1 /*
2  *    Disk Array driver for HP Smart Array controllers.
3  *    (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12  *    General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
17  *    02111-1307, USA.
18  *
19  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
20  *
21  */
22 
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/pci-aspm.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/delay.h>
31 #include <linux/major.h>
32 #include <linux/fs.h>
33 #include <linux/bio.h>
34 #include <linux/blkpg.h>
35 #include <linux/timer.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/init.h>
39 #include <linux/jiffies.h>
40 #include <linux/hdreg.h>
41 #include <linux/spinlock.h>
42 #include <linux/compat.h>
43 #include <linux/mutex.h>
44 #include <asm/uaccess.h>
45 #include <asm/io.h>
46 
47 #include <linux/dma-mapping.h>
48 #include <linux/blkdev.h>
49 #include <linux/genhd.h>
50 #include <linux/completion.h>
51 #include <scsi/scsi.h>
52 #include <scsi/sg.h>
53 #include <scsi/scsi_ioctl.h>
54 #include <linux/cdrom.h>
55 #include <linux/scatterlist.h>
56 #include <linux/kthread.h>
57 
58 #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
59 #define DRIVER_NAME "HP CISS Driver (v 3.6.26)"
60 #define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 26)
61 
62 /* Embedded module documentation macros - see modules.h */
63 MODULE_AUTHOR("Hewlett-Packard Company");
64 MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
65 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
66 MODULE_VERSION("3.6.26");
67 MODULE_LICENSE("GPL");
68 static int cciss_tape_cmds = 6;
69 module_param(cciss_tape_cmds, int, 0644);
70 MODULE_PARM_DESC(cciss_tape_cmds,
71 	"number of commands to allocate for tape devices (default: 6)");
72 static int cciss_simple_mode;
73 module_param(cciss_simple_mode, int, S_IRUGO|S_IWUSR);
74 MODULE_PARM_DESC(cciss_simple_mode,
75 	"Use 'simple mode' rather than 'performant mode'");
76 
77 static DEFINE_MUTEX(cciss_mutex);
78 static struct proc_dir_entry *proc_cciss;
79 
80 #include "cciss_cmd.h"
81 #include "cciss.h"
82 #include <linux/cciss_ioctl.h>
83 
84 /* define the PCI info for the cards we can control */
85 static const struct pci_device_id cciss_pci_device_id[] = {
86 	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS,  0x0E11, 0x4070},
87 	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
88 	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
89 	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
90 	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
91 	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
92 	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
93 	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
94 	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
95 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSA,     0x103C, 0x3225},
96 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3223},
97 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3234},
98 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3235},
99 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3211},
100 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3212},
101 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3213},
102 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3214},
103 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3215},
104 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3237},
105 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x323D},
106 	{0,}
107 };
108 
109 MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
110 
111 /*  board_id = Subsystem Device ID & Vendor ID
112  *  product = Marketing Name for the board
113  *  access = Address of the struct of function pointers
114  */
115 static struct board_type products[] = {
116 	{0x40700E11, "Smart Array 5300", &SA5_access},
117 	{0x40800E11, "Smart Array 5i", &SA5B_access},
118 	{0x40820E11, "Smart Array 532", &SA5B_access},
119 	{0x40830E11, "Smart Array 5312", &SA5B_access},
120 	{0x409A0E11, "Smart Array 641", &SA5_access},
121 	{0x409B0E11, "Smart Array 642", &SA5_access},
122 	{0x409C0E11, "Smart Array 6400", &SA5_access},
123 	{0x409D0E11, "Smart Array 6400 EM", &SA5_access},
124 	{0x40910E11, "Smart Array 6i", &SA5_access},
125 	{0x3225103C, "Smart Array P600", &SA5_access},
126 	{0x3223103C, "Smart Array P800", &SA5_access},
127 	{0x3234103C, "Smart Array P400", &SA5_access},
128 	{0x3235103C, "Smart Array P400i", &SA5_access},
129 	{0x3211103C, "Smart Array E200i", &SA5_access},
130 	{0x3212103C, "Smart Array E200", &SA5_access},
131 	{0x3213103C, "Smart Array E200i", &SA5_access},
132 	{0x3214103C, "Smart Array E200i", &SA5_access},
133 	{0x3215103C, "Smart Array E200i", &SA5_access},
134 	{0x3237103C, "Smart Array E500", &SA5_access},
135 	{0x3223103C, "Smart Array P800", &SA5_access},
136 	{0x3234103C, "Smart Array P400", &SA5_access},
137 	{0x323D103C, "Smart Array P700m", &SA5_access},
138 };
139 
140 /* How long to wait (in milliseconds) for board to go into simple mode */
141 #define MAX_CONFIG_WAIT 30000
142 #define MAX_IOCTL_CONFIG_WAIT 1000
143 
144 /*define how many times we will try a command because of bus resets */
145 #define MAX_CMD_RETRIES 3
146 
147 #define MAX_CTLR	32
148 
149 /* Originally cciss driver only supports 8 major numbers */
150 #define MAX_CTLR_ORIG 	8
151 
152 static ctlr_info_t *hba[MAX_CTLR];
153 
154 static struct task_struct *cciss_scan_thread;
155 static DEFINE_MUTEX(scan_mutex);
156 static LIST_HEAD(scan_q);
157 
158 static void do_cciss_request(struct request_queue *q);
159 static irqreturn_t do_cciss_intx(int irq, void *dev_id);
160 static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id);
161 static int cciss_open(struct block_device *bdev, fmode_t mode);
162 static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode);
163 static int cciss_release(struct gendisk *disk, fmode_t mode);
164 static int do_ioctl(struct block_device *bdev, fmode_t mode,
165 		    unsigned int cmd, unsigned long arg);
166 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
167 		       unsigned int cmd, unsigned long arg);
168 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
169 
170 static int cciss_revalidate(struct gendisk *disk);
171 static int rebuild_lun_table(ctlr_info_t *h, int first_time, int via_ioctl);
172 static int deregister_disk(ctlr_info_t *h, int drv_index,
173 			   int clear_all, int via_ioctl);
174 
175 static void cciss_read_capacity(ctlr_info_t *h, int logvol,
176 			sector_t *total_size, unsigned int *block_size);
177 static void cciss_read_capacity_16(ctlr_info_t *h, int logvol,
178 			sector_t *total_size, unsigned int *block_size);
179 static void cciss_geometry_inquiry(ctlr_info_t *h, int logvol,
180 			sector_t total_size,
181 			unsigned int block_size, InquiryData_struct *inq_buff,
182 				   drive_info_struct *drv);
183 static void __devinit cciss_interrupt_mode(ctlr_info_t *);
184 static int __devinit cciss_enter_simple_mode(struct ctlr_info *h);
185 static void start_io(ctlr_info_t *h);
186 static int sendcmd_withirq(ctlr_info_t *h, __u8 cmd, void *buff, size_t size,
187 			__u8 page_code, unsigned char scsi3addr[],
188 			int cmd_type);
189 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
190 	int attempt_retry);
191 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c);
192 
193 static int add_to_scan_list(struct ctlr_info *h);
194 static int scan_thread(void *data);
195 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c);
196 static void cciss_hba_release(struct device *dev);
197 static void cciss_device_release(struct device *dev);
198 static void cciss_free_gendisk(ctlr_info_t *h, int drv_index);
199 static void cciss_free_drive_info(ctlr_info_t *h, int drv_index);
200 static inline u32 next_command(ctlr_info_t *h);
201 static int __devinit cciss_find_cfg_addrs(struct pci_dev *pdev,
202 	void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
203 	u64 *cfg_offset);
204 static int __devinit cciss_pci_find_memory_BAR(struct pci_dev *pdev,
205 	unsigned long *memory_bar);
206 static inline u32 cciss_tag_discard_error_bits(ctlr_info_t *h, u32 tag);
207 static __devinit int write_driver_ver_to_cfgtable(
208 	CfgTable_struct __iomem *cfgtable);
209 
210 /* performant mode helper functions */
211 static void  calc_bucket_map(int *bucket, int num_buckets, int nsgs,
212 				int *bucket_map);
213 static void cciss_put_controller_into_performant_mode(ctlr_info_t *h);
214 
215 #ifdef CONFIG_PROC_FS
216 static void cciss_procinit(ctlr_info_t *h);
217 #else
cciss_procinit(ctlr_info_t * h)218 static void cciss_procinit(ctlr_info_t *h)
219 {
220 }
221 #endif				/* CONFIG_PROC_FS */
222 
223 #ifdef CONFIG_COMPAT
224 static int cciss_compat_ioctl(struct block_device *, fmode_t,
225 			      unsigned, unsigned long);
226 #endif
227 
228 static const struct block_device_operations cciss_fops = {
229 	.owner = THIS_MODULE,
230 	.open = cciss_unlocked_open,
231 	.release = cciss_release,
232 	.ioctl = do_ioctl,
233 	.getgeo = cciss_getgeo,
234 #ifdef CONFIG_COMPAT
235 	.compat_ioctl = cciss_compat_ioctl,
236 #endif
237 	.revalidate_disk = cciss_revalidate,
238 };
239 
240 /* set_performant_mode: Modify the tag for cciss performant
241  * set bit 0 for pull model, bits 3-1 for block fetch
242  * register number
243  */
set_performant_mode(ctlr_info_t * h,CommandList_struct * c)244 static void set_performant_mode(ctlr_info_t *h, CommandList_struct *c)
245 {
246 	if (likely(h->transMethod & CFGTBL_Trans_Performant))
247 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
248 }
249 
250 /*
251  * Enqueuing and dequeuing functions for cmdlists.
252  */
addQ(struct list_head * list,CommandList_struct * c)253 static inline void addQ(struct list_head *list, CommandList_struct *c)
254 {
255 	list_add_tail(&c->list, list);
256 }
257 
removeQ(CommandList_struct * c)258 static inline void removeQ(CommandList_struct *c)
259 {
260 	/*
261 	 * After kexec/dump some commands might still
262 	 * be in flight, which the firmware will try
263 	 * to complete. Resetting the firmware doesn't work
264 	 * with old fw revisions, so we have to mark
265 	 * them off as 'stale' to prevent the driver from
266 	 * falling over.
267 	 */
268 	if (WARN_ON(list_empty(&c->list))) {
269 		c->cmd_type = CMD_MSG_STALE;
270 		return;
271 	}
272 
273 	list_del_init(&c->list);
274 }
275 
enqueue_cmd_and_start_io(ctlr_info_t * h,CommandList_struct * c)276 static void enqueue_cmd_and_start_io(ctlr_info_t *h,
277 	CommandList_struct *c)
278 {
279 	unsigned long flags;
280 	set_performant_mode(h, c);
281 	spin_lock_irqsave(&h->lock, flags);
282 	addQ(&h->reqQ, c);
283 	h->Qdepth++;
284 	if (h->Qdepth > h->maxQsinceinit)
285 		h->maxQsinceinit = h->Qdepth;
286 	start_io(h);
287 	spin_unlock_irqrestore(&h->lock, flags);
288 }
289 
cciss_free_sg_chain_blocks(SGDescriptor_struct ** cmd_sg_list,int nr_cmds)290 static void cciss_free_sg_chain_blocks(SGDescriptor_struct **cmd_sg_list,
291 	int nr_cmds)
292 {
293 	int i;
294 
295 	if (!cmd_sg_list)
296 		return;
297 	for (i = 0; i < nr_cmds; i++) {
298 		kfree(cmd_sg_list[i]);
299 		cmd_sg_list[i] = NULL;
300 	}
301 	kfree(cmd_sg_list);
302 }
303 
cciss_allocate_sg_chain_blocks(ctlr_info_t * h,int chainsize,int nr_cmds)304 static SGDescriptor_struct **cciss_allocate_sg_chain_blocks(
305 	ctlr_info_t *h, int chainsize, int nr_cmds)
306 {
307 	int j;
308 	SGDescriptor_struct **cmd_sg_list;
309 
310 	if (chainsize <= 0)
311 		return NULL;
312 
313 	cmd_sg_list = kmalloc(sizeof(*cmd_sg_list) * nr_cmds, GFP_KERNEL);
314 	if (!cmd_sg_list)
315 		return NULL;
316 
317 	/* Build up chain blocks for each command */
318 	for (j = 0; j < nr_cmds; j++) {
319 		/* Need a block of chainsized s/g elements. */
320 		cmd_sg_list[j] = kmalloc((chainsize *
321 			sizeof(*cmd_sg_list[j])), GFP_KERNEL);
322 		if (!cmd_sg_list[j]) {
323 			dev_err(&h->pdev->dev, "Cannot get memory "
324 				"for s/g chains.\n");
325 			goto clean;
326 		}
327 	}
328 	return cmd_sg_list;
329 clean:
330 	cciss_free_sg_chain_blocks(cmd_sg_list, nr_cmds);
331 	return NULL;
332 }
333 
cciss_unmap_sg_chain_block(ctlr_info_t * h,CommandList_struct * c)334 static void cciss_unmap_sg_chain_block(ctlr_info_t *h, CommandList_struct *c)
335 {
336 	SGDescriptor_struct *chain_sg;
337 	u64bit temp64;
338 
339 	if (c->Header.SGTotal <= h->max_cmd_sgentries)
340 		return;
341 
342 	chain_sg = &c->SG[h->max_cmd_sgentries - 1];
343 	temp64.val32.lower = chain_sg->Addr.lower;
344 	temp64.val32.upper = chain_sg->Addr.upper;
345 	pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
346 }
347 
cciss_map_sg_chain_block(ctlr_info_t * h,CommandList_struct * c,SGDescriptor_struct * chain_block,int len)348 static void cciss_map_sg_chain_block(ctlr_info_t *h, CommandList_struct *c,
349 	SGDescriptor_struct *chain_block, int len)
350 {
351 	SGDescriptor_struct *chain_sg;
352 	u64bit temp64;
353 
354 	chain_sg = &c->SG[h->max_cmd_sgentries - 1];
355 	chain_sg->Ext = CCISS_SG_CHAIN;
356 	chain_sg->Len = len;
357 	temp64.val = pci_map_single(h->pdev, chain_block, len,
358 				PCI_DMA_TODEVICE);
359 	chain_sg->Addr.lower = temp64.val32.lower;
360 	chain_sg->Addr.upper = temp64.val32.upper;
361 }
362 
363 #include "cciss_scsi.c"		/* For SCSI tape support */
364 
365 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
366 	"UNKNOWN"
367 };
368 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label)-1)
369 
370 #ifdef CONFIG_PROC_FS
371 
372 /*
373  * Report information about this controller.
374  */
375 #define ENG_GIG 1000000000
376 #define ENG_GIG_FACTOR (ENG_GIG/512)
377 #define ENGAGE_SCSI	"engage scsi"
378 
cciss_seq_show_header(struct seq_file * seq)379 static void cciss_seq_show_header(struct seq_file *seq)
380 {
381 	ctlr_info_t *h = seq->private;
382 
383 	seq_printf(seq, "%s: HP %s Controller\n"
384 		"Board ID: 0x%08lx\n"
385 		"Firmware Version: %c%c%c%c\n"
386 		"IRQ: %d\n"
387 		"Logical drives: %d\n"
388 		"Current Q depth: %d\n"
389 		"Current # commands on controller: %d\n"
390 		"Max Q depth since init: %d\n"
391 		"Max # commands on controller since init: %d\n"
392 		"Max SG entries since init: %d\n",
393 		h->devname,
394 		h->product_name,
395 		(unsigned long)h->board_id,
396 		h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
397 		h->firm_ver[3], (unsigned int)h->intr[h->intr_mode],
398 		h->num_luns,
399 		h->Qdepth, h->commands_outstanding,
400 		h->maxQsinceinit, h->max_outstanding, h->maxSG);
401 
402 #ifdef CONFIG_CISS_SCSI_TAPE
403 	cciss_seq_tape_report(seq, h);
404 #endif /* CONFIG_CISS_SCSI_TAPE */
405 }
406 
cciss_seq_start(struct seq_file * seq,loff_t * pos)407 static void *cciss_seq_start(struct seq_file *seq, loff_t *pos)
408 {
409 	ctlr_info_t *h = seq->private;
410 	unsigned long flags;
411 
412 	/* prevent displaying bogus info during configuration
413 	 * or deconfiguration of a logical volume
414 	 */
415 	spin_lock_irqsave(&h->lock, flags);
416 	if (h->busy_configuring) {
417 		spin_unlock_irqrestore(&h->lock, flags);
418 		return ERR_PTR(-EBUSY);
419 	}
420 	h->busy_configuring = 1;
421 	spin_unlock_irqrestore(&h->lock, flags);
422 
423 	if (*pos == 0)
424 		cciss_seq_show_header(seq);
425 
426 	return pos;
427 }
428 
cciss_seq_show(struct seq_file * seq,void * v)429 static int cciss_seq_show(struct seq_file *seq, void *v)
430 {
431 	sector_t vol_sz, vol_sz_frac;
432 	ctlr_info_t *h = seq->private;
433 	unsigned ctlr = h->ctlr;
434 	loff_t *pos = v;
435 	drive_info_struct *drv = h->drv[*pos];
436 
437 	if (*pos > h->highest_lun)
438 		return 0;
439 
440 	if (drv == NULL) /* it's possible for h->drv[] to have holes. */
441 		return 0;
442 
443 	if (drv->heads == 0)
444 		return 0;
445 
446 	vol_sz = drv->nr_blocks;
447 	vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
448 	vol_sz_frac *= 100;
449 	sector_div(vol_sz_frac, ENG_GIG_FACTOR);
450 
451 	if (drv->raid_level < 0 || drv->raid_level > RAID_UNKNOWN)
452 		drv->raid_level = RAID_UNKNOWN;
453 	seq_printf(seq, "cciss/c%dd%d:"
454 			"\t%4u.%02uGB\tRAID %s\n",
455 			ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac,
456 			raid_label[drv->raid_level]);
457 	return 0;
458 }
459 
cciss_seq_next(struct seq_file * seq,void * v,loff_t * pos)460 static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos)
461 {
462 	ctlr_info_t *h = seq->private;
463 
464 	if (*pos > h->highest_lun)
465 		return NULL;
466 	*pos += 1;
467 
468 	return pos;
469 }
470 
cciss_seq_stop(struct seq_file * seq,void * v)471 static void cciss_seq_stop(struct seq_file *seq, void *v)
472 {
473 	ctlr_info_t *h = seq->private;
474 
475 	/* Only reset h->busy_configuring if we succeeded in setting
476 	 * it during cciss_seq_start. */
477 	if (v == ERR_PTR(-EBUSY))
478 		return;
479 
480 	h->busy_configuring = 0;
481 }
482 
483 static const struct seq_operations cciss_seq_ops = {
484 	.start = cciss_seq_start,
485 	.show  = cciss_seq_show,
486 	.next  = cciss_seq_next,
487 	.stop  = cciss_seq_stop,
488 };
489 
cciss_seq_open(struct inode * inode,struct file * file)490 static int cciss_seq_open(struct inode *inode, struct file *file)
491 {
492 	int ret = seq_open(file, &cciss_seq_ops);
493 	struct seq_file *seq = file->private_data;
494 
495 	if (!ret)
496 		seq->private = PDE(inode)->data;
497 
498 	return ret;
499 }
500 
501 static ssize_t
cciss_proc_write(struct file * file,const char __user * buf,size_t length,loff_t * ppos)502 cciss_proc_write(struct file *file, const char __user *buf,
503 		 size_t length, loff_t *ppos)
504 {
505 	int err;
506 	char *buffer;
507 
508 #ifndef CONFIG_CISS_SCSI_TAPE
509 	return -EINVAL;
510 #endif
511 
512 	if (!buf || length > PAGE_SIZE - 1)
513 		return -EINVAL;
514 
515 	buffer = (char *)__get_free_page(GFP_KERNEL);
516 	if (!buffer)
517 		return -ENOMEM;
518 
519 	err = -EFAULT;
520 	if (copy_from_user(buffer, buf, length))
521 		goto out;
522 	buffer[length] = '\0';
523 
524 #ifdef CONFIG_CISS_SCSI_TAPE
525 	if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) {
526 		struct seq_file *seq = file->private_data;
527 		ctlr_info_t *h = seq->private;
528 
529 		err = cciss_engage_scsi(h);
530 		if (err == 0)
531 			err = length;
532 	} else
533 #endif /* CONFIG_CISS_SCSI_TAPE */
534 		err = -EINVAL;
535 	/* might be nice to have "disengage" too, but it's not
536 	   safely possible. (only 1 module use count, lock issues.) */
537 
538 out:
539 	free_page((unsigned long)buffer);
540 	return err;
541 }
542 
543 static const struct file_operations cciss_proc_fops = {
544 	.owner	 = THIS_MODULE,
545 	.open    = cciss_seq_open,
546 	.read    = seq_read,
547 	.llseek  = seq_lseek,
548 	.release = seq_release,
549 	.write	 = cciss_proc_write,
550 };
551 
cciss_procinit(ctlr_info_t * h)552 static void __devinit cciss_procinit(ctlr_info_t *h)
553 {
554 	struct proc_dir_entry *pde;
555 
556 	if (proc_cciss == NULL)
557 		proc_cciss = proc_mkdir("driver/cciss", NULL);
558 	if (!proc_cciss)
559 		return;
560 	pde = proc_create_data(h->devname, S_IWUSR | S_IRUSR | S_IRGRP |
561 					S_IROTH, proc_cciss,
562 					&cciss_proc_fops, h);
563 }
564 #endif				/* CONFIG_PROC_FS */
565 
566 #define MAX_PRODUCT_NAME_LEN 19
567 
568 #define to_hba(n) container_of(n, struct ctlr_info, dev)
569 #define to_drv(n) container_of(n, drive_info_struct, dev)
570 
571 /* List of controllers which cannot be hard reset on kexec with reset_devices */
572 static u32 unresettable_controller[] = {
573 	0x324a103C, /* Smart Array P712m */
574 	0x324b103C, /* SmartArray P711m */
575 	0x3223103C, /* Smart Array P800 */
576 	0x3234103C, /* Smart Array P400 */
577 	0x3235103C, /* Smart Array P400i */
578 	0x3211103C, /* Smart Array E200i */
579 	0x3212103C, /* Smart Array E200 */
580 	0x3213103C, /* Smart Array E200i */
581 	0x3214103C, /* Smart Array E200i */
582 	0x3215103C, /* Smart Array E200i */
583 	0x3237103C, /* Smart Array E500 */
584 	0x323D103C, /* Smart Array P700m */
585 	0x409C0E11, /* Smart Array 6400 */
586 	0x409D0E11, /* Smart Array 6400 EM */
587 };
588 
589 /* List of controllers which cannot even be soft reset */
590 static u32 soft_unresettable_controller[] = {
591 	0x409C0E11, /* Smart Array 6400 */
592 	0x409D0E11, /* Smart Array 6400 EM */
593 };
594 
ctlr_is_hard_resettable(u32 board_id)595 static int ctlr_is_hard_resettable(u32 board_id)
596 {
597 	int i;
598 
599 	for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
600 		if (unresettable_controller[i] == board_id)
601 			return 0;
602 	return 1;
603 }
604 
ctlr_is_soft_resettable(u32 board_id)605 static int ctlr_is_soft_resettable(u32 board_id)
606 {
607 	int i;
608 
609 	for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
610 		if (soft_unresettable_controller[i] == board_id)
611 			return 0;
612 	return 1;
613 }
614 
ctlr_is_resettable(u32 board_id)615 static int ctlr_is_resettable(u32 board_id)
616 {
617 	return ctlr_is_hard_resettable(board_id) ||
618 		ctlr_is_soft_resettable(board_id);
619 }
620 
host_show_resettable(struct device * dev,struct device_attribute * attr,char * buf)621 static ssize_t host_show_resettable(struct device *dev,
622 				    struct device_attribute *attr,
623 				    char *buf)
624 {
625 	struct ctlr_info *h = to_hba(dev);
626 
627 	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
628 }
629 static DEVICE_ATTR(resettable, S_IRUGO, host_show_resettable, NULL);
630 
host_store_rescan(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)631 static ssize_t host_store_rescan(struct device *dev,
632 				 struct device_attribute *attr,
633 				 const char *buf, size_t count)
634 {
635 	struct ctlr_info *h = to_hba(dev);
636 
637 	add_to_scan_list(h);
638 	wake_up_process(cciss_scan_thread);
639 	wait_for_completion_interruptible(&h->scan_wait);
640 
641 	return count;
642 }
643 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
644 
host_show_transport_mode(struct device * dev,struct device_attribute * attr,char * buf)645 static ssize_t host_show_transport_mode(struct device *dev,
646 				 struct device_attribute *attr,
647 				 char *buf)
648 {
649 	struct ctlr_info *h = to_hba(dev);
650 
651 	return snprintf(buf, 20, "%s\n",
652 		h->transMethod & CFGTBL_Trans_Performant ?
653 			"performant" : "simple");
654 }
655 static DEVICE_ATTR(transport_mode, S_IRUGO, host_show_transport_mode, NULL);
656 
dev_show_unique_id(struct device * dev,struct device_attribute * attr,char * buf)657 static ssize_t dev_show_unique_id(struct device *dev,
658 				 struct device_attribute *attr,
659 				 char *buf)
660 {
661 	drive_info_struct *drv = to_drv(dev);
662 	struct ctlr_info *h = to_hba(drv->dev.parent);
663 	__u8 sn[16];
664 	unsigned long flags;
665 	int ret = 0;
666 
667 	spin_lock_irqsave(&h->lock, flags);
668 	if (h->busy_configuring)
669 		ret = -EBUSY;
670 	else
671 		memcpy(sn, drv->serial_no, sizeof(sn));
672 	spin_unlock_irqrestore(&h->lock, flags);
673 
674 	if (ret)
675 		return ret;
676 	else
677 		return snprintf(buf, 16 * 2 + 2,
678 				"%02X%02X%02X%02X%02X%02X%02X%02X"
679 				"%02X%02X%02X%02X%02X%02X%02X%02X\n",
680 				sn[0], sn[1], sn[2], sn[3],
681 				sn[4], sn[5], sn[6], sn[7],
682 				sn[8], sn[9], sn[10], sn[11],
683 				sn[12], sn[13], sn[14], sn[15]);
684 }
685 static DEVICE_ATTR(unique_id, S_IRUGO, dev_show_unique_id, NULL);
686 
dev_show_vendor(struct device * dev,struct device_attribute * attr,char * buf)687 static ssize_t dev_show_vendor(struct device *dev,
688 			       struct device_attribute *attr,
689 			       char *buf)
690 {
691 	drive_info_struct *drv = to_drv(dev);
692 	struct ctlr_info *h = to_hba(drv->dev.parent);
693 	char vendor[VENDOR_LEN + 1];
694 	unsigned long flags;
695 	int ret = 0;
696 
697 	spin_lock_irqsave(&h->lock, flags);
698 	if (h->busy_configuring)
699 		ret = -EBUSY;
700 	else
701 		memcpy(vendor, drv->vendor, VENDOR_LEN + 1);
702 	spin_unlock_irqrestore(&h->lock, flags);
703 
704 	if (ret)
705 		return ret;
706 	else
707 		return snprintf(buf, sizeof(vendor) + 1, "%s\n", drv->vendor);
708 }
709 static DEVICE_ATTR(vendor, S_IRUGO, dev_show_vendor, NULL);
710 
dev_show_model(struct device * dev,struct device_attribute * attr,char * buf)711 static ssize_t dev_show_model(struct device *dev,
712 			      struct device_attribute *attr,
713 			      char *buf)
714 {
715 	drive_info_struct *drv = to_drv(dev);
716 	struct ctlr_info *h = to_hba(drv->dev.parent);
717 	char model[MODEL_LEN + 1];
718 	unsigned long flags;
719 	int ret = 0;
720 
721 	spin_lock_irqsave(&h->lock, flags);
722 	if (h->busy_configuring)
723 		ret = -EBUSY;
724 	else
725 		memcpy(model, drv->model, MODEL_LEN + 1);
726 	spin_unlock_irqrestore(&h->lock, flags);
727 
728 	if (ret)
729 		return ret;
730 	else
731 		return snprintf(buf, sizeof(model) + 1, "%s\n", drv->model);
732 }
733 static DEVICE_ATTR(model, S_IRUGO, dev_show_model, NULL);
734 
dev_show_rev(struct device * dev,struct device_attribute * attr,char * buf)735 static ssize_t dev_show_rev(struct device *dev,
736 			    struct device_attribute *attr,
737 			    char *buf)
738 {
739 	drive_info_struct *drv = to_drv(dev);
740 	struct ctlr_info *h = to_hba(drv->dev.parent);
741 	char rev[REV_LEN + 1];
742 	unsigned long flags;
743 	int ret = 0;
744 
745 	spin_lock_irqsave(&h->lock, flags);
746 	if (h->busy_configuring)
747 		ret = -EBUSY;
748 	else
749 		memcpy(rev, drv->rev, REV_LEN + 1);
750 	spin_unlock_irqrestore(&h->lock, flags);
751 
752 	if (ret)
753 		return ret;
754 	else
755 		return snprintf(buf, sizeof(rev) + 1, "%s\n", drv->rev);
756 }
757 static DEVICE_ATTR(rev, S_IRUGO, dev_show_rev, NULL);
758 
cciss_show_lunid(struct device * dev,struct device_attribute * attr,char * buf)759 static ssize_t cciss_show_lunid(struct device *dev,
760 				struct device_attribute *attr, char *buf)
761 {
762 	drive_info_struct *drv = to_drv(dev);
763 	struct ctlr_info *h = to_hba(drv->dev.parent);
764 	unsigned long flags;
765 	unsigned char lunid[8];
766 
767 	spin_lock_irqsave(&h->lock, flags);
768 	if (h->busy_configuring) {
769 		spin_unlock_irqrestore(&h->lock, flags);
770 		return -EBUSY;
771 	}
772 	if (!drv->heads) {
773 		spin_unlock_irqrestore(&h->lock, flags);
774 		return -ENOTTY;
775 	}
776 	memcpy(lunid, drv->LunID, sizeof(lunid));
777 	spin_unlock_irqrestore(&h->lock, flags);
778 	return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
779 		lunid[0], lunid[1], lunid[2], lunid[3],
780 		lunid[4], lunid[5], lunid[6], lunid[7]);
781 }
782 static DEVICE_ATTR(lunid, S_IRUGO, cciss_show_lunid, NULL);
783 
cciss_show_raid_level(struct device * dev,struct device_attribute * attr,char * buf)784 static ssize_t cciss_show_raid_level(struct device *dev,
785 				     struct device_attribute *attr, char *buf)
786 {
787 	drive_info_struct *drv = to_drv(dev);
788 	struct ctlr_info *h = to_hba(drv->dev.parent);
789 	int raid;
790 	unsigned long flags;
791 
792 	spin_lock_irqsave(&h->lock, flags);
793 	if (h->busy_configuring) {
794 		spin_unlock_irqrestore(&h->lock, flags);
795 		return -EBUSY;
796 	}
797 	raid = drv->raid_level;
798 	spin_unlock_irqrestore(&h->lock, flags);
799 	if (raid < 0 || raid > RAID_UNKNOWN)
800 		raid = RAID_UNKNOWN;
801 
802 	return snprintf(buf, strlen(raid_label[raid]) + 7, "RAID %s\n",
803 			raid_label[raid]);
804 }
805 static DEVICE_ATTR(raid_level, S_IRUGO, cciss_show_raid_level, NULL);
806 
cciss_show_usage_count(struct device * dev,struct device_attribute * attr,char * buf)807 static ssize_t cciss_show_usage_count(struct device *dev,
808 				      struct device_attribute *attr, char *buf)
809 {
810 	drive_info_struct *drv = to_drv(dev);
811 	struct ctlr_info *h = to_hba(drv->dev.parent);
812 	unsigned long flags;
813 	int count;
814 
815 	spin_lock_irqsave(&h->lock, flags);
816 	if (h->busy_configuring) {
817 		spin_unlock_irqrestore(&h->lock, flags);
818 		return -EBUSY;
819 	}
820 	count = drv->usage_count;
821 	spin_unlock_irqrestore(&h->lock, flags);
822 	return snprintf(buf, 20, "%d\n", count);
823 }
824 static DEVICE_ATTR(usage_count, S_IRUGO, cciss_show_usage_count, NULL);
825 
826 static struct attribute *cciss_host_attrs[] = {
827 	&dev_attr_rescan.attr,
828 	&dev_attr_resettable.attr,
829 	&dev_attr_transport_mode.attr,
830 	NULL
831 };
832 
833 static struct attribute_group cciss_host_attr_group = {
834 	.attrs = cciss_host_attrs,
835 };
836 
837 static const struct attribute_group *cciss_host_attr_groups[] = {
838 	&cciss_host_attr_group,
839 	NULL
840 };
841 
842 static struct device_type cciss_host_type = {
843 	.name		= "cciss_host",
844 	.groups		= cciss_host_attr_groups,
845 	.release	= cciss_hba_release,
846 };
847 
848 static struct attribute *cciss_dev_attrs[] = {
849 	&dev_attr_unique_id.attr,
850 	&dev_attr_model.attr,
851 	&dev_attr_vendor.attr,
852 	&dev_attr_rev.attr,
853 	&dev_attr_lunid.attr,
854 	&dev_attr_raid_level.attr,
855 	&dev_attr_usage_count.attr,
856 	NULL
857 };
858 
859 static struct attribute_group cciss_dev_attr_group = {
860 	.attrs = cciss_dev_attrs,
861 };
862 
863 static const struct attribute_group *cciss_dev_attr_groups[] = {
864 	&cciss_dev_attr_group,
865 	NULL
866 };
867 
868 static struct device_type cciss_dev_type = {
869 	.name		= "cciss_device",
870 	.groups		= cciss_dev_attr_groups,
871 	.release	= cciss_device_release,
872 };
873 
874 static struct bus_type cciss_bus_type = {
875 	.name		= "cciss",
876 };
877 
878 /*
879  * cciss_hba_release is called when the reference count
880  * of h->dev goes to zero.
881  */
cciss_hba_release(struct device * dev)882 static void cciss_hba_release(struct device *dev)
883 {
884 	/*
885 	 * nothing to do, but need this to avoid a warning
886 	 * about not having a release handler from lib/kref.c.
887 	 */
888 }
889 
890 /*
891  * Initialize sysfs entry for each controller.  This sets up and registers
892  * the 'cciss#' directory for each individual controller under
893  * /sys/bus/pci/devices/<dev>/.
894  */
cciss_create_hba_sysfs_entry(struct ctlr_info * h)895 static int cciss_create_hba_sysfs_entry(struct ctlr_info *h)
896 {
897 	device_initialize(&h->dev);
898 	h->dev.type = &cciss_host_type;
899 	h->dev.bus = &cciss_bus_type;
900 	dev_set_name(&h->dev, "%s", h->devname);
901 	h->dev.parent = &h->pdev->dev;
902 
903 	return device_add(&h->dev);
904 }
905 
906 /*
907  * Remove sysfs entries for an hba.
908  */
cciss_destroy_hba_sysfs_entry(struct ctlr_info * h)909 static void cciss_destroy_hba_sysfs_entry(struct ctlr_info *h)
910 {
911 	device_del(&h->dev);
912 	put_device(&h->dev); /* final put. */
913 }
914 
915 /* cciss_device_release is called when the reference count
916  * of h->drv[x]dev goes to zero.
917  */
cciss_device_release(struct device * dev)918 static void cciss_device_release(struct device *dev)
919 {
920 	drive_info_struct *drv = to_drv(dev);
921 	kfree(drv);
922 }
923 
924 /*
925  * Initialize sysfs for each logical drive.  This sets up and registers
926  * the 'c#d#' directory for each individual logical drive under
927  * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
928  * /sys/block/cciss!c#d# to this entry.
929  */
cciss_create_ld_sysfs_entry(struct ctlr_info * h,int drv_index)930 static long cciss_create_ld_sysfs_entry(struct ctlr_info *h,
931 				       int drv_index)
932 {
933 	struct device *dev;
934 
935 	if (h->drv[drv_index]->device_initialized)
936 		return 0;
937 
938 	dev = &h->drv[drv_index]->dev;
939 	device_initialize(dev);
940 	dev->type = &cciss_dev_type;
941 	dev->bus = &cciss_bus_type;
942 	dev_set_name(dev, "c%dd%d", h->ctlr, drv_index);
943 	dev->parent = &h->dev;
944 	h->drv[drv_index]->device_initialized = 1;
945 	return device_add(dev);
946 }
947 
948 /*
949  * Remove sysfs entries for a logical drive.
950  */
cciss_destroy_ld_sysfs_entry(struct ctlr_info * h,int drv_index,int ctlr_exiting)951 static void cciss_destroy_ld_sysfs_entry(struct ctlr_info *h, int drv_index,
952 	int ctlr_exiting)
953 {
954 	struct device *dev = &h->drv[drv_index]->dev;
955 
956 	/* special case for c*d0, we only destroy it on controller exit */
957 	if (drv_index == 0 && !ctlr_exiting)
958 		return;
959 
960 	device_del(dev);
961 	put_device(dev); /* the "final" put. */
962 	h->drv[drv_index] = NULL;
963 }
964 
965 /*
966  * For operations that cannot sleep, a command block is allocated at init,
967  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
968  * which ones are free or in use.
969  */
cmd_alloc(ctlr_info_t * h)970 static CommandList_struct *cmd_alloc(ctlr_info_t *h)
971 {
972 	CommandList_struct *c;
973 	int i;
974 	u64bit temp64;
975 	dma_addr_t cmd_dma_handle, err_dma_handle;
976 
977 	do {
978 		i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
979 		if (i == h->nr_cmds)
980 			return NULL;
981 	} while (test_and_set_bit(i & (BITS_PER_LONG - 1),
982 		  h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
983 	c = h->cmd_pool + i;
984 	memset(c, 0, sizeof(CommandList_struct));
985 	cmd_dma_handle = h->cmd_pool_dhandle + i * sizeof(CommandList_struct);
986 	c->err_info = h->errinfo_pool + i;
987 	memset(c->err_info, 0, sizeof(ErrorInfo_struct));
988 	err_dma_handle = h->errinfo_pool_dhandle
989 	    + i * sizeof(ErrorInfo_struct);
990 	h->nr_allocs++;
991 
992 	c->cmdindex = i;
993 
994 	INIT_LIST_HEAD(&c->list);
995 	c->busaddr = (__u32) cmd_dma_handle;
996 	temp64.val = (__u64) err_dma_handle;
997 	c->ErrDesc.Addr.lower = temp64.val32.lower;
998 	c->ErrDesc.Addr.upper = temp64.val32.upper;
999 	c->ErrDesc.Len = sizeof(ErrorInfo_struct);
1000 
1001 	c->ctlr = h->ctlr;
1002 	return c;
1003 }
1004 
1005 /* allocate a command using pci_alloc_consistent, used for ioctls,
1006  * etc., not for the main i/o path.
1007  */
cmd_special_alloc(ctlr_info_t * h)1008 static CommandList_struct *cmd_special_alloc(ctlr_info_t *h)
1009 {
1010 	CommandList_struct *c;
1011 	u64bit temp64;
1012 	dma_addr_t cmd_dma_handle, err_dma_handle;
1013 
1014 	c = (CommandList_struct *) pci_alloc_consistent(h->pdev,
1015 		sizeof(CommandList_struct), &cmd_dma_handle);
1016 	if (c == NULL)
1017 		return NULL;
1018 	memset(c, 0, sizeof(CommandList_struct));
1019 
1020 	c->cmdindex = -1;
1021 
1022 	c->err_info = (ErrorInfo_struct *)
1023 	    pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
1024 		    &err_dma_handle);
1025 
1026 	if (c->err_info == NULL) {
1027 		pci_free_consistent(h->pdev,
1028 			sizeof(CommandList_struct), c, cmd_dma_handle);
1029 		return NULL;
1030 	}
1031 	memset(c->err_info, 0, sizeof(ErrorInfo_struct));
1032 
1033 	INIT_LIST_HEAD(&c->list);
1034 	c->busaddr = (__u32) cmd_dma_handle;
1035 	temp64.val = (__u64) err_dma_handle;
1036 	c->ErrDesc.Addr.lower = temp64.val32.lower;
1037 	c->ErrDesc.Addr.upper = temp64.val32.upper;
1038 	c->ErrDesc.Len = sizeof(ErrorInfo_struct);
1039 
1040 	c->ctlr = h->ctlr;
1041 	return c;
1042 }
1043 
cmd_free(ctlr_info_t * h,CommandList_struct * c)1044 static void cmd_free(ctlr_info_t *h, CommandList_struct *c)
1045 {
1046 	int i;
1047 
1048 	i = c - h->cmd_pool;
1049 	clear_bit(i & (BITS_PER_LONG - 1),
1050 		  h->cmd_pool_bits + (i / BITS_PER_LONG));
1051 	h->nr_frees++;
1052 }
1053 
cmd_special_free(ctlr_info_t * h,CommandList_struct * c)1054 static void cmd_special_free(ctlr_info_t *h, CommandList_struct *c)
1055 {
1056 	u64bit temp64;
1057 
1058 	temp64.val32.lower = c->ErrDesc.Addr.lower;
1059 	temp64.val32.upper = c->ErrDesc.Addr.upper;
1060 	pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
1061 			    c->err_info, (dma_addr_t) temp64.val);
1062 	pci_free_consistent(h->pdev, sizeof(CommandList_struct), c,
1063 		(dma_addr_t) cciss_tag_discard_error_bits(h, (u32) c->busaddr));
1064 }
1065 
get_host(struct gendisk * disk)1066 static inline ctlr_info_t *get_host(struct gendisk *disk)
1067 {
1068 	return disk->queue->queuedata;
1069 }
1070 
get_drv(struct gendisk * disk)1071 static inline drive_info_struct *get_drv(struct gendisk *disk)
1072 {
1073 	return disk->private_data;
1074 }
1075 
1076 /*
1077  * Open.  Make sure the device is really there.
1078  */
cciss_open(struct block_device * bdev,fmode_t mode)1079 static int cciss_open(struct block_device *bdev, fmode_t mode)
1080 {
1081 	ctlr_info_t *h = get_host(bdev->bd_disk);
1082 	drive_info_struct *drv = get_drv(bdev->bd_disk);
1083 
1084 	dev_dbg(&h->pdev->dev, "cciss_open %s\n", bdev->bd_disk->disk_name);
1085 	if (drv->busy_configuring)
1086 		return -EBUSY;
1087 	/*
1088 	 * Root is allowed to open raw volume zero even if it's not configured
1089 	 * so array config can still work. Root is also allowed to open any
1090 	 * volume that has a LUN ID, so it can issue IOCTL to reread the
1091 	 * disk information.  I don't think I really like this
1092 	 * but I'm already using way to many device nodes to claim another one
1093 	 * for "raw controller".
1094 	 */
1095 	if (drv->heads == 0) {
1096 		if (MINOR(bdev->bd_dev) != 0) {	/* not node 0? */
1097 			/* if not node 0 make sure it is a partition = 0 */
1098 			if (MINOR(bdev->bd_dev) & 0x0f) {
1099 				return -ENXIO;
1100 				/* if it is, make sure we have a LUN ID */
1101 			} else if (memcmp(drv->LunID, CTLR_LUNID,
1102 				sizeof(drv->LunID))) {
1103 				return -ENXIO;
1104 			}
1105 		}
1106 		if (!capable(CAP_SYS_ADMIN))
1107 			return -EPERM;
1108 	}
1109 	drv->usage_count++;
1110 	h->usage_count++;
1111 	return 0;
1112 }
1113 
cciss_unlocked_open(struct block_device * bdev,fmode_t mode)1114 static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode)
1115 {
1116 	int ret;
1117 
1118 	mutex_lock(&cciss_mutex);
1119 	ret = cciss_open(bdev, mode);
1120 	mutex_unlock(&cciss_mutex);
1121 
1122 	return ret;
1123 }
1124 
1125 /*
1126  * Close.  Sync first.
1127  */
cciss_release(struct gendisk * disk,fmode_t mode)1128 static int cciss_release(struct gendisk *disk, fmode_t mode)
1129 {
1130 	ctlr_info_t *h;
1131 	drive_info_struct *drv;
1132 
1133 	mutex_lock(&cciss_mutex);
1134 	h = get_host(disk);
1135 	drv = get_drv(disk);
1136 	dev_dbg(&h->pdev->dev, "cciss_release %s\n", disk->disk_name);
1137 	drv->usage_count--;
1138 	h->usage_count--;
1139 	mutex_unlock(&cciss_mutex);
1140 	return 0;
1141 }
1142 
do_ioctl(struct block_device * bdev,fmode_t mode,unsigned cmd,unsigned long arg)1143 static int do_ioctl(struct block_device *bdev, fmode_t mode,
1144 		    unsigned cmd, unsigned long arg)
1145 {
1146 	int ret;
1147 	mutex_lock(&cciss_mutex);
1148 	ret = cciss_ioctl(bdev, mode, cmd, arg);
1149 	mutex_unlock(&cciss_mutex);
1150 	return ret;
1151 }
1152 
1153 #ifdef CONFIG_COMPAT
1154 
1155 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1156 				  unsigned cmd, unsigned long arg);
1157 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1158 				      unsigned cmd, unsigned long arg);
1159 
cciss_compat_ioctl(struct block_device * bdev,fmode_t mode,unsigned cmd,unsigned long arg)1160 static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode,
1161 			      unsigned cmd, unsigned long arg)
1162 {
1163 	switch (cmd) {
1164 	case CCISS_GETPCIINFO:
1165 	case CCISS_GETINTINFO:
1166 	case CCISS_SETINTINFO:
1167 	case CCISS_GETNODENAME:
1168 	case CCISS_SETNODENAME:
1169 	case CCISS_GETHEARTBEAT:
1170 	case CCISS_GETBUSTYPES:
1171 	case CCISS_GETFIRMVER:
1172 	case CCISS_GETDRIVVER:
1173 	case CCISS_REVALIDVOLS:
1174 	case CCISS_DEREGDISK:
1175 	case CCISS_REGNEWDISK:
1176 	case CCISS_REGNEWD:
1177 	case CCISS_RESCANDISK:
1178 	case CCISS_GETLUNINFO:
1179 		return do_ioctl(bdev, mode, cmd, arg);
1180 
1181 	case CCISS_PASSTHRU32:
1182 		return cciss_ioctl32_passthru(bdev, mode, cmd, arg);
1183 	case CCISS_BIG_PASSTHRU32:
1184 		return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg);
1185 
1186 	default:
1187 		return -ENOIOCTLCMD;
1188 	}
1189 }
1190 
cciss_ioctl32_passthru(struct block_device * bdev,fmode_t mode,unsigned cmd,unsigned long arg)1191 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1192 				  unsigned cmd, unsigned long arg)
1193 {
1194 	IOCTL32_Command_struct __user *arg32 =
1195 	    (IOCTL32_Command_struct __user *) arg;
1196 	IOCTL_Command_struct arg64;
1197 	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
1198 	int err;
1199 	u32 cp;
1200 
1201 	err = 0;
1202 	err |=
1203 	    copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1204 			   sizeof(arg64.LUN_info));
1205 	err |=
1206 	    copy_from_user(&arg64.Request, &arg32->Request,
1207 			   sizeof(arg64.Request));
1208 	err |=
1209 	    copy_from_user(&arg64.error_info, &arg32->error_info,
1210 			   sizeof(arg64.error_info));
1211 	err |= get_user(arg64.buf_size, &arg32->buf_size);
1212 	err |= get_user(cp, &arg32->buf);
1213 	arg64.buf = compat_ptr(cp);
1214 	err |= copy_to_user(p, &arg64, sizeof(arg64));
1215 
1216 	if (err)
1217 		return -EFAULT;
1218 
1219 	err = do_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p);
1220 	if (err)
1221 		return err;
1222 	err |=
1223 	    copy_in_user(&arg32->error_info, &p->error_info,
1224 			 sizeof(arg32->error_info));
1225 	if (err)
1226 		return -EFAULT;
1227 	return err;
1228 }
1229 
cciss_ioctl32_big_passthru(struct block_device * bdev,fmode_t mode,unsigned cmd,unsigned long arg)1230 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1231 				      unsigned cmd, unsigned long arg)
1232 {
1233 	BIG_IOCTL32_Command_struct __user *arg32 =
1234 	    (BIG_IOCTL32_Command_struct __user *) arg;
1235 	BIG_IOCTL_Command_struct arg64;
1236 	BIG_IOCTL_Command_struct __user *p =
1237 	    compat_alloc_user_space(sizeof(arg64));
1238 	int err;
1239 	u32 cp;
1240 
1241 	memset(&arg64, 0, sizeof(arg64));
1242 	err = 0;
1243 	err |=
1244 	    copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1245 			   sizeof(arg64.LUN_info));
1246 	err |=
1247 	    copy_from_user(&arg64.Request, &arg32->Request,
1248 			   sizeof(arg64.Request));
1249 	err |=
1250 	    copy_from_user(&arg64.error_info, &arg32->error_info,
1251 			   sizeof(arg64.error_info));
1252 	err |= get_user(arg64.buf_size, &arg32->buf_size);
1253 	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
1254 	err |= get_user(cp, &arg32->buf);
1255 	arg64.buf = compat_ptr(cp);
1256 	err |= copy_to_user(p, &arg64, sizeof(arg64));
1257 
1258 	if (err)
1259 		return -EFAULT;
1260 
1261 	err = do_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p);
1262 	if (err)
1263 		return err;
1264 	err |=
1265 	    copy_in_user(&arg32->error_info, &p->error_info,
1266 			 sizeof(arg32->error_info));
1267 	if (err)
1268 		return -EFAULT;
1269 	return err;
1270 }
1271 #endif
1272 
cciss_getgeo(struct block_device * bdev,struct hd_geometry * geo)1273 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1274 {
1275 	drive_info_struct *drv = get_drv(bdev->bd_disk);
1276 
1277 	if (!drv->cylinders)
1278 		return -ENXIO;
1279 
1280 	geo->heads = drv->heads;
1281 	geo->sectors = drv->sectors;
1282 	geo->cylinders = drv->cylinders;
1283 	return 0;
1284 }
1285 
check_ioctl_unit_attention(ctlr_info_t * h,CommandList_struct * c)1286 static void check_ioctl_unit_attention(ctlr_info_t *h, CommandList_struct *c)
1287 {
1288 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
1289 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
1290 		(void)check_for_unit_attention(h, c);
1291 }
1292 
cciss_getpciinfo(ctlr_info_t * h,void __user * argp)1293 static int cciss_getpciinfo(ctlr_info_t *h, void __user *argp)
1294 {
1295 	cciss_pci_info_struct pciinfo;
1296 
1297 	if (!argp)
1298 		return -EINVAL;
1299 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
1300 	pciinfo.bus = h->pdev->bus->number;
1301 	pciinfo.dev_fn = h->pdev->devfn;
1302 	pciinfo.board_id = h->board_id;
1303 	if (copy_to_user(argp, &pciinfo, sizeof(cciss_pci_info_struct)))
1304 		return -EFAULT;
1305 	return 0;
1306 }
1307 
cciss_getintinfo(ctlr_info_t * h,void __user * argp)1308 static int cciss_getintinfo(ctlr_info_t *h, void __user *argp)
1309 {
1310 	cciss_coalint_struct intinfo;
1311 
1312 	if (!argp)
1313 		return -EINVAL;
1314 	intinfo.delay = readl(&h->cfgtable->HostWrite.CoalIntDelay);
1315 	intinfo.count = readl(&h->cfgtable->HostWrite.CoalIntCount);
1316 	if (copy_to_user
1317 	    (argp, &intinfo, sizeof(cciss_coalint_struct)))
1318 		return -EFAULT;
1319 	return 0;
1320 }
1321 
cciss_setintinfo(ctlr_info_t * h,void __user * argp)1322 static int cciss_setintinfo(ctlr_info_t *h, void __user *argp)
1323 {
1324 	cciss_coalint_struct intinfo;
1325 	unsigned long flags;
1326 	int i;
1327 
1328 	if (!argp)
1329 		return -EINVAL;
1330 	if (!capable(CAP_SYS_ADMIN))
1331 		return -EPERM;
1332 	if (copy_from_user(&intinfo, argp, sizeof(intinfo)))
1333 		return -EFAULT;
1334 	if ((intinfo.delay == 0) && (intinfo.count == 0))
1335 		return -EINVAL;
1336 	spin_lock_irqsave(&h->lock, flags);
1337 	/* Update the field, and then ring the doorbell */
1338 	writel(intinfo.delay, &(h->cfgtable->HostWrite.CoalIntDelay));
1339 	writel(intinfo.count, &(h->cfgtable->HostWrite.CoalIntCount));
1340 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
1341 
1342 	for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1343 		if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
1344 			break;
1345 		udelay(1000); /* delay and try again */
1346 	}
1347 	spin_unlock_irqrestore(&h->lock, flags);
1348 	if (i >= MAX_IOCTL_CONFIG_WAIT)
1349 		return -EAGAIN;
1350 	return 0;
1351 }
1352 
cciss_getnodename(ctlr_info_t * h,void __user * argp)1353 static int cciss_getnodename(ctlr_info_t *h, void __user *argp)
1354 {
1355 	NodeName_type NodeName;
1356 	int i;
1357 
1358 	if (!argp)
1359 		return -EINVAL;
1360 	for (i = 0; i < 16; i++)
1361 		NodeName[i] = readb(&h->cfgtable->ServerName[i]);
1362 	if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
1363 		return -EFAULT;
1364 	return 0;
1365 }
1366 
cciss_setnodename(ctlr_info_t * h,void __user * argp)1367 static int cciss_setnodename(ctlr_info_t *h, void __user *argp)
1368 {
1369 	NodeName_type NodeName;
1370 	unsigned long flags;
1371 	int i;
1372 
1373 	if (!argp)
1374 		return -EINVAL;
1375 	if (!capable(CAP_SYS_ADMIN))
1376 		return -EPERM;
1377 	if (copy_from_user(NodeName, argp, sizeof(NodeName_type)))
1378 		return -EFAULT;
1379 	spin_lock_irqsave(&h->lock, flags);
1380 	/* Update the field, and then ring the doorbell */
1381 	for (i = 0; i < 16; i++)
1382 		writeb(NodeName[i], &h->cfgtable->ServerName[i]);
1383 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
1384 	for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1385 		if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
1386 			break;
1387 		udelay(1000); /* delay and try again */
1388 	}
1389 	spin_unlock_irqrestore(&h->lock, flags);
1390 	if (i >= MAX_IOCTL_CONFIG_WAIT)
1391 		return -EAGAIN;
1392 	return 0;
1393 }
1394 
cciss_getheartbeat(ctlr_info_t * h,void __user * argp)1395 static int cciss_getheartbeat(ctlr_info_t *h, void __user *argp)
1396 {
1397 	Heartbeat_type heartbeat;
1398 
1399 	if (!argp)
1400 		return -EINVAL;
1401 	heartbeat = readl(&h->cfgtable->HeartBeat);
1402 	if (copy_to_user(argp, &heartbeat, sizeof(Heartbeat_type)))
1403 		return -EFAULT;
1404 	return 0;
1405 }
1406 
cciss_getbustypes(ctlr_info_t * h,void __user * argp)1407 static int cciss_getbustypes(ctlr_info_t *h, void __user *argp)
1408 {
1409 	BusTypes_type BusTypes;
1410 
1411 	if (!argp)
1412 		return -EINVAL;
1413 	BusTypes = readl(&h->cfgtable->BusTypes);
1414 	if (copy_to_user(argp, &BusTypes, sizeof(BusTypes_type)))
1415 		return -EFAULT;
1416 	return 0;
1417 }
1418 
cciss_getfirmver(ctlr_info_t * h,void __user * argp)1419 static int cciss_getfirmver(ctlr_info_t *h, void __user *argp)
1420 {
1421 	FirmwareVer_type firmware;
1422 
1423 	if (!argp)
1424 		return -EINVAL;
1425 	memcpy(firmware, h->firm_ver, 4);
1426 
1427 	if (copy_to_user
1428 	    (argp, firmware, sizeof(FirmwareVer_type)))
1429 		return -EFAULT;
1430 	return 0;
1431 }
1432 
cciss_getdrivver(ctlr_info_t * h,void __user * argp)1433 static int cciss_getdrivver(ctlr_info_t *h, void __user *argp)
1434 {
1435 	DriverVer_type DriverVer = DRIVER_VERSION;
1436 
1437 	if (!argp)
1438 		return -EINVAL;
1439 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
1440 		return -EFAULT;
1441 	return 0;
1442 }
1443 
cciss_getluninfo(ctlr_info_t * h,struct gendisk * disk,void __user * argp)1444 static int cciss_getluninfo(ctlr_info_t *h,
1445 	struct gendisk *disk, void __user *argp)
1446 {
1447 	LogvolInfo_struct luninfo;
1448 	drive_info_struct *drv = get_drv(disk);
1449 
1450 	if (!argp)
1451 		return -EINVAL;
1452 	memcpy(&luninfo.LunID, drv->LunID, sizeof(luninfo.LunID));
1453 	luninfo.num_opens = drv->usage_count;
1454 	luninfo.num_parts = 0;
1455 	if (copy_to_user(argp, &luninfo, sizeof(LogvolInfo_struct)))
1456 		return -EFAULT;
1457 	return 0;
1458 }
1459 
cciss_passthru(ctlr_info_t * h,void __user * argp)1460 static int cciss_passthru(ctlr_info_t *h, void __user *argp)
1461 {
1462 	IOCTL_Command_struct iocommand;
1463 	CommandList_struct *c;
1464 	char *buff = NULL;
1465 	u64bit temp64;
1466 	DECLARE_COMPLETION_ONSTACK(wait);
1467 
1468 	if (!argp)
1469 		return -EINVAL;
1470 
1471 	if (!capable(CAP_SYS_RAWIO))
1472 		return -EPERM;
1473 
1474 	if (copy_from_user
1475 	    (&iocommand, argp, sizeof(IOCTL_Command_struct)))
1476 		return -EFAULT;
1477 	if ((iocommand.buf_size < 1) &&
1478 	    (iocommand.Request.Type.Direction != XFER_NONE)) {
1479 		return -EINVAL;
1480 	}
1481 	if (iocommand.buf_size > 0) {
1482 		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
1483 		if (buff == NULL)
1484 			return -EFAULT;
1485 	}
1486 	if (iocommand.Request.Type.Direction == XFER_WRITE) {
1487 		/* Copy the data into the buffer we created */
1488 		if (copy_from_user(buff, iocommand.buf, iocommand.buf_size)) {
1489 			kfree(buff);
1490 			return -EFAULT;
1491 		}
1492 	} else {
1493 		memset(buff, 0, iocommand.buf_size);
1494 	}
1495 	c = cmd_special_alloc(h);
1496 	if (!c) {
1497 		kfree(buff);
1498 		return -ENOMEM;
1499 	}
1500 	/* Fill in the command type */
1501 	c->cmd_type = CMD_IOCTL_PEND;
1502 	/* Fill in Command Header */
1503 	c->Header.ReplyQueue = 0;   /* unused in simple mode */
1504 	if (iocommand.buf_size > 0) { /* buffer to fill */
1505 		c->Header.SGList = 1;
1506 		c->Header.SGTotal = 1;
1507 	} else { /* no buffers to fill */
1508 		c->Header.SGList = 0;
1509 		c->Header.SGTotal = 0;
1510 	}
1511 	c->Header.LUN = iocommand.LUN_info;
1512 	/* use the kernel address the cmd block for tag */
1513 	c->Header.Tag.lower = c->busaddr;
1514 
1515 	/* Fill in Request block */
1516 	c->Request = iocommand.Request;
1517 
1518 	/* Fill in the scatter gather information */
1519 	if (iocommand.buf_size > 0) {
1520 		temp64.val = pci_map_single(h->pdev, buff,
1521 			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
1522 		c->SG[0].Addr.lower = temp64.val32.lower;
1523 		c->SG[0].Addr.upper = temp64.val32.upper;
1524 		c->SG[0].Len = iocommand.buf_size;
1525 		c->SG[0].Ext = 0;  /* we are not chaining */
1526 	}
1527 	c->waiting = &wait;
1528 
1529 	enqueue_cmd_and_start_io(h, c);
1530 	wait_for_completion(&wait);
1531 
1532 	/* unlock the buffers from DMA */
1533 	temp64.val32.lower = c->SG[0].Addr.lower;
1534 	temp64.val32.upper = c->SG[0].Addr.upper;
1535 	pci_unmap_single(h->pdev, (dma_addr_t) temp64.val, iocommand.buf_size,
1536 			 PCI_DMA_BIDIRECTIONAL);
1537 	check_ioctl_unit_attention(h, c);
1538 
1539 	/* Copy the error information out */
1540 	iocommand.error_info = *(c->err_info);
1541 	if (copy_to_user(argp, &iocommand, sizeof(IOCTL_Command_struct))) {
1542 		kfree(buff);
1543 		cmd_special_free(h, c);
1544 		return -EFAULT;
1545 	}
1546 
1547 	if (iocommand.Request.Type.Direction == XFER_READ) {
1548 		/* Copy the data out of the buffer we created */
1549 		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
1550 			kfree(buff);
1551 			cmd_special_free(h, c);
1552 			return -EFAULT;
1553 		}
1554 	}
1555 	kfree(buff);
1556 	cmd_special_free(h, c);
1557 	return 0;
1558 }
1559 
cciss_bigpassthru(ctlr_info_t * h,void __user * argp)1560 static int cciss_bigpassthru(ctlr_info_t *h, void __user *argp)
1561 {
1562 	BIG_IOCTL_Command_struct *ioc;
1563 	CommandList_struct *c;
1564 	unsigned char **buff = NULL;
1565 	int *buff_size = NULL;
1566 	u64bit temp64;
1567 	BYTE sg_used = 0;
1568 	int status = 0;
1569 	int i;
1570 	DECLARE_COMPLETION_ONSTACK(wait);
1571 	__u32 left;
1572 	__u32 sz;
1573 	BYTE __user *data_ptr;
1574 
1575 	if (!argp)
1576 		return -EINVAL;
1577 	if (!capable(CAP_SYS_RAWIO))
1578 		return -EPERM;
1579 	ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
1580 	if (!ioc) {
1581 		status = -ENOMEM;
1582 		goto cleanup1;
1583 	}
1584 	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
1585 		status = -EFAULT;
1586 		goto cleanup1;
1587 	}
1588 	if ((ioc->buf_size < 1) &&
1589 	    (ioc->Request.Type.Direction != XFER_NONE)) {
1590 		status = -EINVAL;
1591 		goto cleanup1;
1592 	}
1593 	/* Check kmalloc limits  using all SGs */
1594 	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
1595 		status = -EINVAL;
1596 		goto cleanup1;
1597 	}
1598 	if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
1599 		status = -EINVAL;
1600 		goto cleanup1;
1601 	}
1602 	buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
1603 	if (!buff) {
1604 		status = -ENOMEM;
1605 		goto cleanup1;
1606 	}
1607 	buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
1608 	if (!buff_size) {
1609 		status = -ENOMEM;
1610 		goto cleanup1;
1611 	}
1612 	left = ioc->buf_size;
1613 	data_ptr = ioc->buf;
1614 	while (left) {
1615 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
1616 		buff_size[sg_used] = sz;
1617 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
1618 		if (buff[sg_used] == NULL) {
1619 			status = -ENOMEM;
1620 			goto cleanup1;
1621 		}
1622 		if (ioc->Request.Type.Direction == XFER_WRITE) {
1623 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
1624 				status = -EFAULT;
1625 				goto cleanup1;
1626 			}
1627 		} else {
1628 			memset(buff[sg_used], 0, sz);
1629 		}
1630 		left -= sz;
1631 		data_ptr += sz;
1632 		sg_used++;
1633 	}
1634 	c = cmd_special_alloc(h);
1635 	if (!c) {
1636 		status = -ENOMEM;
1637 		goto cleanup1;
1638 	}
1639 	c->cmd_type = CMD_IOCTL_PEND;
1640 	c->Header.ReplyQueue = 0;
1641 	c->Header.SGList = sg_used;
1642 	c->Header.SGTotal = sg_used;
1643 	c->Header.LUN = ioc->LUN_info;
1644 	c->Header.Tag.lower = c->busaddr;
1645 
1646 	c->Request = ioc->Request;
1647 	for (i = 0; i < sg_used; i++) {
1648 		temp64.val = pci_map_single(h->pdev, buff[i], buff_size[i],
1649 				    PCI_DMA_BIDIRECTIONAL);
1650 		c->SG[i].Addr.lower = temp64.val32.lower;
1651 		c->SG[i].Addr.upper = temp64.val32.upper;
1652 		c->SG[i].Len = buff_size[i];
1653 		c->SG[i].Ext = 0;	/* we are not chaining */
1654 	}
1655 	c->waiting = &wait;
1656 	enqueue_cmd_and_start_io(h, c);
1657 	wait_for_completion(&wait);
1658 	/* unlock the buffers from DMA */
1659 	for (i = 0; i < sg_used; i++) {
1660 		temp64.val32.lower = c->SG[i].Addr.lower;
1661 		temp64.val32.upper = c->SG[i].Addr.upper;
1662 		pci_unmap_single(h->pdev,
1663 			(dma_addr_t) temp64.val, buff_size[i],
1664 			PCI_DMA_BIDIRECTIONAL);
1665 	}
1666 	check_ioctl_unit_attention(h, c);
1667 	/* Copy the error information out */
1668 	ioc->error_info = *(c->err_info);
1669 	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
1670 		cmd_special_free(h, c);
1671 		status = -EFAULT;
1672 		goto cleanup1;
1673 	}
1674 	if (ioc->Request.Type.Direction == XFER_READ) {
1675 		/* Copy the data out of the buffer we created */
1676 		BYTE __user *ptr = ioc->buf;
1677 		for (i = 0; i < sg_used; i++) {
1678 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
1679 				cmd_special_free(h, c);
1680 				status = -EFAULT;
1681 				goto cleanup1;
1682 			}
1683 			ptr += buff_size[i];
1684 		}
1685 	}
1686 	cmd_special_free(h, c);
1687 	status = 0;
1688 cleanup1:
1689 	if (buff) {
1690 		for (i = 0; i < sg_used; i++)
1691 			kfree(buff[i]);
1692 		kfree(buff);
1693 	}
1694 	kfree(buff_size);
1695 	kfree(ioc);
1696 	return status;
1697 }
1698 
cciss_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)1699 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
1700 	unsigned int cmd, unsigned long arg)
1701 {
1702 	struct gendisk *disk = bdev->bd_disk;
1703 	ctlr_info_t *h = get_host(disk);
1704 	void __user *argp = (void __user *)arg;
1705 
1706 	dev_dbg(&h->pdev->dev, "cciss_ioctl: Called with cmd=%x %lx\n",
1707 		cmd, arg);
1708 	switch (cmd) {
1709 	case CCISS_GETPCIINFO:
1710 		return cciss_getpciinfo(h, argp);
1711 	case CCISS_GETINTINFO:
1712 		return cciss_getintinfo(h, argp);
1713 	case CCISS_SETINTINFO:
1714 		return cciss_setintinfo(h, argp);
1715 	case CCISS_GETNODENAME:
1716 		return cciss_getnodename(h, argp);
1717 	case CCISS_SETNODENAME:
1718 		return cciss_setnodename(h, argp);
1719 	case CCISS_GETHEARTBEAT:
1720 		return cciss_getheartbeat(h, argp);
1721 	case CCISS_GETBUSTYPES:
1722 		return cciss_getbustypes(h, argp);
1723 	case CCISS_GETFIRMVER:
1724 		return cciss_getfirmver(h, argp);
1725 	case CCISS_GETDRIVVER:
1726 		return cciss_getdrivver(h, argp);
1727 	case CCISS_DEREGDISK:
1728 	case CCISS_REGNEWD:
1729 	case CCISS_REVALIDVOLS:
1730 		return rebuild_lun_table(h, 0, 1);
1731 	case CCISS_GETLUNINFO:
1732 		return cciss_getluninfo(h, disk, argp);
1733 	case CCISS_PASSTHRU:
1734 		return cciss_passthru(h, argp);
1735 	case CCISS_BIG_PASSTHRU:
1736 		return cciss_bigpassthru(h, argp);
1737 
1738 	/* scsi_cmd_blk_ioctl handles these, below, though some are not */
1739 	/* very meaningful for cciss.  SG_IO is the main one people want. */
1740 
1741 	case SG_GET_VERSION_NUM:
1742 	case SG_SET_TIMEOUT:
1743 	case SG_GET_TIMEOUT:
1744 	case SG_GET_RESERVED_SIZE:
1745 	case SG_SET_RESERVED_SIZE:
1746 	case SG_EMULATED_HOST:
1747 	case SG_IO:
1748 	case SCSI_IOCTL_SEND_COMMAND:
1749 		return scsi_cmd_blk_ioctl(bdev, mode, cmd, argp);
1750 
1751 	/* scsi_cmd_blk_ioctl would normally handle these, below, but */
1752 	/* they aren't a good fit for cciss, as CD-ROMs are */
1753 	/* not supported, and we don't have any bus/target/lun */
1754 	/* which we present to the kernel. */
1755 
1756 	case CDROM_SEND_PACKET:
1757 	case CDROMCLOSETRAY:
1758 	case CDROMEJECT:
1759 	case SCSI_IOCTL_GET_IDLUN:
1760 	case SCSI_IOCTL_GET_BUS_NUMBER:
1761 	default:
1762 		return -ENOTTY;
1763 	}
1764 }
1765 
cciss_check_queues(ctlr_info_t * h)1766 static void cciss_check_queues(ctlr_info_t *h)
1767 {
1768 	int start_queue = h->next_to_run;
1769 	int i;
1770 
1771 	/* check to see if we have maxed out the number of commands that can
1772 	 * be placed on the queue.  If so then exit.  We do this check here
1773 	 * in case the interrupt we serviced was from an ioctl and did not
1774 	 * free any new commands.
1775 	 */
1776 	if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
1777 		return;
1778 
1779 	/* We have room on the queue for more commands.  Now we need to queue
1780 	 * them up.  We will also keep track of the next queue to run so
1781 	 * that every queue gets a chance to be started first.
1782 	 */
1783 	for (i = 0; i < h->highest_lun + 1; i++) {
1784 		int curr_queue = (start_queue + i) % (h->highest_lun + 1);
1785 		/* make sure the disk has been added and the drive is real
1786 		 * because this can be called from the middle of init_one.
1787 		 */
1788 		if (!h->drv[curr_queue])
1789 			continue;
1790 		if (!(h->drv[curr_queue]->queue) ||
1791 			!(h->drv[curr_queue]->heads))
1792 			continue;
1793 		blk_start_queue(h->gendisk[curr_queue]->queue);
1794 
1795 		/* check to see if we have maxed out the number of commands
1796 		 * that can be placed on the queue.
1797 		 */
1798 		if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
1799 			if (curr_queue == start_queue) {
1800 				h->next_to_run =
1801 				    (start_queue + 1) % (h->highest_lun + 1);
1802 				break;
1803 			} else {
1804 				h->next_to_run = curr_queue;
1805 				break;
1806 			}
1807 		}
1808 	}
1809 }
1810 
cciss_softirq_done(struct request * rq)1811 static void cciss_softirq_done(struct request *rq)
1812 {
1813 	CommandList_struct *c = rq->completion_data;
1814 	ctlr_info_t *h = hba[c->ctlr];
1815 	SGDescriptor_struct *curr_sg = c->SG;
1816 	u64bit temp64;
1817 	unsigned long flags;
1818 	int i, ddir;
1819 	int sg_index = 0;
1820 
1821 	if (c->Request.Type.Direction == XFER_READ)
1822 		ddir = PCI_DMA_FROMDEVICE;
1823 	else
1824 		ddir = PCI_DMA_TODEVICE;
1825 
1826 	/* command did not need to be retried */
1827 	/* unmap the DMA mapping for all the scatter gather elements */
1828 	for (i = 0; i < c->Header.SGList; i++) {
1829 		if (curr_sg[sg_index].Ext == CCISS_SG_CHAIN) {
1830 			cciss_unmap_sg_chain_block(h, c);
1831 			/* Point to the next block */
1832 			curr_sg = h->cmd_sg_list[c->cmdindex];
1833 			sg_index = 0;
1834 		}
1835 		temp64.val32.lower = curr_sg[sg_index].Addr.lower;
1836 		temp64.val32.upper = curr_sg[sg_index].Addr.upper;
1837 		pci_unmap_page(h->pdev, temp64.val, curr_sg[sg_index].Len,
1838 				ddir);
1839 		++sg_index;
1840 	}
1841 
1842 	dev_dbg(&h->pdev->dev, "Done with %p\n", rq);
1843 
1844 	/* set the residual count for pc requests */
1845 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC)
1846 		rq->resid_len = c->err_info->ResidualCnt;
1847 
1848 	blk_end_request_all(rq, (rq->errors == 0) ? 0 : -EIO);
1849 
1850 	spin_lock_irqsave(&h->lock, flags);
1851 	cmd_free(h, c);
1852 	cciss_check_queues(h);
1853 	spin_unlock_irqrestore(&h->lock, flags);
1854 }
1855 
log_unit_to_scsi3addr(ctlr_info_t * h,unsigned char scsi3addr[],uint32_t log_unit)1856 static inline void log_unit_to_scsi3addr(ctlr_info_t *h,
1857 	unsigned char scsi3addr[], uint32_t log_unit)
1858 {
1859 	memcpy(scsi3addr, h->drv[log_unit]->LunID,
1860 		sizeof(h->drv[log_unit]->LunID));
1861 }
1862 
1863 /* This function gets the SCSI vendor, model, and revision of a logical drive
1864  * via the inquiry page 0.  Model, vendor, and rev are set to empty strings if
1865  * they cannot be read.
1866  */
cciss_get_device_descr(ctlr_info_t * h,int logvol,char * vendor,char * model,char * rev)1867 static void cciss_get_device_descr(ctlr_info_t *h, int logvol,
1868 				   char *vendor, char *model, char *rev)
1869 {
1870 	int rc;
1871 	InquiryData_struct *inq_buf;
1872 	unsigned char scsi3addr[8];
1873 
1874 	*vendor = '\0';
1875 	*model = '\0';
1876 	*rev = '\0';
1877 
1878 	inq_buf = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1879 	if (!inq_buf)
1880 		return;
1881 
1882 	log_unit_to_scsi3addr(h, scsi3addr, logvol);
1883 	rc = sendcmd_withirq(h, CISS_INQUIRY, inq_buf, sizeof(*inq_buf), 0,
1884 			scsi3addr, TYPE_CMD);
1885 	if (rc == IO_OK) {
1886 		memcpy(vendor, &inq_buf->data_byte[8], VENDOR_LEN);
1887 		vendor[VENDOR_LEN] = '\0';
1888 		memcpy(model, &inq_buf->data_byte[16], MODEL_LEN);
1889 		model[MODEL_LEN] = '\0';
1890 		memcpy(rev, &inq_buf->data_byte[32], REV_LEN);
1891 		rev[REV_LEN] = '\0';
1892 	}
1893 
1894 	kfree(inq_buf);
1895 	return;
1896 }
1897 
1898 /* This function gets the serial number of a logical drive via
1899  * inquiry page 0x83.  Serial no. is 16 bytes.  If the serial
1900  * number cannot be had, for whatever reason, 16 bytes of 0xff
1901  * are returned instead.
1902  */
cciss_get_serial_no(ctlr_info_t * h,int logvol,unsigned char * serial_no,int buflen)1903 static void cciss_get_serial_no(ctlr_info_t *h, int logvol,
1904 				unsigned char *serial_no, int buflen)
1905 {
1906 #define PAGE_83_INQ_BYTES 64
1907 	int rc;
1908 	unsigned char *buf;
1909 	unsigned char scsi3addr[8];
1910 
1911 	if (buflen > 16)
1912 		buflen = 16;
1913 	memset(serial_no, 0xff, buflen);
1914 	buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL);
1915 	if (!buf)
1916 		return;
1917 	memset(serial_no, 0, buflen);
1918 	log_unit_to_scsi3addr(h, scsi3addr, logvol);
1919 	rc = sendcmd_withirq(h, CISS_INQUIRY, buf,
1920 		PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
1921 	if (rc == IO_OK)
1922 		memcpy(serial_no, &buf[8], buflen);
1923 	kfree(buf);
1924 	return;
1925 }
1926 
1927 /*
1928  * cciss_add_disk sets up the block device queue for a logical drive
1929  */
cciss_add_disk(ctlr_info_t * h,struct gendisk * disk,int drv_index)1930 static int cciss_add_disk(ctlr_info_t *h, struct gendisk *disk,
1931 				int drv_index)
1932 {
1933 	disk->queue = blk_init_queue(do_cciss_request, &h->lock);
1934 	if (!disk->queue)
1935 		goto init_queue_failure;
1936 	sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index);
1937 	disk->major = h->major;
1938 	disk->first_minor = drv_index << NWD_SHIFT;
1939 	disk->fops = &cciss_fops;
1940 	if (cciss_create_ld_sysfs_entry(h, drv_index))
1941 		goto cleanup_queue;
1942 	disk->private_data = h->drv[drv_index];
1943 	disk->driverfs_dev = &h->drv[drv_index]->dev;
1944 
1945 	/* Set up queue information */
1946 	blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask);
1947 
1948 	/* This is a hardware imposed limit. */
1949 	blk_queue_max_segments(disk->queue, h->maxsgentries);
1950 
1951 	blk_queue_max_hw_sectors(disk->queue, h->cciss_max_sectors);
1952 
1953 	blk_queue_softirq_done(disk->queue, cciss_softirq_done);
1954 
1955 	disk->queue->queuedata = h;
1956 
1957 	blk_queue_logical_block_size(disk->queue,
1958 				     h->drv[drv_index]->block_size);
1959 
1960 	/* Make sure all queue data is written out before */
1961 	/* setting h->drv[drv_index]->queue, as setting this */
1962 	/* allows the interrupt handler to start the queue */
1963 	wmb();
1964 	h->drv[drv_index]->queue = disk->queue;
1965 	add_disk(disk);
1966 	return 0;
1967 
1968 cleanup_queue:
1969 	blk_cleanup_queue(disk->queue);
1970 	disk->queue = NULL;
1971 init_queue_failure:
1972 	return -1;
1973 }
1974 
1975 /* This function will check the usage_count of the drive to be updated/added.
1976  * If the usage_count is zero and it is a heretofore unknown drive, or,
1977  * the drive's capacity, geometry, or serial number has changed,
1978  * then the drive information will be updated and the disk will be
1979  * re-registered with the kernel.  If these conditions don't hold,
1980  * then it will be left alone for the next reboot.  The exception to this
1981  * is disk 0 which will always be left registered with the kernel since it
1982  * is also the controller node.  Any changes to disk 0 will show up on
1983  * the next reboot.
1984  */
cciss_update_drive_info(ctlr_info_t * h,int drv_index,int first_time,int via_ioctl)1985 static void cciss_update_drive_info(ctlr_info_t *h, int drv_index,
1986 	int first_time, int via_ioctl)
1987 {
1988 	struct gendisk *disk;
1989 	InquiryData_struct *inq_buff = NULL;
1990 	unsigned int block_size;
1991 	sector_t total_size;
1992 	unsigned long flags = 0;
1993 	int ret = 0;
1994 	drive_info_struct *drvinfo;
1995 
1996 	/* Get information about the disk and modify the driver structure */
1997 	inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1998 	drvinfo = kzalloc(sizeof(*drvinfo), GFP_KERNEL);
1999 	if (inq_buff == NULL || drvinfo == NULL)
2000 		goto mem_msg;
2001 
2002 	/* testing to see if 16-byte CDBs are already being used */
2003 	if (h->cciss_read == CCISS_READ_16) {
2004 		cciss_read_capacity_16(h, drv_index,
2005 			&total_size, &block_size);
2006 
2007 	} else {
2008 		cciss_read_capacity(h, drv_index, &total_size, &block_size);
2009 		/* if read_capacity returns all F's this volume is >2TB */
2010 		/* in size so we switch to 16-byte CDB's for all */
2011 		/* read/write ops */
2012 		if (total_size == 0xFFFFFFFFULL) {
2013 			cciss_read_capacity_16(h, drv_index,
2014 			&total_size, &block_size);
2015 			h->cciss_read = CCISS_READ_16;
2016 			h->cciss_write = CCISS_WRITE_16;
2017 		} else {
2018 			h->cciss_read = CCISS_READ_10;
2019 			h->cciss_write = CCISS_WRITE_10;
2020 		}
2021 	}
2022 
2023 	cciss_geometry_inquiry(h, drv_index, total_size, block_size,
2024 			       inq_buff, drvinfo);
2025 	drvinfo->block_size = block_size;
2026 	drvinfo->nr_blocks = total_size + 1;
2027 
2028 	cciss_get_device_descr(h, drv_index, drvinfo->vendor,
2029 				drvinfo->model, drvinfo->rev);
2030 	cciss_get_serial_no(h, drv_index, drvinfo->serial_no,
2031 			sizeof(drvinfo->serial_no));
2032 	/* Save the lunid in case we deregister the disk, below. */
2033 	memcpy(drvinfo->LunID, h->drv[drv_index]->LunID,
2034 		sizeof(drvinfo->LunID));
2035 
2036 	/* Is it the same disk we already know, and nothing's changed? */
2037 	if (h->drv[drv_index]->raid_level != -1 &&
2038 		((memcmp(drvinfo->serial_no,
2039 				h->drv[drv_index]->serial_no, 16) == 0) &&
2040 		drvinfo->block_size == h->drv[drv_index]->block_size &&
2041 		drvinfo->nr_blocks == h->drv[drv_index]->nr_blocks &&
2042 		drvinfo->heads == h->drv[drv_index]->heads &&
2043 		drvinfo->sectors == h->drv[drv_index]->sectors &&
2044 		drvinfo->cylinders == h->drv[drv_index]->cylinders))
2045 			/* The disk is unchanged, nothing to update */
2046 			goto freeret;
2047 
2048 	/* If we get here it's not the same disk, or something's changed,
2049 	 * so we need to * deregister it, and re-register it, if it's not
2050 	 * in use.
2051 	 * If the disk already exists then deregister it before proceeding
2052 	 * (unless it's the first disk (for the controller node).
2053 	 */
2054 	if (h->drv[drv_index]->raid_level != -1 && drv_index != 0) {
2055 		dev_warn(&h->pdev->dev, "disk %d has changed.\n", drv_index);
2056 		spin_lock_irqsave(&h->lock, flags);
2057 		h->drv[drv_index]->busy_configuring = 1;
2058 		spin_unlock_irqrestore(&h->lock, flags);
2059 
2060 		/* deregister_disk sets h->drv[drv_index]->queue = NULL
2061 		 * which keeps the interrupt handler from starting
2062 		 * the queue.
2063 		 */
2064 		ret = deregister_disk(h, drv_index, 0, via_ioctl);
2065 	}
2066 
2067 	/* If the disk is in use return */
2068 	if (ret)
2069 		goto freeret;
2070 
2071 	/* Save the new information from cciss_geometry_inquiry
2072 	 * and serial number inquiry.  If the disk was deregistered
2073 	 * above, then h->drv[drv_index] will be NULL.
2074 	 */
2075 	if (h->drv[drv_index] == NULL) {
2076 		drvinfo->device_initialized = 0;
2077 		h->drv[drv_index] = drvinfo;
2078 		drvinfo = NULL; /* so it won't be freed below. */
2079 	} else {
2080 		/* special case for cxd0 */
2081 		h->drv[drv_index]->block_size = drvinfo->block_size;
2082 		h->drv[drv_index]->nr_blocks = drvinfo->nr_blocks;
2083 		h->drv[drv_index]->heads = drvinfo->heads;
2084 		h->drv[drv_index]->sectors = drvinfo->sectors;
2085 		h->drv[drv_index]->cylinders = drvinfo->cylinders;
2086 		h->drv[drv_index]->raid_level = drvinfo->raid_level;
2087 		memcpy(h->drv[drv_index]->serial_no, drvinfo->serial_no, 16);
2088 		memcpy(h->drv[drv_index]->vendor, drvinfo->vendor,
2089 			VENDOR_LEN + 1);
2090 		memcpy(h->drv[drv_index]->model, drvinfo->model, MODEL_LEN + 1);
2091 		memcpy(h->drv[drv_index]->rev, drvinfo->rev, REV_LEN + 1);
2092 	}
2093 
2094 	++h->num_luns;
2095 	disk = h->gendisk[drv_index];
2096 	set_capacity(disk, h->drv[drv_index]->nr_blocks);
2097 
2098 	/* If it's not disk 0 (drv_index != 0)
2099 	 * or if it was disk 0, but there was previously
2100 	 * no actual corresponding configured logical drive
2101 	 * (raid_leve == -1) then we want to update the
2102 	 * logical drive's information.
2103 	 */
2104 	if (drv_index || first_time) {
2105 		if (cciss_add_disk(h, disk, drv_index) != 0) {
2106 			cciss_free_gendisk(h, drv_index);
2107 			cciss_free_drive_info(h, drv_index);
2108 			dev_warn(&h->pdev->dev, "could not update disk %d\n",
2109 				drv_index);
2110 			--h->num_luns;
2111 		}
2112 	}
2113 
2114 freeret:
2115 	kfree(inq_buff);
2116 	kfree(drvinfo);
2117 	return;
2118 mem_msg:
2119 	dev_err(&h->pdev->dev, "out of memory\n");
2120 	goto freeret;
2121 }
2122 
2123 /* This function will find the first index of the controllers drive array
2124  * that has a null drv pointer and allocate the drive info struct and
2125  * will return that index   This is where new drives will be added.
2126  * If the index to be returned is greater than the highest_lun index for
2127  * the controller then highest_lun is set * to this new index.
2128  * If there are no available indexes or if tha allocation fails, then -1
2129  * is returned.  * "controller_node" is used to know if this is a real
2130  * logical drive, or just the controller node, which determines if this
2131  * counts towards highest_lun.
2132  */
cciss_alloc_drive_info(ctlr_info_t * h,int controller_node)2133 static int cciss_alloc_drive_info(ctlr_info_t *h, int controller_node)
2134 {
2135 	int i;
2136 	drive_info_struct *drv;
2137 
2138 	/* Search for an empty slot for our drive info */
2139 	for (i = 0; i < CISS_MAX_LUN; i++) {
2140 
2141 		/* if not cxd0 case, and it's occupied, skip it. */
2142 		if (h->drv[i] && i != 0)
2143 			continue;
2144 		/*
2145 		 * If it's cxd0 case, and drv is alloc'ed already, and a
2146 		 * disk is configured there, skip it.
2147 		 */
2148 		if (i == 0 && h->drv[i] && h->drv[i]->raid_level != -1)
2149 			continue;
2150 
2151 		/*
2152 		 * We've found an empty slot.  Update highest_lun
2153 		 * provided this isn't just the fake cxd0 controller node.
2154 		 */
2155 		if (i > h->highest_lun && !controller_node)
2156 			h->highest_lun = i;
2157 
2158 		/* If adding a real disk at cxd0, and it's already alloc'ed */
2159 		if (i == 0 && h->drv[i] != NULL)
2160 			return i;
2161 
2162 		/*
2163 		 * Found an empty slot, not already alloc'ed.  Allocate it.
2164 		 * Mark it with raid_level == -1, so we know it's new later on.
2165 		 */
2166 		drv = kzalloc(sizeof(*drv), GFP_KERNEL);
2167 		if (!drv)
2168 			return -1;
2169 		drv->raid_level = -1; /* so we know it's new */
2170 		h->drv[i] = drv;
2171 		return i;
2172 	}
2173 	return -1;
2174 }
2175 
cciss_free_drive_info(ctlr_info_t * h,int drv_index)2176 static void cciss_free_drive_info(ctlr_info_t *h, int drv_index)
2177 {
2178 	kfree(h->drv[drv_index]);
2179 	h->drv[drv_index] = NULL;
2180 }
2181 
cciss_free_gendisk(ctlr_info_t * h,int drv_index)2182 static void cciss_free_gendisk(ctlr_info_t *h, int drv_index)
2183 {
2184 	put_disk(h->gendisk[drv_index]);
2185 	h->gendisk[drv_index] = NULL;
2186 }
2187 
2188 /* cciss_add_gendisk finds a free hba[]->drv structure
2189  * and allocates a gendisk if needed, and sets the lunid
2190  * in the drvinfo structure.   It returns the index into
2191  * the ->drv[] array, or -1 if none are free.
2192  * is_controller_node indicates whether highest_lun should
2193  * count this disk, or if it's only being added to provide
2194  * a means to talk to the controller in case no logical
2195  * drives have yet been configured.
2196  */
cciss_add_gendisk(ctlr_info_t * h,unsigned char lunid[],int controller_node)2197 static int cciss_add_gendisk(ctlr_info_t *h, unsigned char lunid[],
2198 	int controller_node)
2199 {
2200 	int drv_index;
2201 
2202 	drv_index = cciss_alloc_drive_info(h, controller_node);
2203 	if (drv_index == -1)
2204 		return -1;
2205 
2206 	/*Check if the gendisk needs to be allocated */
2207 	if (!h->gendisk[drv_index]) {
2208 		h->gendisk[drv_index] =
2209 			alloc_disk(1 << NWD_SHIFT);
2210 		if (!h->gendisk[drv_index]) {
2211 			dev_err(&h->pdev->dev,
2212 				"could not allocate a new disk %d\n",
2213 				drv_index);
2214 			goto err_free_drive_info;
2215 		}
2216 	}
2217 	memcpy(h->drv[drv_index]->LunID, lunid,
2218 		sizeof(h->drv[drv_index]->LunID));
2219 	if (cciss_create_ld_sysfs_entry(h, drv_index))
2220 		goto err_free_disk;
2221 	/* Don't need to mark this busy because nobody */
2222 	/* else knows about this disk yet to contend */
2223 	/* for access to it. */
2224 	h->drv[drv_index]->busy_configuring = 0;
2225 	wmb();
2226 	return drv_index;
2227 
2228 err_free_disk:
2229 	cciss_free_gendisk(h, drv_index);
2230 err_free_drive_info:
2231 	cciss_free_drive_info(h, drv_index);
2232 	return -1;
2233 }
2234 
2235 /* This is for the special case of a controller which
2236  * has no logical drives.  In this case, we still need
2237  * to register a disk so the controller can be accessed
2238  * by the Array Config Utility.
2239  */
cciss_add_controller_node(ctlr_info_t * h)2240 static void cciss_add_controller_node(ctlr_info_t *h)
2241 {
2242 	struct gendisk *disk;
2243 	int drv_index;
2244 
2245 	if (h->gendisk[0] != NULL) /* already did this? Then bail. */
2246 		return;
2247 
2248 	drv_index = cciss_add_gendisk(h, CTLR_LUNID, 1);
2249 	if (drv_index == -1)
2250 		goto error;
2251 	h->drv[drv_index]->block_size = 512;
2252 	h->drv[drv_index]->nr_blocks = 0;
2253 	h->drv[drv_index]->heads = 0;
2254 	h->drv[drv_index]->sectors = 0;
2255 	h->drv[drv_index]->cylinders = 0;
2256 	h->drv[drv_index]->raid_level = -1;
2257 	memset(h->drv[drv_index]->serial_no, 0, 16);
2258 	disk = h->gendisk[drv_index];
2259 	if (cciss_add_disk(h, disk, drv_index) == 0)
2260 		return;
2261 	cciss_free_gendisk(h, drv_index);
2262 	cciss_free_drive_info(h, drv_index);
2263 error:
2264 	dev_warn(&h->pdev->dev, "could not add disk 0.\n");
2265 	return;
2266 }
2267 
2268 /* This function will add and remove logical drives from the Logical
2269  * drive array of the controller and maintain persistency of ordering
2270  * so that mount points are preserved until the next reboot.  This allows
2271  * for the removal of logical drives in the middle of the drive array
2272  * without a re-ordering of those drives.
2273  * INPUT
2274  * h		= The controller to perform the operations on
2275  */
rebuild_lun_table(ctlr_info_t * h,int first_time,int via_ioctl)2276 static int rebuild_lun_table(ctlr_info_t *h, int first_time,
2277 	int via_ioctl)
2278 {
2279 	int num_luns;
2280 	ReportLunData_struct *ld_buff = NULL;
2281 	int return_code;
2282 	int listlength = 0;
2283 	int i;
2284 	int drv_found;
2285 	int drv_index = 0;
2286 	unsigned char lunid[8] = CTLR_LUNID;
2287 	unsigned long flags;
2288 
2289 	if (!capable(CAP_SYS_RAWIO))
2290 		return -EPERM;
2291 
2292 	/* Set busy_configuring flag for this operation */
2293 	spin_lock_irqsave(&h->lock, flags);
2294 	if (h->busy_configuring) {
2295 		spin_unlock_irqrestore(&h->lock, flags);
2296 		return -EBUSY;
2297 	}
2298 	h->busy_configuring = 1;
2299 	spin_unlock_irqrestore(&h->lock, flags);
2300 
2301 	ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
2302 	if (ld_buff == NULL)
2303 		goto mem_msg;
2304 
2305 	return_code = sendcmd_withirq(h, CISS_REPORT_LOG, ld_buff,
2306 				      sizeof(ReportLunData_struct),
2307 				      0, CTLR_LUNID, TYPE_CMD);
2308 
2309 	if (return_code == IO_OK)
2310 		listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
2311 	else {	/* reading number of logical volumes failed */
2312 		dev_warn(&h->pdev->dev,
2313 			"report logical volume command failed\n");
2314 		listlength = 0;
2315 		goto freeret;
2316 	}
2317 
2318 	num_luns = listlength / 8;	/* 8 bytes per entry */
2319 	if (num_luns > CISS_MAX_LUN) {
2320 		num_luns = CISS_MAX_LUN;
2321 		dev_warn(&h->pdev->dev, "more luns configured"
2322 		       " on controller than can be handled by"
2323 		       " this driver.\n");
2324 	}
2325 
2326 	if (num_luns == 0)
2327 		cciss_add_controller_node(h);
2328 
2329 	/* Compare controller drive array to driver's drive array
2330 	 * to see if any drives are missing on the controller due
2331 	 * to action of Array Config Utility (user deletes drive)
2332 	 * and deregister logical drives which have disappeared.
2333 	 */
2334 	for (i = 0; i <= h->highest_lun; i++) {
2335 		int j;
2336 		drv_found = 0;
2337 
2338 		/* skip holes in the array from already deleted drives */
2339 		if (h->drv[i] == NULL)
2340 			continue;
2341 
2342 		for (j = 0; j < num_luns; j++) {
2343 			memcpy(lunid, &ld_buff->LUN[j][0], sizeof(lunid));
2344 			if (memcmp(h->drv[i]->LunID, lunid,
2345 				sizeof(lunid)) == 0) {
2346 				drv_found = 1;
2347 				break;
2348 			}
2349 		}
2350 		if (!drv_found) {
2351 			/* Deregister it from the OS, it's gone. */
2352 			spin_lock_irqsave(&h->lock, flags);
2353 			h->drv[i]->busy_configuring = 1;
2354 			spin_unlock_irqrestore(&h->lock, flags);
2355 			return_code = deregister_disk(h, i, 1, via_ioctl);
2356 			if (h->drv[i] != NULL)
2357 				h->drv[i]->busy_configuring = 0;
2358 		}
2359 	}
2360 
2361 	/* Compare controller drive array to driver's drive array.
2362 	 * Check for updates in the drive information and any new drives
2363 	 * on the controller due to ACU adding logical drives, or changing
2364 	 * a logical drive's size, etc.  Reregister any new/changed drives
2365 	 */
2366 	for (i = 0; i < num_luns; i++) {
2367 		int j;
2368 
2369 		drv_found = 0;
2370 
2371 		memcpy(lunid, &ld_buff->LUN[i][0], sizeof(lunid));
2372 		/* Find if the LUN is already in the drive array
2373 		 * of the driver.  If so then update its info
2374 		 * if not in use.  If it does not exist then find
2375 		 * the first free index and add it.
2376 		 */
2377 		for (j = 0; j <= h->highest_lun; j++) {
2378 			if (h->drv[j] != NULL &&
2379 				memcmp(h->drv[j]->LunID, lunid,
2380 					sizeof(h->drv[j]->LunID)) == 0) {
2381 				drv_index = j;
2382 				drv_found = 1;
2383 				break;
2384 			}
2385 		}
2386 
2387 		/* check if the drive was found already in the array */
2388 		if (!drv_found) {
2389 			drv_index = cciss_add_gendisk(h, lunid, 0);
2390 			if (drv_index == -1)
2391 				goto freeret;
2392 		}
2393 		cciss_update_drive_info(h, drv_index, first_time, via_ioctl);
2394 	}		/* end for */
2395 
2396 freeret:
2397 	kfree(ld_buff);
2398 	h->busy_configuring = 0;
2399 	/* We return -1 here to tell the ACU that we have registered/updated
2400 	 * all of the drives that we can and to keep it from calling us
2401 	 * additional times.
2402 	 */
2403 	return -1;
2404 mem_msg:
2405 	dev_err(&h->pdev->dev, "out of memory\n");
2406 	h->busy_configuring = 0;
2407 	goto freeret;
2408 }
2409 
cciss_clear_drive_info(drive_info_struct * drive_info)2410 static void cciss_clear_drive_info(drive_info_struct *drive_info)
2411 {
2412 	/* zero out the disk size info */
2413 	drive_info->nr_blocks = 0;
2414 	drive_info->block_size = 0;
2415 	drive_info->heads = 0;
2416 	drive_info->sectors = 0;
2417 	drive_info->cylinders = 0;
2418 	drive_info->raid_level = -1;
2419 	memset(drive_info->serial_no, 0, sizeof(drive_info->serial_no));
2420 	memset(drive_info->model, 0, sizeof(drive_info->model));
2421 	memset(drive_info->rev, 0, sizeof(drive_info->rev));
2422 	memset(drive_info->vendor, 0, sizeof(drive_info->vendor));
2423 	/*
2424 	 * don't clear the LUNID though, we need to remember which
2425 	 * one this one is.
2426 	 */
2427 }
2428 
2429 /* This function will deregister the disk and it's queue from the
2430  * kernel.  It must be called with the controller lock held and the
2431  * drv structures busy_configuring flag set.  It's parameters are:
2432  *
2433  * disk = This is the disk to be deregistered
2434  * drv  = This is the drive_info_struct associated with the disk to be
2435  *        deregistered.  It contains information about the disk used
2436  *        by the driver.
2437  * clear_all = This flag determines whether or not the disk information
2438  *             is going to be completely cleared out and the highest_lun
2439  *             reset.  Sometimes we want to clear out information about
2440  *             the disk in preparation for re-adding it.  In this case
2441  *             the highest_lun should be left unchanged and the LunID
2442  *             should not be cleared.
2443  * via_ioctl
2444  *    This indicates whether we've reached this path via ioctl.
2445  *    This affects the maximum usage count allowed for c0d0 to be messed with.
2446  *    If this path is reached via ioctl(), then the max_usage_count will
2447  *    be 1, as the process calling ioctl() has got to have the device open.
2448  *    If we get here via sysfs, then the max usage count will be zero.
2449 */
deregister_disk(ctlr_info_t * h,int drv_index,int clear_all,int via_ioctl)2450 static int deregister_disk(ctlr_info_t *h, int drv_index,
2451 			   int clear_all, int via_ioctl)
2452 {
2453 	int i;
2454 	struct gendisk *disk;
2455 	drive_info_struct *drv;
2456 	int recalculate_highest_lun;
2457 
2458 	if (!capable(CAP_SYS_RAWIO))
2459 		return -EPERM;
2460 
2461 	drv = h->drv[drv_index];
2462 	disk = h->gendisk[drv_index];
2463 
2464 	/* make sure logical volume is NOT is use */
2465 	if (clear_all || (h->gendisk[0] == disk)) {
2466 		if (drv->usage_count > via_ioctl)
2467 			return -EBUSY;
2468 	} else if (drv->usage_count > 0)
2469 		return -EBUSY;
2470 
2471 	recalculate_highest_lun = (drv == h->drv[h->highest_lun]);
2472 
2473 	/* invalidate the devices and deregister the disk.  If it is disk
2474 	 * zero do not deregister it but just zero out it's values.  This
2475 	 * allows us to delete disk zero but keep the controller registered.
2476 	 */
2477 	if (h->gendisk[0] != disk) {
2478 		struct request_queue *q = disk->queue;
2479 		if (disk->flags & GENHD_FL_UP) {
2480 			cciss_destroy_ld_sysfs_entry(h, drv_index, 0);
2481 			del_gendisk(disk);
2482 		}
2483 		if (q)
2484 			blk_cleanup_queue(q);
2485 		/* If clear_all is set then we are deleting the logical
2486 		 * drive, not just refreshing its info.  For drives
2487 		 * other than disk 0 we will call put_disk.  We do not
2488 		 * do this for disk 0 as we need it to be able to
2489 		 * configure the controller.
2490 		 */
2491 		if (clear_all){
2492 			/* This isn't pretty, but we need to find the
2493 			 * disk in our array and NULL our the pointer.
2494 			 * This is so that we will call alloc_disk if
2495 			 * this index is used again later.
2496 			 */
2497 			for (i=0; i < CISS_MAX_LUN; i++){
2498 				if (h->gendisk[i] == disk) {
2499 					h->gendisk[i] = NULL;
2500 					break;
2501 				}
2502 			}
2503 			put_disk(disk);
2504 		}
2505 	} else {
2506 		set_capacity(disk, 0);
2507 		cciss_clear_drive_info(drv);
2508 	}
2509 
2510 	--h->num_luns;
2511 
2512 	/* if it was the last disk, find the new hightest lun */
2513 	if (clear_all && recalculate_highest_lun) {
2514 		int newhighest = -1;
2515 		for (i = 0; i <= h->highest_lun; i++) {
2516 			/* if the disk has size > 0, it is available */
2517 			if (h->drv[i] && h->drv[i]->heads)
2518 				newhighest = i;
2519 		}
2520 		h->highest_lun = newhighest;
2521 	}
2522 	return 0;
2523 }
2524 
fill_cmd(ctlr_info_t * h,CommandList_struct * c,__u8 cmd,void * buff,size_t size,__u8 page_code,unsigned char * scsi3addr,int cmd_type)2525 static int fill_cmd(ctlr_info_t *h, CommandList_struct *c, __u8 cmd, void *buff,
2526 		size_t size, __u8 page_code, unsigned char *scsi3addr,
2527 		int cmd_type)
2528 {
2529 	u64bit buff_dma_handle;
2530 	int status = IO_OK;
2531 
2532 	c->cmd_type = CMD_IOCTL_PEND;
2533 	c->Header.ReplyQueue = 0;
2534 	if (buff != NULL) {
2535 		c->Header.SGList = 1;
2536 		c->Header.SGTotal = 1;
2537 	} else {
2538 		c->Header.SGList = 0;
2539 		c->Header.SGTotal = 0;
2540 	}
2541 	c->Header.Tag.lower = c->busaddr;
2542 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2543 
2544 	c->Request.Type.Type = cmd_type;
2545 	if (cmd_type == TYPE_CMD) {
2546 		switch (cmd) {
2547 		case CISS_INQUIRY:
2548 			/* are we trying to read a vital product page */
2549 			if (page_code != 0) {
2550 				c->Request.CDB[1] = 0x01;
2551 				c->Request.CDB[2] = page_code;
2552 			}
2553 			c->Request.CDBLen = 6;
2554 			c->Request.Type.Attribute = ATTR_SIMPLE;
2555 			c->Request.Type.Direction = XFER_READ;
2556 			c->Request.Timeout = 0;
2557 			c->Request.CDB[0] = CISS_INQUIRY;
2558 			c->Request.CDB[4] = size & 0xFF;
2559 			break;
2560 		case CISS_REPORT_LOG:
2561 		case CISS_REPORT_PHYS:
2562 			/* Talking to controller so It's a physical command
2563 			   mode = 00 target = 0.  Nothing to write.
2564 			 */
2565 			c->Request.CDBLen = 12;
2566 			c->Request.Type.Attribute = ATTR_SIMPLE;
2567 			c->Request.Type.Direction = XFER_READ;
2568 			c->Request.Timeout = 0;
2569 			c->Request.CDB[0] = cmd;
2570 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2571 			c->Request.CDB[7] = (size >> 16) & 0xFF;
2572 			c->Request.CDB[8] = (size >> 8) & 0xFF;
2573 			c->Request.CDB[9] = size & 0xFF;
2574 			break;
2575 
2576 		case CCISS_READ_CAPACITY:
2577 			c->Request.CDBLen = 10;
2578 			c->Request.Type.Attribute = ATTR_SIMPLE;
2579 			c->Request.Type.Direction = XFER_READ;
2580 			c->Request.Timeout = 0;
2581 			c->Request.CDB[0] = cmd;
2582 			break;
2583 		case CCISS_READ_CAPACITY_16:
2584 			c->Request.CDBLen = 16;
2585 			c->Request.Type.Attribute = ATTR_SIMPLE;
2586 			c->Request.Type.Direction = XFER_READ;
2587 			c->Request.Timeout = 0;
2588 			c->Request.CDB[0] = cmd;
2589 			c->Request.CDB[1] = 0x10;
2590 			c->Request.CDB[10] = (size >> 24) & 0xFF;
2591 			c->Request.CDB[11] = (size >> 16) & 0xFF;
2592 			c->Request.CDB[12] = (size >> 8) & 0xFF;
2593 			c->Request.CDB[13] = size & 0xFF;
2594 			c->Request.Timeout = 0;
2595 			c->Request.CDB[0] = cmd;
2596 			break;
2597 		case CCISS_CACHE_FLUSH:
2598 			c->Request.CDBLen = 12;
2599 			c->Request.Type.Attribute = ATTR_SIMPLE;
2600 			c->Request.Type.Direction = XFER_WRITE;
2601 			c->Request.Timeout = 0;
2602 			c->Request.CDB[0] = BMIC_WRITE;
2603 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2604 			c->Request.CDB[7] = (size >> 8) & 0xFF;
2605 			c->Request.CDB[8] = size & 0xFF;
2606 			break;
2607 		case TEST_UNIT_READY:
2608 			c->Request.CDBLen = 6;
2609 			c->Request.Type.Attribute = ATTR_SIMPLE;
2610 			c->Request.Type.Direction = XFER_NONE;
2611 			c->Request.Timeout = 0;
2612 			break;
2613 		default:
2614 			dev_warn(&h->pdev->dev, "Unknown Command 0x%c\n", cmd);
2615 			return IO_ERROR;
2616 		}
2617 	} else if (cmd_type == TYPE_MSG) {
2618 		switch (cmd) {
2619 		case CCISS_ABORT_MSG:
2620 			c->Request.CDBLen = 12;
2621 			c->Request.Type.Attribute = ATTR_SIMPLE;
2622 			c->Request.Type.Direction = XFER_WRITE;
2623 			c->Request.Timeout = 0;
2624 			c->Request.CDB[0] = cmd;	/* abort */
2625 			c->Request.CDB[1] = 0;	/* abort a command */
2626 			/* buff contains the tag of the command to abort */
2627 			memcpy(&c->Request.CDB[4], buff, 8);
2628 			break;
2629 		case CCISS_RESET_MSG:
2630 			c->Request.CDBLen = 16;
2631 			c->Request.Type.Attribute = ATTR_SIMPLE;
2632 			c->Request.Type.Direction = XFER_NONE;
2633 			c->Request.Timeout = 0;
2634 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2635 			c->Request.CDB[0] = cmd;	/* reset */
2636 			c->Request.CDB[1] = CCISS_RESET_TYPE_TARGET;
2637 			break;
2638 		case CCISS_NOOP_MSG:
2639 			c->Request.CDBLen = 1;
2640 			c->Request.Type.Attribute = ATTR_SIMPLE;
2641 			c->Request.Type.Direction = XFER_WRITE;
2642 			c->Request.Timeout = 0;
2643 			c->Request.CDB[0] = cmd;
2644 			break;
2645 		default:
2646 			dev_warn(&h->pdev->dev,
2647 				"unknown message type %d\n", cmd);
2648 			return IO_ERROR;
2649 		}
2650 	} else {
2651 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2652 		return IO_ERROR;
2653 	}
2654 	/* Fill in the scatter gather information */
2655 	if (size > 0) {
2656 		buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
2657 							     buff, size,
2658 							     PCI_DMA_BIDIRECTIONAL);
2659 		c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
2660 		c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
2661 		c->SG[0].Len = size;
2662 		c->SG[0].Ext = 0;	/* we are not chaining */
2663 	}
2664 	return status;
2665 }
2666 
cciss_send_reset(ctlr_info_t * h,unsigned char * scsi3addr,u8 reset_type)2667 static int __devinit cciss_send_reset(ctlr_info_t *h, unsigned char *scsi3addr,
2668 	u8 reset_type)
2669 {
2670 	CommandList_struct *c;
2671 	int return_status;
2672 
2673 	c = cmd_alloc(h);
2674 	if (!c)
2675 		return -ENOMEM;
2676 	return_status = fill_cmd(h, c, CCISS_RESET_MSG, NULL, 0, 0,
2677 		CTLR_LUNID, TYPE_MSG);
2678 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
2679 	if (return_status != IO_OK) {
2680 		cmd_special_free(h, c);
2681 		return return_status;
2682 	}
2683 	c->waiting = NULL;
2684 	enqueue_cmd_and_start_io(h, c);
2685 	/* Don't wait for completion, the reset won't complete.  Don't free
2686 	 * the command either.  This is the last command we will send before
2687 	 * re-initializing everything, so it doesn't matter and won't leak.
2688 	 */
2689 	return 0;
2690 }
2691 
check_target_status(ctlr_info_t * h,CommandList_struct * c)2692 static int check_target_status(ctlr_info_t *h, CommandList_struct *c)
2693 {
2694 	switch (c->err_info->ScsiStatus) {
2695 	case SAM_STAT_GOOD:
2696 		return IO_OK;
2697 	case SAM_STAT_CHECK_CONDITION:
2698 		switch (0xf & c->err_info->SenseInfo[2]) {
2699 		case 0: return IO_OK; /* no sense */
2700 		case 1: return IO_OK; /* recovered error */
2701 		default:
2702 			if (check_for_unit_attention(h, c))
2703 				return IO_NEEDS_RETRY;
2704 			dev_warn(&h->pdev->dev, "cmd 0x%02x "
2705 				"check condition, sense key = 0x%02x\n",
2706 				c->Request.CDB[0], c->err_info->SenseInfo[2]);
2707 		}
2708 		break;
2709 	default:
2710 		dev_warn(&h->pdev->dev, "cmd 0x%02x"
2711 			"scsi status = 0x%02x\n",
2712 			c->Request.CDB[0], c->err_info->ScsiStatus);
2713 		break;
2714 	}
2715 	return IO_ERROR;
2716 }
2717 
process_sendcmd_error(ctlr_info_t * h,CommandList_struct * c)2718 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c)
2719 {
2720 	int return_status = IO_OK;
2721 
2722 	if (c->err_info->CommandStatus == CMD_SUCCESS)
2723 		return IO_OK;
2724 
2725 	switch (c->err_info->CommandStatus) {
2726 	case CMD_TARGET_STATUS:
2727 		return_status = check_target_status(h, c);
2728 		break;
2729 	case CMD_DATA_UNDERRUN:
2730 	case CMD_DATA_OVERRUN:
2731 		/* expected for inquiry and report lun commands */
2732 		break;
2733 	case CMD_INVALID:
2734 		dev_warn(&h->pdev->dev, "cmd 0x%02x is "
2735 		       "reported invalid\n", c->Request.CDB[0]);
2736 		return_status = IO_ERROR;
2737 		break;
2738 	case CMD_PROTOCOL_ERR:
2739 		dev_warn(&h->pdev->dev, "cmd 0x%02x has "
2740 		       "protocol error\n", c->Request.CDB[0]);
2741 		return_status = IO_ERROR;
2742 		break;
2743 	case CMD_HARDWARE_ERR:
2744 		dev_warn(&h->pdev->dev, "cmd 0x%02x had "
2745 		       " hardware error\n", c->Request.CDB[0]);
2746 		return_status = IO_ERROR;
2747 		break;
2748 	case CMD_CONNECTION_LOST:
2749 		dev_warn(&h->pdev->dev, "cmd 0x%02x had "
2750 		       "connection lost\n", c->Request.CDB[0]);
2751 		return_status = IO_ERROR;
2752 		break;
2753 	case CMD_ABORTED:
2754 		dev_warn(&h->pdev->dev, "cmd 0x%02x was "
2755 		       "aborted\n", c->Request.CDB[0]);
2756 		return_status = IO_ERROR;
2757 		break;
2758 	case CMD_ABORT_FAILED:
2759 		dev_warn(&h->pdev->dev, "cmd 0x%02x reports "
2760 		       "abort failed\n", c->Request.CDB[0]);
2761 		return_status = IO_ERROR;
2762 		break;
2763 	case CMD_UNSOLICITED_ABORT:
2764 		dev_warn(&h->pdev->dev, "unsolicited abort 0x%02x\n",
2765 			c->Request.CDB[0]);
2766 		return_status = IO_NEEDS_RETRY;
2767 		break;
2768 	case CMD_UNABORTABLE:
2769 		dev_warn(&h->pdev->dev, "cmd unabortable\n");
2770 		return_status = IO_ERROR;
2771 		break;
2772 	default:
2773 		dev_warn(&h->pdev->dev, "cmd 0x%02x returned "
2774 		       "unknown status %x\n", c->Request.CDB[0],
2775 		       c->err_info->CommandStatus);
2776 		return_status = IO_ERROR;
2777 	}
2778 	return return_status;
2779 }
2780 
sendcmd_withirq_core(ctlr_info_t * h,CommandList_struct * c,int attempt_retry)2781 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
2782 	int attempt_retry)
2783 {
2784 	DECLARE_COMPLETION_ONSTACK(wait);
2785 	u64bit buff_dma_handle;
2786 	int return_status = IO_OK;
2787 
2788 resend_cmd2:
2789 	c->waiting = &wait;
2790 	enqueue_cmd_and_start_io(h, c);
2791 
2792 	wait_for_completion(&wait);
2793 
2794 	if (c->err_info->CommandStatus == 0 || !attempt_retry)
2795 		goto command_done;
2796 
2797 	return_status = process_sendcmd_error(h, c);
2798 
2799 	if (return_status == IO_NEEDS_RETRY &&
2800 		c->retry_count < MAX_CMD_RETRIES) {
2801 		dev_warn(&h->pdev->dev, "retrying 0x%02x\n",
2802 			c->Request.CDB[0]);
2803 		c->retry_count++;
2804 		/* erase the old error information */
2805 		memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2806 		return_status = IO_OK;
2807 		INIT_COMPLETION(wait);
2808 		goto resend_cmd2;
2809 	}
2810 
2811 command_done:
2812 	/* unlock the buffers from DMA */
2813 	buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2814 	buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2815 	pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
2816 			 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2817 	return return_status;
2818 }
2819 
sendcmd_withirq(ctlr_info_t * h,__u8 cmd,void * buff,size_t size,__u8 page_code,unsigned char scsi3addr[],int cmd_type)2820 static int sendcmd_withirq(ctlr_info_t *h, __u8 cmd, void *buff, size_t size,
2821 			   __u8 page_code, unsigned char scsi3addr[],
2822 			int cmd_type)
2823 {
2824 	CommandList_struct *c;
2825 	int return_status;
2826 
2827 	c = cmd_special_alloc(h);
2828 	if (!c)
2829 		return -ENOMEM;
2830 	return_status = fill_cmd(h, c, cmd, buff, size, page_code,
2831 		scsi3addr, cmd_type);
2832 	if (return_status == IO_OK)
2833 		return_status = sendcmd_withirq_core(h, c, 1);
2834 
2835 	cmd_special_free(h, c);
2836 	return return_status;
2837 }
2838 
cciss_geometry_inquiry(ctlr_info_t * h,int logvol,sector_t total_size,unsigned int block_size,InquiryData_struct * inq_buff,drive_info_struct * drv)2839 static void cciss_geometry_inquiry(ctlr_info_t *h, int logvol,
2840 				   sector_t total_size,
2841 				   unsigned int block_size,
2842 				   InquiryData_struct *inq_buff,
2843 				   drive_info_struct *drv)
2844 {
2845 	int return_code;
2846 	unsigned long t;
2847 	unsigned char scsi3addr[8];
2848 
2849 	memset(inq_buff, 0, sizeof(InquiryData_struct));
2850 	log_unit_to_scsi3addr(h, scsi3addr, logvol);
2851 	return_code = sendcmd_withirq(h, CISS_INQUIRY, inq_buff,
2852 			sizeof(*inq_buff), 0xC1, scsi3addr, TYPE_CMD);
2853 	if (return_code == IO_OK) {
2854 		if (inq_buff->data_byte[8] == 0xFF) {
2855 			dev_warn(&h->pdev->dev,
2856 			       "reading geometry failed, volume "
2857 			       "does not support reading geometry\n");
2858 			drv->heads = 255;
2859 			drv->sectors = 32;	/* Sectors per track */
2860 			drv->cylinders = total_size + 1;
2861 			drv->raid_level = RAID_UNKNOWN;
2862 		} else {
2863 			drv->heads = inq_buff->data_byte[6];
2864 			drv->sectors = inq_buff->data_byte[7];
2865 			drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
2866 			drv->cylinders += inq_buff->data_byte[5];
2867 			drv->raid_level = inq_buff->data_byte[8];
2868 		}
2869 		drv->block_size = block_size;
2870 		drv->nr_blocks = total_size + 1;
2871 		t = drv->heads * drv->sectors;
2872 		if (t > 1) {
2873 			sector_t real_size = total_size + 1;
2874 			unsigned long rem = sector_div(real_size, t);
2875 			if (rem)
2876 				real_size++;
2877 			drv->cylinders = real_size;
2878 		}
2879 	} else {		/* Get geometry failed */
2880 		dev_warn(&h->pdev->dev, "reading geometry failed\n");
2881 	}
2882 }
2883 
2884 static void
cciss_read_capacity(ctlr_info_t * h,int logvol,sector_t * total_size,unsigned int * block_size)2885 cciss_read_capacity(ctlr_info_t *h, int logvol, sector_t *total_size,
2886 		    unsigned int *block_size)
2887 {
2888 	ReadCapdata_struct *buf;
2889 	int return_code;
2890 	unsigned char scsi3addr[8];
2891 
2892 	buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
2893 	if (!buf) {
2894 		dev_warn(&h->pdev->dev, "out of memory\n");
2895 		return;
2896 	}
2897 
2898 	log_unit_to_scsi3addr(h, scsi3addr, logvol);
2899 	return_code = sendcmd_withirq(h, CCISS_READ_CAPACITY, buf,
2900 		sizeof(ReadCapdata_struct), 0, scsi3addr, TYPE_CMD);
2901 	if (return_code == IO_OK) {
2902 		*total_size = be32_to_cpu(*(__be32 *) buf->total_size);
2903 		*block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2904 	} else {		/* read capacity command failed */
2905 		dev_warn(&h->pdev->dev, "read capacity failed\n");
2906 		*total_size = 0;
2907 		*block_size = BLOCK_SIZE;
2908 	}
2909 	kfree(buf);
2910 }
2911 
cciss_read_capacity_16(ctlr_info_t * h,int logvol,sector_t * total_size,unsigned int * block_size)2912 static void cciss_read_capacity_16(ctlr_info_t *h, int logvol,
2913 	sector_t *total_size, unsigned int *block_size)
2914 {
2915 	ReadCapdata_struct_16 *buf;
2916 	int return_code;
2917 	unsigned char scsi3addr[8];
2918 
2919 	buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
2920 	if (!buf) {
2921 		dev_warn(&h->pdev->dev, "out of memory\n");
2922 		return;
2923 	}
2924 
2925 	log_unit_to_scsi3addr(h, scsi3addr, logvol);
2926 	return_code = sendcmd_withirq(h, CCISS_READ_CAPACITY_16,
2927 		buf, sizeof(ReadCapdata_struct_16),
2928 			0, scsi3addr, TYPE_CMD);
2929 	if (return_code == IO_OK) {
2930 		*total_size = be64_to_cpu(*(__be64 *) buf->total_size);
2931 		*block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2932 	} else {		/* read capacity command failed */
2933 		dev_warn(&h->pdev->dev, "read capacity failed\n");
2934 		*total_size = 0;
2935 		*block_size = BLOCK_SIZE;
2936 	}
2937 	dev_info(&h->pdev->dev, "      blocks= %llu block_size= %d\n",
2938 	       (unsigned long long)*total_size+1, *block_size);
2939 	kfree(buf);
2940 }
2941 
cciss_revalidate(struct gendisk * disk)2942 static int cciss_revalidate(struct gendisk *disk)
2943 {
2944 	ctlr_info_t *h = get_host(disk);
2945 	drive_info_struct *drv = get_drv(disk);
2946 	int logvol;
2947 	int FOUND = 0;
2948 	unsigned int block_size;
2949 	sector_t total_size;
2950 	InquiryData_struct *inq_buff = NULL;
2951 
2952 	for (logvol = 0; logvol <= h->highest_lun; logvol++) {
2953 		if (!h->drv[logvol])
2954 			continue;
2955 		if (memcmp(h->drv[logvol]->LunID, drv->LunID,
2956 			sizeof(drv->LunID)) == 0) {
2957 			FOUND = 1;
2958 			break;
2959 		}
2960 	}
2961 
2962 	if (!FOUND)
2963 		return 1;
2964 
2965 	inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2966 	if (inq_buff == NULL) {
2967 		dev_warn(&h->pdev->dev, "out of memory\n");
2968 		return 1;
2969 	}
2970 	if (h->cciss_read == CCISS_READ_10) {
2971 		cciss_read_capacity(h, logvol,
2972 					&total_size, &block_size);
2973 	} else {
2974 		cciss_read_capacity_16(h, logvol,
2975 					&total_size, &block_size);
2976 	}
2977 	cciss_geometry_inquiry(h, logvol, total_size, block_size,
2978 			       inq_buff, drv);
2979 
2980 	blk_queue_logical_block_size(drv->queue, drv->block_size);
2981 	set_capacity(disk, drv->nr_blocks);
2982 
2983 	kfree(inq_buff);
2984 	return 0;
2985 }
2986 
2987 /*
2988  * Map (physical) PCI mem into (virtual) kernel space
2989  */
remap_pci_mem(ulong base,ulong size)2990 static void __iomem *remap_pci_mem(ulong base, ulong size)
2991 {
2992 	ulong page_base = ((ulong) base) & PAGE_MASK;
2993 	ulong page_offs = ((ulong) base) - page_base;
2994 	void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2995 
2996 	return page_remapped ? (page_remapped + page_offs) : NULL;
2997 }
2998 
2999 /*
3000  * Takes jobs of the Q and sends them to the hardware, then puts it on
3001  * the Q to wait for completion.
3002  */
start_io(ctlr_info_t * h)3003 static void start_io(ctlr_info_t *h)
3004 {
3005 	CommandList_struct *c;
3006 
3007 	while (!list_empty(&h->reqQ)) {
3008 		c = list_entry(h->reqQ.next, CommandList_struct, list);
3009 		/* can't do anything if fifo is full */
3010 		if ((h->access.fifo_full(h))) {
3011 			dev_warn(&h->pdev->dev, "fifo full\n");
3012 			break;
3013 		}
3014 
3015 		/* Get the first entry from the Request Q */
3016 		removeQ(c);
3017 		h->Qdepth--;
3018 
3019 		/* Tell the controller execute command */
3020 		h->access.submit_command(h, c);
3021 
3022 		/* Put job onto the completed Q */
3023 		addQ(&h->cmpQ, c);
3024 	}
3025 }
3026 
3027 /* Assumes that h->lock is held. */
3028 /* Zeros out the error record and then resends the command back */
3029 /* to the controller */
resend_cciss_cmd(ctlr_info_t * h,CommandList_struct * c)3030 static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
3031 {
3032 	/* erase the old error information */
3033 	memset(c->err_info, 0, sizeof(ErrorInfo_struct));
3034 
3035 	/* add it to software queue and then send it to the controller */
3036 	addQ(&h->reqQ, c);
3037 	h->Qdepth++;
3038 	if (h->Qdepth > h->maxQsinceinit)
3039 		h->maxQsinceinit = h->Qdepth;
3040 
3041 	start_io(h);
3042 }
3043 
make_status_bytes(unsigned int scsi_status_byte,unsigned int msg_byte,unsigned int host_byte,unsigned int driver_byte)3044 static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
3045 	unsigned int msg_byte, unsigned int host_byte,
3046 	unsigned int driver_byte)
3047 {
3048 	/* inverse of macros in scsi.h */
3049 	return (scsi_status_byte & 0xff) |
3050 		((msg_byte & 0xff) << 8) |
3051 		((host_byte & 0xff) << 16) |
3052 		((driver_byte & 0xff) << 24);
3053 }
3054 
evaluate_target_status(ctlr_info_t * h,CommandList_struct * cmd,int * retry_cmd)3055 static inline int evaluate_target_status(ctlr_info_t *h,
3056 			CommandList_struct *cmd, int *retry_cmd)
3057 {
3058 	unsigned char sense_key;
3059 	unsigned char status_byte, msg_byte, host_byte, driver_byte;
3060 	int error_value;
3061 
3062 	*retry_cmd = 0;
3063 	/* If we get in here, it means we got "target status", that is, scsi status */
3064 	status_byte = cmd->err_info->ScsiStatus;
3065 	driver_byte = DRIVER_OK;
3066 	msg_byte = cmd->err_info->CommandStatus; /* correct?  seems too device specific */
3067 
3068 	if (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC)
3069 		host_byte = DID_PASSTHROUGH;
3070 	else
3071 		host_byte = DID_OK;
3072 
3073 	error_value = make_status_bytes(status_byte, msg_byte,
3074 		host_byte, driver_byte);
3075 
3076 	if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) {
3077 		if (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC)
3078 			dev_warn(&h->pdev->dev, "cmd %p "
3079 			       "has SCSI Status 0x%x\n",
3080 			       cmd, cmd->err_info->ScsiStatus);
3081 		return error_value;
3082 	}
3083 
3084 	/* check the sense key */
3085 	sense_key = 0xf & cmd->err_info->SenseInfo[2];
3086 	/* no status or recovered error */
3087 	if (((sense_key == 0x0) || (sense_key == 0x1)) &&
3088 	    (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC))
3089 		error_value = 0;
3090 
3091 	if (check_for_unit_attention(h, cmd)) {
3092 		*retry_cmd = !(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC);
3093 		return 0;
3094 	}
3095 
3096 	/* Not SG_IO or similar? */
3097 	if (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC) {
3098 		if (error_value != 0)
3099 			dev_warn(&h->pdev->dev, "cmd %p has CHECK CONDITION"
3100 			       " sense key = 0x%x\n", cmd, sense_key);
3101 		return error_value;
3102 	}
3103 
3104 	/* SG_IO or similar, copy sense data back */
3105 	if (cmd->rq->sense) {
3106 		if (cmd->rq->sense_len > cmd->err_info->SenseLen)
3107 			cmd->rq->sense_len = cmd->err_info->SenseLen;
3108 		memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
3109 			cmd->rq->sense_len);
3110 	} else
3111 		cmd->rq->sense_len = 0;
3112 
3113 	return error_value;
3114 }
3115 
3116 /* checks the status of the job and calls complete buffers to mark all
3117  * buffers for the completed job. Note that this function does not need
3118  * to hold the hba/queue lock.
3119  */
complete_command(ctlr_info_t * h,CommandList_struct * cmd,int timeout)3120 static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
3121 				    int timeout)
3122 {
3123 	int retry_cmd = 0;
3124 	struct request *rq = cmd->rq;
3125 
3126 	rq->errors = 0;
3127 
3128 	if (timeout)
3129 		rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);
3130 
3131 	if (cmd->err_info->CommandStatus == 0)	/* no error has occurred */
3132 		goto after_error_processing;
3133 
3134 	switch (cmd->err_info->CommandStatus) {
3135 	case CMD_TARGET_STATUS:
3136 		rq->errors = evaluate_target_status(h, cmd, &retry_cmd);
3137 		break;
3138 	case CMD_DATA_UNDERRUN:
3139 		if (cmd->rq->cmd_type == REQ_TYPE_FS) {
3140 			dev_warn(&h->pdev->dev, "cmd %p has"
3141 			       " completed with data underrun "
3142 			       "reported\n", cmd);
3143 			cmd->rq->resid_len = cmd->err_info->ResidualCnt;
3144 		}
3145 		break;
3146 	case CMD_DATA_OVERRUN:
3147 		if (cmd->rq->cmd_type == REQ_TYPE_FS)
3148 			dev_warn(&h->pdev->dev, "cciss: cmd %p has"
3149 			       " completed with data overrun "
3150 			       "reported\n", cmd);
3151 		break;
3152 	case CMD_INVALID:
3153 		dev_warn(&h->pdev->dev, "cciss: cmd %p is "
3154 		       "reported invalid\n", cmd);
3155 		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3156 			cmd->err_info->CommandStatus, DRIVER_OK,
3157 			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3158 				DID_PASSTHROUGH : DID_ERROR);
3159 		break;
3160 	case CMD_PROTOCOL_ERR:
3161 		dev_warn(&h->pdev->dev, "cciss: cmd %p has "
3162 		       "protocol error\n", cmd);
3163 		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3164 			cmd->err_info->CommandStatus, DRIVER_OK,
3165 			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3166 				DID_PASSTHROUGH : DID_ERROR);
3167 		break;
3168 	case CMD_HARDWARE_ERR:
3169 		dev_warn(&h->pdev->dev, "cciss: cmd %p had "
3170 		       " hardware error\n", cmd);
3171 		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3172 			cmd->err_info->CommandStatus, DRIVER_OK,
3173 			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3174 				DID_PASSTHROUGH : DID_ERROR);
3175 		break;
3176 	case CMD_CONNECTION_LOST:
3177 		dev_warn(&h->pdev->dev, "cciss: cmd %p had "
3178 		       "connection lost\n", cmd);
3179 		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3180 			cmd->err_info->CommandStatus, DRIVER_OK,
3181 			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3182 				DID_PASSTHROUGH : DID_ERROR);
3183 		break;
3184 	case CMD_ABORTED:
3185 		dev_warn(&h->pdev->dev, "cciss: cmd %p was "
3186 		       "aborted\n", cmd);
3187 		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3188 			cmd->err_info->CommandStatus, DRIVER_OK,
3189 			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3190 				DID_PASSTHROUGH : DID_ABORT);
3191 		break;
3192 	case CMD_ABORT_FAILED:
3193 		dev_warn(&h->pdev->dev, "cciss: cmd %p reports "
3194 		       "abort failed\n", cmd);
3195 		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3196 			cmd->err_info->CommandStatus, DRIVER_OK,
3197 			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3198 				DID_PASSTHROUGH : DID_ERROR);
3199 		break;
3200 	case CMD_UNSOLICITED_ABORT:
3201 		dev_warn(&h->pdev->dev, "cciss%d: unsolicited "
3202 		       "abort %p\n", h->ctlr, cmd);
3203 		if (cmd->retry_count < MAX_CMD_RETRIES) {
3204 			retry_cmd = 1;
3205 			dev_warn(&h->pdev->dev, "retrying %p\n", cmd);
3206 			cmd->retry_count++;
3207 		} else
3208 			dev_warn(&h->pdev->dev,
3209 				"%p retried too many times\n", cmd);
3210 		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3211 			cmd->err_info->CommandStatus, DRIVER_OK,
3212 			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3213 				DID_PASSTHROUGH : DID_ABORT);
3214 		break;
3215 	case CMD_TIMEOUT:
3216 		dev_warn(&h->pdev->dev, "cmd %p timedout\n", cmd);
3217 		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3218 			cmd->err_info->CommandStatus, DRIVER_OK,
3219 			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3220 				DID_PASSTHROUGH : DID_ERROR);
3221 		break;
3222 	case CMD_UNABORTABLE:
3223 		dev_warn(&h->pdev->dev, "cmd %p unabortable\n", cmd);
3224 		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3225 			cmd->err_info->CommandStatus, DRIVER_OK,
3226 			cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC ?
3227 				DID_PASSTHROUGH : DID_ERROR);
3228 		break;
3229 	default:
3230 		dev_warn(&h->pdev->dev, "cmd %p returned "
3231 		       "unknown status %x\n", cmd,
3232 		       cmd->err_info->CommandStatus);
3233 		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3234 			cmd->err_info->CommandStatus, DRIVER_OK,
3235 			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3236 				DID_PASSTHROUGH : DID_ERROR);
3237 	}
3238 
3239 after_error_processing:
3240 
3241 	/* We need to return this command */
3242 	if (retry_cmd) {
3243 		resend_cciss_cmd(h, cmd);
3244 		return;
3245 	}
3246 	cmd->rq->completion_data = cmd;
3247 	blk_complete_request(cmd->rq);
3248 }
3249 
cciss_tag_contains_index(u32 tag)3250 static inline u32 cciss_tag_contains_index(u32 tag)
3251 {
3252 #define DIRECT_LOOKUP_BIT 0x10
3253 	return tag & DIRECT_LOOKUP_BIT;
3254 }
3255 
cciss_tag_to_index(u32 tag)3256 static inline u32 cciss_tag_to_index(u32 tag)
3257 {
3258 #define DIRECT_LOOKUP_SHIFT 5
3259 	return tag >> DIRECT_LOOKUP_SHIFT;
3260 }
3261 
cciss_tag_discard_error_bits(ctlr_info_t * h,u32 tag)3262 static inline u32 cciss_tag_discard_error_bits(ctlr_info_t *h, u32 tag)
3263 {
3264 #define CCISS_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3265 #define CCISS_SIMPLE_ERROR_BITS 0x03
3266 	if (likely(h->transMethod & CFGTBL_Trans_Performant))
3267 		return tag & ~CCISS_PERF_ERROR_BITS;
3268 	return tag & ~CCISS_SIMPLE_ERROR_BITS;
3269 }
3270 
cciss_mark_tag_indexed(u32 * tag)3271 static inline void cciss_mark_tag_indexed(u32 *tag)
3272 {
3273 	*tag |= DIRECT_LOOKUP_BIT;
3274 }
3275 
cciss_set_tag_index(u32 * tag,u32 index)3276 static inline void cciss_set_tag_index(u32 *tag, u32 index)
3277 {
3278 	*tag |= (index << DIRECT_LOOKUP_SHIFT);
3279 }
3280 
3281 /*
3282  * Get a request and submit it to the controller.
3283  */
do_cciss_request(struct request_queue * q)3284 static void do_cciss_request(struct request_queue *q)
3285 {
3286 	ctlr_info_t *h = q->queuedata;
3287 	CommandList_struct *c;
3288 	sector_t start_blk;
3289 	int seg;
3290 	struct request *creq;
3291 	u64bit temp64;
3292 	struct scatterlist *tmp_sg;
3293 	SGDescriptor_struct *curr_sg;
3294 	drive_info_struct *drv;
3295 	int i, dir;
3296 	int sg_index = 0;
3297 	int chained = 0;
3298 
3299       queue:
3300 	creq = blk_peek_request(q);
3301 	if (!creq)
3302 		goto startio;
3303 
3304 	BUG_ON(creq->nr_phys_segments > h->maxsgentries);
3305 
3306 	c = cmd_alloc(h);
3307 	if (!c)
3308 		goto full;
3309 
3310 	blk_start_request(creq);
3311 
3312 	tmp_sg = h->scatter_list[c->cmdindex];
3313 	spin_unlock_irq(q->queue_lock);
3314 
3315 	c->cmd_type = CMD_RWREQ;
3316 	c->rq = creq;
3317 
3318 	/* fill in the request */
3319 	drv = creq->rq_disk->private_data;
3320 	c->Header.ReplyQueue = 0;	/* unused in simple mode */
3321 	/* got command from pool, so use the command block index instead */
3322 	/* for direct lookups. */
3323 	/* The first 2 bits are reserved for controller error reporting. */
3324 	cciss_set_tag_index(&c->Header.Tag.lower, c->cmdindex);
3325 	cciss_mark_tag_indexed(&c->Header.Tag.lower);
3326 	memcpy(&c->Header.LUN, drv->LunID, sizeof(drv->LunID));
3327 	c->Request.CDBLen = 10;	/* 12 byte commands not in FW yet; */
3328 	c->Request.Type.Type = TYPE_CMD;	/* It is a command. */
3329 	c->Request.Type.Attribute = ATTR_SIMPLE;
3330 	c->Request.Type.Direction =
3331 	    (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
3332 	c->Request.Timeout = 0;	/* Don't time out */
3333 	c->Request.CDB[0] =
3334 	    (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
3335 	start_blk = blk_rq_pos(creq);
3336 	dev_dbg(&h->pdev->dev, "sector =%d nr_sectors=%d\n",
3337 	       (int)blk_rq_pos(creq), (int)blk_rq_sectors(creq));
3338 	sg_init_table(tmp_sg, h->maxsgentries);
3339 	seg = blk_rq_map_sg(q, creq, tmp_sg);
3340 
3341 	/* get the DMA records for the setup */
3342 	if (c->Request.Type.Direction == XFER_READ)
3343 		dir = PCI_DMA_FROMDEVICE;
3344 	else
3345 		dir = PCI_DMA_TODEVICE;
3346 
3347 	curr_sg = c->SG;
3348 	sg_index = 0;
3349 	chained = 0;
3350 
3351 	for (i = 0; i < seg; i++) {
3352 		if (((sg_index+1) == (h->max_cmd_sgentries)) &&
3353 			!chained && ((seg - i) > 1)) {
3354 			/* Point to next chain block. */
3355 			curr_sg = h->cmd_sg_list[c->cmdindex];
3356 			sg_index = 0;
3357 			chained = 1;
3358 		}
3359 		curr_sg[sg_index].Len = tmp_sg[i].length;
3360 		temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]),
3361 						tmp_sg[i].offset,
3362 						tmp_sg[i].length, dir);
3363 		curr_sg[sg_index].Addr.lower = temp64.val32.lower;
3364 		curr_sg[sg_index].Addr.upper = temp64.val32.upper;
3365 		curr_sg[sg_index].Ext = 0;  /* we are not chaining */
3366 		++sg_index;
3367 	}
3368 	if (chained)
3369 		cciss_map_sg_chain_block(h, c, h->cmd_sg_list[c->cmdindex],
3370 			(seg - (h->max_cmd_sgentries - 1)) *
3371 				sizeof(SGDescriptor_struct));
3372 
3373 	/* track how many SG entries we are using */
3374 	if (seg > h->maxSG)
3375 		h->maxSG = seg;
3376 
3377 	dev_dbg(&h->pdev->dev, "Submitting %u sectors in %d segments "
3378 			"chained[%d]\n",
3379 			blk_rq_sectors(creq), seg, chained);
3380 
3381 	c->Header.SGTotal = seg + chained;
3382 	if (seg <= h->max_cmd_sgentries)
3383 		c->Header.SGList = c->Header.SGTotal;
3384 	else
3385 		c->Header.SGList = h->max_cmd_sgentries;
3386 	set_performant_mode(h, c);
3387 
3388 	if (likely(creq->cmd_type == REQ_TYPE_FS)) {
3389 		if(h->cciss_read == CCISS_READ_10) {
3390 			c->Request.CDB[1] = 0;
3391 			c->Request.CDB[2] = (start_blk >> 24) & 0xff; /* MSB */
3392 			c->Request.CDB[3] = (start_blk >> 16) & 0xff;
3393 			c->Request.CDB[4] = (start_blk >> 8) & 0xff;
3394 			c->Request.CDB[5] = start_blk & 0xff;
3395 			c->Request.CDB[6] = 0; /* (sect >> 24) & 0xff; MSB */
3396 			c->Request.CDB[7] = (blk_rq_sectors(creq) >> 8) & 0xff;
3397 			c->Request.CDB[8] = blk_rq_sectors(creq) & 0xff;
3398 			c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
3399 		} else {
3400 			u32 upper32 = upper_32_bits(start_blk);
3401 
3402 			c->Request.CDBLen = 16;
3403 			c->Request.CDB[1]= 0;
3404 			c->Request.CDB[2]= (upper32 >> 24) & 0xff; /* MSB */
3405 			c->Request.CDB[3]= (upper32 >> 16) & 0xff;
3406 			c->Request.CDB[4]= (upper32 >>  8) & 0xff;
3407 			c->Request.CDB[5]= upper32 & 0xff;
3408 			c->Request.CDB[6]= (start_blk >> 24) & 0xff;
3409 			c->Request.CDB[7]= (start_blk >> 16) & 0xff;
3410 			c->Request.CDB[8]= (start_blk >>  8) & 0xff;
3411 			c->Request.CDB[9]= start_blk & 0xff;
3412 			c->Request.CDB[10]= (blk_rq_sectors(creq) >> 24) & 0xff;
3413 			c->Request.CDB[11]= (blk_rq_sectors(creq) >> 16) & 0xff;
3414 			c->Request.CDB[12]= (blk_rq_sectors(creq) >>  8) & 0xff;
3415 			c->Request.CDB[13]= blk_rq_sectors(creq) & 0xff;
3416 			c->Request.CDB[14] = c->Request.CDB[15] = 0;
3417 		}
3418 	} else if (creq->cmd_type == REQ_TYPE_BLOCK_PC) {
3419 		c->Request.CDBLen = creq->cmd_len;
3420 		memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB);
3421 	} else {
3422 		dev_warn(&h->pdev->dev, "bad request type %d\n",
3423 			creq->cmd_type);
3424 		BUG();
3425 	}
3426 
3427 	spin_lock_irq(q->queue_lock);
3428 
3429 	addQ(&h->reqQ, c);
3430 	h->Qdepth++;
3431 	if (h->Qdepth > h->maxQsinceinit)
3432 		h->maxQsinceinit = h->Qdepth;
3433 
3434 	goto queue;
3435 full:
3436 	blk_stop_queue(q);
3437 startio:
3438 	/* We will already have the driver lock here so not need
3439 	 * to lock it.
3440 	 */
3441 	start_io(h);
3442 }
3443 
get_next_completion(ctlr_info_t * h)3444 static inline unsigned long get_next_completion(ctlr_info_t *h)
3445 {
3446 	return h->access.command_completed(h);
3447 }
3448 
interrupt_pending(ctlr_info_t * h)3449 static inline int interrupt_pending(ctlr_info_t *h)
3450 {
3451 	return h->access.intr_pending(h);
3452 }
3453 
interrupt_not_for_us(ctlr_info_t * h)3454 static inline long interrupt_not_for_us(ctlr_info_t *h)
3455 {
3456 	return ((h->access.intr_pending(h) == 0) ||
3457 		(h->interrupts_enabled == 0));
3458 }
3459 
bad_tag(ctlr_info_t * h,u32 tag_index,u32 raw_tag)3460 static inline int bad_tag(ctlr_info_t *h, u32 tag_index,
3461 			u32 raw_tag)
3462 {
3463 	if (unlikely(tag_index >= h->nr_cmds)) {
3464 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
3465 		return 1;
3466 	}
3467 	return 0;
3468 }
3469 
finish_cmd(ctlr_info_t * h,CommandList_struct * c,u32 raw_tag)3470 static inline void finish_cmd(ctlr_info_t *h, CommandList_struct *c,
3471 				u32 raw_tag)
3472 {
3473 	removeQ(c);
3474 	if (likely(c->cmd_type == CMD_RWREQ))
3475 		complete_command(h, c, 0);
3476 	else if (c->cmd_type == CMD_IOCTL_PEND)
3477 		complete(c->waiting);
3478 #ifdef CONFIG_CISS_SCSI_TAPE
3479 	else if (c->cmd_type == CMD_SCSI)
3480 		complete_scsi_command(c, 0, raw_tag);
3481 #endif
3482 }
3483 
next_command(ctlr_info_t * h)3484 static inline u32 next_command(ctlr_info_t *h)
3485 {
3486 	u32 a;
3487 
3488 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3489 		return h->access.command_completed(h);
3490 
3491 	if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
3492 		a = *(h->reply_pool_head); /* Next cmd in ring buffer */
3493 		(h->reply_pool_head)++;
3494 		h->commands_outstanding--;
3495 	} else {
3496 		a = FIFO_EMPTY;
3497 	}
3498 	/* Check for wraparound */
3499 	if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
3500 		h->reply_pool_head = h->reply_pool;
3501 		h->reply_pool_wraparound ^= 1;
3502 	}
3503 	return a;
3504 }
3505 
3506 /* process completion of an indexed ("direct lookup") command */
process_indexed_cmd(ctlr_info_t * h,u32 raw_tag)3507 static inline u32 process_indexed_cmd(ctlr_info_t *h, u32 raw_tag)
3508 {
3509 	u32 tag_index;
3510 	CommandList_struct *c;
3511 
3512 	tag_index = cciss_tag_to_index(raw_tag);
3513 	if (bad_tag(h, tag_index, raw_tag))
3514 		return next_command(h);
3515 	c = h->cmd_pool + tag_index;
3516 	finish_cmd(h, c, raw_tag);
3517 	return next_command(h);
3518 }
3519 
3520 /* process completion of a non-indexed command */
process_nonindexed_cmd(ctlr_info_t * h,u32 raw_tag)3521 static inline u32 process_nonindexed_cmd(ctlr_info_t *h, u32 raw_tag)
3522 {
3523 	CommandList_struct *c = NULL;
3524 	__u32 busaddr_masked, tag_masked;
3525 
3526 	tag_masked = cciss_tag_discard_error_bits(h, raw_tag);
3527 	list_for_each_entry(c, &h->cmpQ, list) {
3528 		busaddr_masked = cciss_tag_discard_error_bits(h, c->busaddr);
3529 		if (busaddr_masked == tag_masked) {
3530 			finish_cmd(h, c, raw_tag);
3531 			return next_command(h);
3532 		}
3533 	}
3534 	bad_tag(h, h->nr_cmds + 1, raw_tag);
3535 	return next_command(h);
3536 }
3537 
3538 /* Some controllers, like p400, will give us one interrupt
3539  * after a soft reset, even if we turned interrupts off.
3540  * Only need to check for this in the cciss_xxx_discard_completions
3541  * functions.
3542  */
ignore_bogus_interrupt(ctlr_info_t * h)3543 static int ignore_bogus_interrupt(ctlr_info_t *h)
3544 {
3545 	if (likely(!reset_devices))
3546 		return 0;
3547 
3548 	if (likely(h->interrupts_enabled))
3549 		return 0;
3550 
3551 	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3552 		"(known firmware bug.)  Ignoring.\n");
3553 
3554 	return 1;
3555 }
3556 
cciss_intx_discard_completions(int irq,void * dev_id)3557 static irqreturn_t cciss_intx_discard_completions(int irq, void *dev_id)
3558 {
3559 	ctlr_info_t *h = dev_id;
3560 	unsigned long flags;
3561 	u32 raw_tag;
3562 
3563 	if (ignore_bogus_interrupt(h))
3564 		return IRQ_NONE;
3565 
3566 	if (interrupt_not_for_us(h))
3567 		return IRQ_NONE;
3568 	spin_lock_irqsave(&h->lock, flags);
3569 	while (interrupt_pending(h)) {
3570 		raw_tag = get_next_completion(h);
3571 		while (raw_tag != FIFO_EMPTY)
3572 			raw_tag = next_command(h);
3573 	}
3574 	spin_unlock_irqrestore(&h->lock, flags);
3575 	return IRQ_HANDLED;
3576 }
3577 
cciss_msix_discard_completions(int irq,void * dev_id)3578 static irqreturn_t cciss_msix_discard_completions(int irq, void *dev_id)
3579 {
3580 	ctlr_info_t *h = dev_id;
3581 	unsigned long flags;
3582 	u32 raw_tag;
3583 
3584 	if (ignore_bogus_interrupt(h))
3585 		return IRQ_NONE;
3586 
3587 	spin_lock_irqsave(&h->lock, flags);
3588 	raw_tag = get_next_completion(h);
3589 	while (raw_tag != FIFO_EMPTY)
3590 		raw_tag = next_command(h);
3591 	spin_unlock_irqrestore(&h->lock, flags);
3592 	return IRQ_HANDLED;
3593 }
3594 
do_cciss_intx(int irq,void * dev_id)3595 static irqreturn_t do_cciss_intx(int irq, void *dev_id)
3596 {
3597 	ctlr_info_t *h = dev_id;
3598 	unsigned long flags;
3599 	u32 raw_tag;
3600 
3601 	if (interrupt_not_for_us(h))
3602 		return IRQ_NONE;
3603 	spin_lock_irqsave(&h->lock, flags);
3604 	while (interrupt_pending(h)) {
3605 		raw_tag = get_next_completion(h);
3606 		while (raw_tag != FIFO_EMPTY) {
3607 			if (cciss_tag_contains_index(raw_tag))
3608 				raw_tag = process_indexed_cmd(h, raw_tag);
3609 			else
3610 				raw_tag = process_nonindexed_cmd(h, raw_tag);
3611 		}
3612 	}
3613 	spin_unlock_irqrestore(&h->lock, flags);
3614 	return IRQ_HANDLED;
3615 }
3616 
3617 /* Add a second interrupt handler for MSI/MSI-X mode. In this mode we never
3618  * check the interrupt pending register because it is not set.
3619  */
do_cciss_msix_intr(int irq,void * dev_id)3620 static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id)
3621 {
3622 	ctlr_info_t *h = dev_id;
3623 	unsigned long flags;
3624 	u32 raw_tag;
3625 
3626 	spin_lock_irqsave(&h->lock, flags);
3627 	raw_tag = get_next_completion(h);
3628 	while (raw_tag != FIFO_EMPTY) {
3629 		if (cciss_tag_contains_index(raw_tag))
3630 			raw_tag = process_indexed_cmd(h, raw_tag);
3631 		else
3632 			raw_tag = process_nonindexed_cmd(h, raw_tag);
3633 	}
3634 	spin_unlock_irqrestore(&h->lock, flags);
3635 	return IRQ_HANDLED;
3636 }
3637 
3638 /**
3639  * add_to_scan_list() - add controller to rescan queue
3640  * @h:		      Pointer to the controller.
3641  *
3642  * Adds the controller to the rescan queue if not already on the queue.
3643  *
3644  * returns 1 if added to the queue, 0 if skipped (could be on the
3645  * queue already, or the controller could be initializing or shutting
3646  * down).
3647  **/
add_to_scan_list(struct ctlr_info * h)3648 static int add_to_scan_list(struct ctlr_info *h)
3649 {
3650 	struct ctlr_info *test_h;
3651 	int found = 0;
3652 	int ret = 0;
3653 
3654 	if (h->busy_initializing)
3655 		return 0;
3656 
3657 	if (!mutex_trylock(&h->busy_shutting_down))
3658 		return 0;
3659 
3660 	mutex_lock(&scan_mutex);
3661 	list_for_each_entry(test_h, &scan_q, scan_list) {
3662 		if (test_h == h) {
3663 			found = 1;
3664 			break;
3665 		}
3666 	}
3667 	if (!found && !h->busy_scanning) {
3668 		INIT_COMPLETION(h->scan_wait);
3669 		list_add_tail(&h->scan_list, &scan_q);
3670 		ret = 1;
3671 	}
3672 	mutex_unlock(&scan_mutex);
3673 	mutex_unlock(&h->busy_shutting_down);
3674 
3675 	return ret;
3676 }
3677 
3678 /**
3679  * remove_from_scan_list() - remove controller from rescan queue
3680  * @h:			   Pointer to the controller.
3681  *
3682  * Removes the controller from the rescan queue if present. Blocks if
3683  * the controller is currently conducting a rescan.  The controller
3684  * can be in one of three states:
3685  * 1. Doesn't need a scan
3686  * 2. On the scan list, but not scanning yet (we remove it)
3687  * 3. Busy scanning (and not on the list). In this case we want to wait for
3688  *    the scan to complete to make sure the scanning thread for this
3689  *    controller is completely idle.
3690  **/
remove_from_scan_list(struct ctlr_info * h)3691 static void remove_from_scan_list(struct ctlr_info *h)
3692 {
3693 	struct ctlr_info *test_h, *tmp_h;
3694 
3695 	mutex_lock(&scan_mutex);
3696 	list_for_each_entry_safe(test_h, tmp_h, &scan_q, scan_list) {
3697 		if (test_h == h) { /* state 2. */
3698 			list_del(&h->scan_list);
3699 			complete_all(&h->scan_wait);
3700 			mutex_unlock(&scan_mutex);
3701 			return;
3702 		}
3703 	}
3704 	if (h->busy_scanning) { /* state 3. */
3705 		mutex_unlock(&scan_mutex);
3706 		wait_for_completion(&h->scan_wait);
3707 	} else { /* state 1, nothing to do. */
3708 		mutex_unlock(&scan_mutex);
3709 	}
3710 }
3711 
3712 /**
3713  * scan_thread() - kernel thread used to rescan controllers
3714  * @data:	 Ignored.
3715  *
3716  * A kernel thread used scan for drive topology changes on
3717  * controllers. The thread processes only one controller at a time
3718  * using a queue.  Controllers are added to the queue using
3719  * add_to_scan_list() and removed from the queue either after done
3720  * processing or using remove_from_scan_list().
3721  *
3722  * returns 0.
3723  **/
scan_thread(void * data)3724 static int scan_thread(void *data)
3725 {
3726 	struct ctlr_info *h;
3727 
3728 	while (1) {
3729 		set_current_state(TASK_INTERRUPTIBLE);
3730 		schedule();
3731 		if (kthread_should_stop())
3732 			break;
3733 
3734 		while (1) {
3735 			mutex_lock(&scan_mutex);
3736 			if (list_empty(&scan_q)) {
3737 				mutex_unlock(&scan_mutex);
3738 				break;
3739 			}
3740 
3741 			h = list_entry(scan_q.next,
3742 				       struct ctlr_info,
3743 				       scan_list);
3744 			list_del(&h->scan_list);
3745 			h->busy_scanning = 1;
3746 			mutex_unlock(&scan_mutex);
3747 
3748 			rebuild_lun_table(h, 0, 0);
3749 			complete_all(&h->scan_wait);
3750 			mutex_lock(&scan_mutex);
3751 			h->busy_scanning = 0;
3752 			mutex_unlock(&scan_mutex);
3753 		}
3754 	}
3755 
3756 	return 0;
3757 }
3758 
check_for_unit_attention(ctlr_info_t * h,CommandList_struct * c)3759 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c)
3760 {
3761 	if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
3762 		return 0;
3763 
3764 	switch (c->err_info->SenseInfo[12]) {
3765 	case STATE_CHANGED:
3766 		dev_warn(&h->pdev->dev, "a state change "
3767 			"detected, command retried\n");
3768 		return 1;
3769 	break;
3770 	case LUN_FAILED:
3771 		dev_warn(&h->pdev->dev, "LUN failure "
3772 			"detected, action required\n");
3773 		return 1;
3774 	break;
3775 	case REPORT_LUNS_CHANGED:
3776 		dev_warn(&h->pdev->dev, "report LUN data changed\n");
3777 	/*
3778 	 * Here, we could call add_to_scan_list and wake up the scan thread,
3779 	 * except that it's quite likely that we will get more than one
3780 	 * REPORT_LUNS_CHANGED condition in quick succession, which means
3781 	 * that those which occur after the first one will likely happen
3782 	 * *during* the scan_thread's rescan.  And the rescan code is not
3783 	 * robust enough to restart in the middle, undoing what it has already
3784 	 * done, and it's not clear that it's even possible to do this, since
3785 	 * part of what it does is notify the block layer, which starts
3786 	 * doing it's own i/o to read partition tables and so on, and the
3787 	 * driver doesn't have visibility to know what might need undoing.
3788 	 * In any event, if possible, it is horribly complicated to get right
3789 	 * so we just don't do it for now.
3790 	 *
3791 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
3792 	 */
3793 		return 1;
3794 	break;
3795 	case POWER_OR_RESET:
3796 		dev_warn(&h->pdev->dev,
3797 			"a power on or device reset detected\n");
3798 		return 1;
3799 	break;
3800 	case UNIT_ATTENTION_CLEARED:
3801 		dev_warn(&h->pdev->dev,
3802 			"unit attention cleared by another initiator\n");
3803 		return 1;
3804 	break;
3805 	default:
3806 		dev_warn(&h->pdev->dev, "unknown unit attention detected\n");
3807 		return 1;
3808 	}
3809 }
3810 
3811 /*
3812  *  We cannot read the structure directly, for portability we must use
3813  *   the io functions.
3814  *   This is for debug only.
3815  */
print_cfg_table(ctlr_info_t * h)3816 static void print_cfg_table(ctlr_info_t *h)
3817 {
3818 	int i;
3819 	char temp_name[17];
3820 	CfgTable_struct *tb = h->cfgtable;
3821 
3822 	dev_dbg(&h->pdev->dev, "Controller Configuration information\n");
3823 	dev_dbg(&h->pdev->dev, "------------------------------------\n");
3824 	for (i = 0; i < 4; i++)
3825 		temp_name[i] = readb(&(tb->Signature[i]));
3826 	temp_name[4] = '\0';
3827 	dev_dbg(&h->pdev->dev, "   Signature = %s\n", temp_name);
3828 	dev_dbg(&h->pdev->dev, "   Spec Number = %d\n",
3829 		readl(&(tb->SpecValence)));
3830 	dev_dbg(&h->pdev->dev, "   Transport methods supported = 0x%x\n",
3831 	       readl(&(tb->TransportSupport)));
3832 	dev_dbg(&h->pdev->dev, "   Transport methods active = 0x%x\n",
3833 	       readl(&(tb->TransportActive)));
3834 	dev_dbg(&h->pdev->dev, "   Requested transport Method = 0x%x\n",
3835 	       readl(&(tb->HostWrite.TransportRequest)));
3836 	dev_dbg(&h->pdev->dev, "   Coalesce Interrupt Delay = 0x%x\n",
3837 	       readl(&(tb->HostWrite.CoalIntDelay)));
3838 	dev_dbg(&h->pdev->dev, "   Coalesce Interrupt Count = 0x%x\n",
3839 	       readl(&(tb->HostWrite.CoalIntCount)));
3840 	dev_dbg(&h->pdev->dev, "   Max outstanding commands = 0x%d\n",
3841 	       readl(&(tb->CmdsOutMax)));
3842 	dev_dbg(&h->pdev->dev, "   Bus Types = 0x%x\n",
3843 		readl(&(tb->BusTypes)));
3844 	for (i = 0; i < 16; i++)
3845 		temp_name[i] = readb(&(tb->ServerName[i]));
3846 	temp_name[16] = '\0';
3847 	dev_dbg(&h->pdev->dev, "   Server Name = %s\n", temp_name);
3848 	dev_dbg(&h->pdev->dev, "   Heartbeat Counter = 0x%x\n\n\n",
3849 		readl(&(tb->HeartBeat)));
3850 }
3851 
find_PCI_BAR_index(struct pci_dev * pdev,unsigned long pci_bar_addr)3852 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3853 {
3854 	int i, offset, mem_type, bar_type;
3855 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
3856 		return 0;
3857 	offset = 0;
3858 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3859 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3860 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3861 			offset += 4;
3862 		else {
3863 			mem_type = pci_resource_flags(pdev, i) &
3864 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3865 			switch (mem_type) {
3866 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
3867 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3868 				offset += 4;	/* 32 bit */
3869 				break;
3870 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
3871 				offset += 8;
3872 				break;
3873 			default:	/* reserved in PCI 2.2 */
3874 				dev_warn(&pdev->dev,
3875 				       "Base address is invalid\n");
3876 				return -1;
3877 				break;
3878 			}
3879 		}
3880 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3881 			return i + 1;
3882 	}
3883 	return -1;
3884 }
3885 
3886 /* Fill in bucket_map[], given nsgs (the max number of
3887  * scatter gather elements supported) and bucket[],
3888  * which is an array of 8 integers.  The bucket[] array
3889  * contains 8 different DMA transfer sizes (in 16
3890  * byte increments) which the controller uses to fetch
3891  * commands.  This function fills in bucket_map[], which
3892  * maps a given number of scatter gather elements to one of
3893  * the 8 DMA transfer sizes.  The point of it is to allow the
3894  * controller to only do as much DMA as needed to fetch the
3895  * command, with the DMA transfer size encoded in the lower
3896  * bits of the command address.
3897  */
calc_bucket_map(int bucket[],int num_buckets,int nsgs,int * bucket_map)3898 static void  calc_bucket_map(int bucket[], int num_buckets,
3899 	int nsgs, int *bucket_map)
3900 {
3901 	int i, j, b, size;
3902 
3903 	/* even a command with 0 SGs requires 4 blocks */
3904 #define MINIMUM_TRANSFER_BLOCKS 4
3905 #define NUM_BUCKETS 8
3906 	/* Note, bucket_map must have nsgs+1 entries. */
3907 	for (i = 0; i <= nsgs; i++) {
3908 		/* Compute size of a command with i SG entries */
3909 		size = i + MINIMUM_TRANSFER_BLOCKS;
3910 		b = num_buckets; /* Assume the biggest bucket */
3911 		/* Find the bucket that is just big enough */
3912 		for (j = 0; j < 8; j++) {
3913 			if (bucket[j] >= size) {
3914 				b = j;
3915 				break;
3916 			}
3917 		}
3918 		/* for a command with i SG entries, use bucket b. */
3919 		bucket_map[i] = b;
3920 	}
3921 }
3922 
cciss_wait_for_mode_change_ack(ctlr_info_t * h)3923 static void __devinit cciss_wait_for_mode_change_ack(ctlr_info_t *h)
3924 {
3925 	int i;
3926 
3927 	/* under certain very rare conditions, this can take awhile.
3928 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3929 	 * as we enter this code.) */
3930 	for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3931 		if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3932 			break;
3933 		usleep_range(10000, 20000);
3934 	}
3935 }
3936 
cciss_enter_performant_mode(ctlr_info_t * h,u32 use_short_tags)3937 static __devinit void cciss_enter_performant_mode(ctlr_info_t *h,
3938 	u32 use_short_tags)
3939 {
3940 	/* This is a bit complicated.  There are 8 registers on
3941 	 * the controller which we write to to tell it 8 different
3942 	 * sizes of commands which there may be.  It's a way of
3943 	 * reducing the DMA done to fetch each command.  Encoded into
3944 	 * each command's tag are 3 bits which communicate to the controller
3945 	 * which of the eight sizes that command fits within.  The size of
3946 	 * each command depends on how many scatter gather entries there are.
3947 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
3948 	 * with the number of 16-byte blocks a command of that size requires.
3949 	 * The smallest command possible requires 5 such 16 byte blocks.
3950 	 * the largest command possible requires MAXSGENTRIES + 4 16-byte
3951 	 * blocks.  Note, this only extends to the SG entries contained
3952 	 * within the command block, and does not extend to chained blocks
3953 	 * of SG elements.   bft[] contains the eight values we write to
3954 	 * the registers.  They are not evenly distributed, but have more
3955 	 * sizes for small commands, and fewer sizes for larger commands.
3956 	 */
3957 	__u32 trans_offset;
3958 	int bft[8] = { 5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
3959 			/*
3960 			 *  5 = 1 s/g entry or 4k
3961 			 *  6 = 2 s/g entry or 8k
3962 			 *  8 = 4 s/g entry or 16k
3963 			 * 10 = 6 s/g entry or 24k
3964 			 */
3965 	unsigned long register_value;
3966 	BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
3967 
3968 	h->reply_pool_wraparound = 1; /* spec: init to 1 */
3969 
3970 	/* Controller spec: zero out this buffer. */
3971 	memset(h->reply_pool, 0, h->max_commands * sizeof(__u64));
3972 	h->reply_pool_head = h->reply_pool;
3973 
3974 	trans_offset = readl(&(h->cfgtable->TransMethodOffset));
3975 	calc_bucket_map(bft, ARRAY_SIZE(bft), h->maxsgentries,
3976 				h->blockFetchTable);
3977 	writel(bft[0], &h->transtable->BlockFetch0);
3978 	writel(bft[1], &h->transtable->BlockFetch1);
3979 	writel(bft[2], &h->transtable->BlockFetch2);
3980 	writel(bft[3], &h->transtable->BlockFetch3);
3981 	writel(bft[4], &h->transtable->BlockFetch4);
3982 	writel(bft[5], &h->transtable->BlockFetch5);
3983 	writel(bft[6], &h->transtable->BlockFetch6);
3984 	writel(bft[7], &h->transtable->BlockFetch7);
3985 
3986 	/* size of controller ring buffer */
3987 	writel(h->max_commands, &h->transtable->RepQSize);
3988 	writel(1, &h->transtable->RepQCount);
3989 	writel(0, &h->transtable->RepQCtrAddrLow32);
3990 	writel(0, &h->transtable->RepQCtrAddrHigh32);
3991 	writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
3992 	writel(0, &h->transtable->RepQAddr0High32);
3993 	writel(CFGTBL_Trans_Performant | use_short_tags,
3994 			&(h->cfgtable->HostWrite.TransportRequest));
3995 
3996 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3997 	cciss_wait_for_mode_change_ack(h);
3998 	register_value = readl(&(h->cfgtable->TransportActive));
3999 	if (!(register_value & CFGTBL_Trans_Performant))
4000 		dev_warn(&h->pdev->dev, "cciss: unable to get board into"
4001 					" performant mode\n");
4002 }
4003 
cciss_put_controller_into_performant_mode(ctlr_info_t * h)4004 static void __devinit cciss_put_controller_into_performant_mode(ctlr_info_t *h)
4005 {
4006 	__u32 trans_support;
4007 
4008 	if (cciss_simple_mode)
4009 		return;
4010 
4011 	dev_dbg(&h->pdev->dev, "Trying to put board into Performant mode\n");
4012 	/* Attempt to put controller into performant mode if supported */
4013 	/* Does board support performant mode? */
4014 	trans_support = readl(&(h->cfgtable->TransportSupport));
4015 	if (!(trans_support & PERFORMANT_MODE))
4016 		return;
4017 
4018 	dev_dbg(&h->pdev->dev, "Placing controller into performant mode\n");
4019 	/* Performant mode demands commands on a 32 byte boundary
4020 	 * pci_alloc_consistent aligns on page boundarys already.
4021 	 * Just need to check if divisible by 32
4022 	 */
4023 	if ((sizeof(CommandList_struct) % 32) != 0) {
4024 		dev_warn(&h->pdev->dev, "%s %d %s\n",
4025 			"cciss info: command size[",
4026 			(int)sizeof(CommandList_struct),
4027 			"] not divisible by 32, no performant mode..\n");
4028 		return;
4029 	}
4030 
4031 	/* Performant mode ring buffer and supporting data structures */
4032 	h->reply_pool = (__u64 *)pci_alloc_consistent(
4033 		h->pdev, h->max_commands * sizeof(__u64),
4034 		&(h->reply_pool_dhandle));
4035 
4036 	/* Need a block fetch table for performant mode */
4037 	h->blockFetchTable = kmalloc(((h->maxsgentries+1) *
4038 		sizeof(__u32)), GFP_KERNEL);
4039 
4040 	if ((h->reply_pool == NULL) || (h->blockFetchTable == NULL))
4041 		goto clean_up;
4042 
4043 	cciss_enter_performant_mode(h,
4044 		trans_support & CFGTBL_Trans_use_short_tags);
4045 
4046 	/* Change the access methods to the performant access methods */
4047 	h->access = SA5_performant_access;
4048 	h->transMethod = CFGTBL_Trans_Performant;
4049 
4050 	return;
4051 clean_up:
4052 	kfree(h->blockFetchTable);
4053 	if (h->reply_pool)
4054 		pci_free_consistent(h->pdev,
4055 				h->max_commands * sizeof(__u64),
4056 				h->reply_pool,
4057 				h->reply_pool_dhandle);
4058 	return;
4059 
4060 } /* cciss_put_controller_into_performant_mode */
4061 
4062 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
4063  * controllers that are capable. If not, we use IO-APIC mode.
4064  */
4065 
cciss_interrupt_mode(ctlr_info_t * h)4066 static void __devinit cciss_interrupt_mode(ctlr_info_t *h)
4067 {
4068 #ifdef CONFIG_PCI_MSI
4069 	int err;
4070 	struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1},
4071 	{0, 2}, {0, 3}
4072 	};
4073 
4074 	/* Some boards advertise MSI but don't really support it */
4075 	if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
4076 	    (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
4077 		goto default_int_mode;
4078 
4079 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
4080 		err = pci_enable_msix(h->pdev, cciss_msix_entries, 4);
4081 		if (!err) {
4082 			h->intr[0] = cciss_msix_entries[0].vector;
4083 			h->intr[1] = cciss_msix_entries[1].vector;
4084 			h->intr[2] = cciss_msix_entries[2].vector;
4085 			h->intr[3] = cciss_msix_entries[3].vector;
4086 			h->msix_vector = 1;
4087 			return;
4088 		}
4089 		if (err > 0) {
4090 			dev_warn(&h->pdev->dev,
4091 				"only %d MSI-X vectors available\n", err);
4092 			goto default_int_mode;
4093 		} else {
4094 			dev_warn(&h->pdev->dev,
4095 				"MSI-X init failed %d\n", err);
4096 			goto default_int_mode;
4097 		}
4098 	}
4099 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
4100 		if (!pci_enable_msi(h->pdev))
4101 			h->msi_vector = 1;
4102 		else
4103 			dev_warn(&h->pdev->dev, "MSI init failed\n");
4104 	}
4105 default_int_mode:
4106 #endif				/* CONFIG_PCI_MSI */
4107 	/* if we get here we're going to use the default interrupt mode */
4108 	h->intr[h->intr_mode] = h->pdev->irq;
4109 	return;
4110 }
4111 
cciss_lookup_board_id(struct pci_dev * pdev,u32 * board_id)4112 static int __devinit cciss_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
4113 {
4114 	int i;
4115 	u32 subsystem_vendor_id, subsystem_device_id;
4116 
4117 	subsystem_vendor_id = pdev->subsystem_vendor;
4118 	subsystem_device_id = pdev->subsystem_device;
4119 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
4120 			subsystem_vendor_id;
4121 
4122 	for (i = 0; i < ARRAY_SIZE(products); i++)
4123 		if (*board_id == products[i].board_id)
4124 			return i;
4125 	dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x, ignoring.\n",
4126 		*board_id);
4127 	return -ENODEV;
4128 }
4129 
cciss_board_disabled(ctlr_info_t * h)4130 static inline bool cciss_board_disabled(ctlr_info_t *h)
4131 {
4132 	u16 command;
4133 
4134 	(void) pci_read_config_word(h->pdev, PCI_COMMAND, &command);
4135 	return ((command & PCI_COMMAND_MEMORY) == 0);
4136 }
4137 
cciss_pci_find_memory_BAR(struct pci_dev * pdev,unsigned long * memory_bar)4138 static int __devinit cciss_pci_find_memory_BAR(struct pci_dev *pdev,
4139 	unsigned long *memory_bar)
4140 {
4141 	int i;
4142 
4143 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
4144 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
4145 			/* addressing mode bits already removed */
4146 			*memory_bar = pci_resource_start(pdev, i);
4147 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
4148 				*memory_bar);
4149 			return 0;
4150 		}
4151 	dev_warn(&pdev->dev, "no memory BAR found\n");
4152 	return -ENODEV;
4153 }
4154 
cciss_wait_for_board_state(struct pci_dev * pdev,void __iomem * vaddr,int wait_for_ready)4155 static int __devinit cciss_wait_for_board_state(struct pci_dev *pdev,
4156 	void __iomem *vaddr, int wait_for_ready)
4157 #define BOARD_READY 1
4158 #define BOARD_NOT_READY 0
4159 {
4160 	int i, iterations;
4161 	u32 scratchpad;
4162 
4163 	if (wait_for_ready)
4164 		iterations = CCISS_BOARD_READY_ITERATIONS;
4165 	else
4166 		iterations = CCISS_BOARD_NOT_READY_ITERATIONS;
4167 
4168 	for (i = 0; i < iterations; i++) {
4169 		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
4170 		if (wait_for_ready) {
4171 			if (scratchpad == CCISS_FIRMWARE_READY)
4172 				return 0;
4173 		} else {
4174 			if (scratchpad != CCISS_FIRMWARE_READY)
4175 				return 0;
4176 		}
4177 		msleep(CCISS_BOARD_READY_POLL_INTERVAL_MSECS);
4178 	}
4179 	dev_warn(&pdev->dev, "board not ready, timed out.\n");
4180 	return -ENODEV;
4181 }
4182 
cciss_find_cfg_addrs(struct pci_dev * pdev,void __iomem * vaddr,u32 * cfg_base_addr,u64 * cfg_base_addr_index,u64 * cfg_offset)4183 static int __devinit cciss_find_cfg_addrs(struct pci_dev *pdev,
4184 	void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
4185 	u64 *cfg_offset)
4186 {
4187 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
4188 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
4189 	*cfg_base_addr &= (u32) 0x0000ffff;
4190 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
4191 	if (*cfg_base_addr_index == -1) {
4192 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index, "
4193 			"*cfg_base_addr = 0x%08x\n", *cfg_base_addr);
4194 		return -ENODEV;
4195 	}
4196 	return 0;
4197 }
4198 
cciss_find_cfgtables(ctlr_info_t * h)4199 static int __devinit cciss_find_cfgtables(ctlr_info_t *h)
4200 {
4201 	u64 cfg_offset;
4202 	u32 cfg_base_addr;
4203 	u64 cfg_base_addr_index;
4204 	u32 trans_offset;
4205 	int rc;
4206 
4207 	rc = cciss_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
4208 		&cfg_base_addr_index, &cfg_offset);
4209 	if (rc)
4210 		return rc;
4211 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
4212 		cfg_base_addr_index) + cfg_offset, sizeof(h->cfgtable));
4213 	if (!h->cfgtable)
4214 		return -ENOMEM;
4215 	rc = write_driver_ver_to_cfgtable(h->cfgtable);
4216 	if (rc)
4217 		return rc;
4218 	/* Find performant mode table. */
4219 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
4220 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
4221 				cfg_base_addr_index)+cfg_offset+trans_offset,
4222 				sizeof(*h->transtable));
4223 	if (!h->transtable)
4224 		return -ENOMEM;
4225 	return 0;
4226 }
4227 
cciss_get_max_perf_mode_cmds(struct ctlr_info * h)4228 static void __devinit cciss_get_max_perf_mode_cmds(struct ctlr_info *h)
4229 {
4230 	h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
4231 
4232 	/* Limit commands in memory limited kdump scenario. */
4233 	if (reset_devices && h->max_commands > 32)
4234 		h->max_commands = 32;
4235 
4236 	if (h->max_commands < 16) {
4237 		dev_warn(&h->pdev->dev, "Controller reports "
4238 			"max supported commands of %d, an obvious lie. "
4239 			"Using 16.  Ensure that firmware is up to date.\n",
4240 			h->max_commands);
4241 		h->max_commands = 16;
4242 	}
4243 }
4244 
4245 /* Interrogate the hardware for some limits:
4246  * max commands, max SG elements without chaining, and with chaining,
4247  * SG chain block size, etc.
4248  */
cciss_find_board_params(ctlr_info_t * h)4249 static void __devinit cciss_find_board_params(ctlr_info_t *h)
4250 {
4251 	cciss_get_max_perf_mode_cmds(h);
4252 	h->nr_cmds = h->max_commands - 4 - cciss_tape_cmds;
4253 	h->maxsgentries = readl(&(h->cfgtable->MaxSGElements));
4254 	/*
4255 	 * Limit in-command s/g elements to 32 save dma'able memory.
4256 	 * Howvever spec says if 0, use 31
4257 	 */
4258 	h->max_cmd_sgentries = 31;
4259 	if (h->maxsgentries > 512) {
4260 		h->max_cmd_sgentries = 32;
4261 		h->chainsize = h->maxsgentries - h->max_cmd_sgentries + 1;
4262 		h->maxsgentries--; /* save one for chain pointer */
4263 	} else {
4264 		h->maxsgentries = 31; /* default to traditional values */
4265 		h->chainsize = 0;
4266 	}
4267 }
4268 
CISS_signature_present(ctlr_info_t * h)4269 static inline bool CISS_signature_present(ctlr_info_t *h)
4270 {
4271 	if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
4272 	    (readb(&h->cfgtable->Signature[1]) != 'I') ||
4273 	    (readb(&h->cfgtable->Signature[2]) != 'S') ||
4274 	    (readb(&h->cfgtable->Signature[3]) != 'S')) {
4275 		dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
4276 		return false;
4277 	}
4278 	return true;
4279 }
4280 
4281 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
cciss_enable_scsi_prefetch(ctlr_info_t * h)4282 static inline void cciss_enable_scsi_prefetch(ctlr_info_t *h)
4283 {
4284 #ifdef CONFIG_X86
4285 	u32 prefetch;
4286 
4287 	prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
4288 	prefetch |= 0x100;
4289 	writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
4290 #endif
4291 }
4292 
4293 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
4294  * in a prefetch beyond physical memory.
4295  */
cciss_p600_dma_prefetch_quirk(ctlr_info_t * h)4296 static inline void cciss_p600_dma_prefetch_quirk(ctlr_info_t *h)
4297 {
4298 	u32 dma_prefetch;
4299 	__u32 dma_refetch;
4300 
4301 	if (h->board_id != 0x3225103C)
4302 		return;
4303 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
4304 	dma_prefetch |= 0x8000;
4305 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
4306 	pci_read_config_dword(h->pdev, PCI_COMMAND_PARITY, &dma_refetch);
4307 	dma_refetch |= 0x1;
4308 	pci_write_config_dword(h->pdev, PCI_COMMAND_PARITY, dma_refetch);
4309 }
4310 
cciss_pci_init(ctlr_info_t * h)4311 static int __devinit cciss_pci_init(ctlr_info_t *h)
4312 {
4313 	int prod_index, err;
4314 
4315 	prod_index = cciss_lookup_board_id(h->pdev, &h->board_id);
4316 	if (prod_index < 0)
4317 		return -ENODEV;
4318 	h->product_name = products[prod_index].product_name;
4319 	h->access = *(products[prod_index].access);
4320 
4321 	if (cciss_board_disabled(h)) {
4322 		dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
4323 		return -ENODEV;
4324 	}
4325 
4326 	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
4327 				PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
4328 
4329 	err = pci_enable_device(h->pdev);
4330 	if (err) {
4331 		dev_warn(&h->pdev->dev, "Unable to Enable PCI device\n");
4332 		return err;
4333 	}
4334 
4335 	err = pci_request_regions(h->pdev, "cciss");
4336 	if (err) {
4337 		dev_warn(&h->pdev->dev,
4338 			"Cannot obtain PCI resources, aborting\n");
4339 		return err;
4340 	}
4341 
4342 	dev_dbg(&h->pdev->dev, "irq = %x\n", h->pdev->irq);
4343 	dev_dbg(&h->pdev->dev, "board_id = %x\n", h->board_id);
4344 
4345 /* If the kernel supports MSI/MSI-X we will try to enable that functionality,
4346  * else we use the IO-APIC interrupt assigned to us by system ROM.
4347  */
4348 	cciss_interrupt_mode(h);
4349 	err = cciss_pci_find_memory_BAR(h->pdev, &h->paddr);
4350 	if (err)
4351 		goto err_out_free_res;
4352 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
4353 	if (!h->vaddr) {
4354 		err = -ENOMEM;
4355 		goto err_out_free_res;
4356 	}
4357 	err = cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
4358 	if (err)
4359 		goto err_out_free_res;
4360 	err = cciss_find_cfgtables(h);
4361 	if (err)
4362 		goto err_out_free_res;
4363 	print_cfg_table(h);
4364 	cciss_find_board_params(h);
4365 
4366 	if (!CISS_signature_present(h)) {
4367 		err = -ENODEV;
4368 		goto err_out_free_res;
4369 	}
4370 	cciss_enable_scsi_prefetch(h);
4371 	cciss_p600_dma_prefetch_quirk(h);
4372 	err = cciss_enter_simple_mode(h);
4373 	if (err)
4374 		goto err_out_free_res;
4375 	cciss_put_controller_into_performant_mode(h);
4376 	return 0;
4377 
4378 err_out_free_res:
4379 	/*
4380 	 * Deliberately omit pci_disable_device(): it does something nasty to
4381 	 * Smart Array controllers that pci_enable_device does not undo
4382 	 */
4383 	if (h->transtable)
4384 		iounmap(h->transtable);
4385 	if (h->cfgtable)
4386 		iounmap(h->cfgtable);
4387 	if (h->vaddr)
4388 		iounmap(h->vaddr);
4389 	pci_release_regions(h->pdev);
4390 	return err;
4391 }
4392 
4393 /* Function to find the first free pointer into our hba[] array
4394  * Returns -1 if no free entries are left.
4395  */
alloc_cciss_hba(struct pci_dev * pdev)4396 static int alloc_cciss_hba(struct pci_dev *pdev)
4397 {
4398 	int i;
4399 
4400 	for (i = 0; i < MAX_CTLR; i++) {
4401 		if (!hba[i]) {
4402 			ctlr_info_t *h;
4403 
4404 			h = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
4405 			if (!h)
4406 				goto Enomem;
4407 			hba[i] = h;
4408 			return i;
4409 		}
4410 	}
4411 	dev_warn(&pdev->dev, "This driver supports a maximum"
4412 	       " of %d controllers.\n", MAX_CTLR);
4413 	return -1;
4414 Enomem:
4415 	dev_warn(&pdev->dev, "out of memory.\n");
4416 	return -1;
4417 }
4418 
free_hba(ctlr_info_t * h)4419 static void free_hba(ctlr_info_t *h)
4420 {
4421 	int i;
4422 
4423 	hba[h->ctlr] = NULL;
4424 	for (i = 0; i < h->highest_lun + 1; i++)
4425 		if (h->gendisk[i] != NULL)
4426 			put_disk(h->gendisk[i]);
4427 	kfree(h);
4428 }
4429 
4430 /* Send a message CDB to the firmware. */
cciss_message(struct pci_dev * pdev,unsigned char opcode,unsigned char type)4431 static __devinit int cciss_message(struct pci_dev *pdev, unsigned char opcode, unsigned char type)
4432 {
4433 	typedef struct {
4434 		CommandListHeader_struct CommandHeader;
4435 		RequestBlock_struct Request;
4436 		ErrDescriptor_struct ErrorDescriptor;
4437 	} Command;
4438 	static const size_t cmd_sz = sizeof(Command) + sizeof(ErrorInfo_struct);
4439 	Command *cmd;
4440 	dma_addr_t paddr64;
4441 	uint32_t paddr32, tag;
4442 	void __iomem *vaddr;
4443 	int i, err;
4444 
4445 	vaddr = ioremap_nocache(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
4446 	if (vaddr == NULL)
4447 		return -ENOMEM;
4448 
4449 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
4450 	   CCISS commands, so they must be allocated from the lower 4GiB of
4451 	   memory. */
4452 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4453 	if (err) {
4454 		iounmap(vaddr);
4455 		return -ENOMEM;
4456 	}
4457 
4458 	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
4459 	if (cmd == NULL) {
4460 		iounmap(vaddr);
4461 		return -ENOMEM;
4462 	}
4463 
4464 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
4465 	   although there's no guarantee, we assume that the address is at
4466 	   least 4-byte aligned (most likely, it's page-aligned). */
4467 	paddr32 = paddr64;
4468 
4469 	cmd->CommandHeader.ReplyQueue = 0;
4470 	cmd->CommandHeader.SGList = 0;
4471 	cmd->CommandHeader.SGTotal = 0;
4472 	cmd->CommandHeader.Tag.lower = paddr32;
4473 	cmd->CommandHeader.Tag.upper = 0;
4474 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
4475 
4476 	cmd->Request.CDBLen = 16;
4477 	cmd->Request.Type.Type = TYPE_MSG;
4478 	cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
4479 	cmd->Request.Type.Direction = XFER_NONE;
4480 	cmd->Request.Timeout = 0; /* Don't time out */
4481 	cmd->Request.CDB[0] = opcode;
4482 	cmd->Request.CDB[1] = type;
4483 	memset(&cmd->Request.CDB[2], 0, 14); /* the rest of the CDB is reserved */
4484 
4485 	cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(Command);
4486 	cmd->ErrorDescriptor.Addr.upper = 0;
4487 	cmd->ErrorDescriptor.Len = sizeof(ErrorInfo_struct);
4488 
4489 	writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
4490 
4491 	for (i = 0; i < 10; i++) {
4492 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
4493 		if ((tag & ~3) == paddr32)
4494 			break;
4495 		msleep(CCISS_POST_RESET_NOOP_TIMEOUT_MSECS);
4496 	}
4497 
4498 	iounmap(vaddr);
4499 
4500 	/* we leak the DMA buffer here ... no choice since the controller could
4501 	   still complete the command. */
4502 	if (i == 10) {
4503 		dev_err(&pdev->dev,
4504 			"controller message %02x:%02x timed out\n",
4505 			opcode, type);
4506 		return -ETIMEDOUT;
4507 	}
4508 
4509 	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
4510 
4511 	if (tag & 2) {
4512 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
4513 			opcode, type);
4514 		return -EIO;
4515 	}
4516 
4517 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
4518 		opcode, type);
4519 	return 0;
4520 }
4521 
4522 #define cciss_noop(p) cciss_message(p, 3, 0)
4523 
cciss_controller_hard_reset(struct pci_dev * pdev,void * __iomem vaddr,u32 use_doorbell)4524 static int cciss_controller_hard_reset(struct pci_dev *pdev,
4525 	void * __iomem vaddr, u32 use_doorbell)
4526 {
4527 	u16 pmcsr;
4528 	int pos;
4529 
4530 	if (use_doorbell) {
4531 		/* For everything after the P600, the PCI power state method
4532 		 * of resetting the controller doesn't work, so we have this
4533 		 * other way using the doorbell register.
4534 		 */
4535 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
4536 		writel(use_doorbell, vaddr + SA5_DOORBELL);
4537 	} else { /* Try to do it the PCI power state way */
4538 
4539 		/* Quoting from the Open CISS Specification: "The Power
4540 		 * Management Control/Status Register (CSR) controls the power
4541 		 * state of the device.  The normal operating state is D0,
4542 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
4543 		 * the controller, place the interface device in D3 then to D0,
4544 		 * this causes a secondary PCI reset which will reset the
4545 		 * controller." */
4546 
4547 		pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
4548 		if (pos == 0) {
4549 			dev_err(&pdev->dev,
4550 				"cciss_controller_hard_reset: "
4551 				"PCI PM not supported\n");
4552 			return -ENODEV;
4553 		}
4554 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
4555 		/* enter the D3hot power management state */
4556 		pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
4557 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4558 		pmcsr |= PCI_D3hot;
4559 		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4560 
4561 		msleep(500);
4562 
4563 		/* enter the D0 power management state */
4564 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4565 		pmcsr |= PCI_D0;
4566 		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4567 
4568 		/*
4569 		 * The P600 requires a small delay when changing states.
4570 		 * Otherwise we may think the board did not reset and we bail.
4571 		 * This for kdump only and is particular to the P600.
4572 		 */
4573 		msleep(500);
4574 	}
4575 	return 0;
4576 }
4577 
init_driver_version(char * driver_version,int len)4578 static __devinit void init_driver_version(char *driver_version, int len)
4579 {
4580 	memset(driver_version, 0, len);
4581 	strncpy(driver_version, "cciss " DRIVER_NAME, len - 1);
4582 }
4583 
write_driver_ver_to_cfgtable(CfgTable_struct __iomem * cfgtable)4584 static __devinit int write_driver_ver_to_cfgtable(
4585 	CfgTable_struct __iomem *cfgtable)
4586 {
4587 	char *driver_version;
4588 	int i, size = sizeof(cfgtable->driver_version);
4589 
4590 	driver_version = kmalloc(size, GFP_KERNEL);
4591 	if (!driver_version)
4592 		return -ENOMEM;
4593 
4594 	init_driver_version(driver_version, size);
4595 	for (i = 0; i < size; i++)
4596 		writeb(driver_version[i], &cfgtable->driver_version[i]);
4597 	kfree(driver_version);
4598 	return 0;
4599 }
4600 
read_driver_ver_from_cfgtable(CfgTable_struct __iomem * cfgtable,unsigned char * driver_ver)4601 static __devinit void read_driver_ver_from_cfgtable(
4602 	CfgTable_struct __iomem *cfgtable, unsigned char *driver_ver)
4603 {
4604 	int i;
4605 
4606 	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
4607 		driver_ver[i] = readb(&cfgtable->driver_version[i]);
4608 }
4609 
controller_reset_failed(CfgTable_struct __iomem * cfgtable)4610 static __devinit int controller_reset_failed(
4611 	CfgTable_struct __iomem *cfgtable)
4612 {
4613 
4614 	char *driver_ver, *old_driver_ver;
4615 	int rc, size = sizeof(cfgtable->driver_version);
4616 
4617 	old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
4618 	if (!old_driver_ver)
4619 		return -ENOMEM;
4620 	driver_ver = old_driver_ver + size;
4621 
4622 	/* After a reset, the 32 bytes of "driver version" in the cfgtable
4623 	 * should have been changed, otherwise we know the reset failed.
4624 	 */
4625 	init_driver_version(old_driver_ver, size);
4626 	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
4627 	rc = !memcmp(driver_ver, old_driver_ver, size);
4628 	kfree(old_driver_ver);
4629 	return rc;
4630 }
4631 
4632 /* This does a hard reset of the controller using PCI power management
4633  * states or using the doorbell register. */
cciss_kdump_hard_reset_controller(struct pci_dev * pdev)4634 static __devinit int cciss_kdump_hard_reset_controller(struct pci_dev *pdev)
4635 {
4636 	u64 cfg_offset;
4637 	u32 cfg_base_addr;
4638 	u64 cfg_base_addr_index;
4639 	void __iomem *vaddr;
4640 	unsigned long paddr;
4641 	u32 misc_fw_support;
4642 	int rc;
4643 	CfgTable_struct __iomem *cfgtable;
4644 	u32 use_doorbell;
4645 	u32 board_id;
4646 	u16 command_register;
4647 
4648 	/* For controllers as old a the p600, this is very nearly
4649 	 * the same thing as
4650 	 *
4651 	 * pci_save_state(pci_dev);
4652 	 * pci_set_power_state(pci_dev, PCI_D3hot);
4653 	 * pci_set_power_state(pci_dev, PCI_D0);
4654 	 * pci_restore_state(pci_dev);
4655 	 *
4656 	 * For controllers newer than the P600, the pci power state
4657 	 * method of resetting doesn't work so we have another way
4658 	 * using the doorbell register.
4659 	 */
4660 
4661 	/* Exclude 640x boards.  These are two pci devices in one slot
4662 	 * which share a battery backed cache module.  One controls the
4663 	 * cache, the other accesses the cache through the one that controls
4664 	 * it.  If we reset the one controlling the cache, the other will
4665 	 * likely not be happy.  Just forbid resetting this conjoined mess.
4666 	 */
4667 	cciss_lookup_board_id(pdev, &board_id);
4668 	if (!ctlr_is_resettable(board_id)) {
4669 		dev_warn(&pdev->dev, "Cannot reset Smart Array 640x "
4670 				"due to shared cache module.");
4671 		return -ENODEV;
4672 	}
4673 
4674 	/* if controller is soft- but not hard resettable... */
4675 	if (!ctlr_is_hard_resettable(board_id))
4676 		return -ENOTSUPP; /* try soft reset later. */
4677 
4678 	/* Save the PCI command register */
4679 	pci_read_config_word(pdev, 4, &command_register);
4680 	/* Turn the board off.  This is so that later pci_restore_state()
4681 	 * won't turn the board on before the rest of config space is ready.
4682 	 */
4683 	pci_disable_device(pdev);
4684 	pci_save_state(pdev);
4685 
4686 	/* find the first memory BAR, so we can find the cfg table */
4687 	rc = cciss_pci_find_memory_BAR(pdev, &paddr);
4688 	if (rc)
4689 		return rc;
4690 	vaddr = remap_pci_mem(paddr, 0x250);
4691 	if (!vaddr)
4692 		return -ENOMEM;
4693 
4694 	/* find cfgtable in order to check if reset via doorbell is supported */
4695 	rc = cciss_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
4696 					&cfg_base_addr_index, &cfg_offset);
4697 	if (rc)
4698 		goto unmap_vaddr;
4699 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
4700 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
4701 	if (!cfgtable) {
4702 		rc = -ENOMEM;
4703 		goto unmap_vaddr;
4704 	}
4705 	rc = write_driver_ver_to_cfgtable(cfgtable);
4706 	if (rc)
4707 		goto unmap_vaddr;
4708 
4709 	/* If reset via doorbell register is supported, use that.
4710 	 * There are two such methods.  Favor the newest method.
4711 	 */
4712 	misc_fw_support = readl(&cfgtable->misc_fw_support);
4713 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
4714 	if (use_doorbell) {
4715 		use_doorbell = DOORBELL_CTLR_RESET2;
4716 	} else {
4717 		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
4718 		if (use_doorbell) {
4719 			dev_warn(&pdev->dev, "Controller claims that "
4720 				"'Bit 2 doorbell reset' is "
4721 				"supported, but not 'bit 5 doorbell reset'.  "
4722 				"Firmware update is recommended.\n");
4723 			rc = -ENOTSUPP; /* use the soft reset */
4724 			goto unmap_cfgtable;
4725 		}
4726 	}
4727 
4728 	rc = cciss_controller_hard_reset(pdev, vaddr, use_doorbell);
4729 	if (rc)
4730 		goto unmap_cfgtable;
4731 	pci_restore_state(pdev);
4732 	rc = pci_enable_device(pdev);
4733 	if (rc) {
4734 		dev_warn(&pdev->dev, "failed to enable device.\n");
4735 		goto unmap_cfgtable;
4736 	}
4737 	pci_write_config_word(pdev, 4, command_register);
4738 
4739 	/* Some devices (notably the HP Smart Array 5i Controller)
4740 	   need a little pause here */
4741 	msleep(CCISS_POST_RESET_PAUSE_MSECS);
4742 
4743 	/* Wait for board to become not ready, then ready. */
4744 	dev_info(&pdev->dev, "Waiting for board to reset.\n");
4745 	rc = cciss_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
4746 	if (rc) {
4747 		dev_warn(&pdev->dev, "Failed waiting for board to hard reset."
4748 				"  Will try soft reset.\n");
4749 		rc = -ENOTSUPP; /* Not expected, but try soft reset later */
4750 		goto unmap_cfgtable;
4751 	}
4752 	rc = cciss_wait_for_board_state(pdev, vaddr, BOARD_READY);
4753 	if (rc) {
4754 		dev_warn(&pdev->dev,
4755 			"failed waiting for board to become ready "
4756 			"after hard reset\n");
4757 		goto unmap_cfgtable;
4758 	}
4759 
4760 	rc = controller_reset_failed(vaddr);
4761 	if (rc < 0)
4762 		goto unmap_cfgtable;
4763 	if (rc) {
4764 		dev_warn(&pdev->dev, "Unable to successfully hard reset "
4765 			"controller. Will try soft reset.\n");
4766 		rc = -ENOTSUPP; /* Not expected, but try soft reset later */
4767 	} else {
4768 		dev_info(&pdev->dev, "Board ready after hard reset.\n");
4769 	}
4770 
4771 unmap_cfgtable:
4772 	iounmap(cfgtable);
4773 
4774 unmap_vaddr:
4775 	iounmap(vaddr);
4776 	return rc;
4777 }
4778 
cciss_init_reset_devices(struct pci_dev * pdev)4779 static __devinit int cciss_init_reset_devices(struct pci_dev *pdev)
4780 {
4781 	int rc, i;
4782 
4783 	if (!reset_devices)
4784 		return 0;
4785 
4786 	/* Reset the controller with a PCI power-cycle or via doorbell */
4787 	rc = cciss_kdump_hard_reset_controller(pdev);
4788 
4789 	/* -ENOTSUPP here means we cannot reset the controller
4790 	 * but it's already (and still) up and running in
4791 	 * "performant mode".  Or, it might be 640x, which can't reset
4792 	 * due to concerns about shared bbwc between 6402/6404 pair.
4793 	 */
4794 	if (rc == -ENOTSUPP)
4795 		return rc; /* just try to do the kdump anyhow. */
4796 	if (rc)
4797 		return -ENODEV;
4798 
4799 	/* Now try to get the controller to respond to a no-op */
4800 	dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
4801 	for (i = 0; i < CCISS_POST_RESET_NOOP_RETRIES; i++) {
4802 		if (cciss_noop(pdev) == 0)
4803 			break;
4804 		else
4805 			dev_warn(&pdev->dev, "no-op failed%s\n",
4806 				(i < CCISS_POST_RESET_NOOP_RETRIES - 1 ?
4807 					"; re-trying" : ""));
4808 		msleep(CCISS_POST_RESET_NOOP_INTERVAL_MSECS);
4809 	}
4810 	return 0;
4811 }
4812 
cciss_allocate_cmd_pool(ctlr_info_t * h)4813 static __devinit int cciss_allocate_cmd_pool(ctlr_info_t *h)
4814 {
4815 	h->cmd_pool_bits = kmalloc(
4816 		DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
4817 		sizeof(unsigned long), GFP_KERNEL);
4818 	h->cmd_pool = pci_alloc_consistent(h->pdev,
4819 		h->nr_cmds * sizeof(CommandList_struct),
4820 		&(h->cmd_pool_dhandle));
4821 	h->errinfo_pool = pci_alloc_consistent(h->pdev,
4822 		h->nr_cmds * sizeof(ErrorInfo_struct),
4823 		&(h->errinfo_pool_dhandle));
4824 	if ((h->cmd_pool_bits == NULL)
4825 		|| (h->cmd_pool == NULL)
4826 		|| (h->errinfo_pool == NULL)) {
4827 		dev_err(&h->pdev->dev, "out of memory");
4828 		return -ENOMEM;
4829 	}
4830 	return 0;
4831 }
4832 
cciss_allocate_scatterlists(ctlr_info_t * h)4833 static __devinit int cciss_allocate_scatterlists(ctlr_info_t *h)
4834 {
4835 	int i;
4836 
4837 	/* zero it, so that on free we need not know how many were alloc'ed */
4838 	h->scatter_list = kzalloc(h->max_commands *
4839 				sizeof(struct scatterlist *), GFP_KERNEL);
4840 	if (!h->scatter_list)
4841 		return -ENOMEM;
4842 
4843 	for (i = 0; i < h->nr_cmds; i++) {
4844 		h->scatter_list[i] = kmalloc(sizeof(struct scatterlist) *
4845 						h->maxsgentries, GFP_KERNEL);
4846 		if (h->scatter_list[i] == NULL) {
4847 			dev_err(&h->pdev->dev, "could not allocate "
4848 				"s/g lists\n");
4849 			return -ENOMEM;
4850 		}
4851 	}
4852 	return 0;
4853 }
4854 
cciss_free_scatterlists(ctlr_info_t * h)4855 static void cciss_free_scatterlists(ctlr_info_t *h)
4856 {
4857 	int i;
4858 
4859 	if (h->scatter_list) {
4860 		for (i = 0; i < h->nr_cmds; i++)
4861 			kfree(h->scatter_list[i]);
4862 		kfree(h->scatter_list);
4863 	}
4864 }
4865 
cciss_free_cmd_pool(ctlr_info_t * h)4866 static void cciss_free_cmd_pool(ctlr_info_t *h)
4867 {
4868 	kfree(h->cmd_pool_bits);
4869 	if (h->cmd_pool)
4870 		pci_free_consistent(h->pdev,
4871 			h->nr_cmds * sizeof(CommandList_struct),
4872 			h->cmd_pool, h->cmd_pool_dhandle);
4873 	if (h->errinfo_pool)
4874 		pci_free_consistent(h->pdev,
4875 			h->nr_cmds * sizeof(ErrorInfo_struct),
4876 			h->errinfo_pool, h->errinfo_pool_dhandle);
4877 }
4878 
cciss_request_irq(ctlr_info_t * h,irqreturn_t (* msixhandler)(int,void *),irqreturn_t (* intxhandler)(int,void *))4879 static int cciss_request_irq(ctlr_info_t *h,
4880 	irqreturn_t (*msixhandler)(int, void *),
4881 	irqreturn_t (*intxhandler)(int, void *))
4882 {
4883 	if (h->msix_vector || h->msi_vector) {
4884 		if (!request_irq(h->intr[h->intr_mode], msixhandler,
4885 				0, h->devname, h))
4886 			return 0;
4887 		dev_err(&h->pdev->dev, "Unable to get msi irq %d"
4888 			" for %s\n", h->intr[h->intr_mode],
4889 			h->devname);
4890 		return -1;
4891 	}
4892 
4893 	if (!request_irq(h->intr[h->intr_mode], intxhandler,
4894 			IRQF_SHARED, h->devname, h))
4895 		return 0;
4896 	dev_err(&h->pdev->dev, "Unable to get irq %d for %s\n",
4897 		h->intr[h->intr_mode], h->devname);
4898 	return -1;
4899 }
4900 
cciss_kdump_soft_reset(ctlr_info_t * h)4901 static int __devinit cciss_kdump_soft_reset(ctlr_info_t *h)
4902 {
4903 	if (cciss_send_reset(h, CTLR_LUNID, CCISS_RESET_TYPE_CONTROLLER)) {
4904 		dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
4905 		return -EIO;
4906 	}
4907 
4908 	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4909 	if (cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
4910 		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4911 		return -1;
4912 	}
4913 
4914 	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4915 	if (cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
4916 		dev_warn(&h->pdev->dev, "Board failed to become ready "
4917 			"after soft reset.\n");
4918 		return -1;
4919 	}
4920 
4921 	return 0;
4922 }
4923 
cciss_undo_allocations_after_kdump_soft_reset(ctlr_info_t * h)4924 static void cciss_undo_allocations_after_kdump_soft_reset(ctlr_info_t *h)
4925 {
4926 	int ctlr = h->ctlr;
4927 
4928 	free_irq(h->intr[h->intr_mode], h);
4929 #ifdef CONFIG_PCI_MSI
4930 	if (h->msix_vector)
4931 		pci_disable_msix(h->pdev);
4932 	else if (h->msi_vector)
4933 		pci_disable_msi(h->pdev);
4934 #endif /* CONFIG_PCI_MSI */
4935 	cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
4936 	cciss_free_scatterlists(h);
4937 	cciss_free_cmd_pool(h);
4938 	kfree(h->blockFetchTable);
4939 	if (h->reply_pool)
4940 		pci_free_consistent(h->pdev, h->max_commands * sizeof(__u64),
4941 				h->reply_pool, h->reply_pool_dhandle);
4942 	if (h->transtable)
4943 		iounmap(h->transtable);
4944 	if (h->cfgtable)
4945 		iounmap(h->cfgtable);
4946 	if (h->vaddr)
4947 		iounmap(h->vaddr);
4948 	unregister_blkdev(h->major, h->devname);
4949 	cciss_destroy_hba_sysfs_entry(h);
4950 	pci_release_regions(h->pdev);
4951 	kfree(h);
4952 	hba[ctlr] = NULL;
4953 }
4954 
4955 /*
4956  *  This is it.  Find all the controllers and register them.  I really hate
4957  *  stealing all these major device numbers.
4958  *  returns the number of block devices registered.
4959  */
cciss_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)4960 static int __devinit cciss_init_one(struct pci_dev *pdev,
4961 				    const struct pci_device_id *ent)
4962 {
4963 	int i;
4964 	int j = 0;
4965 	int rc;
4966 	int try_soft_reset = 0;
4967 	int dac, return_code;
4968 	InquiryData_struct *inq_buff;
4969 	ctlr_info_t *h;
4970 	unsigned long flags;
4971 
4972 	rc = cciss_init_reset_devices(pdev);
4973 	if (rc) {
4974 		if (rc != -ENOTSUPP)
4975 			return rc;
4976 		/* If the reset fails in a particular way (it has no way to do
4977 		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
4978 		 * a soft reset once we get the controller configured up to the
4979 		 * point that it can accept a command.
4980 		 */
4981 		try_soft_reset = 1;
4982 		rc = 0;
4983 	}
4984 
4985 reinit_after_soft_reset:
4986 
4987 	i = alloc_cciss_hba(pdev);
4988 	if (i < 0)
4989 		return -1;
4990 
4991 	h = hba[i];
4992 	h->pdev = pdev;
4993 	h->busy_initializing = 1;
4994 	h->intr_mode = cciss_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
4995 	INIT_LIST_HEAD(&h->cmpQ);
4996 	INIT_LIST_HEAD(&h->reqQ);
4997 	mutex_init(&h->busy_shutting_down);
4998 
4999 	if (cciss_pci_init(h) != 0)
5000 		goto clean_no_release_regions;
5001 
5002 	sprintf(h->devname, "cciss%d", i);
5003 	h->ctlr = i;
5004 
5005 	if (cciss_tape_cmds < 2)
5006 		cciss_tape_cmds = 2;
5007 	if (cciss_tape_cmds > 16)
5008 		cciss_tape_cmds = 16;
5009 
5010 	init_completion(&h->scan_wait);
5011 
5012 	if (cciss_create_hba_sysfs_entry(h))
5013 		goto clean0;
5014 
5015 	/* configure PCI DMA stuff */
5016 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)))
5017 		dac = 1;
5018 	else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))
5019 		dac = 0;
5020 	else {
5021 		dev_err(&h->pdev->dev, "no suitable DMA available\n");
5022 		goto clean1;
5023 	}
5024 
5025 	/*
5026 	 * register with the major number, or get a dynamic major number
5027 	 * by passing 0 as argument.  This is done for greater than
5028 	 * 8 controller support.
5029 	 */
5030 	if (i < MAX_CTLR_ORIG)
5031 		h->major = COMPAQ_CISS_MAJOR + i;
5032 	rc = register_blkdev(h->major, h->devname);
5033 	if (rc == -EBUSY || rc == -EINVAL) {
5034 		dev_err(&h->pdev->dev,
5035 		       "Unable to get major number %d for %s "
5036 		       "on hba %d\n", h->major, h->devname, i);
5037 		goto clean1;
5038 	} else {
5039 		if (i >= MAX_CTLR_ORIG)
5040 			h->major = rc;
5041 	}
5042 
5043 	/* make sure the board interrupts are off */
5044 	h->access.set_intr_mask(h, CCISS_INTR_OFF);
5045 	rc = cciss_request_irq(h, do_cciss_msix_intr, do_cciss_intx);
5046 	if (rc)
5047 		goto clean2;
5048 
5049 	dev_info(&h->pdev->dev, "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
5050 	       h->devname, pdev->device, pci_name(pdev),
5051 	       h->intr[h->intr_mode], dac ? "" : " not");
5052 
5053 	if (cciss_allocate_cmd_pool(h))
5054 		goto clean4;
5055 
5056 	if (cciss_allocate_scatterlists(h))
5057 		goto clean4;
5058 
5059 	h->cmd_sg_list = cciss_allocate_sg_chain_blocks(h,
5060 		h->chainsize, h->nr_cmds);
5061 	if (!h->cmd_sg_list && h->chainsize > 0)
5062 		goto clean4;
5063 
5064 	spin_lock_init(&h->lock);
5065 
5066 	/* Initialize the pdev driver private data.
5067 	   have it point to h.  */
5068 	pci_set_drvdata(pdev, h);
5069 	/* command and error info recs zeroed out before
5070 	   they are used */
5071 	memset(h->cmd_pool_bits, 0,
5072 	       DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG)
5073 			* sizeof(unsigned long));
5074 
5075 	h->num_luns = 0;
5076 	h->highest_lun = -1;
5077 	for (j = 0; j < CISS_MAX_LUN; j++) {
5078 		h->drv[j] = NULL;
5079 		h->gendisk[j] = NULL;
5080 	}
5081 
5082 	/* At this point, the controller is ready to take commands.
5083 	 * Now, if reset_devices and the hard reset didn't work, try
5084 	 * the soft reset and see if that works.
5085 	 */
5086 	if (try_soft_reset) {
5087 
5088 		/* This is kind of gross.  We may or may not get a completion
5089 		 * from the soft reset command, and if we do, then the value
5090 		 * from the fifo may or may not be valid.  So, we wait 10 secs
5091 		 * after the reset throwing away any completions we get during
5092 		 * that time.  Unregister the interrupt handler and register
5093 		 * fake ones to scoop up any residual completions.
5094 		 */
5095 		spin_lock_irqsave(&h->lock, flags);
5096 		h->access.set_intr_mask(h, CCISS_INTR_OFF);
5097 		spin_unlock_irqrestore(&h->lock, flags);
5098 		free_irq(h->intr[h->intr_mode], h);
5099 		rc = cciss_request_irq(h, cciss_msix_discard_completions,
5100 					cciss_intx_discard_completions);
5101 		if (rc) {
5102 			dev_warn(&h->pdev->dev, "Failed to request_irq after "
5103 				"soft reset.\n");
5104 			goto clean4;
5105 		}
5106 
5107 		rc = cciss_kdump_soft_reset(h);
5108 		if (rc) {
5109 			dev_warn(&h->pdev->dev, "Soft reset failed.\n");
5110 			goto clean4;
5111 		}
5112 
5113 		dev_info(&h->pdev->dev, "Board READY.\n");
5114 		dev_info(&h->pdev->dev,
5115 			"Waiting for stale completions to drain.\n");
5116 		h->access.set_intr_mask(h, CCISS_INTR_ON);
5117 		msleep(10000);
5118 		h->access.set_intr_mask(h, CCISS_INTR_OFF);
5119 
5120 		rc = controller_reset_failed(h->cfgtable);
5121 		if (rc)
5122 			dev_info(&h->pdev->dev,
5123 				"Soft reset appears to have failed.\n");
5124 
5125 		/* since the controller's reset, we have to go back and re-init
5126 		 * everything.  Easiest to just forget what we've done and do it
5127 		 * all over again.
5128 		 */
5129 		cciss_undo_allocations_after_kdump_soft_reset(h);
5130 		try_soft_reset = 0;
5131 		if (rc)
5132 			/* don't go to clean4, we already unallocated */
5133 			return -ENODEV;
5134 
5135 		goto reinit_after_soft_reset;
5136 	}
5137 
5138 	cciss_scsi_setup(h);
5139 
5140 	/* Turn the interrupts on so we can service requests */
5141 	h->access.set_intr_mask(h, CCISS_INTR_ON);
5142 
5143 	/* Get the firmware version */
5144 	inq_buff = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
5145 	if (inq_buff == NULL) {
5146 		dev_err(&h->pdev->dev, "out of memory\n");
5147 		goto clean4;
5148 	}
5149 
5150 	return_code = sendcmd_withirq(h, CISS_INQUIRY, inq_buff,
5151 		sizeof(InquiryData_struct), 0, CTLR_LUNID, TYPE_CMD);
5152 	if (return_code == IO_OK) {
5153 		h->firm_ver[0] = inq_buff->data_byte[32];
5154 		h->firm_ver[1] = inq_buff->data_byte[33];
5155 		h->firm_ver[2] = inq_buff->data_byte[34];
5156 		h->firm_ver[3] = inq_buff->data_byte[35];
5157 	} else {	 /* send command failed */
5158 		dev_warn(&h->pdev->dev, "unable to determine firmware"
5159 			" version of controller\n");
5160 	}
5161 	kfree(inq_buff);
5162 
5163 	cciss_procinit(h);
5164 
5165 	h->cciss_max_sectors = 8192;
5166 
5167 	rebuild_lun_table(h, 1, 0);
5168 	cciss_engage_scsi(h);
5169 	h->busy_initializing = 0;
5170 	return 1;
5171 
5172 clean4:
5173 	cciss_free_cmd_pool(h);
5174 	cciss_free_scatterlists(h);
5175 	cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
5176 	free_irq(h->intr[h->intr_mode], h);
5177 clean2:
5178 	unregister_blkdev(h->major, h->devname);
5179 clean1:
5180 	cciss_destroy_hba_sysfs_entry(h);
5181 clean0:
5182 	pci_release_regions(pdev);
5183 clean_no_release_regions:
5184 	h->busy_initializing = 0;
5185 
5186 	/*
5187 	 * Deliberately omit pci_disable_device(): it does something nasty to
5188 	 * Smart Array controllers that pci_enable_device does not undo
5189 	 */
5190 	pci_set_drvdata(pdev, NULL);
5191 	free_hba(h);
5192 	return -1;
5193 }
5194 
cciss_shutdown(struct pci_dev * pdev)5195 static void cciss_shutdown(struct pci_dev *pdev)
5196 {
5197 	ctlr_info_t *h;
5198 	char *flush_buf;
5199 	int return_code;
5200 
5201 	h = pci_get_drvdata(pdev);
5202 	flush_buf = kzalloc(4, GFP_KERNEL);
5203 	if (!flush_buf) {
5204 		dev_warn(&h->pdev->dev, "cache not flushed, out of memory.\n");
5205 		return;
5206 	}
5207 	/* write all data in the battery backed cache to disk */
5208 	memset(flush_buf, 0, 4);
5209 	return_code = sendcmd_withirq(h, CCISS_CACHE_FLUSH, flush_buf,
5210 		4, 0, CTLR_LUNID, TYPE_CMD);
5211 	kfree(flush_buf);
5212 	if (return_code != IO_OK)
5213 		dev_warn(&h->pdev->dev, "Error flushing cache\n");
5214 	h->access.set_intr_mask(h, CCISS_INTR_OFF);
5215 	free_irq(h->intr[h->intr_mode], h);
5216 }
5217 
cciss_enter_simple_mode(struct ctlr_info * h)5218 static int __devinit cciss_enter_simple_mode(struct ctlr_info *h)
5219 {
5220 	u32 trans_support;
5221 
5222 	trans_support = readl(&(h->cfgtable->TransportSupport));
5223 	if (!(trans_support & SIMPLE_MODE))
5224 		return -ENOTSUPP;
5225 
5226 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
5227 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
5228 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
5229 	cciss_wait_for_mode_change_ack(h);
5230 	print_cfg_table(h);
5231 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
5232 		dev_warn(&h->pdev->dev, "unable to get board into simple mode\n");
5233 		return -ENODEV;
5234 	}
5235 	h->transMethod = CFGTBL_Trans_Simple;
5236 	return 0;
5237 }
5238 
5239 
cciss_remove_one(struct pci_dev * pdev)5240 static void __devexit cciss_remove_one(struct pci_dev *pdev)
5241 {
5242 	ctlr_info_t *h;
5243 	int i, j;
5244 
5245 	if (pci_get_drvdata(pdev) == NULL) {
5246 		dev_err(&pdev->dev, "Unable to remove device\n");
5247 		return;
5248 	}
5249 
5250 	h = pci_get_drvdata(pdev);
5251 	i = h->ctlr;
5252 	if (hba[i] == NULL) {
5253 		dev_err(&pdev->dev, "device appears to already be removed\n");
5254 		return;
5255 	}
5256 
5257 	mutex_lock(&h->busy_shutting_down);
5258 
5259 	remove_from_scan_list(h);
5260 	remove_proc_entry(h->devname, proc_cciss);
5261 	unregister_blkdev(h->major, h->devname);
5262 
5263 	/* remove it from the disk list */
5264 	for (j = 0; j < CISS_MAX_LUN; j++) {
5265 		struct gendisk *disk = h->gendisk[j];
5266 		if (disk) {
5267 			struct request_queue *q = disk->queue;
5268 
5269 			if (disk->flags & GENHD_FL_UP) {
5270 				cciss_destroy_ld_sysfs_entry(h, j, 1);
5271 				del_gendisk(disk);
5272 			}
5273 			if (q)
5274 				blk_cleanup_queue(q);
5275 		}
5276 	}
5277 
5278 #ifdef CONFIG_CISS_SCSI_TAPE
5279 	cciss_unregister_scsi(h);	/* unhook from SCSI subsystem */
5280 #endif
5281 
5282 	cciss_shutdown(pdev);
5283 
5284 #ifdef CONFIG_PCI_MSI
5285 	if (h->msix_vector)
5286 		pci_disable_msix(h->pdev);
5287 	else if (h->msi_vector)
5288 		pci_disable_msi(h->pdev);
5289 #endif				/* CONFIG_PCI_MSI */
5290 
5291 	iounmap(h->transtable);
5292 	iounmap(h->cfgtable);
5293 	iounmap(h->vaddr);
5294 
5295 	cciss_free_cmd_pool(h);
5296 	/* Free up sg elements */
5297 	for (j = 0; j < h->nr_cmds; j++)
5298 		kfree(h->scatter_list[j]);
5299 	kfree(h->scatter_list);
5300 	cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
5301 	kfree(h->blockFetchTable);
5302 	if (h->reply_pool)
5303 		pci_free_consistent(h->pdev, h->max_commands * sizeof(__u64),
5304 				h->reply_pool, h->reply_pool_dhandle);
5305 	/*
5306 	 * Deliberately omit pci_disable_device(): it does something nasty to
5307 	 * Smart Array controllers that pci_enable_device does not undo
5308 	 */
5309 	pci_release_regions(pdev);
5310 	pci_set_drvdata(pdev, NULL);
5311 	cciss_destroy_hba_sysfs_entry(h);
5312 	mutex_unlock(&h->busy_shutting_down);
5313 	free_hba(h);
5314 }
5315 
5316 static struct pci_driver cciss_pci_driver = {
5317 	.name = "cciss",
5318 	.probe = cciss_init_one,
5319 	.remove = __devexit_p(cciss_remove_one),
5320 	.id_table = cciss_pci_device_id,	/* id_table */
5321 	.shutdown = cciss_shutdown,
5322 };
5323 
5324 /*
5325  *  This is it.  Register the PCI driver information for the cards we control
5326  *  the OS will call our registered routines when it finds one of our cards.
5327  */
cciss_init(void)5328 static int __init cciss_init(void)
5329 {
5330 	int err;
5331 
5332 	/*
5333 	 * The hardware requires that commands are aligned on a 64-bit
5334 	 * boundary. Given that we use pci_alloc_consistent() to allocate an
5335 	 * array of them, the size must be a multiple of 8 bytes.
5336 	 */
5337 	BUILD_BUG_ON(sizeof(CommandList_struct) % COMMANDLIST_ALIGNMENT);
5338 	printk(KERN_INFO DRIVER_NAME "\n");
5339 
5340 	err = bus_register(&cciss_bus_type);
5341 	if (err)
5342 		return err;
5343 
5344 	/* Start the scan thread */
5345 	cciss_scan_thread = kthread_run(scan_thread, NULL, "cciss_scan");
5346 	if (IS_ERR(cciss_scan_thread)) {
5347 		err = PTR_ERR(cciss_scan_thread);
5348 		goto err_bus_unregister;
5349 	}
5350 
5351 	/* Register for our PCI devices */
5352 	err = pci_register_driver(&cciss_pci_driver);
5353 	if (err)
5354 		goto err_thread_stop;
5355 
5356 	return err;
5357 
5358 err_thread_stop:
5359 	kthread_stop(cciss_scan_thread);
5360 err_bus_unregister:
5361 	bus_unregister(&cciss_bus_type);
5362 
5363 	return err;
5364 }
5365 
cciss_cleanup(void)5366 static void __exit cciss_cleanup(void)
5367 {
5368 	int i;
5369 
5370 	pci_unregister_driver(&cciss_pci_driver);
5371 	/* double check that all controller entrys have been removed */
5372 	for (i = 0; i < MAX_CTLR; i++) {
5373 		if (hba[i] != NULL) {
5374 			dev_warn(&hba[i]->pdev->dev,
5375 				"had to remove controller\n");
5376 			cciss_remove_one(hba[i]->pdev);
5377 		}
5378 	}
5379 	kthread_stop(cciss_scan_thread);
5380 	if (proc_cciss)
5381 		remove_proc_entry("driver/cciss", NULL);
5382 	bus_unregister(&cciss_bus_type);
5383 }
5384 
5385 module_init(cciss_init);
5386 module_exit(cciss_cleanup);
5387