xref: /qemu/include/exec/cpu-common.h (revision 563ac3d18129a2770a285cc16c20ad50c8adc7c0)
1 /*
2  * CPU interfaces that are target independent.
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * SPDX-License-Identifier: LGPL-2.1+
7  */
8 #ifndef CPU_COMMON_H
9 #define CPU_COMMON_H
10 
11 #include "exec/vaddr.h"
12 #include "exec/hwaddr.h"
13 #include "hw/core/cpu.h"
14 #include "tcg/debug-assert.h"
15 #include "exec/page-protection.h"
16 
17 #define EXCP_INTERRUPT  0x10000 /* async interruption */
18 #define EXCP_HLT        0x10001 /* hlt instruction reached */
19 #define EXCP_DEBUG      0x10002 /* cpu stopped after a breakpoint or singlestep */
20 #define EXCP_HALTED     0x10003 /* cpu is halted (waiting for external event) */
21 #define EXCP_YIELD      0x10004 /* cpu wants to yield timeslice to another */
22 #define EXCP_ATOMIC     0x10005 /* stop-the-world and emulate atomic */
23 
24 void cpu_exec_init_all(void);
25 void cpu_exec_step_atomic(CPUState *cpu);
26 
27 #define REAL_HOST_PAGE_ALIGN(addr) ROUND_UP((addr), qemu_real_host_page_size())
28 
29 /* The CPU list lock nests outside page_(un)lock or mmap_(un)lock */
30 extern QemuMutex qemu_cpu_list_lock;
31 void qemu_init_cpu_list(void);
32 void cpu_list_lock(void);
33 void cpu_list_unlock(void);
34 unsigned int cpu_list_generation_id_get(void);
35 
36 int cpu_get_free_index(void);
37 
38 void tcg_iommu_init_notifier_list(CPUState *cpu);
39 void tcg_iommu_free_notifier_list(CPUState *cpu);
40 
41 enum device_endian {
42     DEVICE_NATIVE_ENDIAN,
43     DEVICE_BIG_ENDIAN,
44     DEVICE_LITTLE_ENDIAN,
45 };
46 
47 /* address in the RAM (different from a physical address) */
48 #if defined(CONFIG_XEN_BACKEND)
49 typedef uint64_t ram_addr_t;
50 #  define RAM_ADDR_MAX UINT64_MAX
51 #  define RAM_ADDR_FMT "%" PRIx64
52 #else
53 typedef uintptr_t ram_addr_t;
54 #  define RAM_ADDR_MAX UINTPTR_MAX
55 #  define RAM_ADDR_FMT "%" PRIxPTR
56 #endif
57 
58 /* memory API */
59 
60 void qemu_ram_remap(ram_addr_t addr);
61 /* This should not be used by devices.  */
62 ram_addr_t qemu_ram_addr_from_host(void *ptr);
63 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr);
64 RAMBlock *qemu_ram_block_by_name(const char *name);
65 
66 /*
67  * Translates a host ptr back to a RAMBlock and an offset in that RAMBlock.
68  *
69  * @ptr: The host pointer to translate.
70  * @round_offset: Whether to round the result offset down to a target page
71  * @offset: Will be set to the offset within the returned RAMBlock.
72  *
73  * Returns: RAMBlock (or NULL if not found)
74  *
75  * By the time this function returns, the returned pointer is not protected
76  * by RCU anymore.  If the caller is not within an RCU critical section and
77  * does not hold the BQL, it must have other means of protecting the
78  * pointer, such as a reference to the memory region that owns the RAMBlock.
79  */
80 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
81                                    ram_addr_t *offset);
82 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host);
83 void qemu_ram_set_idstr(RAMBlock *block, const char *name, DeviceState *dev);
84 void qemu_ram_unset_idstr(RAMBlock *block);
85 const char *qemu_ram_get_idstr(RAMBlock *rb);
86 void *qemu_ram_get_host_addr(RAMBlock *rb);
87 ram_addr_t qemu_ram_get_offset(RAMBlock *rb);
88 ram_addr_t qemu_ram_get_fd_offset(RAMBlock *rb);
89 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb);
90 ram_addr_t qemu_ram_get_max_length(RAMBlock *rb);
91 bool qemu_ram_is_shared(RAMBlock *rb);
92 bool qemu_ram_is_noreserve(RAMBlock *rb);
93 bool qemu_ram_is_uf_zeroable(RAMBlock *rb);
94 void qemu_ram_set_uf_zeroable(RAMBlock *rb);
95 bool qemu_ram_is_migratable(RAMBlock *rb);
96 void qemu_ram_set_migratable(RAMBlock *rb);
97 void qemu_ram_unset_migratable(RAMBlock *rb);
98 bool qemu_ram_is_named_file(RAMBlock *rb);
99 int qemu_ram_get_fd(RAMBlock *rb);
100 
101 size_t qemu_ram_pagesize(RAMBlock *block);
102 size_t qemu_ram_pagesize_largest(void);
103 
104 /**
105  * cpu_address_space_init:
106  * @cpu: CPU to add this address space to
107  * @asidx: integer index of this address space
108  * @prefix: prefix to be used as name of address space
109  * @mr: the root memory region of address space
110  *
111  * Add the specified address space to the CPU's cpu_ases list.
112  * The address space added with @asidx 0 is the one used for the
113  * convenience pointer cpu->as.
114  * The target-specific code which registers ASes is responsible
115  * for defining what semantics address space 0, 1, 2, etc have.
116  *
117  * Before the first call to this function, the caller must set
118  * cpu->num_ases to the total number of address spaces it needs
119  * to support.
120  *
121  * Note that with KVM only one address space is supported.
122  */
123 void cpu_address_space_init(CPUState *cpu, int asidx,
124                             const char *prefix, MemoryRegion *mr);
125 /**
126  * cpu_address_space_destroy:
127  * @cpu: CPU for which address space needs to be destroyed
128  * @asidx: integer index of this address space
129  *
130  * Note that with KVM only one address space is supported.
131  */
132 void cpu_address_space_destroy(CPUState *cpu, int asidx);
133 
134 void cpu_physical_memory_rw(hwaddr addr, void *buf,
135                             hwaddr len, bool is_write);
cpu_physical_memory_read(hwaddr addr,void * buf,hwaddr len)136 static inline void cpu_physical_memory_read(hwaddr addr,
137                                             void *buf, hwaddr len)
138 {
139     cpu_physical_memory_rw(addr, buf, len, false);
140 }
cpu_physical_memory_write(hwaddr addr,const void * buf,hwaddr len)141 static inline void cpu_physical_memory_write(hwaddr addr,
142                                              const void *buf, hwaddr len)
143 {
144     cpu_physical_memory_rw(addr, (void *)buf, len, true);
145 }
146 void *cpu_physical_memory_map(hwaddr addr,
147                               hwaddr *plen,
148                               bool is_write);
149 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
150                                bool is_write, hwaddr access_len);
151 
152 bool cpu_physical_memory_is_io(hwaddr phys_addr);
153 
154 /* Coalesced MMIO regions are areas where write operations can be reordered.
155  * This usually implies that write operations are side-effect free.  This allows
156  * batching which can make a major impact on performance when using
157  * virtualization.
158  */
159 void qemu_flush_coalesced_mmio_buffer(void);
160 
161 void cpu_flush_icache_range(hwaddr start, hwaddr len);
162 
163 typedef int (RAMBlockIterFunc)(RAMBlock *rb, void *opaque);
164 
165 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque);
166 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length);
167 int ram_block_discard_guest_memfd_range(RAMBlock *rb, uint64_t start,
168                                         size_t length);
169 
170 /* Returns: 0 on success, -1 on error */
171 int cpu_memory_rw_debug(CPUState *cpu, vaddr addr,
172                         void *ptr, size_t len, bool is_write);
173 
174 /* vl.c */
175 void list_cpus(void);
176 
177 #ifdef CONFIG_TCG
178 #include "qemu/atomic.h"
179 
180 /**
181  * cpu_unwind_state_data:
182  * @cpu: the cpu context
183  * @host_pc: the host pc within the translation
184  * @data: output data
185  *
186  * Attempt to load the unwind state for a host pc occurring in
187  * translated code.  If @host_pc is not in translated code, the
188  * function returns false; otherwise @data is loaded.
189  * This is the same unwind info as given to restore_state_to_opc.
190  */
191 bool cpu_unwind_state_data(CPUState *cpu, uintptr_t host_pc, uint64_t *data);
192 
193 /**
194  * cpu_restore_state:
195  * @cpu: the cpu context
196  * @host_pc: the host pc within the translation
197  * @return: true if state was restored, false otherwise
198  *
199  * Attempt to restore the state for a fault occurring in translated
200  * code. If @host_pc is not in translated code no state is
201  * restored and the function returns false.
202  */
203 bool cpu_restore_state(CPUState *cpu, uintptr_t host_pc);
204 
205 /**
206  * cpu_loop_exit_requested:
207  * @cpu: The CPU state to be tested
208  *
209  * Indicate if somebody asked for a return of the CPU to the main loop
210  * (e.g., via cpu_exit() or cpu_interrupt()).
211  *
212  * This is helpful for architectures that support interruptible
213  * instructions. After writing back all state to registers/memory, this
214  * call can be used to check if it makes sense to return to the main loop
215  * or to continue executing the interruptible instruction.
216  */
cpu_loop_exit_requested(CPUState * cpu)217 static inline bool cpu_loop_exit_requested(CPUState *cpu)
218 {
219     return (int32_t)qatomic_read(&cpu->neg.icount_decr.u32) < 0;
220 }
221 
222 G_NORETURN void cpu_loop_exit_noexc(CPUState *cpu);
223 G_NORETURN void cpu_loop_exit_atomic(CPUState *cpu, uintptr_t pc);
224 #endif /* CONFIG_TCG */
225 G_NORETURN void cpu_loop_exit(CPUState *cpu);
226 G_NORETURN void cpu_loop_exit_restore(CPUState *cpu, uintptr_t pc);
227 
228 /* accel/tcg/cpu-exec.c */
229 int cpu_exec(CPUState *cpu);
230 
231 /**
232  * env_archcpu(env)
233  * @env: The architecture environment
234  *
235  * Return the ArchCPU associated with the environment.
236  */
env_archcpu(CPUArchState * env)237 static inline ArchCPU *env_archcpu(CPUArchState *env)
238 {
239     return (void *)env - sizeof(CPUState);
240 }
241 
242 /**
243  * env_cpu_const(env)
244  * @env: The architecture environment
245  *
246  * Return the CPUState associated with the environment.
247  */
env_cpu_const(const CPUArchState * env)248 static inline const CPUState *env_cpu_const(const CPUArchState *env)
249 {
250     return (void *)env - sizeof(CPUState);
251 }
252 
253 /**
254  * env_cpu(env)
255  * @env: The architecture environment
256  *
257  * Return the CPUState associated with the environment.
258  */
env_cpu(CPUArchState * env)259 static inline CPUState *env_cpu(CPUArchState *env)
260 {
261     return (CPUState *)env_cpu_const(env);
262 }
263 
264 #endif /* CPU_COMMON_H */
265