1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright(C) 2015 Linaro Limited. All rights reserved.
4  * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
5  */
6 
7 #include <linux/bitfield.h>
8 #include <linux/coresight.h>
9 #include <linux/coresight-pmu.h>
10 #include <linux/cpumask.h>
11 #include <linux/device.h>
12 #include <linux/list.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/perf_event.h>
16 #include <linux/percpu-defs.h>
17 #include <linux/slab.h>
18 #include <linux/stringhash.h>
19 #include <linux/types.h>
20 #include <linux/workqueue.h>
21 
22 #include "coresight-config.h"
23 #include "coresight-etm-perf.h"
24 #include "coresight-priv.h"
25 #include "coresight-syscfg.h"
26 #include "coresight-trace-id.h"
27 
28 static struct pmu etm_pmu;
29 static bool etm_perf_up;
30 
31 /*
32  * An ETM context for a running event includes the perf aux handle
33  * and aux_data. For ETM, the aux_data (etm_event_data), consists of
34  * the trace path and the sink configuration. The event data is accessible
35  * via perf_get_aux(handle). However, a sink could "end" a perf output
36  * handle via the IRQ handler. And if the "sink" encounters a failure
37  * to "begin" another session (e.g due to lack of space in the buffer),
38  * the handle will be cleared. Thus, the event_data may not be accessible
39  * from the handle when we get to the etm_event_stop(), which is required
40  * for stopping the trace path. The event_data is guaranteed to stay alive
41  * until "free_aux()", which cannot happen as long as the event is active on
42  * the ETM. Thus the event_data for the session must be part of the ETM context
43  * to make sure we can disable the trace path.
44  */
45 struct etm_ctxt {
46 	struct perf_output_handle handle;
47 	struct etm_event_data *event_data;
48 };
49 
50 static DEFINE_PER_CPU(struct etm_ctxt, etm_ctxt);
51 static DEFINE_PER_CPU(struct coresight_device *, csdev_src);
52 
53 /*
54  * The PMU formats were orignally for ETMv3.5/PTM's ETMCR 'config';
55  * now take them as general formats and apply on all ETMs.
56  */
57 PMU_FORMAT_ATTR(branch_broadcast, "config:"__stringify(ETM_OPT_BRANCH_BROADCAST));
58 PMU_FORMAT_ATTR(cycacc,		"config:" __stringify(ETM_OPT_CYCACC));
59 /* contextid1 enables tracing CONTEXTIDR_EL1 for ETMv4 */
60 PMU_FORMAT_ATTR(contextid1,	"config:" __stringify(ETM_OPT_CTXTID));
61 /* contextid2 enables tracing CONTEXTIDR_EL2 for ETMv4 */
62 PMU_FORMAT_ATTR(contextid2,	"config:" __stringify(ETM_OPT_CTXTID2));
63 PMU_FORMAT_ATTR(timestamp,	"config:" __stringify(ETM_OPT_TS));
64 PMU_FORMAT_ATTR(retstack,	"config:" __stringify(ETM_OPT_RETSTK));
65 /* preset - if sink ID is used as a configuration selector */
66 PMU_FORMAT_ATTR(preset,		"config:0-3");
67 /* Sink ID - same for all ETMs */
68 PMU_FORMAT_ATTR(sinkid,		"config2:0-31");
69 /* config ID - set if a system configuration is selected */
70 PMU_FORMAT_ATTR(configid,	"config2:32-63");
71 PMU_FORMAT_ATTR(cc_threshold,	"config3:0-11");
72 
73 
74 /*
75  * contextid always traces the "PID".  The PID is in CONTEXTIDR_EL1
76  * when the kernel is running at EL1; when the kernel is at EL2,
77  * the PID is in CONTEXTIDR_EL2.
78  */
format_attr_contextid_show(struct device * dev,struct device_attribute * attr,char * page)79 static ssize_t format_attr_contextid_show(struct device *dev,
80 					  struct device_attribute *attr,
81 					  char *page)
82 {
83 	int pid_fmt = ETM_OPT_CTXTID;
84 
85 #if IS_ENABLED(CONFIG_CORESIGHT_SOURCE_ETM4X)
86 	pid_fmt = is_kernel_in_hyp_mode() ? ETM_OPT_CTXTID2 : ETM_OPT_CTXTID;
87 #endif
88 	return sprintf(page, "config:%d\n", pid_fmt);
89 }
90 
91 static struct device_attribute format_attr_contextid =
92 	__ATTR(contextid, 0444, format_attr_contextid_show, NULL);
93 
94 static struct attribute *etm_config_formats_attr[] = {
95 	&format_attr_cycacc.attr,
96 	&format_attr_contextid.attr,
97 	&format_attr_contextid1.attr,
98 	&format_attr_contextid2.attr,
99 	&format_attr_timestamp.attr,
100 	&format_attr_retstack.attr,
101 	&format_attr_sinkid.attr,
102 	&format_attr_preset.attr,
103 	&format_attr_configid.attr,
104 	&format_attr_branch_broadcast.attr,
105 	&format_attr_cc_threshold.attr,
106 	NULL,
107 };
108 
109 static const struct attribute_group etm_pmu_format_group = {
110 	.name   = "format",
111 	.attrs  = etm_config_formats_attr,
112 };
113 
114 static struct attribute *etm_config_sinks_attr[] = {
115 	NULL,
116 };
117 
118 static const struct attribute_group etm_pmu_sinks_group = {
119 	.name   = "sinks",
120 	.attrs  = etm_config_sinks_attr,
121 };
122 
123 static struct attribute *etm_config_events_attr[] = {
124 	NULL,
125 };
126 
127 static const struct attribute_group etm_pmu_events_group = {
128 	.name   = "events",
129 	.attrs  = etm_config_events_attr,
130 };
131 
132 static const struct attribute_group *etm_pmu_attr_groups[] = {
133 	&etm_pmu_format_group,
134 	&etm_pmu_sinks_group,
135 	&etm_pmu_events_group,
136 	NULL,
137 };
138 
139 static inline struct coresight_path **
etm_event_cpu_path_ptr(struct etm_event_data * data,int cpu)140 etm_event_cpu_path_ptr(struct etm_event_data *data, int cpu)
141 {
142 	return per_cpu_ptr(data->path, cpu);
143 }
144 
145 static inline struct coresight_path *
etm_event_cpu_path(struct etm_event_data * data,int cpu)146 etm_event_cpu_path(struct etm_event_data *data, int cpu)
147 {
148 	return *etm_event_cpu_path_ptr(data, cpu);
149 }
150 
etm_event_read(struct perf_event * event)151 static void etm_event_read(struct perf_event *event) {}
152 
etm_addr_filters_alloc(struct perf_event * event)153 static int etm_addr_filters_alloc(struct perf_event *event)
154 {
155 	struct etm_filters *filters;
156 	int node = event->cpu == -1 ? -1 : cpu_to_node(event->cpu);
157 
158 	filters = kzalloc_node(sizeof(struct etm_filters), GFP_KERNEL, node);
159 	if (!filters)
160 		return -ENOMEM;
161 
162 	if (event->parent)
163 		memcpy(filters, event->parent->hw.addr_filters,
164 		       sizeof(*filters));
165 
166 	event->hw.addr_filters = filters;
167 
168 	return 0;
169 }
170 
etm_event_destroy(struct perf_event * event)171 static void etm_event_destroy(struct perf_event *event)
172 {
173 	kfree(event->hw.addr_filters);
174 	event->hw.addr_filters = NULL;
175 }
176 
etm_event_init(struct perf_event * event)177 static int etm_event_init(struct perf_event *event)
178 {
179 	int ret = 0;
180 
181 	if (event->attr.type != etm_pmu.type) {
182 		ret = -ENOENT;
183 		goto out;
184 	}
185 
186 	ret = etm_addr_filters_alloc(event);
187 	if (ret)
188 		goto out;
189 
190 	event->destroy = etm_event_destroy;
191 out:
192 	return ret;
193 }
194 
free_sink_buffer(struct etm_event_data * event_data)195 static void free_sink_buffer(struct etm_event_data *event_data)
196 {
197 	int cpu;
198 	cpumask_t *mask = &event_data->mask;
199 	struct coresight_device *sink;
200 
201 	if (!event_data->snk_config)
202 		return;
203 
204 	if (WARN_ON(cpumask_empty(mask)))
205 		return;
206 
207 	cpu = cpumask_first(mask);
208 	sink = coresight_get_sink(etm_event_cpu_path(event_data, cpu));
209 	sink_ops(sink)->free_buffer(event_data->snk_config);
210 }
211 
free_event_data(struct work_struct * work)212 static void free_event_data(struct work_struct *work)
213 {
214 	int cpu;
215 	cpumask_t *mask;
216 	struct etm_event_data *event_data;
217 
218 	event_data = container_of(work, struct etm_event_data, work);
219 	mask = &event_data->mask;
220 
221 	/* Free the sink buffers, if there are any */
222 	free_sink_buffer(event_data);
223 
224 	/* clear any configuration we were using */
225 	if (event_data->cfg_hash)
226 		cscfg_deactivate_config(event_data->cfg_hash);
227 
228 	for_each_cpu(cpu, mask) {
229 		struct coresight_path **ppath;
230 
231 		ppath = etm_event_cpu_path_ptr(event_data, cpu);
232 		if (!(IS_ERR_OR_NULL(*ppath))) {
233 			struct coresight_device *sink = coresight_get_sink(*ppath);
234 
235 			/*
236 			 * Mark perf event as done for trace id allocator, but don't call
237 			 * coresight_trace_id_put_cpu_id_map() on individual IDs. Perf sessions
238 			 * never free trace IDs to ensure that the ID associated with a CPU
239 			 * cannot change during their and other's concurrent sessions. Instead,
240 			 * a refcount is used so that the last event to call
241 			 * coresight_trace_id_perf_stop() frees all IDs.
242 			 */
243 			coresight_trace_id_perf_stop(&sink->perf_sink_id_map);
244 
245 			coresight_release_path(*ppath);
246 		}
247 		*ppath = NULL;
248 	}
249 
250 	free_percpu(event_data->path);
251 	kfree(event_data);
252 }
253 
alloc_event_data(int cpu)254 static void *alloc_event_data(int cpu)
255 {
256 	cpumask_t *mask;
257 	struct etm_event_data *event_data;
258 
259 	/* First get memory for the session's data */
260 	event_data = kzalloc(sizeof(struct etm_event_data), GFP_KERNEL);
261 	if (!event_data)
262 		return NULL;
263 
264 
265 	mask = &event_data->mask;
266 	if (cpu != -1)
267 		cpumask_set_cpu(cpu, mask);
268 	else
269 		cpumask_copy(mask, cpu_present_mask);
270 
271 	/*
272 	 * Each CPU has a single path between source and destination.  As such
273 	 * allocate an array using CPU numbers as indexes.  That way a path
274 	 * for any CPU can easily be accessed at any given time.  We proceed
275 	 * the same way for sessions involving a single CPU.  The cost of
276 	 * unused memory when dealing with single CPU trace scenarios is small
277 	 * compared to the cost of searching through an optimized array.
278 	 */
279 	event_data->path = alloc_percpu(struct coresight_path *);
280 
281 	if (!event_data->path) {
282 		kfree(event_data);
283 		return NULL;
284 	}
285 
286 	return event_data;
287 }
288 
etm_free_aux(void * data)289 static void etm_free_aux(void *data)
290 {
291 	struct etm_event_data *event_data = data;
292 
293 	schedule_work(&event_data->work);
294 }
295 
296 /*
297  * Check if two given sinks are compatible with each other,
298  * so that they can use the same sink buffers, when an event
299  * moves around.
300  */
sinks_compatible(struct coresight_device * a,struct coresight_device * b)301 static bool sinks_compatible(struct coresight_device *a,
302 			     struct coresight_device *b)
303 {
304 	if (!a || !b)
305 		return false;
306 	/*
307 	 * If the sinks are of the same subtype and driven
308 	 * by the same driver, we can use the same buffer
309 	 * on these sinks.
310 	 */
311 	return (a->subtype.sink_subtype == b->subtype.sink_subtype) &&
312 	       (sink_ops(a) == sink_ops(b));
313 }
314 
etm_setup_aux(struct perf_event * event,void ** pages,int nr_pages,bool overwrite)315 static void *etm_setup_aux(struct perf_event *event, void **pages,
316 			   int nr_pages, bool overwrite)
317 {
318 	u32 id, cfg_hash;
319 	int cpu = event->cpu;
320 	cpumask_t *mask;
321 	struct coresight_device *sink = NULL;
322 	struct coresight_device *user_sink = NULL, *last_sink = NULL;
323 	struct etm_event_data *event_data = NULL;
324 
325 	event_data = alloc_event_data(cpu);
326 	if (!event_data)
327 		return NULL;
328 	INIT_WORK(&event_data->work, free_event_data);
329 
330 	/* First get the selected sink from user space. */
331 	if (event->attr.config2 & GENMASK_ULL(31, 0)) {
332 		id = (u32)event->attr.config2;
333 		sink = user_sink = coresight_get_sink_by_id(id);
334 	}
335 
336 	/* check if user wants a coresight configuration selected */
337 	cfg_hash = (u32)((event->attr.config2 & GENMASK_ULL(63, 32)) >> 32);
338 	if (cfg_hash) {
339 		if (cscfg_activate_config(cfg_hash))
340 			goto err;
341 		event_data->cfg_hash = cfg_hash;
342 	}
343 
344 	mask = &event_data->mask;
345 
346 	/*
347 	 * Setup the path for each CPU in a trace session. We try to build
348 	 * trace path for each CPU in the mask. If we don't find an ETM
349 	 * for the CPU or fail to build a path, we clear the CPU from the
350 	 * mask and continue with the rest. If ever we try to trace on those
351 	 * CPUs, we can handle it and fail the session.
352 	 */
353 	for_each_cpu(cpu, mask) {
354 		struct coresight_path *path;
355 		struct coresight_device *csdev;
356 
357 		csdev = per_cpu(csdev_src, cpu);
358 		/*
359 		 * If there is no ETM associated with this CPU clear it from
360 		 * the mask and continue with the rest. If ever we try to trace
361 		 * on this CPU, we handle it accordingly.
362 		 */
363 		if (!csdev) {
364 			cpumask_clear_cpu(cpu, mask);
365 			continue;
366 		}
367 
368 		/*
369 		 * No sink provided - look for a default sink for all the ETMs,
370 		 * where this event can be scheduled.
371 		 * We allocate the sink specific buffers only once for this
372 		 * event. If the ETMs have different default sink devices, we
373 		 * can only use a single "type" of sink as the event can carry
374 		 * only one sink specific buffer. Thus we have to make sure
375 		 * that the sinks are of the same type and driven by the same
376 		 * driver, as the one we allocate the buffer for. As such
377 		 * we choose the first sink and check if the remaining ETMs
378 		 * have a compatible default sink. We don't trace on a CPU
379 		 * if the sink is not compatible.
380 		 */
381 		if (!user_sink) {
382 			/* Find the default sink for this ETM */
383 			sink = coresight_find_default_sink(csdev);
384 			if (!sink) {
385 				cpumask_clear_cpu(cpu, mask);
386 				continue;
387 			}
388 
389 			/* Check if this sink compatible with the last sink */
390 			if (last_sink && !sinks_compatible(last_sink, sink)) {
391 				cpumask_clear_cpu(cpu, mask);
392 				continue;
393 			}
394 			last_sink = sink;
395 		}
396 
397 		/*
398 		 * Building a path doesn't enable it, it simply builds a
399 		 * list of devices from source to sink that can be
400 		 * referenced later when the path is actually needed.
401 		 */
402 		path = coresight_build_path(csdev, sink);
403 		if (IS_ERR(path)) {
404 			cpumask_clear_cpu(cpu, mask);
405 			continue;
406 		}
407 
408 		/* ensure we can allocate a trace ID for this CPU */
409 		coresight_path_assign_trace_id(path, CS_MODE_PERF);
410 		if (!IS_VALID_CS_TRACE_ID(path->trace_id)) {
411 			cpumask_clear_cpu(cpu, mask);
412 			coresight_release_path(path);
413 			continue;
414 		}
415 
416 		coresight_trace_id_perf_start(&sink->perf_sink_id_map);
417 		*etm_event_cpu_path_ptr(event_data, cpu) = path;
418 	}
419 
420 	/* no sink found for any CPU - cannot trace */
421 	if (!sink)
422 		goto err;
423 
424 	/* If we don't have any CPUs ready for tracing, abort */
425 	cpu = cpumask_first(mask);
426 	if (cpu >= nr_cpu_ids)
427 		goto err;
428 
429 	if (!sink_ops(sink)->alloc_buffer || !sink_ops(sink)->free_buffer)
430 		goto err;
431 
432 	/*
433 	 * Allocate the sink buffer for this session. All the sinks
434 	 * where this event can be scheduled are ensured to be of the
435 	 * same type. Thus the same sink configuration is used by the
436 	 * sinks.
437 	 */
438 	event_data->snk_config =
439 			sink_ops(sink)->alloc_buffer(sink, event, pages,
440 						     nr_pages, overwrite);
441 	if (!event_data->snk_config)
442 		goto err;
443 
444 out:
445 	return event_data;
446 
447 err:
448 	etm_free_aux(event_data);
449 	event_data = NULL;
450 	goto out;
451 }
452 
etm_event_start(struct perf_event * event,int flags)453 static void etm_event_start(struct perf_event *event, int flags)
454 {
455 	int cpu = smp_processor_id();
456 	struct etm_event_data *event_data;
457 	struct etm_ctxt *ctxt = this_cpu_ptr(&etm_ctxt);
458 	struct perf_output_handle *handle = &ctxt->handle;
459 	struct coresight_device *sink, *csdev = per_cpu(csdev_src, cpu);
460 	struct coresight_path *path;
461 	u64 hw_id;
462 
463 	if (!csdev)
464 		goto fail;
465 
466 	/* Have we messed up our tracking ? */
467 	if (WARN_ON(ctxt->event_data))
468 		goto fail;
469 
470 	/*
471 	 * Deal with the ring buffer API and get a handle on the
472 	 * session's information.
473 	 */
474 	event_data = perf_aux_output_begin(handle, event);
475 	if (!event_data)
476 		goto fail;
477 
478 	/*
479 	 * Check if this ETM is allowed to trace, as decided
480 	 * at etm_setup_aux(). This could be due to an unreachable
481 	 * sink from this ETM. We can't do much in this case if
482 	 * the sink was specified or hinted to the driver. For
483 	 * now, simply don't record anything on this ETM.
484 	 *
485 	 * As such we pretend that everything is fine, and let
486 	 * it continue without actually tracing. The event could
487 	 * continue tracing when it moves to a CPU where it is
488 	 * reachable to a sink.
489 	 */
490 	if (!cpumask_test_cpu(cpu, &event_data->mask))
491 		goto out;
492 
493 	path = etm_event_cpu_path(event_data, cpu);
494 	/* We need a sink, no need to continue without one */
495 	sink = coresight_get_sink(path);
496 	if (WARN_ON_ONCE(!sink))
497 		goto fail_end_stop;
498 
499 	/* Nothing will happen without a path */
500 	if (coresight_enable_path(path, CS_MODE_PERF, handle))
501 		goto fail_end_stop;
502 
503 	/* Finally enable the tracer */
504 	if (source_ops(csdev)->enable(csdev, event, CS_MODE_PERF, path))
505 		goto fail_disable_path;
506 
507 	/*
508 	 * output cpu / trace ID in perf record, once for the lifetime
509 	 * of the event.
510 	 */
511 	if (!cpumask_test_cpu(cpu, &event_data->aux_hwid_done)) {
512 		cpumask_set_cpu(cpu, &event_data->aux_hwid_done);
513 
514 		hw_id = FIELD_PREP(CS_AUX_HW_ID_MAJOR_VERSION_MASK,
515 				CS_AUX_HW_ID_MAJOR_VERSION);
516 		hw_id |= FIELD_PREP(CS_AUX_HW_ID_MINOR_VERSION_MASK,
517 				CS_AUX_HW_ID_MINOR_VERSION);
518 		hw_id |= FIELD_PREP(CS_AUX_HW_ID_TRACE_ID_MASK, path->trace_id);
519 		hw_id |= FIELD_PREP(CS_AUX_HW_ID_SINK_ID_MASK, coresight_get_sink_id(sink));
520 
521 		perf_report_aux_output_id(event, hw_id);
522 	}
523 
524 out:
525 	/* Tell the perf core the event is alive */
526 	event->hw.state = 0;
527 	/* Save the event_data for this ETM */
528 	ctxt->event_data = event_data;
529 	return;
530 
531 fail_disable_path:
532 	coresight_disable_path(path);
533 fail_end_stop:
534 	/*
535 	 * Check if the handle is still associated with the event,
536 	 * to handle cases where if the sink failed to start the
537 	 * trace and TRUNCATED the handle already.
538 	 */
539 	if (READ_ONCE(handle->event)) {
540 		perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
541 		perf_aux_output_end(handle, 0);
542 	}
543 fail:
544 	event->hw.state = PERF_HES_STOPPED;
545 	return;
546 }
547 
etm_event_stop(struct perf_event * event,int mode)548 static void etm_event_stop(struct perf_event *event, int mode)
549 {
550 	int cpu = smp_processor_id();
551 	unsigned long size;
552 	struct coresight_device *sink, *csdev = per_cpu(csdev_src, cpu);
553 	struct etm_ctxt *ctxt = this_cpu_ptr(&etm_ctxt);
554 	struct perf_output_handle *handle = &ctxt->handle;
555 	struct etm_event_data *event_data;
556 	struct coresight_path *path;
557 
558 	/*
559 	 * If we still have access to the event_data via handle,
560 	 * confirm that we haven't messed up the tracking.
561 	 */
562 	if (handle->event &&
563 	    WARN_ON(perf_get_aux(handle) != ctxt->event_data))
564 		return;
565 
566 	event_data = ctxt->event_data;
567 	/* Clear the event_data as this ETM is stopping the trace. */
568 	ctxt->event_data = NULL;
569 
570 	if (event->hw.state == PERF_HES_STOPPED)
571 		return;
572 
573 	/* We must have a valid event_data for a running event */
574 	if (WARN_ON(!event_data))
575 		return;
576 
577 	/*
578 	 * Check if this ETM was allowed to trace, as decided at
579 	 * etm_setup_aux(). If it wasn't allowed to trace, then
580 	 * nothing needs to be torn down other than outputting a
581 	 * zero sized record.
582 	 */
583 	if (handle->event && (mode & PERF_EF_UPDATE) &&
584 	    !cpumask_test_cpu(cpu, &event_data->mask)) {
585 		event->hw.state = PERF_HES_STOPPED;
586 		perf_aux_output_end(handle, 0);
587 		return;
588 	}
589 
590 	if (!csdev)
591 		return;
592 
593 	path = etm_event_cpu_path(event_data, cpu);
594 	if (!path)
595 		return;
596 
597 	sink = coresight_get_sink(path);
598 	if (!sink)
599 		return;
600 
601 	/* stop tracer */
602 	coresight_disable_source(csdev, event);
603 
604 	/* tell the core */
605 	event->hw.state = PERF_HES_STOPPED;
606 
607 	/*
608 	 * If the handle is not bound to an event anymore
609 	 * (e.g, the sink driver was unable to restart the
610 	 * handle due to lack of buffer space), we don't
611 	 * have to do anything here.
612 	 */
613 	if (handle->event && (mode & PERF_EF_UPDATE)) {
614 		if (WARN_ON_ONCE(handle->event != event))
615 			return;
616 
617 		/* update trace information */
618 		if (!sink_ops(sink)->update_buffer)
619 			return;
620 
621 		size = sink_ops(sink)->update_buffer(sink, handle,
622 					      event_data->snk_config);
623 		/*
624 		 * Make sure the handle is still valid as the
625 		 * sink could have closed it from an IRQ.
626 		 * The sink driver must handle the race with
627 		 * update_buffer() and IRQ. Thus either we
628 		 * should get a valid handle and valid size
629 		 * (which may be 0).
630 		 *
631 		 * But we should never get a non-zero size with
632 		 * an invalid handle.
633 		 */
634 		if (READ_ONCE(handle->event))
635 			perf_aux_output_end(handle, size);
636 		else
637 			WARN_ON(size);
638 	}
639 
640 	/* Disabling the path make its elements available to other sessions */
641 	coresight_disable_path(path);
642 }
643 
etm_event_add(struct perf_event * event,int mode)644 static int etm_event_add(struct perf_event *event, int mode)
645 {
646 	int ret = 0;
647 	struct hw_perf_event *hwc = &event->hw;
648 
649 	if (mode & PERF_EF_START) {
650 		etm_event_start(event, 0);
651 		if (hwc->state & PERF_HES_STOPPED)
652 			ret = -EINVAL;
653 	} else {
654 		hwc->state = PERF_HES_STOPPED;
655 	}
656 
657 	return ret;
658 }
659 
etm_event_del(struct perf_event * event,int mode)660 static void etm_event_del(struct perf_event *event, int mode)
661 {
662 	etm_event_stop(event, PERF_EF_UPDATE);
663 }
664 
etm_addr_filters_validate(struct list_head * filters)665 static int etm_addr_filters_validate(struct list_head *filters)
666 {
667 	bool range = false, address = false;
668 	int index = 0;
669 	struct perf_addr_filter *filter;
670 
671 	list_for_each_entry(filter, filters, entry) {
672 		/*
673 		 * No need to go further if there's no more
674 		 * room for filters.
675 		 */
676 		if (++index > ETM_ADDR_CMP_MAX)
677 			return -EOPNOTSUPP;
678 
679 		/* filter::size==0 means single address trigger */
680 		if (filter->size) {
681 			/*
682 			 * The existing code relies on START/STOP filters
683 			 * being address filters.
684 			 */
685 			if (filter->action == PERF_ADDR_FILTER_ACTION_START ||
686 			    filter->action == PERF_ADDR_FILTER_ACTION_STOP)
687 				return -EOPNOTSUPP;
688 
689 			range = true;
690 		} else
691 			address = true;
692 
693 		/*
694 		 * At this time we don't allow range and start/stop filtering
695 		 * to cohabitate, they have to be mutually exclusive.
696 		 */
697 		if (range && address)
698 			return -EOPNOTSUPP;
699 	}
700 
701 	return 0;
702 }
703 
etm_addr_filters_sync(struct perf_event * event)704 static void etm_addr_filters_sync(struct perf_event *event)
705 {
706 	struct perf_addr_filters_head *head = perf_event_addr_filters(event);
707 	unsigned long start, stop;
708 	struct perf_addr_filter_range *fr = event->addr_filter_ranges;
709 	struct etm_filters *filters = event->hw.addr_filters;
710 	struct etm_filter *etm_filter;
711 	struct perf_addr_filter *filter;
712 	int i = 0;
713 
714 	list_for_each_entry(filter, &head->list, entry) {
715 		start = fr[i].start;
716 		stop = start + fr[i].size;
717 		etm_filter = &filters->etm_filter[i];
718 
719 		switch (filter->action) {
720 		case PERF_ADDR_FILTER_ACTION_FILTER:
721 			etm_filter->start_addr = start;
722 			etm_filter->stop_addr = stop;
723 			etm_filter->type = ETM_ADDR_TYPE_RANGE;
724 			break;
725 		case PERF_ADDR_FILTER_ACTION_START:
726 			etm_filter->start_addr = start;
727 			etm_filter->type = ETM_ADDR_TYPE_START;
728 			break;
729 		case PERF_ADDR_FILTER_ACTION_STOP:
730 			etm_filter->stop_addr = stop;
731 			etm_filter->type = ETM_ADDR_TYPE_STOP;
732 			break;
733 		}
734 		i++;
735 	}
736 
737 	filters->nr_filters = i;
738 }
739 
etm_perf_symlink(struct coresight_device * csdev,bool link)740 int etm_perf_symlink(struct coresight_device *csdev, bool link)
741 {
742 	char entry[sizeof("cpu9999999")];
743 	int ret = 0, cpu = source_ops(csdev)->cpu_id(csdev);
744 	struct device *pmu_dev = etm_pmu.dev;
745 	struct device *cs_dev = &csdev->dev;
746 
747 	sprintf(entry, "cpu%d", cpu);
748 
749 	if (!etm_perf_up)
750 		return -EPROBE_DEFER;
751 
752 	if (link) {
753 		ret = sysfs_create_link(&pmu_dev->kobj, &cs_dev->kobj, entry);
754 		if (ret)
755 			return ret;
756 		per_cpu(csdev_src, cpu) = csdev;
757 	} else {
758 		sysfs_remove_link(&pmu_dev->kobj, entry);
759 		per_cpu(csdev_src, cpu) = NULL;
760 	}
761 
762 	return 0;
763 }
764 EXPORT_SYMBOL_GPL(etm_perf_symlink);
765 
etm_perf_sink_name_show(struct device * dev,struct device_attribute * dattr,char * buf)766 static ssize_t etm_perf_sink_name_show(struct device *dev,
767 				       struct device_attribute *dattr,
768 				       char *buf)
769 {
770 	struct dev_ext_attribute *ea;
771 
772 	ea = container_of(dattr, struct dev_ext_attribute, attr);
773 	return scnprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)(ea->var));
774 }
775 
776 static struct dev_ext_attribute *
etm_perf_add_symlink_group(struct device * dev,const char * name,const char * group_name)777 etm_perf_add_symlink_group(struct device *dev, const char *name, const char *group_name)
778 {
779 	struct dev_ext_attribute *ea;
780 	unsigned long hash;
781 	int ret;
782 	struct device *pmu_dev = etm_pmu.dev;
783 
784 	if (!etm_perf_up)
785 		return ERR_PTR(-EPROBE_DEFER);
786 
787 	ea = devm_kzalloc(dev, sizeof(*ea), GFP_KERNEL);
788 	if (!ea)
789 		return ERR_PTR(-ENOMEM);
790 
791 	/*
792 	 * If this function is called adding a sink then the hash is used for
793 	 * sink selection - see function coresight_get_sink_by_id().
794 	 * If adding a configuration then the hash is used for selection in
795 	 * cscfg_activate_config()
796 	 */
797 	hash = hashlen_hash(hashlen_string(NULL, name));
798 
799 	sysfs_attr_init(&ea->attr.attr);
800 	ea->attr.attr.name = devm_kstrdup(dev, name, GFP_KERNEL);
801 	if (!ea->attr.attr.name)
802 		return ERR_PTR(-ENOMEM);
803 
804 	ea->attr.attr.mode = 0444;
805 	ea->var = (unsigned long *)hash;
806 
807 	ret = sysfs_add_file_to_group(&pmu_dev->kobj,
808 				      &ea->attr.attr, group_name);
809 
810 	return ret ? ERR_PTR(ret) : ea;
811 }
812 
etm_perf_add_symlink_sink(struct coresight_device * csdev)813 int etm_perf_add_symlink_sink(struct coresight_device *csdev)
814 {
815 	const char *name;
816 	struct device *dev = &csdev->dev;
817 	int err = 0;
818 
819 	if (csdev->type != CORESIGHT_DEV_TYPE_SINK &&
820 	    csdev->type != CORESIGHT_DEV_TYPE_LINKSINK)
821 		return -EINVAL;
822 
823 	if (csdev->ea != NULL)
824 		return -EINVAL;
825 
826 	name = dev_name(dev);
827 	csdev->ea = etm_perf_add_symlink_group(dev, name, "sinks");
828 	if (IS_ERR(csdev->ea)) {
829 		err = PTR_ERR(csdev->ea);
830 		csdev->ea = NULL;
831 	} else
832 		csdev->ea->attr.show = etm_perf_sink_name_show;
833 
834 	return err;
835 }
836 
etm_perf_del_symlink_group(struct dev_ext_attribute * ea,const char * group_name)837 static void etm_perf_del_symlink_group(struct dev_ext_attribute *ea, const char *group_name)
838 {
839 	struct device *pmu_dev = etm_pmu.dev;
840 
841 	sysfs_remove_file_from_group(&pmu_dev->kobj,
842 				     &ea->attr.attr, group_name);
843 }
844 
etm_perf_del_symlink_sink(struct coresight_device * csdev)845 void etm_perf_del_symlink_sink(struct coresight_device *csdev)
846 {
847 	if (csdev->type != CORESIGHT_DEV_TYPE_SINK &&
848 	    csdev->type != CORESIGHT_DEV_TYPE_LINKSINK)
849 		return;
850 
851 	if (!csdev->ea)
852 		return;
853 
854 	etm_perf_del_symlink_group(csdev->ea, "sinks");
855 	csdev->ea = NULL;
856 }
857 
etm_perf_cscfg_event_show(struct device * dev,struct device_attribute * dattr,char * buf)858 static ssize_t etm_perf_cscfg_event_show(struct device *dev,
859 					 struct device_attribute *dattr,
860 					 char *buf)
861 {
862 	struct dev_ext_attribute *ea;
863 
864 	ea = container_of(dattr, struct dev_ext_attribute, attr);
865 	return scnprintf(buf, PAGE_SIZE, "configid=0x%lx\n", (unsigned long)(ea->var));
866 }
867 
etm_perf_add_symlink_cscfg(struct device * dev,struct cscfg_config_desc * config_desc)868 int etm_perf_add_symlink_cscfg(struct device *dev, struct cscfg_config_desc *config_desc)
869 {
870 	int err = 0;
871 
872 	if (config_desc->event_ea != NULL)
873 		return 0;
874 
875 	config_desc->event_ea = etm_perf_add_symlink_group(dev, config_desc->name, "events");
876 
877 	/* set the show function to the custom cscfg event */
878 	if (!IS_ERR(config_desc->event_ea))
879 		config_desc->event_ea->attr.show = etm_perf_cscfg_event_show;
880 	else {
881 		err = PTR_ERR(config_desc->event_ea);
882 		config_desc->event_ea = NULL;
883 	}
884 
885 	return err;
886 }
887 
etm_perf_del_symlink_cscfg(struct cscfg_config_desc * config_desc)888 void etm_perf_del_symlink_cscfg(struct cscfg_config_desc *config_desc)
889 {
890 	if (!config_desc->event_ea)
891 		return;
892 
893 	etm_perf_del_symlink_group(config_desc->event_ea, "events");
894 	config_desc->event_ea = NULL;
895 }
896 
etm_perf_init(void)897 int __init etm_perf_init(void)
898 {
899 	int ret;
900 
901 	etm_pmu.capabilities		= (PERF_PMU_CAP_EXCLUSIVE |
902 					   PERF_PMU_CAP_ITRACE);
903 
904 	etm_pmu.attr_groups		= etm_pmu_attr_groups;
905 	etm_pmu.task_ctx_nr		= perf_sw_context;
906 	etm_pmu.read			= etm_event_read;
907 	etm_pmu.event_init		= etm_event_init;
908 	etm_pmu.setup_aux		= etm_setup_aux;
909 	etm_pmu.free_aux		= etm_free_aux;
910 	etm_pmu.start			= etm_event_start;
911 	etm_pmu.stop			= etm_event_stop;
912 	etm_pmu.add			= etm_event_add;
913 	etm_pmu.del			= etm_event_del;
914 	etm_pmu.addr_filters_sync	= etm_addr_filters_sync;
915 	etm_pmu.addr_filters_validate	= etm_addr_filters_validate;
916 	etm_pmu.nr_addr_filters		= ETM_ADDR_CMP_MAX;
917 	etm_pmu.module			= THIS_MODULE;
918 
919 	ret = perf_pmu_register(&etm_pmu, CORESIGHT_ETM_PMU_NAME, -1);
920 	if (ret == 0)
921 		etm_perf_up = true;
922 
923 	return ret;
924 }
925 
etm_perf_exit(void)926 void etm_perf_exit(void)
927 {
928 	perf_pmu_unregister(&etm_pmu);
929 }
930