1 /* bnx2x_init_ops.h: Broadcom Everest network driver.
2  *               Static functions needed during the initialization.
3  *               This file is "included" in bnx2x_main.c.
4  *
5  * Copyright (c) 2007-2011 Broadcom Corporation
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation.
10  *
11  * Maintained by: Eilon Greenstein <eilong@broadcom.com>
12  * Written by: Vladislav Zolotarov <vladz@broadcom.com>
13  */
14 
15 #ifndef BNX2X_INIT_OPS_H
16 #define BNX2X_INIT_OPS_H
17 
18 
19 #ifndef BP_ILT
20 #define BP_ILT(bp)	NULL
21 #endif
22 
23 #ifndef BP_FUNC
24 #define BP_FUNC(bp)	0
25 #endif
26 
27 #ifndef BP_PORT
28 #define BP_PORT(bp)	0
29 #endif
30 
31 #ifndef BNX2X_ILT_FREE
32 #define BNX2X_ILT_FREE(x, y, sz)
33 #endif
34 
35 #ifndef BNX2X_ILT_ZALLOC
36 #define BNX2X_ILT_ZALLOC(x, y, sz)
37 #endif
38 
39 #ifndef ILOG2
40 #define ILOG2(x)	x
41 #endif
42 
43 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len);
44 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val);
45 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp,
46 				      dma_addr_t phys_addr, u32 addr,
47 				      u32 len);
48 
bnx2x_init_str_wr(struct bnx2x * bp,u32 addr,const u32 * data,u32 len)49 static void bnx2x_init_str_wr(struct bnx2x *bp, u32 addr,
50 			      const u32 *data, u32 len)
51 {
52 	u32 i;
53 
54 	for (i = 0; i < len; i++)
55 		REG_WR(bp, addr + i*4, data[i]);
56 }
57 
bnx2x_init_ind_wr(struct bnx2x * bp,u32 addr,const u32 * data,u32 len)58 static void bnx2x_init_ind_wr(struct bnx2x *bp, u32 addr,
59 			      const u32 *data, u32 len)
60 {
61 	u32 i;
62 
63 	for (i = 0; i < len; i++)
64 		bnx2x_reg_wr_ind(bp, addr + i*4, data[i]);
65 }
66 
bnx2x_write_big_buf(struct bnx2x * bp,u32 addr,u32 len,u8 wb)67 static void bnx2x_write_big_buf(struct bnx2x *bp, u32 addr, u32 len,
68 				u8 wb)
69 {
70 	if (bp->dmae_ready)
71 		bnx2x_write_dmae_phys_len(bp, GUNZIP_PHYS(bp), addr, len);
72 	else if (wb)
73 		/*
74 		 * Wide bus registers with no dmae need to be written
75 		 * using indirect write.
76 		 */
77 		bnx2x_init_ind_wr(bp, addr, GUNZIP_BUF(bp), len);
78 	else
79 		bnx2x_init_str_wr(bp, addr, GUNZIP_BUF(bp), len);
80 }
81 
bnx2x_init_fill(struct bnx2x * bp,u32 addr,int fill,u32 len,u8 wb)82 static void bnx2x_init_fill(struct bnx2x *bp, u32 addr, int fill,
83 			    u32 len, u8 wb)
84 {
85 	u32 buf_len = (((len*4) > FW_BUF_SIZE) ? FW_BUF_SIZE : (len*4));
86 	u32 buf_len32 = buf_len/4;
87 	u32 i;
88 
89 	memset(GUNZIP_BUF(bp), (u8)fill, buf_len);
90 
91 	for (i = 0; i < len; i += buf_len32) {
92 		u32 cur_len = min(buf_len32, len - i);
93 
94 		bnx2x_write_big_buf(bp, addr + i*4, cur_len, wb);
95 	}
96 }
97 
bnx2x_write_big_buf_wb(struct bnx2x * bp,u32 addr,u32 len)98 static void bnx2x_write_big_buf_wb(struct bnx2x *bp, u32 addr, u32 len)
99 {
100 	if (bp->dmae_ready)
101 		bnx2x_write_dmae_phys_len(bp, GUNZIP_PHYS(bp), addr, len);
102 	else
103 		bnx2x_init_ind_wr(bp, addr, GUNZIP_BUF(bp), len);
104 }
105 
bnx2x_init_wr_64(struct bnx2x * bp,u32 addr,const u32 * data,u32 len64)106 static void bnx2x_init_wr_64(struct bnx2x *bp, u32 addr,
107 			     const u32 *data, u32 len64)
108 {
109 	u32 buf_len32 = FW_BUF_SIZE/4;
110 	u32 len = len64*2;
111 	u64 data64 = 0;
112 	u32 i;
113 
114 	/* 64 bit value is in a blob: first low DWORD, then high DWORD */
115 	data64 = HILO_U64((*(data + 1)), (*data));
116 
117 	len64 = min((u32)(FW_BUF_SIZE/8), len64);
118 	for (i = 0; i < len64; i++) {
119 		u64 *pdata = ((u64 *)(GUNZIP_BUF(bp))) + i;
120 
121 		*pdata = data64;
122 	}
123 
124 	for (i = 0; i < len; i += buf_len32) {
125 		u32 cur_len = min(buf_len32, len - i);
126 
127 		bnx2x_write_big_buf_wb(bp, addr + i*4, cur_len);
128 	}
129 }
130 
131 /*********************************************************
132    There are different blobs for each PRAM section.
133    In addition, each blob write operation is divided into a few operations
134    in order to decrease the amount of phys. contiguous buffer needed.
135    Thus, when we select a blob the address may be with some offset
136    from the beginning of PRAM section.
137    The same holds for the INT_TABLE sections.
138 **********************************************************/
139 #define IF_IS_INT_TABLE_ADDR(base, addr) \
140 			if (((base) <= (addr)) && ((base) + 0x400 >= (addr)))
141 
142 #define IF_IS_PRAM_ADDR(base, addr) \
143 			if (((base) <= (addr)) && ((base) + 0x40000 >= (addr)))
144 
bnx2x_sel_blob(struct bnx2x * bp,u32 addr,const u8 * data)145 static const u8 *bnx2x_sel_blob(struct bnx2x *bp, u32 addr,
146 				const u8 *data)
147 {
148 	IF_IS_INT_TABLE_ADDR(TSEM_REG_INT_TABLE, addr)
149 		data = INIT_TSEM_INT_TABLE_DATA(bp);
150 	else
151 		IF_IS_INT_TABLE_ADDR(CSEM_REG_INT_TABLE, addr)
152 			data = INIT_CSEM_INT_TABLE_DATA(bp);
153 	else
154 		IF_IS_INT_TABLE_ADDR(USEM_REG_INT_TABLE, addr)
155 			data = INIT_USEM_INT_TABLE_DATA(bp);
156 	else
157 		IF_IS_INT_TABLE_ADDR(XSEM_REG_INT_TABLE, addr)
158 			data = INIT_XSEM_INT_TABLE_DATA(bp);
159 	else
160 		IF_IS_PRAM_ADDR(TSEM_REG_PRAM, addr)
161 			data = INIT_TSEM_PRAM_DATA(bp);
162 	else
163 		IF_IS_PRAM_ADDR(CSEM_REG_PRAM, addr)
164 			data = INIT_CSEM_PRAM_DATA(bp);
165 	else
166 		IF_IS_PRAM_ADDR(USEM_REG_PRAM, addr)
167 			data = INIT_USEM_PRAM_DATA(bp);
168 	else
169 		IF_IS_PRAM_ADDR(XSEM_REG_PRAM, addr)
170 			data = INIT_XSEM_PRAM_DATA(bp);
171 
172 	return data;
173 }
174 
bnx2x_init_wr_wb(struct bnx2x * bp,u32 addr,const u32 * data,u32 len)175 static void bnx2x_init_wr_wb(struct bnx2x *bp, u32 addr,
176 			     const u32 *data, u32 len)
177 {
178 	if (bp->dmae_ready)
179 		VIRT_WR_DMAE_LEN(bp, data, addr, len, 0);
180 	else
181 		bnx2x_init_ind_wr(bp, addr, data, len);
182 }
183 
bnx2x_wr_64(struct bnx2x * bp,u32 reg,u32 val_lo,u32 val_hi)184 static void bnx2x_wr_64(struct bnx2x *bp, u32 reg, u32 val_lo,
185 			u32 val_hi)
186 {
187 	u32 wb_write[2];
188 
189 	wb_write[0] = val_lo;
190 	wb_write[1] = val_hi;
191 	REG_WR_DMAE_LEN(bp, reg, wb_write, 2);
192 }
bnx2x_init_wr_zp(struct bnx2x * bp,u32 addr,u32 len,u32 blob_off)193 static void bnx2x_init_wr_zp(struct bnx2x *bp, u32 addr, u32 len,
194 			     u32 blob_off)
195 {
196 	const u8 *data = NULL;
197 	int rc;
198 	u32 i;
199 
200 	data = bnx2x_sel_blob(bp, addr, data) + blob_off*4;
201 
202 	rc = bnx2x_gunzip(bp, data, len);
203 	if (rc)
204 		return;
205 
206 	/* gunzip_outlen is in dwords */
207 	len = GUNZIP_OUTLEN(bp);
208 	for (i = 0; i < len; i++)
209 		((u32 *)GUNZIP_BUF(bp))[i] =
210 				cpu_to_le32(((u32 *)GUNZIP_BUF(bp))[i]);
211 
212 	bnx2x_write_big_buf_wb(bp, addr, len);
213 }
214 
bnx2x_init_block(struct bnx2x * bp,u32 block,u32 stage)215 static void bnx2x_init_block(struct bnx2x *bp, u32 block, u32 stage)
216 {
217 	u16 op_start =
218 		INIT_OPS_OFFSETS(bp)[BLOCK_OPS_IDX(block, stage,
219 						     STAGE_START)];
220 	u16 op_end =
221 		INIT_OPS_OFFSETS(bp)[BLOCK_OPS_IDX(block, stage,
222 						     STAGE_END)];
223 	union init_op *op;
224 	u32 op_idx, op_type, addr, len;
225 	const u32 *data, *data_base;
226 
227 	/* If empty block */
228 	if (op_start == op_end)
229 		return;
230 
231 	data_base = INIT_DATA(bp);
232 
233 	for (op_idx = op_start; op_idx < op_end; op_idx++) {
234 
235 		op = (union init_op *)&(INIT_OPS(bp)[op_idx]);
236 		/* Get generic data */
237 		op_type = op->raw.op;
238 		addr = op->raw.offset;
239 		/* Get data that's used for OP_SW, OP_WB, OP_FW, OP_ZP and
240 		 * OP_WR64 (we assume that op_arr_write and op_write have the
241 		 * same structure).
242 		 */
243 		len = op->arr_wr.data_len;
244 		data = data_base + op->arr_wr.data_off;
245 
246 		switch (op_type) {
247 		case OP_RD:
248 			REG_RD(bp, addr);
249 			break;
250 		case OP_WR:
251 			REG_WR(bp, addr, op->write.val);
252 			break;
253 		case OP_SW:
254 			bnx2x_init_str_wr(bp, addr, data, len);
255 			break;
256 		case OP_WB:
257 			bnx2x_init_wr_wb(bp, addr, data, len);
258 			break;
259 		case OP_ZR:
260 			bnx2x_init_fill(bp, addr, 0, op->zero.len, 0);
261 			break;
262 		case OP_WB_ZR:
263 			bnx2x_init_fill(bp, addr, 0, op->zero.len, 1);
264 			break;
265 		case OP_ZP:
266 			bnx2x_init_wr_zp(bp, addr, len,
267 					 op->arr_wr.data_off);
268 			break;
269 		case OP_WR_64:
270 			bnx2x_init_wr_64(bp, addr, data, len);
271 			break;
272 		case OP_IF_MODE_AND:
273 			/* if any of the flags doesn't match, skip the
274 			 * conditional block.
275 			 */
276 			if ((INIT_MODE_FLAGS(bp) &
277 				op->if_mode.mode_bit_map) !=
278 				op->if_mode.mode_bit_map)
279 				op_idx += op->if_mode.cmd_offset;
280 			break;
281 		case OP_IF_MODE_OR:
282 			/* if all the flags don't match, skip the conditional
283 			 * block.
284 			 */
285 			if ((INIT_MODE_FLAGS(bp) &
286 				op->if_mode.mode_bit_map) == 0)
287 				op_idx += op->if_mode.cmd_offset;
288 			break;
289 		default:
290 			/* Should never get here! */
291 
292 			break;
293 		}
294 	}
295 }
296 
297 
298 /****************************************************************************
299 * PXP Arbiter
300 ****************************************************************************/
301 /*
302  * This code configures the PCI read/write arbiter
303  * which implements a weighted round robin
304  * between the virtual queues in the chip.
305  *
306  * The values were derived for each PCI max payload and max request size.
307  * since max payload and max request size are only known at run time,
308  * this is done as a separate init stage.
309  */
310 
311 #define NUM_WR_Q			13
312 #define NUM_RD_Q			29
313 #define MAX_RD_ORD			3
314 #define MAX_WR_ORD			2
315 
316 /* configuration for one arbiter queue */
317 struct arb_line {
318 	int l;
319 	int add;
320 	int ubound;
321 };
322 
323 /* derived configuration for each read queue for each max request size */
324 static const struct arb_line read_arb_data[NUM_RD_Q][MAX_RD_ORD + 1] = {
325 /* 1 */	{ {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
326 	{ {4, 8,  4},  {4,  8,  4},  {4,  8,  4},  {4,  8,  4}  },
327 	{ {4, 3,  3},  {4,  3,  3},  {4,  3,  3},  {4,  3,  3}  },
328 	{ {8, 3,  6},  {16, 3,  11}, {16, 3,  11}, {16, 3,  11} },
329 	{ {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
330 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
331 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
332 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
333 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
334 /* 10 */{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
335 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
336 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
337 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
338 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
339 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
340 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
341 	{ {8, 64, 6},  {16, 64, 11}, {32, 64, 21}, {32, 64, 21} },
342 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
343 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
344 /* 20 */{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
345 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
346 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
347 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
348 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
349 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
350 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
351 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
352 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
353 	{ {8, 64, 25}, {16, 64, 41}, {32, 64, 81}, {64, 64, 120} }
354 };
355 
356 /* derived configuration for each write queue for each max request size */
357 static const struct arb_line write_arb_data[NUM_WR_Q][MAX_WR_ORD + 1] = {
358 /* 1 */	{ {4, 6,  3},  {4,  6,  3},  {4,  6,  3} },
359 	{ {4, 2,  3},  {4,  2,  3},  {4,  2,  3} },
360 	{ {8, 2,  6},  {16, 2,  11}, {16, 2,  11} },
361 	{ {8, 2,  6},  {16, 2,  11}, {32, 2,  21} },
362 	{ {8, 2,  6},  {16, 2,  11}, {32, 2,  21} },
363 	{ {8, 2,  6},  {16, 2,  11}, {32, 2,  21} },
364 	{ {8, 64, 25}, {16, 64, 25}, {32, 64, 25} },
365 	{ {8, 2,  6},  {16, 2,  11}, {16, 2,  11} },
366 	{ {8, 2,  6},  {16, 2,  11}, {16, 2,  11} },
367 /* 10 */{ {8, 9,  6},  {16, 9,  11}, {32, 9,  21} },
368 	{ {8, 47, 19}, {16, 47, 19}, {32, 47, 21} },
369 	{ {8, 9,  6},  {16, 9,  11}, {16, 9,  11} },
370 	{ {8, 64, 25}, {16, 64, 41}, {32, 64, 81} }
371 };
372 
373 /* register addresses for read queues */
374 static const struct arb_line read_arb_addr[NUM_RD_Q-1] = {
375 /* 1 */	{PXP2_REG_RQ_BW_RD_L0, PXP2_REG_RQ_BW_RD_ADD0,
376 		PXP2_REG_RQ_BW_RD_UBOUND0},
377 	{PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
378 		PXP2_REG_PSWRQ_BW_UB1},
379 	{PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
380 		PXP2_REG_PSWRQ_BW_UB2},
381 	{PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
382 		PXP2_REG_PSWRQ_BW_UB3},
383 	{PXP2_REG_RQ_BW_RD_L4, PXP2_REG_RQ_BW_RD_ADD4,
384 		PXP2_REG_RQ_BW_RD_UBOUND4},
385 	{PXP2_REG_RQ_BW_RD_L5, PXP2_REG_RQ_BW_RD_ADD5,
386 		PXP2_REG_RQ_BW_RD_UBOUND5},
387 	{PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
388 		PXP2_REG_PSWRQ_BW_UB6},
389 	{PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
390 		PXP2_REG_PSWRQ_BW_UB7},
391 	{PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
392 		PXP2_REG_PSWRQ_BW_UB8},
393 /* 10 */{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
394 		PXP2_REG_PSWRQ_BW_UB9},
395 	{PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
396 		PXP2_REG_PSWRQ_BW_UB10},
397 	{PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
398 		PXP2_REG_PSWRQ_BW_UB11},
399 	{PXP2_REG_RQ_BW_RD_L12, PXP2_REG_RQ_BW_RD_ADD12,
400 		PXP2_REG_RQ_BW_RD_UBOUND12},
401 	{PXP2_REG_RQ_BW_RD_L13, PXP2_REG_RQ_BW_RD_ADD13,
402 		PXP2_REG_RQ_BW_RD_UBOUND13},
403 	{PXP2_REG_RQ_BW_RD_L14, PXP2_REG_RQ_BW_RD_ADD14,
404 		PXP2_REG_RQ_BW_RD_UBOUND14},
405 	{PXP2_REG_RQ_BW_RD_L15, PXP2_REG_RQ_BW_RD_ADD15,
406 		PXP2_REG_RQ_BW_RD_UBOUND15},
407 	{PXP2_REG_RQ_BW_RD_L16, PXP2_REG_RQ_BW_RD_ADD16,
408 		PXP2_REG_RQ_BW_RD_UBOUND16},
409 	{PXP2_REG_RQ_BW_RD_L17, PXP2_REG_RQ_BW_RD_ADD17,
410 		PXP2_REG_RQ_BW_RD_UBOUND17},
411 	{PXP2_REG_RQ_BW_RD_L18, PXP2_REG_RQ_BW_RD_ADD18,
412 		PXP2_REG_RQ_BW_RD_UBOUND18},
413 /* 20 */{PXP2_REG_RQ_BW_RD_L19, PXP2_REG_RQ_BW_RD_ADD19,
414 		PXP2_REG_RQ_BW_RD_UBOUND19},
415 	{PXP2_REG_RQ_BW_RD_L20, PXP2_REG_RQ_BW_RD_ADD20,
416 		PXP2_REG_RQ_BW_RD_UBOUND20},
417 	{PXP2_REG_RQ_BW_RD_L22, PXP2_REG_RQ_BW_RD_ADD22,
418 		PXP2_REG_RQ_BW_RD_UBOUND22},
419 	{PXP2_REG_RQ_BW_RD_L23, PXP2_REG_RQ_BW_RD_ADD23,
420 		PXP2_REG_RQ_BW_RD_UBOUND23},
421 	{PXP2_REG_RQ_BW_RD_L24, PXP2_REG_RQ_BW_RD_ADD24,
422 		PXP2_REG_RQ_BW_RD_UBOUND24},
423 	{PXP2_REG_RQ_BW_RD_L25, PXP2_REG_RQ_BW_RD_ADD25,
424 		PXP2_REG_RQ_BW_RD_UBOUND25},
425 	{PXP2_REG_RQ_BW_RD_L26, PXP2_REG_RQ_BW_RD_ADD26,
426 		PXP2_REG_RQ_BW_RD_UBOUND26},
427 	{PXP2_REG_RQ_BW_RD_L27, PXP2_REG_RQ_BW_RD_ADD27,
428 		PXP2_REG_RQ_BW_RD_UBOUND27},
429 	{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
430 		PXP2_REG_PSWRQ_BW_UB28}
431 };
432 
433 /* register addresses for write queues */
434 static const struct arb_line write_arb_addr[NUM_WR_Q-1] = {
435 /* 1 */	{PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
436 		PXP2_REG_PSWRQ_BW_UB1},
437 	{PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
438 		PXP2_REG_PSWRQ_BW_UB2},
439 	{PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
440 		PXP2_REG_PSWRQ_BW_UB3},
441 	{PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
442 		PXP2_REG_PSWRQ_BW_UB6},
443 	{PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
444 		PXP2_REG_PSWRQ_BW_UB7},
445 	{PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
446 		PXP2_REG_PSWRQ_BW_UB8},
447 	{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
448 		PXP2_REG_PSWRQ_BW_UB9},
449 	{PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
450 		PXP2_REG_PSWRQ_BW_UB10},
451 	{PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
452 		PXP2_REG_PSWRQ_BW_UB11},
453 /* 10 */{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
454 		PXP2_REG_PSWRQ_BW_UB28},
455 	{PXP2_REG_RQ_BW_WR_L29, PXP2_REG_RQ_BW_WR_ADD29,
456 		PXP2_REG_RQ_BW_WR_UBOUND29},
457 	{PXP2_REG_RQ_BW_WR_L30, PXP2_REG_RQ_BW_WR_ADD30,
458 		PXP2_REG_RQ_BW_WR_UBOUND30}
459 };
460 
bnx2x_init_pxp_arb(struct bnx2x * bp,int r_order,int w_order)461 static void bnx2x_init_pxp_arb(struct bnx2x *bp, int r_order,
462 			       int w_order)
463 {
464 	u32 val, i;
465 
466 	if (r_order > MAX_RD_ORD) {
467 		DP(NETIF_MSG_HW, "read order of %d  order adjusted to %d\n",
468 		   r_order, MAX_RD_ORD);
469 		r_order = MAX_RD_ORD;
470 	}
471 	if (w_order > MAX_WR_ORD) {
472 		DP(NETIF_MSG_HW, "write order of %d  order adjusted to %d\n",
473 		   w_order, MAX_WR_ORD);
474 		w_order = MAX_WR_ORD;
475 	}
476 	if (CHIP_REV_IS_FPGA(bp)) {
477 		DP(NETIF_MSG_HW, "write order adjusted to 1 for FPGA\n");
478 		w_order = 0;
479 	}
480 	DP(NETIF_MSG_HW, "read order %d  write order %d\n", r_order, w_order);
481 
482 	for (i = 0; i < NUM_RD_Q-1; i++) {
483 		REG_WR(bp, read_arb_addr[i].l, read_arb_data[i][r_order].l);
484 		REG_WR(bp, read_arb_addr[i].add,
485 		       read_arb_data[i][r_order].add);
486 		REG_WR(bp, read_arb_addr[i].ubound,
487 		       read_arb_data[i][r_order].ubound);
488 	}
489 
490 	for (i = 0; i < NUM_WR_Q-1; i++) {
491 		if ((write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L29) ||
492 		    (write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L30)) {
493 
494 			REG_WR(bp, write_arb_addr[i].l,
495 			       write_arb_data[i][w_order].l);
496 
497 			REG_WR(bp, write_arb_addr[i].add,
498 			       write_arb_data[i][w_order].add);
499 
500 			REG_WR(bp, write_arb_addr[i].ubound,
501 			       write_arb_data[i][w_order].ubound);
502 		} else {
503 
504 			val = REG_RD(bp, write_arb_addr[i].l);
505 			REG_WR(bp, write_arb_addr[i].l,
506 			       val | (write_arb_data[i][w_order].l << 10));
507 
508 			val = REG_RD(bp, write_arb_addr[i].add);
509 			REG_WR(bp, write_arb_addr[i].add,
510 			       val | (write_arb_data[i][w_order].add << 10));
511 
512 			val = REG_RD(bp, write_arb_addr[i].ubound);
513 			REG_WR(bp, write_arb_addr[i].ubound,
514 			       val | (write_arb_data[i][w_order].ubound << 7));
515 		}
516 	}
517 
518 	val =  write_arb_data[NUM_WR_Q-1][w_order].add;
519 	val += write_arb_data[NUM_WR_Q-1][w_order].ubound << 10;
520 	val += write_arb_data[NUM_WR_Q-1][w_order].l << 17;
521 	REG_WR(bp, PXP2_REG_PSWRQ_BW_RD, val);
522 
523 	val =  read_arb_data[NUM_RD_Q-1][r_order].add;
524 	val += read_arb_data[NUM_RD_Q-1][r_order].ubound << 10;
525 	val += read_arb_data[NUM_RD_Q-1][r_order].l << 17;
526 	REG_WR(bp, PXP2_REG_PSWRQ_BW_WR, val);
527 
528 	REG_WR(bp, PXP2_REG_RQ_WR_MBS0, w_order);
529 	REG_WR(bp, PXP2_REG_RQ_WR_MBS1, w_order);
530 	REG_WR(bp, PXP2_REG_RQ_RD_MBS0, r_order);
531 	REG_WR(bp, PXP2_REG_RQ_RD_MBS1, r_order);
532 
533 	if ((CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) && (r_order == MAX_RD_ORD))
534 		REG_WR(bp, PXP2_REG_RQ_PDR_LIMIT, 0xe00);
535 
536 	if (CHIP_IS_E3(bp))
537 		REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x4 << w_order));
538 	else if (CHIP_IS_E2(bp))
539 		REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x8 << w_order));
540 	else
541 		REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x18 << w_order));
542 
543 	if (!CHIP_IS_E1(bp)) {
544 		/*    MPS      w_order     optimal TH      presently TH
545 		 *    128         0             0               2
546 		 *    256         1             1               3
547 		 *    >=512       2             2               3
548 		 */
549 		/* DMAE is special */
550 		if (!CHIP_IS_E1H(bp)) {
551 			/* E2 can use optimal TH */
552 			val = w_order;
553 			REG_WR(bp, PXP2_REG_WR_DMAE_MPS, val);
554 		} else {
555 			val = ((w_order == 0) ? 2 : 3);
556 			REG_WR(bp, PXP2_REG_WR_DMAE_MPS, 2);
557 		}
558 
559 		REG_WR(bp, PXP2_REG_WR_HC_MPS, val);
560 		REG_WR(bp, PXP2_REG_WR_USDM_MPS, val);
561 		REG_WR(bp, PXP2_REG_WR_CSDM_MPS, val);
562 		REG_WR(bp, PXP2_REG_WR_TSDM_MPS, val);
563 		REG_WR(bp, PXP2_REG_WR_XSDM_MPS, val);
564 		REG_WR(bp, PXP2_REG_WR_QM_MPS, val);
565 		REG_WR(bp, PXP2_REG_WR_TM_MPS, val);
566 		REG_WR(bp, PXP2_REG_WR_SRC_MPS, val);
567 		REG_WR(bp, PXP2_REG_WR_DBG_MPS, val);
568 		REG_WR(bp, PXP2_REG_WR_CDU_MPS, val);
569 	}
570 
571 	/* Validate number of tags suppoted by device */
572 #define PCIE_REG_PCIER_TL_HDR_FC_ST		0x2980
573 	val = REG_RD(bp, PCIE_REG_PCIER_TL_HDR_FC_ST);
574 	val &= 0xFF;
575 	if (val <= 0x20)
576 		REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x20);
577 }
578 
579 /****************************************************************************
580 * ILT management
581 ****************************************************************************/
582 /*
583  * This codes hides the low level HW interaction for ILT management and
584  * configuration. The API consists of a shadow ILT table which is set by the
585  * driver and a set of routines to use it to configure the HW.
586  *
587  */
588 
589 /* ILT HW init operations */
590 
591 /* ILT memory management operations */
592 #define ILT_MEMOP_ALLOC		0
593 #define ILT_MEMOP_FREE		1
594 
595 /* the phys address is shifted right 12 bits and has an added
596  * 1=valid bit added to the 53rd bit
597  * then since this is a wide register(TM)
598  * we split it into two 32 bit writes
599  */
600 #define ILT_ADDR1(x)		((u32)(((u64)x >> 12) & 0xFFFFFFFF))
601 #define ILT_ADDR2(x)		((u32)((1 << 20) | ((u64)x >> 44)))
602 #define ILT_RANGE(f, l)		(((l) << 10) | f)
603 
bnx2x_ilt_line_mem_op(struct bnx2x * bp,struct ilt_line * line,u32 size,u8 memop)604 static int bnx2x_ilt_line_mem_op(struct bnx2x *bp,
605 				 struct ilt_line *line, u32 size, u8 memop)
606 {
607 	if (memop == ILT_MEMOP_FREE) {
608 		BNX2X_ILT_FREE(line->page, line->page_mapping, line->size);
609 		return 0;
610 	}
611 	BNX2X_ILT_ZALLOC(line->page, &line->page_mapping, size);
612 	if (!line->page)
613 		return -1;
614 	line->size = size;
615 	return 0;
616 }
617 
618 
bnx2x_ilt_client_mem_op(struct bnx2x * bp,int cli_num,u8 memop)619 static int bnx2x_ilt_client_mem_op(struct bnx2x *bp, int cli_num,
620 				   u8 memop)
621 {
622 	int i, rc;
623 	struct bnx2x_ilt *ilt = BP_ILT(bp);
624 	struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
625 
626 	if (!ilt || !ilt->lines)
627 		return -1;
628 
629 	if (ilt_cli->flags & (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM))
630 		return 0;
631 
632 	for (rc = 0, i = ilt_cli->start; i <= ilt_cli->end && !rc; i++) {
633 		rc = bnx2x_ilt_line_mem_op(bp, &ilt->lines[i],
634 					   ilt_cli->page_size, memop);
635 	}
636 	return rc;
637 }
638 
bnx2x_ilt_mem_op(struct bnx2x * bp,u8 memop)639 static int bnx2x_ilt_mem_op(struct bnx2x *bp, u8 memop)
640 {
641 	int rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_CDU, memop);
642 	if (!rc)
643 		rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_QM, memop);
644 	if (!rc)
645 		rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_SRC, memop);
646 	if (!rc)
647 		rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_TM, memop);
648 
649 	return rc;
650 }
651 
bnx2x_ilt_line_wr(struct bnx2x * bp,int abs_idx,dma_addr_t page_mapping)652 static void bnx2x_ilt_line_wr(struct bnx2x *bp, int abs_idx,
653 			      dma_addr_t page_mapping)
654 {
655 	u32 reg;
656 
657 	if (CHIP_IS_E1(bp))
658 		reg = PXP2_REG_RQ_ONCHIP_AT + abs_idx*8;
659 	else
660 		reg = PXP2_REG_RQ_ONCHIP_AT_B0 + abs_idx*8;
661 
662 	bnx2x_wr_64(bp, reg, ILT_ADDR1(page_mapping), ILT_ADDR2(page_mapping));
663 }
664 
bnx2x_ilt_line_init_op(struct bnx2x * bp,struct bnx2x_ilt * ilt,int idx,u8 initop)665 static void bnx2x_ilt_line_init_op(struct bnx2x *bp,
666 				   struct bnx2x_ilt *ilt, int idx, u8 initop)
667 {
668 	dma_addr_t	null_mapping;
669 	int abs_idx = ilt->start_line + idx;
670 
671 
672 	switch (initop) {
673 	case INITOP_INIT:
674 		/* set in the init-value array */
675 	case INITOP_SET:
676 		bnx2x_ilt_line_wr(bp, abs_idx, ilt->lines[idx].page_mapping);
677 		break;
678 	case INITOP_CLEAR:
679 		null_mapping = 0;
680 		bnx2x_ilt_line_wr(bp, abs_idx, null_mapping);
681 		break;
682 	}
683 }
684 
bnx2x_ilt_boundry_init_op(struct bnx2x * bp,struct ilt_client_info * ilt_cli,u32 ilt_start,u8 initop)685 static void bnx2x_ilt_boundry_init_op(struct bnx2x *bp,
686 				      struct ilt_client_info *ilt_cli,
687 				      u32 ilt_start, u8 initop)
688 {
689 	u32 start_reg = 0;
690 	u32 end_reg = 0;
691 
692 	/* The boundary is either SET or INIT,
693 	   CLEAR => SET and for now SET ~~ INIT */
694 
695 	/* find the appropriate regs */
696 	if (CHIP_IS_E1(bp)) {
697 		switch (ilt_cli->client_num) {
698 		case ILT_CLIENT_CDU:
699 			start_reg = PXP2_REG_PSWRQ_CDU0_L2P;
700 			break;
701 		case ILT_CLIENT_QM:
702 			start_reg = PXP2_REG_PSWRQ_QM0_L2P;
703 			break;
704 		case ILT_CLIENT_SRC:
705 			start_reg = PXP2_REG_PSWRQ_SRC0_L2P;
706 			break;
707 		case ILT_CLIENT_TM:
708 			start_reg = PXP2_REG_PSWRQ_TM0_L2P;
709 			break;
710 		}
711 		REG_WR(bp, start_reg + BP_FUNC(bp)*4,
712 		       ILT_RANGE((ilt_start + ilt_cli->start),
713 				 (ilt_start + ilt_cli->end)));
714 	} else {
715 		switch (ilt_cli->client_num) {
716 		case ILT_CLIENT_CDU:
717 			start_reg = PXP2_REG_RQ_CDU_FIRST_ILT;
718 			end_reg = PXP2_REG_RQ_CDU_LAST_ILT;
719 			break;
720 		case ILT_CLIENT_QM:
721 			start_reg = PXP2_REG_RQ_QM_FIRST_ILT;
722 			end_reg = PXP2_REG_RQ_QM_LAST_ILT;
723 			break;
724 		case ILT_CLIENT_SRC:
725 			start_reg = PXP2_REG_RQ_SRC_FIRST_ILT;
726 			end_reg = PXP2_REG_RQ_SRC_LAST_ILT;
727 			break;
728 		case ILT_CLIENT_TM:
729 			start_reg = PXP2_REG_RQ_TM_FIRST_ILT;
730 			end_reg = PXP2_REG_RQ_TM_LAST_ILT;
731 			break;
732 		}
733 		REG_WR(bp, start_reg, (ilt_start + ilt_cli->start));
734 		REG_WR(bp, end_reg, (ilt_start + ilt_cli->end));
735 	}
736 }
737 
bnx2x_ilt_client_init_op_ilt(struct bnx2x * bp,struct bnx2x_ilt * ilt,struct ilt_client_info * ilt_cli,u8 initop)738 static void bnx2x_ilt_client_init_op_ilt(struct bnx2x *bp,
739 					 struct bnx2x_ilt *ilt,
740 					 struct ilt_client_info *ilt_cli,
741 					 u8 initop)
742 {
743 	int i;
744 
745 	if (ilt_cli->flags & ILT_CLIENT_SKIP_INIT)
746 		return;
747 
748 	for (i = ilt_cli->start; i <= ilt_cli->end; i++)
749 		bnx2x_ilt_line_init_op(bp, ilt, i, initop);
750 
751 	/* init/clear the ILT boundries */
752 	bnx2x_ilt_boundry_init_op(bp, ilt_cli, ilt->start_line, initop);
753 }
754 
bnx2x_ilt_client_init_op(struct bnx2x * bp,struct ilt_client_info * ilt_cli,u8 initop)755 static void bnx2x_ilt_client_init_op(struct bnx2x *bp,
756 				     struct ilt_client_info *ilt_cli, u8 initop)
757 {
758 	struct bnx2x_ilt *ilt = BP_ILT(bp);
759 
760 	bnx2x_ilt_client_init_op_ilt(bp, ilt, ilt_cli, initop);
761 }
762 
bnx2x_ilt_client_id_init_op(struct bnx2x * bp,int cli_num,u8 initop)763 static void bnx2x_ilt_client_id_init_op(struct bnx2x *bp,
764 					int cli_num, u8 initop)
765 {
766 	struct bnx2x_ilt *ilt = BP_ILT(bp);
767 	struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
768 
769 	bnx2x_ilt_client_init_op(bp, ilt_cli, initop);
770 }
771 
bnx2x_ilt_init_op(struct bnx2x * bp,u8 initop)772 static void bnx2x_ilt_init_op(struct bnx2x *bp, u8 initop)
773 {
774 	bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_CDU, initop);
775 	bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_QM, initop);
776 	bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_SRC, initop);
777 	bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_TM, initop);
778 }
779 
bnx2x_ilt_init_client_psz(struct bnx2x * bp,int cli_num,u32 psz_reg,u8 initop)780 static void bnx2x_ilt_init_client_psz(struct bnx2x *bp, int cli_num,
781 				      u32 psz_reg, u8 initop)
782 {
783 	struct bnx2x_ilt *ilt = BP_ILT(bp);
784 	struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
785 
786 	if (ilt_cli->flags & ILT_CLIENT_SKIP_INIT)
787 		return;
788 
789 	switch (initop) {
790 	case INITOP_INIT:
791 		/* set in the init-value array */
792 	case INITOP_SET:
793 		REG_WR(bp, psz_reg, ILOG2(ilt_cli->page_size >> 12));
794 		break;
795 	case INITOP_CLEAR:
796 		break;
797 	}
798 }
799 
800 /*
801  * called during init common stage, ilt clients should be initialized
802  * prioir to calling this function
803  */
bnx2x_ilt_init_page_size(struct bnx2x * bp,u8 initop)804 static void bnx2x_ilt_init_page_size(struct bnx2x *bp, u8 initop)
805 {
806 	bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_CDU,
807 				  PXP2_REG_RQ_CDU_P_SIZE, initop);
808 	bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_QM,
809 				  PXP2_REG_RQ_QM_P_SIZE, initop);
810 	bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_SRC,
811 				  PXP2_REG_RQ_SRC_P_SIZE, initop);
812 	bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_TM,
813 				  PXP2_REG_RQ_TM_P_SIZE, initop);
814 }
815 
816 /****************************************************************************
817 * QM initializations
818 ****************************************************************************/
819 #define QM_QUEUES_PER_FUNC	16 /* E1 has 32, but only 16 are used */
820 #define QM_INIT_MIN_CID_COUNT	31
821 #define QM_INIT(cid_cnt)	(cid_cnt > QM_INIT_MIN_CID_COUNT)
822 
823 /* called during init port stage */
bnx2x_qm_init_cid_count(struct bnx2x * bp,int qm_cid_count,u8 initop)824 static void bnx2x_qm_init_cid_count(struct bnx2x *bp, int qm_cid_count,
825 				    u8 initop)
826 {
827 	int port = BP_PORT(bp);
828 
829 	if (QM_INIT(qm_cid_count)) {
830 		switch (initop) {
831 		case INITOP_INIT:
832 			/* set in the init-value array */
833 		case INITOP_SET:
834 			REG_WR(bp, QM_REG_CONNNUM_0 + port*4,
835 			       qm_cid_count/16 - 1);
836 			break;
837 		case INITOP_CLEAR:
838 			break;
839 		}
840 	}
841 }
842 
bnx2x_qm_set_ptr_table(struct bnx2x * bp,int qm_cid_count)843 static void bnx2x_qm_set_ptr_table(struct bnx2x *bp, int qm_cid_count)
844 {
845 	int i;
846 	u32 wb_data[2];
847 
848 	wb_data[0] = wb_data[1] = 0;
849 
850 	for (i = 0; i < 4 * QM_QUEUES_PER_FUNC; i++) {
851 		REG_WR(bp, QM_REG_BASEADDR + i*4,
852 		       qm_cid_count * 4 * (i % QM_QUEUES_PER_FUNC));
853 		bnx2x_init_ind_wr(bp, QM_REG_PTRTBL + i*8,
854 				  wb_data, 2);
855 
856 		if (CHIP_IS_E1H(bp)) {
857 			REG_WR(bp, QM_REG_BASEADDR_EXT_A + i*4,
858 			       qm_cid_count * 4 * (i % QM_QUEUES_PER_FUNC));
859 			bnx2x_init_ind_wr(bp, QM_REG_PTRTBL_EXT_A + i*8,
860 					  wb_data, 2);
861 		}
862 	}
863 }
864 
865 /* called during init common stage */
bnx2x_qm_init_ptr_table(struct bnx2x * bp,int qm_cid_count,u8 initop)866 static void bnx2x_qm_init_ptr_table(struct bnx2x *bp, int qm_cid_count,
867 				    u8 initop)
868 {
869 	if (!QM_INIT(qm_cid_count))
870 		return;
871 
872 	switch (initop) {
873 	case INITOP_INIT:
874 		/* set in the init-value array */
875 	case INITOP_SET:
876 		bnx2x_qm_set_ptr_table(bp, qm_cid_count);
877 		break;
878 	case INITOP_CLEAR:
879 		break;
880 	}
881 }
882 
883 /****************************************************************************
884 * SRC initializations
885 ****************************************************************************/
886 #ifdef BCM_CNIC
887 /* called during init func stage */
bnx2x_src_init_t2(struct bnx2x * bp,struct src_ent * t2,dma_addr_t t2_mapping,int src_cid_count)888 static void bnx2x_src_init_t2(struct bnx2x *bp, struct src_ent *t2,
889 			      dma_addr_t t2_mapping, int src_cid_count)
890 {
891 	int i;
892 	int port = BP_PORT(bp);
893 
894 	/* Initialize T2 */
895 	for (i = 0; i < src_cid_count-1; i++)
896 		t2[i].next = (u64)(t2_mapping +
897 			     (i+1)*sizeof(struct src_ent));
898 
899 	/* tell the searcher where the T2 table is */
900 	REG_WR(bp, SRC_REG_COUNTFREE0 + port*4, src_cid_count);
901 
902 	bnx2x_wr_64(bp, SRC_REG_FIRSTFREE0 + port*16,
903 		    U64_LO(t2_mapping), U64_HI(t2_mapping));
904 
905 	bnx2x_wr_64(bp, SRC_REG_LASTFREE0 + port*16,
906 		    U64_LO((u64)t2_mapping +
907 			   (src_cid_count-1) * sizeof(struct src_ent)),
908 		    U64_HI((u64)t2_mapping +
909 			   (src_cid_count-1) * sizeof(struct src_ent)));
910 }
911 #endif
912 #endif /* BNX2X_INIT_OPS_H */
913