
116     memory_region_del_subregion(parent, &gpe_cpu->io);
117     cpu_hotplug_hw_init(parent, gpe_cpu->device, cpuhp_state, io_port);
118 }
119 
build_legacy_cpu_hotplug_aml(Aml * ctx,MachineState * machine,uint16_t io_base)120 void build_legacy_cpu_hotplug_aml(Aml *ctx, MachineState *machine,
121                                   uint16_t io_base)
122 {
123     Aml *dev;
124     Aml *crs;
125     Aml *pkg;
126     Aml *field;
127     Aml *method;
128     Aml *if_ctx;
129     Aml *else_ctx;
130     int i, apic_idx;
131     Aml *sb_scope = aml_scope("_SB");
132     uint8_t madt_tmpl[8] = {0x00, 0x08, 0x00, 0x00, 0x00, 0, 0, 0};
133     Aml *cpu_id = aml_arg(1);
134     Aml *apic_id = aml_arg(0);
135     Aml *cpu_on = aml_local(0);
136     Aml *madt = aml_local(1);
137     Aml *cpus_map = aml_name(CPU_ON_BITMAP);
138     Aml *zero = aml_int(0);
139     Aml *one = aml_int(1);
140     MachineClass *mc = MACHINE_GET_CLASS(machine);
141     const CPUArchIdList *apic_ids = mc->possible_cpu_arch_ids(machine);
142     X86MachineState *x86ms = X86_MACHINE(machine);
143 
144     /*
145      * _MAT method - creates an madt apic buffer
146      * apic_id = Arg0 = Local APIC ID
147      * cpu_id  = Arg1 = Processor ID
148      * cpu_on = Local0 = CPON flag for this cpu
149      * madt = Local1 = Buffer (in madt apic form) to return
150      */
151     method = aml_method(CPU_MAT_METHOD, 2, AML_NOTSERIALIZED);
152     aml_append(method,
153         aml_store(aml_derefof(aml_index(cpus_map, apic_id)), cpu_on));
154     aml_append(method,
155         aml_store(aml_buffer(sizeof(madt_tmpl), madt_tmpl), madt));
156     /* Update the processor id, lapic id, and enable/disable status */
157     aml_append(method, aml_store(cpu_id, aml_index(madt, aml_int(2))));
158     aml_append(method, aml_store(apic_id, aml_index(madt, aml_int(3))));
159     aml_append(method, aml_store(cpu_on, aml_index(madt, aml_int(4))));
160     aml_append(method, aml_return(madt));
161     aml_append(sb_scope, method);
162 
163     /*
164      * _STA method - return ON status of cpu
165      * apic_id = Arg0 = Local APIC ID
166      * cpu_on = Local0 = CPON flag for this cpu
167      */
168     method = aml_method(CPU_STATUS_METHOD, 1, AML_NOTSERIALIZED);
169     aml_append(method,
170         aml_store(aml_derefof(aml_index(cpus_map, apic_id)), cpu_on));
171     if_ctx = aml_if(cpu_on);
172     {
173         aml_append(if_ctx, aml_return(aml_int(0xF)));
174     }
175     aml_append(method, if_ctx);
176     else_ctx = aml_else();
177     {
178         aml_append(else_ctx, aml_return(zero));
179     }
180     aml_append(method, else_ctx);
181     aml_append(sb_scope, method);
182 
183     method = aml_method(CPU_EJECT_METHOD, 2, AML_NOTSERIALIZED);
184     aml_append(method, aml_sleep(200));
185     aml_append(sb_scope, method);
186 
187     method = aml_method(CPU_SCAN_METHOD, 0, AML_NOTSERIALIZED);
188     {
189         Aml *while_ctx, *if_ctx2, *else_ctx2;
190         Aml *bus_check_evt = aml_int(1);
191         Aml *remove_evt = aml_int(3);
192         Aml *status_map = aml_local(5); /* Local5 = active cpu bitmap */
193         Aml *byte = aml_local(2); /* Local2 = last read byte from bitmap */
194         Aml *idx = aml_local(0); /* Processor ID / APIC ID iterator */
195         Aml *is_cpu_on = aml_local(1); /* Local1 = CPON flag for cpu */
196         Aml *status = aml_local(3); /* Local3 = active state for cpu */
197 
198         aml_append(method, aml_store(aml_name(CPU_STATUS_MAP), status_map));
199         aml_append(method, aml_store(zero, byte));
200         aml_append(method, aml_store(zero, idx));
201 
202         /* While (idx < SizeOf(CPON)) */
203         while_ctx = aml_while(aml_lless(idx, aml_sizeof(cpus_map)));
204         aml_append(while_ctx,
205             aml_store(aml_derefof(aml_index(cpus_map, idx)), is_cpu_on));
206 
207         if_ctx = aml_if(aml_and(idx, aml_int(0x07), NULL));
208         {
209             /* Shift down previously read bitmap byte */
210             aml_append(if_ctx, aml_shiftright(byte, one, byte));
211         }
212         aml_append(while_ctx, if_ctx);
213 
214         else_ctx = aml_else();
215         {
216             /* Read next byte from cpu bitmap */
217             aml_append(else_ctx, aml_store(aml_derefof(aml_index(status_map,
218                        aml_shiftright(idx, aml_int(3), NULL))), byte));
219         }
220         aml_append(while_ctx, else_ctx);
221 
222         aml_append(while_ctx, aml_store(aml_and(byte, one, NULL), status));
223         if_ctx = aml_if(aml_lnot(aml_equal(is_cpu_on, status)));
224         {
225             /* State change - update CPON with new state */
226             aml_append(if_ctx, aml_store(status, aml_index(cpus_map, idx)));
227             if_ctx2 = aml_if(aml_equal(status, one));
228             {
229                 aml_append(if_ctx2,
230                     aml_call2(AML_NOTIFY_METHOD, idx, bus_check_evt));
231             }
232             aml_append(if_ctx, if_ctx2);
233             else_ctx2 = aml_else();
234             {
235                 aml_append(else_ctx2,
236                     aml_call2(AML_NOTIFY_METHOD, idx, remove_evt));
237             }
238         }
239         aml_append(if_ctx, else_ctx2);
240         aml_append(while_ctx, if_ctx);
241 
242         aml_append(while_ctx, aml_increment(idx)); /* go to next cpu */
243         aml_append(method, while_ctx);
244     }
245     aml_append(sb_scope, method);
246 
247     /* The current AML generator can cover the APIC ID range [0..255],
248      * inclusive, for VCPU hotplug. */
249     QEMU_BUILD_BUG_ON(ACPI_CPU_HOTPLUG_ID_LIMIT > 256);
250     if (x86ms->apic_id_limit > ACPI_CPU_HOTPLUG_ID_LIMIT) {
251         error_report("max_cpus is too large. APIC ID of last CPU is %u",
252                      x86ms->apic_id_limit - 1);
253         exit(1);
254     }
255 
256     /* create PCI0.PRES device and its _CRS to reserve CPU hotplug MMIO */
257     dev = aml_device("PCI0." stringify(CPU_HOTPLUG_RESOURCE_DEVICE));
258     aml_append(dev, aml_name_decl("_HID", aml_eisaid("PNP0A06")));
259     aml_append(dev,
260         aml_name_decl("_UID", aml_string("CPU Hotplug resources"))
261     );
262     /* device present, functioning, decoding, not shown in UI */
263     aml_append(dev, aml_name_decl("_STA", aml_int(0xB)));
264     crs = aml_resource_template();
265     aml_append(crs,
266         aml_io(AML_DECODE16, io_base, io_base, 1, ACPI_GPE_PROC_LEN)
267     );
268     aml_append(dev, aml_name_decl("_CRS", crs));
269     aml_append(sb_scope, dev);
270     /* declare CPU hotplug MMIO region and PRS field to access it */
271     aml_append(sb_scope, aml_operation_region(
272         "PRST", AML_SYSTEM_IO, aml_int(io_base), ACPI_GPE_PROC_LEN));
273     field = aml_field("PRST", AML_BYTE_ACC, AML_NOLOCK, AML_PRESERVE);
274     aml_append(field, aml_named_field("PRS", 256));
275     aml_append(sb_scope, field);
276 
277     /* build Processor object for each processor */
278     for (i = 0; i < apic_ids->len; i++) {
279         int cpu_apic_id = apic_ids->cpus[i].arch_id;
280 
281         assert(cpu_apic_id < ACPI_CPU_HOTPLUG_ID_LIMIT);
282 
283         dev = aml_processor(i, 0, 0, "CP%.02X", cpu_apic_id);
284 
285         method = aml_method("_MAT", 0, AML_NOTSERIALIZED);
286         aml_append(method,
287             aml_return(aml_call2(CPU_MAT_METHOD,
288                                  aml_int(cpu_apic_id), aml_int(i))
289         ));
290         aml_append(dev, method);
291 
292         method = aml_method("_STA", 0, AML_NOTSERIALIZED);
293         aml_append(method,
294             aml_return(aml_call1(CPU_STATUS_METHOD, aml_int(cpu_apic_id))));
295         aml_append(dev, method);
296 
297         method = aml_method("_EJ0", 1, AML_NOTSERIALIZED);
298         aml_append(method,
299             aml_return(aml_call2(CPU_EJECT_METHOD, aml_int(cpu_apic_id),
300                 aml_arg(0)))
301         );
302         aml_append(dev, method);
303 
304         aml_append(sb_scope, dev);
305     }
306 
307     /* build this code:
308      *   Method(NTFY, 2) {If (LEqual(Arg0, 0x00)) {Notify(CP00, Arg1)} ...}
309      */
310     /* Arg0 = APIC ID */
311     method = aml_method(AML_NOTIFY_METHOD, 2, AML_NOTSERIALIZED);
312     for (i = 0; i < apic_ids->len; i++) {
313         int cpu_apic_id = apic_ids->cpus[i].arch_id;
314 
315         if_ctx = aml_if(aml_equal(aml_arg(0), aml_int(cpu_apic_id)));
316         aml_append(if_ctx,
317             aml_notify(aml_name("CP%.02X", cpu_apic_id), aml_arg(1))
318         );
319         aml_append(method, if_ctx);
320     }
321     aml_append(sb_scope, method);
322 
323     /* build "Name(CPON, Package() { One, One, ..., Zero, Zero, ... })"
324      *
325      * Note: The ability to create variable-sized packages was first
326      * introduced in ACPI 2.0. ACPI 1.0 only allowed fixed-size packages
327      * ith up to 255 elements. Windows guests up to win2k8 fail when
328      * VarPackageOp is used.
329      */
330     pkg = x86ms->apic_id_limit <= 255 ? aml_package(x86ms->apic_id_limit) :
331                                         aml_varpackage(x86ms->apic_id_limit);
332 
333     for (i = 0, apic_idx = 0; i < apic_ids->len; i++) {
334         int cpu_apic_id = apic_ids->cpus[i].arch_id;
335 
336         for (; apic_idx < cpu_apic_id; apic_idx++) {
337             aml_append(pkg, aml_int(0));
338         }
339         aml_append(pkg, aml_int(apic_ids->cpus[i].cpu ? 1 : 0));
340         apic_idx = cpu_apic_id + 1;
341     }
342     aml_append(sb_scope, aml_name_decl(CPU_ON_BITMAP, pkg));
343     aml_append(ctx, sb_scope);
344 
345     method = aml_method("\\_GPE._E02", 0, AML_NOTSERIALIZED);
346     aml_append(method, aml_call0("\\_SB." CPU_SCAN_METHOD));
347     aml_append(ctx, method);
348 }
349