1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Interface for controlling IO bandwidth on a request queue
4 *
5 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
6 */
7
8 #include <linux/module.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/bio.h>
12 #include <linux/blktrace_api.h>
13 #include "blk.h"
14 #include "blk-cgroup-rwstat.h"
15 #include "blk-stat.h"
16 #include "blk-throttle.h"
17
18 /* Max dispatch from a group in 1 round */
19 #define THROTL_GRP_QUANTUM 8
20
21 /* Total max dispatch from all groups in one round */
22 #define THROTL_QUANTUM 32
23
24 /* Throttling is performed over a slice and after that slice is renewed */
25 #define DFL_THROTL_SLICE_HD (HZ / 10)
26 #define DFL_THROTL_SLICE_SSD (HZ / 50)
27 #define MAX_THROTL_SLICE (HZ)
28
29 /* A workqueue to queue throttle related work */
30 static struct workqueue_struct *kthrotld_workqueue;
31
32 #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
33
34 struct throtl_data
35 {
36 /* service tree for active throtl groups */
37 struct throtl_service_queue service_queue;
38
39 struct request_queue *queue;
40
41 /* Total Number of queued bios on READ and WRITE lists */
42 unsigned int nr_queued[2];
43
44 unsigned int throtl_slice;
45
46 /* Work for dispatching throttled bios */
47 struct work_struct dispatch_work;
48
49 bool track_bio_latency;
50 };
51
52 static void throtl_pending_timer_fn(struct timer_list *t);
53
tg_to_blkg(struct throtl_grp * tg)54 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
55 {
56 return pd_to_blkg(&tg->pd);
57 }
58
59 /**
60 * sq_to_tg - return the throl_grp the specified service queue belongs to
61 * @sq: the throtl_service_queue of interest
62 *
63 * Return the throtl_grp @sq belongs to. If @sq is the top-level one
64 * embedded in throtl_data, %NULL is returned.
65 */
sq_to_tg(struct throtl_service_queue * sq)66 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
67 {
68 if (sq && sq->parent_sq)
69 return container_of(sq, struct throtl_grp, service_queue);
70 else
71 return NULL;
72 }
73
74 /**
75 * sq_to_td - return throtl_data the specified service queue belongs to
76 * @sq: the throtl_service_queue of interest
77 *
78 * A service_queue can be embedded in either a throtl_grp or throtl_data.
79 * Determine the associated throtl_data accordingly and return it.
80 */
sq_to_td(struct throtl_service_queue * sq)81 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
82 {
83 struct throtl_grp *tg = sq_to_tg(sq);
84
85 if (tg)
86 return tg->td;
87 else
88 return container_of(sq, struct throtl_data, service_queue);
89 }
90
tg_bps_limit(struct throtl_grp * tg,int rw)91 static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
92 {
93 struct blkcg_gq *blkg = tg_to_blkg(tg);
94
95 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
96 return U64_MAX;
97
98 return tg->bps[rw];
99 }
100
tg_iops_limit(struct throtl_grp * tg,int rw)101 static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
102 {
103 struct blkcg_gq *blkg = tg_to_blkg(tg);
104
105 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
106 return UINT_MAX;
107
108 return tg->iops[rw];
109 }
110
111 /**
112 * throtl_log - log debug message via blktrace
113 * @sq: the service_queue being reported
114 * @fmt: printf format string
115 * @args: printf args
116 *
117 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
118 * throtl_grp; otherwise, just "throtl".
119 */
120 #define throtl_log(sq, fmt, args...) do { \
121 struct throtl_grp *__tg = sq_to_tg((sq)); \
122 struct throtl_data *__td = sq_to_td((sq)); \
123 \
124 (void)__td; \
125 if (likely(!blk_trace_note_message_enabled(__td->queue))) \
126 break; \
127 if ((__tg)) { \
128 blk_add_cgroup_trace_msg(__td->queue, \
129 &tg_to_blkg(__tg)->blkcg->css, "throtl " fmt, ##args);\
130 } else { \
131 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \
132 } \
133 } while (0)
134
throtl_bio_data_size(struct bio * bio)135 static inline unsigned int throtl_bio_data_size(struct bio *bio)
136 {
137 /* assume it's one sector */
138 if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
139 return 512;
140 return bio->bi_iter.bi_size;
141 }
142
throtl_qnode_init(struct throtl_qnode * qn,struct throtl_grp * tg)143 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
144 {
145 INIT_LIST_HEAD(&qn->node);
146 bio_list_init(&qn->bios_bps);
147 bio_list_init(&qn->bios_iops);
148 qn->tg = tg;
149 }
150
151 /**
152 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
153 * @bio: bio being added
154 * @qn: qnode to add bio to
155 * @sq: the service_queue @qn belongs to
156 *
157 * Add @bio to @qn and put @qn on @sq->queued if it's not already on.
158 * @qn->tg's reference count is bumped when @qn is activated. See the
159 * comment on top of throtl_qnode definition for details.
160 */
throtl_qnode_add_bio(struct bio * bio,struct throtl_qnode * qn,struct throtl_service_queue * sq)161 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
162 struct throtl_service_queue *sq)
163 {
164 bool rw = bio_data_dir(bio);
165
166 /*
167 * Split bios have already been throttled by bps, so they are
168 * directly queued into the iops path.
169 */
170 if (bio_flagged(bio, BIO_TG_BPS_THROTTLED) ||
171 bio_flagged(bio, BIO_BPS_THROTTLED)) {
172 bio_list_add(&qn->bios_iops, bio);
173 sq->nr_queued_iops[rw]++;
174 } else {
175 bio_list_add(&qn->bios_bps, bio);
176 sq->nr_queued_bps[rw]++;
177 }
178
179 if (list_empty(&qn->node)) {
180 list_add_tail(&qn->node, &sq->queued[rw]);
181 blkg_get(tg_to_blkg(qn->tg));
182 }
183 }
184
185 /**
186 * throtl_peek_queued - peek the first bio on a qnode list
187 * @queued: the qnode list to peek
188 *
189 * Always take a bio from the head of the iops queue first. If the queue is
190 * empty, we then take it from the bps queue to maintain the overall idea of
191 * fetching bios from the head.
192 */
throtl_peek_queued(struct list_head * queued)193 static struct bio *throtl_peek_queued(struct list_head *queued)
194 {
195 struct throtl_qnode *qn;
196 struct bio *bio;
197
198 if (list_empty(queued))
199 return NULL;
200
201 qn = list_first_entry(queued, struct throtl_qnode, node);
202 bio = bio_list_peek(&qn->bios_iops);
203 if (!bio)
204 bio = bio_list_peek(&qn->bios_bps);
205 WARN_ON_ONCE(!bio);
206 return bio;
207 }
208
209 /**
210 * throtl_pop_queued - pop the first bio form a qnode list
211 * @sq: the service_queue to pop a bio from
212 * @tg_to_put: optional out argument for throtl_grp to put
213 * @rw: read/write
214 *
215 * Pop the first bio from the qnode list @sq->queued. Note that we firstly
216 * focus on the iops list because bios are ultimately dispatched from it.
217 * After popping, the first qnode is removed from @sq->queued if empty or moved
218 * to the end of @sq->queued so that the popping order is round-robin.
219 *
220 * When the first qnode is removed, its associated throtl_grp should be put
221 * too. If @tg_to_put is NULL, this function automatically puts it;
222 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
223 * responsible for putting it.
224 */
throtl_pop_queued(struct throtl_service_queue * sq,struct throtl_grp ** tg_to_put,bool rw)225 static struct bio *throtl_pop_queued(struct throtl_service_queue *sq,
226 struct throtl_grp **tg_to_put, bool rw)
227 {
228 struct list_head *queued = &sq->queued[rw];
229 struct throtl_qnode *qn;
230 struct bio *bio;
231
232 if (list_empty(queued))
233 return NULL;
234
235 qn = list_first_entry(queued, struct throtl_qnode, node);
236 bio = bio_list_pop(&qn->bios_iops);
237 if (bio) {
238 sq->nr_queued_iops[rw]--;
239 } else {
240 bio = bio_list_pop(&qn->bios_bps);
241 if (bio)
242 sq->nr_queued_bps[rw]--;
243 }
244 WARN_ON_ONCE(!bio);
245
246 if (bio_list_empty(&qn->bios_bps) && bio_list_empty(&qn->bios_iops)) {
247 list_del_init(&qn->node);
248 if (tg_to_put)
249 *tg_to_put = qn->tg;
250 else
251 blkg_put(tg_to_blkg(qn->tg));
252 } else {
253 list_move_tail(&qn->node, queued);
254 }
255
256 return bio;
257 }
258
259 /* init a service_queue, assumes the caller zeroed it */
throtl_service_queue_init(struct throtl_service_queue * sq)260 static void throtl_service_queue_init(struct throtl_service_queue *sq)
261 {
262 INIT_LIST_HEAD(&sq->queued[READ]);
263 INIT_LIST_HEAD(&sq->queued[WRITE]);
264 sq->pending_tree = RB_ROOT_CACHED;
265 timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
266 }
267
throtl_pd_alloc(struct gendisk * disk,struct blkcg * blkcg,gfp_t gfp)268 static struct blkg_policy_data *throtl_pd_alloc(struct gendisk *disk,
269 struct blkcg *blkcg, gfp_t gfp)
270 {
271 struct throtl_grp *tg;
272 int rw;
273
274 tg = kzalloc_node(sizeof(*tg), gfp, disk->node_id);
275 if (!tg)
276 return NULL;
277
278 if (blkg_rwstat_init(&tg->stat_bytes, gfp))
279 goto err_free_tg;
280
281 if (blkg_rwstat_init(&tg->stat_ios, gfp))
282 goto err_exit_stat_bytes;
283
284 throtl_service_queue_init(&tg->service_queue);
285
286 for (rw = READ; rw <= WRITE; rw++) {
287 throtl_qnode_init(&tg->qnode_on_self[rw], tg);
288 throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
289 }
290
291 RB_CLEAR_NODE(&tg->rb_node);
292 tg->bps[READ] = U64_MAX;
293 tg->bps[WRITE] = U64_MAX;
294 tg->iops[READ] = UINT_MAX;
295 tg->iops[WRITE] = UINT_MAX;
296
297 return &tg->pd;
298
299 err_exit_stat_bytes:
300 blkg_rwstat_exit(&tg->stat_bytes);
301 err_free_tg:
302 kfree(tg);
303 return NULL;
304 }
305
throtl_pd_init(struct blkg_policy_data * pd)306 static void throtl_pd_init(struct blkg_policy_data *pd)
307 {
308 struct throtl_grp *tg = pd_to_tg(pd);
309 struct blkcg_gq *blkg = tg_to_blkg(tg);
310 struct throtl_data *td = blkg->q->td;
311 struct throtl_service_queue *sq = &tg->service_queue;
312
313 /*
314 * If on the default hierarchy, we switch to properly hierarchical
315 * behavior where limits on a given throtl_grp are applied to the
316 * whole subtree rather than just the group itself. e.g. If 16M
317 * read_bps limit is set on a parent group, summary bps of
318 * parent group and its subtree groups can't exceed 16M for the
319 * device.
320 *
321 * If not on the default hierarchy, the broken flat hierarchy
322 * behavior is retained where all throtl_grps are treated as if
323 * they're all separate root groups right below throtl_data.
324 * Limits of a group don't interact with limits of other groups
325 * regardless of the position of the group in the hierarchy.
326 */
327 sq->parent_sq = &td->service_queue;
328 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
329 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
330 tg->td = td;
331 }
332
333 /*
334 * Set has_rules[] if @tg or any of its parents have limits configured.
335 * This doesn't require walking up to the top of the hierarchy as the
336 * parent's has_rules[] is guaranteed to be correct.
337 */
tg_update_has_rules(struct throtl_grp * tg)338 static void tg_update_has_rules(struct throtl_grp *tg)
339 {
340 struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
341 int rw;
342
343 for (rw = READ; rw <= WRITE; rw++) {
344 tg->has_rules_iops[rw] =
345 (parent_tg && parent_tg->has_rules_iops[rw]) ||
346 tg_iops_limit(tg, rw) != UINT_MAX;
347 tg->has_rules_bps[rw] =
348 (parent_tg && parent_tg->has_rules_bps[rw]) ||
349 tg_bps_limit(tg, rw) != U64_MAX;
350 }
351 }
352
throtl_pd_online(struct blkg_policy_data * pd)353 static void throtl_pd_online(struct blkg_policy_data *pd)
354 {
355 struct throtl_grp *tg = pd_to_tg(pd);
356 /*
357 * We don't want new groups to escape the limits of its ancestors.
358 * Update has_rules[] after a new group is brought online.
359 */
360 tg_update_has_rules(tg);
361 }
362
throtl_pd_free(struct blkg_policy_data * pd)363 static void throtl_pd_free(struct blkg_policy_data *pd)
364 {
365 struct throtl_grp *tg = pd_to_tg(pd);
366
367 timer_delete_sync(&tg->service_queue.pending_timer);
368 blkg_rwstat_exit(&tg->stat_bytes);
369 blkg_rwstat_exit(&tg->stat_ios);
370 kfree(tg);
371 }
372
373 static struct throtl_grp *
throtl_rb_first(struct throtl_service_queue * parent_sq)374 throtl_rb_first(struct throtl_service_queue *parent_sq)
375 {
376 struct rb_node *n;
377
378 n = rb_first_cached(&parent_sq->pending_tree);
379 WARN_ON_ONCE(!n);
380 if (!n)
381 return NULL;
382 return rb_entry_tg(n);
383 }
384
throtl_rb_erase(struct rb_node * n,struct throtl_service_queue * parent_sq)385 static void throtl_rb_erase(struct rb_node *n,
386 struct throtl_service_queue *parent_sq)
387 {
388 rb_erase_cached(n, &parent_sq->pending_tree);
389 RB_CLEAR_NODE(n);
390 }
391
update_min_dispatch_time(struct throtl_service_queue * parent_sq)392 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
393 {
394 struct throtl_grp *tg;
395
396 tg = throtl_rb_first(parent_sq);
397 if (!tg)
398 return;
399
400 parent_sq->first_pending_disptime = tg->disptime;
401 }
402
tg_service_queue_add(struct throtl_grp * tg)403 static void tg_service_queue_add(struct throtl_grp *tg)
404 {
405 struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
406 struct rb_node **node = &parent_sq->pending_tree.rb_root.rb_node;
407 struct rb_node *parent = NULL;
408 struct throtl_grp *__tg;
409 unsigned long key = tg->disptime;
410 bool leftmost = true;
411
412 while (*node != NULL) {
413 parent = *node;
414 __tg = rb_entry_tg(parent);
415
416 if (time_before(key, __tg->disptime))
417 node = &parent->rb_left;
418 else {
419 node = &parent->rb_right;
420 leftmost = false;
421 }
422 }
423
424 rb_link_node(&tg->rb_node, parent, node);
425 rb_insert_color_cached(&tg->rb_node, &parent_sq->pending_tree,
426 leftmost);
427 }
428
throtl_enqueue_tg(struct throtl_grp * tg)429 static void throtl_enqueue_tg(struct throtl_grp *tg)
430 {
431 if (!(tg->flags & THROTL_TG_PENDING)) {
432 tg_service_queue_add(tg);
433 tg->flags |= THROTL_TG_PENDING;
434 tg->service_queue.parent_sq->nr_pending++;
435 }
436 }
437
throtl_dequeue_tg(struct throtl_grp * tg)438 static void throtl_dequeue_tg(struct throtl_grp *tg)
439 {
440 if (tg->flags & THROTL_TG_PENDING) {
441 struct throtl_service_queue *parent_sq =
442 tg->service_queue.parent_sq;
443
444 throtl_rb_erase(&tg->rb_node, parent_sq);
445 --parent_sq->nr_pending;
446 tg->flags &= ~THROTL_TG_PENDING;
447 }
448 }
449
450 /* Call with queue lock held */
throtl_schedule_pending_timer(struct throtl_service_queue * sq,unsigned long expires)451 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
452 unsigned long expires)
453 {
454 unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
455
456 /*
457 * Since we are adjusting the throttle limit dynamically, the sleep
458 * time calculated according to previous limit might be invalid. It's
459 * possible the cgroup sleep time is very long and no other cgroups
460 * have IO running so notify the limit changes. Make sure the cgroup
461 * doesn't sleep too long to avoid the missed notification.
462 */
463 if (time_after(expires, max_expire))
464 expires = max_expire;
465 mod_timer(&sq->pending_timer, expires);
466 throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
467 expires - jiffies, jiffies);
468 }
469
470 /**
471 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
472 * @sq: the service_queue to schedule dispatch for
473 * @force: force scheduling
474 *
475 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
476 * dispatch time of the first pending child. Returns %true if either timer
477 * is armed or there's no pending child left. %false if the current
478 * dispatch window is still open and the caller should continue
479 * dispatching.
480 *
481 * If @force is %true, the dispatch timer is always scheduled and this
482 * function is guaranteed to return %true. This is to be used when the
483 * caller can't dispatch itself and needs to invoke pending_timer
484 * unconditionally. Note that forced scheduling is likely to induce short
485 * delay before dispatch starts even if @sq->first_pending_disptime is not
486 * in the future and thus shouldn't be used in hot paths.
487 */
throtl_schedule_next_dispatch(struct throtl_service_queue * sq,bool force)488 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
489 bool force)
490 {
491 /* any pending children left? */
492 if (!sq->nr_pending)
493 return true;
494
495 update_min_dispatch_time(sq);
496
497 /* is the next dispatch time in the future? */
498 if (force || time_after(sq->first_pending_disptime, jiffies)) {
499 throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
500 return true;
501 }
502
503 /* tell the caller to continue dispatching */
504 return false;
505 }
506
throtl_start_new_slice_with_credit(struct throtl_grp * tg,bool rw,unsigned long start)507 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
508 bool rw, unsigned long start)
509 {
510 tg->bytes_disp[rw] = 0;
511 tg->io_disp[rw] = 0;
512
513 /*
514 * Previous slice has expired. We must have trimmed it after last
515 * bio dispatch. That means since start of last slice, we never used
516 * that bandwidth. Do try to make use of that bandwidth while giving
517 * credit.
518 */
519 if (time_after(start, tg->slice_start[rw]))
520 tg->slice_start[rw] = start;
521
522 tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
523 throtl_log(&tg->service_queue,
524 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
525 rw == READ ? 'R' : 'W', tg->slice_start[rw],
526 tg->slice_end[rw], jiffies);
527 }
528
throtl_start_new_slice(struct throtl_grp * tg,bool rw,bool clear)529 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw,
530 bool clear)
531 {
532 if (clear) {
533 tg->bytes_disp[rw] = 0;
534 tg->io_disp[rw] = 0;
535 }
536 tg->slice_start[rw] = jiffies;
537 tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
538
539 throtl_log(&tg->service_queue,
540 "[%c] new slice start=%lu end=%lu jiffies=%lu",
541 rw == READ ? 'R' : 'W', tg->slice_start[rw],
542 tg->slice_end[rw], jiffies);
543 }
544
throtl_set_slice_end(struct throtl_grp * tg,bool rw,unsigned long jiffy_end)545 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
546 unsigned long jiffy_end)
547 {
548 tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
549 }
550
throtl_extend_slice(struct throtl_grp * tg,bool rw,unsigned long jiffy_end)551 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
552 unsigned long jiffy_end)
553 {
554 if (!time_before(tg->slice_end[rw], jiffy_end))
555 return;
556
557 throtl_set_slice_end(tg, rw, jiffy_end);
558 throtl_log(&tg->service_queue,
559 "[%c] extend slice start=%lu end=%lu jiffies=%lu",
560 rw == READ ? 'R' : 'W', tg->slice_start[rw],
561 tg->slice_end[rw], jiffies);
562 }
563
564 /* Determine if previously allocated or extended slice is complete or not */
throtl_slice_used(struct throtl_grp * tg,bool rw)565 static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
566 {
567 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
568 return false;
569
570 return true;
571 }
572
sq_queued(struct throtl_service_queue * sq,int type)573 static unsigned int sq_queued(struct throtl_service_queue *sq, int type)
574 {
575 return sq->nr_queued_bps[type] + sq->nr_queued_iops[type];
576 }
577
calculate_io_allowed(u32 iops_limit,unsigned long jiffy_elapsed)578 static unsigned int calculate_io_allowed(u32 iops_limit,
579 unsigned long jiffy_elapsed)
580 {
581 unsigned int io_allowed;
582 u64 tmp;
583
584 /*
585 * jiffy_elapsed should not be a big value as minimum iops can be
586 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
587 * will allow dispatch after 1 second and after that slice should
588 * have been trimmed.
589 */
590
591 tmp = (u64)iops_limit * jiffy_elapsed;
592 do_div(tmp, HZ);
593
594 if (tmp > UINT_MAX)
595 io_allowed = UINT_MAX;
596 else
597 io_allowed = tmp;
598
599 return io_allowed;
600 }
601
calculate_bytes_allowed(u64 bps_limit,unsigned long jiffy_elapsed)602 static u64 calculate_bytes_allowed(u64 bps_limit, unsigned long jiffy_elapsed)
603 {
604 /*
605 * Can result be wider than 64 bits?
606 * We check against 62, not 64, due to ilog2 truncation.
607 */
608 if (ilog2(bps_limit) + ilog2(jiffy_elapsed) - ilog2(HZ) > 62)
609 return U64_MAX;
610 return mul_u64_u64_div_u64(bps_limit, (u64)jiffy_elapsed, (u64)HZ);
611 }
612
throtl_trim_bps(struct throtl_grp * tg,bool rw,unsigned long time_elapsed)613 static long long throtl_trim_bps(struct throtl_grp *tg, bool rw,
614 unsigned long time_elapsed)
615 {
616 u64 bps_limit = tg_bps_limit(tg, rw);
617 long long bytes_trim;
618
619 if (bps_limit == U64_MAX)
620 return 0;
621
622 /* Need to consider the case of bytes_allowed overflow. */
623 bytes_trim = calculate_bytes_allowed(bps_limit, time_elapsed);
624 if (bytes_trim <= 0 || tg->bytes_disp[rw] < bytes_trim) {
625 bytes_trim = tg->bytes_disp[rw];
626 tg->bytes_disp[rw] = 0;
627 } else {
628 tg->bytes_disp[rw] -= bytes_trim;
629 }
630
631 return bytes_trim;
632 }
633
throtl_trim_iops(struct throtl_grp * tg,bool rw,unsigned long time_elapsed)634 static int throtl_trim_iops(struct throtl_grp *tg, bool rw,
635 unsigned long time_elapsed)
636 {
637 u32 iops_limit = tg_iops_limit(tg, rw);
638 int io_trim;
639
640 if (iops_limit == UINT_MAX)
641 return 0;
642
643 /* Need to consider the case of io_allowed overflow. */
644 io_trim = calculate_io_allowed(iops_limit, time_elapsed);
645 if (io_trim <= 0 || tg->io_disp[rw] < io_trim) {
646 io_trim = tg->io_disp[rw];
647 tg->io_disp[rw] = 0;
648 } else {
649 tg->io_disp[rw] -= io_trim;
650 }
651
652 return io_trim;
653 }
654
655 /* Trim the used slices and adjust slice start accordingly */
throtl_trim_slice(struct throtl_grp * tg,bool rw)656 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
657 {
658 unsigned long time_elapsed;
659 long long bytes_trim;
660 int io_trim;
661
662 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
663
664 /*
665 * If bps are unlimited (-1), then time slice don't get
666 * renewed. Don't try to trim the slice if slice is used. A new
667 * slice will start when appropriate.
668 */
669 if (throtl_slice_used(tg, rw))
670 return;
671
672 /*
673 * A bio has been dispatched. Also adjust slice_end. It might happen
674 * that initially cgroup limit was very low resulting in high
675 * slice_end, but later limit was bumped up and bio was dispatched
676 * sooner, then we need to reduce slice_end. A high bogus slice_end
677 * is bad because it does not allow new slice to start.
678 */
679 throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
680
681 time_elapsed = rounddown(jiffies - tg->slice_start[rw],
682 tg->td->throtl_slice);
683 /* Don't trim slice until at least 2 slices are used */
684 if (time_elapsed < tg->td->throtl_slice * 2)
685 return;
686
687 /*
688 * The bio submission time may be a few jiffies more than the expected
689 * waiting time, due to 'extra_bytes' can't be divided in
690 * tg_within_bps_limit(), and also due to timer wakeup delay. In this
691 * case, adjust slice_start will discard the extra wait time, causing
692 * lower rate than expected. Therefore, other than the above rounddown,
693 * one extra slice is preserved for deviation.
694 */
695 time_elapsed -= tg->td->throtl_slice;
696 bytes_trim = throtl_trim_bps(tg, rw, time_elapsed);
697 io_trim = throtl_trim_iops(tg, rw, time_elapsed);
698 if (!bytes_trim && !io_trim)
699 return;
700
701 tg->slice_start[rw] += time_elapsed;
702
703 throtl_log(&tg->service_queue,
704 "[%c] trim slice nr=%lu bytes=%lld io=%d start=%lu end=%lu jiffies=%lu",
705 rw == READ ? 'R' : 'W', time_elapsed / tg->td->throtl_slice,
706 bytes_trim, io_trim, tg->slice_start[rw], tg->slice_end[rw],
707 jiffies);
708 }
709
__tg_update_carryover(struct throtl_grp * tg,bool rw,long long * bytes,int * ios)710 static void __tg_update_carryover(struct throtl_grp *tg, bool rw,
711 long long *bytes, int *ios)
712 {
713 unsigned long jiffy_elapsed = jiffies - tg->slice_start[rw];
714 u64 bps_limit = tg_bps_limit(tg, rw);
715 u32 iops_limit = tg_iops_limit(tg, rw);
716 long long bytes_allowed;
717 int io_allowed;
718
719 /*
720 * If the queue is empty, carryover handling is not needed. In such cases,
721 * tg->[bytes/io]_disp should be reset to 0 to avoid impacting the dispatch
722 * of subsequent bios. The same handling applies when the previous BPS/IOPS
723 * limit was set to max.
724 */
725 if (sq_queued(&tg->service_queue, rw) == 0) {
726 tg->bytes_disp[rw] = 0;
727 tg->io_disp[rw] = 0;
728 return;
729 }
730
731 /*
732 * If config is updated while bios are still throttled, calculate and
733 * accumulate how many bytes/ios are waited across changes. And use the
734 * calculated carryover (@bytes/@ios) to update [bytes/io]_disp, which
735 * will be used to calculate new wait time under new configuration.
736 * And we need to consider the case of bytes/io_allowed overflow.
737 */
738 if (bps_limit != U64_MAX) {
739 bytes_allowed = calculate_bytes_allowed(bps_limit, jiffy_elapsed);
740 if (bytes_allowed > 0)
741 *bytes = bytes_allowed - tg->bytes_disp[rw];
742 }
743 if (iops_limit != UINT_MAX) {
744 io_allowed = calculate_io_allowed(iops_limit, jiffy_elapsed);
745 if (io_allowed > 0)
746 *ios = io_allowed - tg->io_disp[rw];
747 }
748
749 tg->bytes_disp[rw] = -*bytes;
750 tg->io_disp[rw] = -*ios;
751 }
752
tg_update_carryover(struct throtl_grp * tg)753 static void tg_update_carryover(struct throtl_grp *tg)
754 {
755 long long bytes[2] = {0};
756 int ios[2] = {0};
757
758 __tg_update_carryover(tg, READ, &bytes[READ], &ios[READ]);
759 __tg_update_carryover(tg, WRITE, &bytes[WRITE], &ios[WRITE]);
760
761 /* see comments in struct throtl_grp for meaning of carryover. */
762 throtl_log(&tg->service_queue, "%s: %lld %lld %d %d\n", __func__,
763 bytes[READ], bytes[WRITE], ios[READ], ios[WRITE]);
764 }
765
tg_within_iops_limit(struct throtl_grp * tg,struct bio * bio,u32 iops_limit)766 static unsigned long tg_within_iops_limit(struct throtl_grp *tg, struct bio *bio,
767 u32 iops_limit)
768 {
769 bool rw = bio_data_dir(bio);
770 int io_allowed;
771 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
772
773 jiffy_elapsed = jiffies - tg->slice_start[rw];
774
775 /* Round up to the next throttle slice, wait time must be nonzero */
776 jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice);
777 io_allowed = calculate_io_allowed(iops_limit, jiffy_elapsed_rnd);
778 if (io_allowed > 0 && tg->io_disp[rw] + 1 <= io_allowed)
779 return 0;
780
781 /* Calc approx time to dispatch */
782 jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed;
783
784 /* make sure at least one io can be dispatched after waiting */
785 jiffy_wait = max(jiffy_wait, HZ / iops_limit + 1);
786 return jiffy_wait;
787 }
788
tg_within_bps_limit(struct throtl_grp * tg,struct bio * bio,u64 bps_limit)789 static unsigned long tg_within_bps_limit(struct throtl_grp *tg, struct bio *bio,
790 u64 bps_limit)
791 {
792 bool rw = bio_data_dir(bio);
793 long long bytes_allowed;
794 u64 extra_bytes;
795 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
796 unsigned int bio_size = throtl_bio_data_size(bio);
797
798 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
799
800 /* Slice has just started. Consider one slice interval */
801 if (!jiffy_elapsed)
802 jiffy_elapsed_rnd = tg->td->throtl_slice;
803
804 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
805 bytes_allowed = calculate_bytes_allowed(bps_limit, jiffy_elapsed_rnd);
806 /* Need to consider the case of bytes_allowed overflow. */
807 if ((bytes_allowed > 0 && tg->bytes_disp[rw] + bio_size <= bytes_allowed)
808 || bytes_allowed < 0)
809 return 0;
810
811 /* Calc approx time to dispatch */
812 extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
813 jiffy_wait = div64_u64(extra_bytes * HZ, bps_limit);
814
815 if (!jiffy_wait)
816 jiffy_wait = 1;
817
818 /*
819 * This wait time is without taking into consideration the rounding
820 * up we did. Add that time also.
821 */
822 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
823 return jiffy_wait;
824 }
825
throtl_charge_bps_bio(struct throtl_grp * tg,struct bio * bio)826 static void throtl_charge_bps_bio(struct throtl_grp *tg, struct bio *bio)
827 {
828 unsigned int bio_size = throtl_bio_data_size(bio);
829
830 /* Charge the bio to the group */
831 if (!bio_flagged(bio, BIO_BPS_THROTTLED) &&
832 !bio_flagged(bio, BIO_TG_BPS_THROTTLED)) {
833 bio_set_flag(bio, BIO_TG_BPS_THROTTLED);
834 tg->bytes_disp[bio_data_dir(bio)] += bio_size;
835 }
836 }
837
throtl_charge_iops_bio(struct throtl_grp * tg,struct bio * bio)838 static void throtl_charge_iops_bio(struct throtl_grp *tg, struct bio *bio)
839 {
840 bio_clear_flag(bio, BIO_TG_BPS_THROTTLED);
841 tg->io_disp[bio_data_dir(bio)]++;
842 }
843
844 /*
845 * If previous slice expired, start a new one otherwise renew/extend existing
846 * slice to make sure it is at least throtl_slice interval long since now. New
847 * slice is started only for empty throttle group. If there is queued bio, that
848 * means there should be an active slice and it should be extended instead.
849 */
tg_update_slice(struct throtl_grp * tg,bool rw)850 static void tg_update_slice(struct throtl_grp *tg, bool rw)
851 {
852 if (throtl_slice_used(tg, rw) &&
853 sq_queued(&tg->service_queue, rw) == 0)
854 throtl_start_new_slice(tg, rw, true);
855 else
856 throtl_extend_slice(tg, rw, jiffies + tg->td->throtl_slice);
857 }
858
tg_dispatch_bps_time(struct throtl_grp * tg,struct bio * bio)859 static unsigned long tg_dispatch_bps_time(struct throtl_grp *tg, struct bio *bio)
860 {
861 bool rw = bio_data_dir(bio);
862 u64 bps_limit = tg_bps_limit(tg, rw);
863 unsigned long bps_wait;
864
865 /* no need to throttle if this bio's bytes have been accounted */
866 if (bps_limit == U64_MAX || tg->flags & THROTL_TG_CANCELING ||
867 bio_flagged(bio, BIO_BPS_THROTTLED) ||
868 bio_flagged(bio, BIO_TG_BPS_THROTTLED))
869 return 0;
870
871 tg_update_slice(tg, rw);
872 bps_wait = tg_within_bps_limit(tg, bio, bps_limit);
873 throtl_extend_slice(tg, rw, jiffies + bps_wait);
874
875 return bps_wait;
876 }
877
tg_dispatch_iops_time(struct throtl_grp * tg,struct bio * bio)878 static unsigned long tg_dispatch_iops_time(struct throtl_grp *tg, struct bio *bio)
879 {
880 bool rw = bio_data_dir(bio);
881 u32 iops_limit = tg_iops_limit(tg, rw);
882 unsigned long iops_wait;
883
884 if (iops_limit == UINT_MAX || tg->flags & THROTL_TG_CANCELING)
885 return 0;
886
887 tg_update_slice(tg, rw);
888 iops_wait = tg_within_iops_limit(tg, bio, iops_limit);
889 throtl_extend_slice(tg, rw, jiffies + iops_wait);
890
891 return iops_wait;
892 }
893
894 /*
895 * Returns approx number of jiffies to wait before this bio is with-in IO rate
896 * and can be moved to other queue or dispatched.
897 */
tg_dispatch_time(struct throtl_grp * tg,struct bio * bio)898 static unsigned long tg_dispatch_time(struct throtl_grp *tg, struct bio *bio)
899 {
900 bool rw = bio_data_dir(bio);
901 unsigned long wait;
902
903 /*
904 * Currently whole state machine of group depends on first bio
905 * queued in the group bio list. So one should not be calling
906 * this function with a different bio if there are other bios
907 * queued.
908 */
909 BUG_ON(sq_queued(&tg->service_queue, rw) &&
910 bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
911
912 wait = tg_dispatch_bps_time(tg, bio);
913 if (wait != 0)
914 return wait;
915
916 /*
917 * Charge bps here because @bio will be directly placed into the
918 * iops queue afterward.
919 */
920 throtl_charge_bps_bio(tg, bio);
921
922 return tg_dispatch_iops_time(tg, bio);
923 }
924
925 /**
926 * throtl_add_bio_tg - add a bio to the specified throtl_grp
927 * @bio: bio to add
928 * @qn: qnode to use
929 * @tg: the target throtl_grp
930 *
931 * Add @bio to @tg's service_queue using @qn. If @qn is not specified,
932 * tg->qnode_on_self[] is used.
933 */
throtl_add_bio_tg(struct bio * bio,struct throtl_qnode * qn,struct throtl_grp * tg)934 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
935 struct throtl_grp *tg)
936 {
937 struct throtl_service_queue *sq = &tg->service_queue;
938 bool rw = bio_data_dir(bio);
939
940 if (!qn)
941 qn = &tg->qnode_on_self[rw];
942
943 /*
944 * If @tg doesn't currently have any bios queued in the same
945 * direction, queueing @bio can change when @tg should be
946 * dispatched. Mark that @tg was empty. This is automatically
947 * cleared on the next tg_update_disptime().
948 */
949 if (sq_queued(sq, rw) == 0)
950 tg->flags |= THROTL_TG_WAS_EMPTY;
951
952 throtl_qnode_add_bio(bio, qn, sq);
953
954 /*
955 * Since we have split the queues, when the iops queue is
956 * previously empty and a new @bio is added into the first @qn,
957 * we also need to update the @tg->disptime.
958 */
959 if (bio_flagged(bio, BIO_BPS_THROTTLED) &&
960 bio == throtl_peek_queued(&sq->queued[rw]))
961 tg->flags |= THROTL_TG_IOPS_WAS_EMPTY;
962
963 throtl_enqueue_tg(tg);
964 }
965
tg_update_disptime(struct throtl_grp * tg)966 static void tg_update_disptime(struct throtl_grp *tg)
967 {
968 struct throtl_service_queue *sq = &tg->service_queue;
969 unsigned long read_wait = -1, write_wait = -1, min_wait, disptime;
970 struct bio *bio;
971
972 bio = throtl_peek_queued(&sq->queued[READ]);
973 if (bio)
974 read_wait = tg_dispatch_time(tg, bio);
975
976 bio = throtl_peek_queued(&sq->queued[WRITE]);
977 if (bio)
978 write_wait = tg_dispatch_time(tg, bio);
979
980 min_wait = min(read_wait, write_wait);
981 disptime = jiffies + min_wait;
982
983 /* Update dispatch time */
984 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
985 tg->disptime = disptime;
986 tg_service_queue_add(tg);
987
988 /* see throtl_add_bio_tg() */
989 tg->flags &= ~THROTL_TG_WAS_EMPTY;
990 tg->flags &= ~THROTL_TG_IOPS_WAS_EMPTY;
991 }
992
start_parent_slice_with_credit(struct throtl_grp * child_tg,struct throtl_grp * parent_tg,bool rw)993 static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
994 struct throtl_grp *parent_tg, bool rw)
995 {
996 if (throtl_slice_used(parent_tg, rw)) {
997 throtl_start_new_slice_with_credit(parent_tg, rw,
998 child_tg->slice_start[rw]);
999 }
1000
1001 }
1002
tg_dispatch_one_bio(struct throtl_grp * tg,bool rw)1003 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1004 {
1005 struct throtl_service_queue *sq = &tg->service_queue;
1006 struct throtl_service_queue *parent_sq = sq->parent_sq;
1007 struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1008 struct throtl_grp *tg_to_put = NULL;
1009 struct bio *bio;
1010
1011 /*
1012 * @bio is being transferred from @tg to @parent_sq. Popping a bio
1013 * from @tg may put its reference and @parent_sq might end up
1014 * getting released prematurely. Remember the tg to put and put it
1015 * after @bio is transferred to @parent_sq.
1016 */
1017 bio = throtl_pop_queued(sq, &tg_to_put, rw);
1018
1019 throtl_charge_iops_bio(tg, bio);
1020
1021 /*
1022 * If our parent is another tg, we just need to transfer @bio to
1023 * the parent using throtl_add_bio_tg(). If our parent is
1024 * @td->service_queue, @bio is ready to be issued. Put it on its
1025 * bio_lists[] and decrease total number queued. The caller is
1026 * responsible for issuing these bios.
1027 */
1028 if (parent_tg) {
1029 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1030 start_parent_slice_with_credit(tg, parent_tg, rw);
1031 } else {
1032 bio_set_flag(bio, BIO_BPS_THROTTLED);
1033 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1034 parent_sq);
1035 BUG_ON(tg->td->nr_queued[rw] <= 0);
1036 tg->td->nr_queued[rw]--;
1037 }
1038
1039 throtl_trim_slice(tg, rw);
1040
1041 if (tg_to_put)
1042 blkg_put(tg_to_blkg(tg_to_put));
1043 }
1044
throtl_dispatch_tg(struct throtl_grp * tg)1045 static int throtl_dispatch_tg(struct throtl_grp *tg)
1046 {
1047 struct throtl_service_queue *sq = &tg->service_queue;
1048 unsigned int nr_reads = 0, nr_writes = 0;
1049 unsigned int max_nr_reads = THROTL_GRP_QUANTUM * 3 / 4;
1050 unsigned int max_nr_writes = THROTL_GRP_QUANTUM - max_nr_reads;
1051 struct bio *bio;
1052
1053 /* Try to dispatch 75% READS and 25% WRITES */
1054
1055 while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1056 tg_dispatch_time(tg, bio) == 0) {
1057
1058 tg_dispatch_one_bio(tg, READ);
1059 nr_reads++;
1060
1061 if (nr_reads >= max_nr_reads)
1062 break;
1063 }
1064
1065 while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1066 tg_dispatch_time(tg, bio) == 0) {
1067
1068 tg_dispatch_one_bio(tg, WRITE);
1069 nr_writes++;
1070
1071 if (nr_writes >= max_nr_writes)
1072 break;
1073 }
1074
1075 return nr_reads + nr_writes;
1076 }
1077
throtl_select_dispatch(struct throtl_service_queue * parent_sq)1078 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1079 {
1080 unsigned int nr_disp = 0;
1081
1082 while (1) {
1083 struct throtl_grp *tg;
1084 struct throtl_service_queue *sq;
1085
1086 if (!parent_sq->nr_pending)
1087 break;
1088
1089 tg = throtl_rb_first(parent_sq);
1090 if (!tg)
1091 break;
1092
1093 if (time_before(jiffies, tg->disptime))
1094 break;
1095
1096 nr_disp += throtl_dispatch_tg(tg);
1097
1098 sq = &tg->service_queue;
1099 if (sq_queued(sq, READ) || sq_queued(sq, WRITE))
1100 tg_update_disptime(tg);
1101 else
1102 throtl_dequeue_tg(tg);
1103
1104 if (nr_disp >= THROTL_QUANTUM)
1105 break;
1106 }
1107
1108 return nr_disp;
1109 }
1110
1111 /**
1112 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1113 * @t: the pending_timer member of the throtl_service_queue being serviced
1114 *
1115 * This timer is armed when a child throtl_grp with active bio's become
1116 * pending and queued on the service_queue's pending_tree and expires when
1117 * the first child throtl_grp should be dispatched. This function
1118 * dispatches bio's from the children throtl_grps to the parent
1119 * service_queue.
1120 *
1121 * If the parent's parent is another throtl_grp, dispatching is propagated
1122 * by either arming its pending_timer or repeating dispatch directly. If
1123 * the top-level service_tree is reached, throtl_data->dispatch_work is
1124 * kicked so that the ready bio's are issued.
1125 */
throtl_pending_timer_fn(struct timer_list * t)1126 static void throtl_pending_timer_fn(struct timer_list *t)
1127 {
1128 struct throtl_service_queue *sq = timer_container_of(sq, t,
1129 pending_timer);
1130 struct throtl_grp *tg = sq_to_tg(sq);
1131 struct throtl_data *td = sq_to_td(sq);
1132 struct throtl_service_queue *parent_sq;
1133 struct request_queue *q;
1134 bool dispatched;
1135 int ret;
1136
1137 /* throtl_data may be gone, so figure out request queue by blkg */
1138 if (tg)
1139 q = tg->pd.blkg->q;
1140 else
1141 q = td->queue;
1142
1143 spin_lock_irq(&q->queue_lock);
1144
1145 if (!q->root_blkg)
1146 goto out_unlock;
1147
1148 again:
1149 parent_sq = sq->parent_sq;
1150 dispatched = false;
1151
1152 while (true) {
1153 unsigned int __maybe_unused bio_cnt_r = sq_queued(sq, READ);
1154 unsigned int __maybe_unused bio_cnt_w = sq_queued(sq, WRITE);
1155
1156 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1157 bio_cnt_r + bio_cnt_w, bio_cnt_r, bio_cnt_w);
1158
1159 ret = throtl_select_dispatch(sq);
1160 if (ret) {
1161 throtl_log(sq, "bios disp=%u", ret);
1162 dispatched = true;
1163 }
1164
1165 if (throtl_schedule_next_dispatch(sq, false))
1166 break;
1167
1168 /* this dispatch windows is still open, relax and repeat */
1169 spin_unlock_irq(&q->queue_lock);
1170 cpu_relax();
1171 spin_lock_irq(&q->queue_lock);
1172 }
1173
1174 if (!dispatched)
1175 goto out_unlock;
1176
1177 if (parent_sq) {
1178 /* @parent_sq is another throl_grp, propagate dispatch */
1179 if (tg->flags & THROTL_TG_WAS_EMPTY ||
1180 tg->flags & THROTL_TG_IOPS_WAS_EMPTY) {
1181 tg_update_disptime(tg);
1182 if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1183 /* window is already open, repeat dispatching */
1184 sq = parent_sq;
1185 tg = sq_to_tg(sq);
1186 goto again;
1187 }
1188 }
1189 } else {
1190 /* reached the top-level, queue issuing */
1191 queue_work(kthrotld_workqueue, &td->dispatch_work);
1192 }
1193 out_unlock:
1194 spin_unlock_irq(&q->queue_lock);
1195 }
1196
1197 /**
1198 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1199 * @work: work item being executed
1200 *
1201 * This function is queued for execution when bios reach the bio_lists[]
1202 * of throtl_data->service_queue. Those bios are ready and issued by this
1203 * function.
1204 */
blk_throtl_dispatch_work_fn(struct work_struct * work)1205 static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1206 {
1207 struct throtl_data *td = container_of(work, struct throtl_data,
1208 dispatch_work);
1209 struct throtl_service_queue *td_sq = &td->service_queue;
1210 struct request_queue *q = td->queue;
1211 struct bio_list bio_list_on_stack;
1212 struct bio *bio;
1213 struct blk_plug plug;
1214 int rw;
1215
1216 bio_list_init(&bio_list_on_stack);
1217
1218 spin_lock_irq(&q->queue_lock);
1219 for (rw = READ; rw <= WRITE; rw++)
1220 while ((bio = throtl_pop_queued(td_sq, NULL, rw)))
1221 bio_list_add(&bio_list_on_stack, bio);
1222 spin_unlock_irq(&q->queue_lock);
1223
1224 if (!bio_list_empty(&bio_list_on_stack)) {
1225 blk_start_plug(&plug);
1226 while ((bio = bio_list_pop(&bio_list_on_stack)))
1227 submit_bio_noacct_nocheck(bio, false);
1228 blk_finish_plug(&plug);
1229 }
1230 }
1231
tg_prfill_conf_u64(struct seq_file * sf,struct blkg_policy_data * pd,int off)1232 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1233 int off)
1234 {
1235 struct throtl_grp *tg = pd_to_tg(pd);
1236 u64 v = *(u64 *)((void *)tg + off);
1237
1238 if (v == U64_MAX)
1239 return 0;
1240 return __blkg_prfill_u64(sf, pd, v);
1241 }
1242
tg_prfill_conf_uint(struct seq_file * sf,struct blkg_policy_data * pd,int off)1243 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1244 int off)
1245 {
1246 struct throtl_grp *tg = pd_to_tg(pd);
1247 unsigned int v = *(unsigned int *)((void *)tg + off);
1248
1249 if (v == UINT_MAX)
1250 return 0;
1251 return __blkg_prfill_u64(sf, pd, v);
1252 }
1253
tg_print_conf_u64(struct seq_file * sf,void * v)1254 static int tg_print_conf_u64(struct seq_file *sf, void *v)
1255 {
1256 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1257 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1258 return 0;
1259 }
1260
tg_print_conf_uint(struct seq_file * sf,void * v)1261 static int tg_print_conf_uint(struct seq_file *sf, void *v)
1262 {
1263 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1264 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1265 return 0;
1266 }
1267
tg_conf_updated(struct throtl_grp * tg,bool global)1268 static void tg_conf_updated(struct throtl_grp *tg, bool global)
1269 {
1270 struct throtl_service_queue *sq = &tg->service_queue;
1271 struct cgroup_subsys_state *pos_css;
1272 struct blkcg_gq *blkg;
1273
1274 throtl_log(&tg->service_queue,
1275 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1276 tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1277 tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1278
1279 rcu_read_lock();
1280 /*
1281 * Update has_rules[] flags for the updated tg's subtree. A tg is
1282 * considered to have rules if either the tg itself or any of its
1283 * ancestors has rules. This identifies groups without any
1284 * restrictions in the whole hierarchy and allows them to bypass
1285 * blk-throttle.
1286 */
1287 blkg_for_each_descendant_pre(blkg, pos_css,
1288 global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
1289 struct throtl_grp *this_tg = blkg_to_tg(blkg);
1290
1291 tg_update_has_rules(this_tg);
1292 /* ignore root/second level */
1293 if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
1294 !blkg->parent->parent)
1295 continue;
1296 }
1297 rcu_read_unlock();
1298
1299 /*
1300 * We're already holding queue_lock and know @tg is valid. Let's
1301 * apply the new config directly.
1302 *
1303 * Restart the slices for both READ and WRITES. It might happen
1304 * that a group's limit are dropped suddenly and we don't want to
1305 * account recently dispatched IO with new low rate.
1306 */
1307 throtl_start_new_slice(tg, READ, false);
1308 throtl_start_new_slice(tg, WRITE, false);
1309
1310 if (tg->flags & THROTL_TG_PENDING) {
1311 tg_update_disptime(tg);
1312 throtl_schedule_next_dispatch(sq->parent_sq, true);
1313 }
1314 }
1315
blk_throtl_init(struct gendisk * disk)1316 static int blk_throtl_init(struct gendisk *disk)
1317 {
1318 struct request_queue *q = disk->queue;
1319 struct throtl_data *td;
1320 unsigned int memflags;
1321 int ret;
1322
1323 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
1324 if (!td)
1325 return -ENOMEM;
1326
1327 INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
1328 throtl_service_queue_init(&td->service_queue);
1329
1330 memflags = blk_mq_freeze_queue(disk->queue);
1331 blk_mq_quiesce_queue(disk->queue);
1332
1333 q->td = td;
1334 td->queue = q;
1335
1336 /* activate policy, blk_throtl_activated() will return true */
1337 ret = blkcg_activate_policy(disk, &blkcg_policy_throtl);
1338 if (ret) {
1339 q->td = NULL;
1340 kfree(td);
1341 goto out;
1342 }
1343
1344 if (blk_queue_nonrot(q))
1345 td->throtl_slice = DFL_THROTL_SLICE_SSD;
1346 else
1347 td->throtl_slice = DFL_THROTL_SLICE_HD;
1348 td->track_bio_latency = !queue_is_mq(q);
1349 if (!td->track_bio_latency)
1350 blk_stat_enable_accounting(q);
1351
1352 out:
1353 blk_mq_unquiesce_queue(disk->queue);
1354 blk_mq_unfreeze_queue(disk->queue, memflags);
1355
1356 return ret;
1357 }
1358
1359
tg_set_conf(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,bool is_u64)1360 static ssize_t tg_set_conf(struct kernfs_open_file *of,
1361 char *buf, size_t nbytes, loff_t off, bool is_u64)
1362 {
1363 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1364 struct blkg_conf_ctx ctx;
1365 struct throtl_grp *tg;
1366 int ret;
1367 u64 v;
1368
1369 blkg_conf_init(&ctx, buf);
1370
1371 ret = blkg_conf_open_bdev(&ctx);
1372 if (ret)
1373 goto out_finish;
1374
1375 if (!blk_throtl_activated(ctx.bdev->bd_queue)) {
1376 ret = blk_throtl_init(ctx.bdev->bd_disk);
1377 if (ret)
1378 goto out_finish;
1379 }
1380
1381 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, &ctx);
1382 if (ret)
1383 goto out_finish;
1384
1385 ret = -EINVAL;
1386 if (sscanf(ctx.body, "%llu", &v) != 1)
1387 goto out_finish;
1388 if (!v)
1389 v = U64_MAX;
1390
1391 tg = blkg_to_tg(ctx.blkg);
1392 tg_update_carryover(tg);
1393
1394 if (is_u64)
1395 *(u64 *)((void *)tg + of_cft(of)->private) = v;
1396 else
1397 *(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1398
1399 tg_conf_updated(tg, false);
1400 ret = 0;
1401 out_finish:
1402 blkg_conf_exit(&ctx);
1403 return ret ?: nbytes;
1404 }
1405
tg_set_conf_u64(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1406 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1407 char *buf, size_t nbytes, loff_t off)
1408 {
1409 return tg_set_conf(of, buf, nbytes, off, true);
1410 }
1411
tg_set_conf_uint(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1412 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1413 char *buf, size_t nbytes, loff_t off)
1414 {
1415 return tg_set_conf(of, buf, nbytes, off, false);
1416 }
1417
tg_print_rwstat(struct seq_file * sf,void * v)1418 static int tg_print_rwstat(struct seq_file *sf, void *v)
1419 {
1420 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1421 blkg_prfill_rwstat, &blkcg_policy_throtl,
1422 seq_cft(sf)->private, true);
1423 return 0;
1424 }
1425
tg_prfill_rwstat_recursive(struct seq_file * sf,struct blkg_policy_data * pd,int off)1426 static u64 tg_prfill_rwstat_recursive(struct seq_file *sf,
1427 struct blkg_policy_data *pd, int off)
1428 {
1429 struct blkg_rwstat_sample sum;
1430
1431 blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_throtl, off,
1432 &sum);
1433 return __blkg_prfill_rwstat(sf, pd, &sum);
1434 }
1435
tg_print_rwstat_recursive(struct seq_file * sf,void * v)1436 static int tg_print_rwstat_recursive(struct seq_file *sf, void *v)
1437 {
1438 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1439 tg_prfill_rwstat_recursive, &blkcg_policy_throtl,
1440 seq_cft(sf)->private, true);
1441 return 0;
1442 }
1443
1444 static struct cftype throtl_legacy_files[] = {
1445 {
1446 .name = "throttle.read_bps_device",
1447 .private = offsetof(struct throtl_grp, bps[READ]),
1448 .seq_show = tg_print_conf_u64,
1449 .write = tg_set_conf_u64,
1450 },
1451 {
1452 .name = "throttle.write_bps_device",
1453 .private = offsetof(struct throtl_grp, bps[WRITE]),
1454 .seq_show = tg_print_conf_u64,
1455 .write = tg_set_conf_u64,
1456 },
1457 {
1458 .name = "throttle.read_iops_device",
1459 .private = offsetof(struct throtl_grp, iops[READ]),
1460 .seq_show = tg_print_conf_uint,
1461 .write = tg_set_conf_uint,
1462 },
1463 {
1464 .name = "throttle.write_iops_device",
1465 .private = offsetof(struct throtl_grp, iops[WRITE]),
1466 .seq_show = tg_print_conf_uint,
1467 .write = tg_set_conf_uint,
1468 },
1469 {
1470 .name = "throttle.io_service_bytes",
1471 .private = offsetof(struct throtl_grp, stat_bytes),
1472 .seq_show = tg_print_rwstat,
1473 },
1474 {
1475 .name = "throttle.io_service_bytes_recursive",
1476 .private = offsetof(struct throtl_grp, stat_bytes),
1477 .seq_show = tg_print_rwstat_recursive,
1478 },
1479 {
1480 .name = "throttle.io_serviced",
1481 .private = offsetof(struct throtl_grp, stat_ios),
1482 .seq_show = tg_print_rwstat,
1483 },
1484 {
1485 .name = "throttle.io_serviced_recursive",
1486 .private = offsetof(struct throtl_grp, stat_ios),
1487 .seq_show = tg_print_rwstat_recursive,
1488 },
1489 { } /* terminate */
1490 };
1491
tg_prfill_limit(struct seq_file * sf,struct blkg_policy_data * pd,int off)1492 static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1493 int off)
1494 {
1495 struct throtl_grp *tg = pd_to_tg(pd);
1496 const char *dname = blkg_dev_name(pd->blkg);
1497 u64 bps_dft;
1498 unsigned int iops_dft;
1499
1500 if (!dname)
1501 return 0;
1502
1503 bps_dft = U64_MAX;
1504 iops_dft = UINT_MAX;
1505
1506 if (tg->bps[READ] == bps_dft &&
1507 tg->bps[WRITE] == bps_dft &&
1508 tg->iops[READ] == iops_dft &&
1509 tg->iops[WRITE] == iops_dft)
1510 return 0;
1511
1512 seq_printf(sf, "%s", dname);
1513 if (tg->bps[READ] == U64_MAX)
1514 seq_printf(sf, " rbps=max");
1515 else
1516 seq_printf(sf, " rbps=%llu", tg->bps[READ]);
1517
1518 if (tg->bps[WRITE] == U64_MAX)
1519 seq_printf(sf, " wbps=max");
1520 else
1521 seq_printf(sf, " wbps=%llu", tg->bps[WRITE]);
1522
1523 if (tg->iops[READ] == UINT_MAX)
1524 seq_printf(sf, " riops=max");
1525 else
1526 seq_printf(sf, " riops=%u", tg->iops[READ]);
1527
1528 if (tg->iops[WRITE] == UINT_MAX)
1529 seq_printf(sf, " wiops=max");
1530 else
1531 seq_printf(sf, " wiops=%u", tg->iops[WRITE]);
1532
1533 seq_printf(sf, "\n");
1534 return 0;
1535 }
1536
tg_print_limit(struct seq_file * sf,void * v)1537 static int tg_print_limit(struct seq_file *sf, void *v)
1538 {
1539 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1540 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1541 return 0;
1542 }
1543
tg_set_limit(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1544 static ssize_t tg_set_limit(struct kernfs_open_file *of,
1545 char *buf, size_t nbytes, loff_t off)
1546 {
1547 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1548 struct blkg_conf_ctx ctx;
1549 struct throtl_grp *tg;
1550 u64 v[4];
1551 int ret;
1552
1553 blkg_conf_init(&ctx, buf);
1554
1555 ret = blkg_conf_open_bdev(&ctx);
1556 if (ret)
1557 goto out_finish;
1558
1559 if (!blk_throtl_activated(ctx.bdev->bd_queue)) {
1560 ret = blk_throtl_init(ctx.bdev->bd_disk);
1561 if (ret)
1562 goto out_finish;
1563 }
1564
1565 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, &ctx);
1566 if (ret)
1567 goto out_finish;
1568
1569 tg = blkg_to_tg(ctx.blkg);
1570 tg_update_carryover(tg);
1571
1572 v[0] = tg->bps[READ];
1573 v[1] = tg->bps[WRITE];
1574 v[2] = tg->iops[READ];
1575 v[3] = tg->iops[WRITE];
1576
1577 while (true) {
1578 char tok[27]; /* wiops=18446744073709551616 */
1579 char *p;
1580 u64 val = U64_MAX;
1581 int len;
1582
1583 if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1584 break;
1585 if (tok[0] == '\0')
1586 break;
1587 ctx.body += len;
1588
1589 ret = -EINVAL;
1590 p = tok;
1591 strsep(&p, "=");
1592 if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1593 goto out_finish;
1594
1595 ret = -ERANGE;
1596 if (!val)
1597 goto out_finish;
1598
1599 ret = -EINVAL;
1600 if (!strcmp(tok, "rbps"))
1601 v[0] = val;
1602 else if (!strcmp(tok, "wbps"))
1603 v[1] = val;
1604 else if (!strcmp(tok, "riops"))
1605 v[2] = min_t(u64, val, UINT_MAX);
1606 else if (!strcmp(tok, "wiops"))
1607 v[3] = min_t(u64, val, UINT_MAX);
1608 else
1609 goto out_finish;
1610 }
1611
1612 tg->bps[READ] = v[0];
1613 tg->bps[WRITE] = v[1];
1614 tg->iops[READ] = v[2];
1615 tg->iops[WRITE] = v[3];
1616
1617 tg_conf_updated(tg, false);
1618 ret = 0;
1619 out_finish:
1620 blkg_conf_exit(&ctx);
1621 return ret ?: nbytes;
1622 }
1623
1624 static struct cftype throtl_files[] = {
1625 {
1626 .name = "max",
1627 .flags = CFTYPE_NOT_ON_ROOT,
1628 .seq_show = tg_print_limit,
1629 .write = tg_set_limit,
1630 },
1631 { } /* terminate */
1632 };
1633
throtl_shutdown_wq(struct request_queue * q)1634 static void throtl_shutdown_wq(struct request_queue *q)
1635 {
1636 struct throtl_data *td = q->td;
1637
1638 cancel_work_sync(&td->dispatch_work);
1639 }
1640
tg_flush_bios(struct throtl_grp * tg)1641 static void tg_flush_bios(struct throtl_grp *tg)
1642 {
1643 struct throtl_service_queue *sq = &tg->service_queue;
1644
1645 if (tg->flags & THROTL_TG_CANCELING)
1646 return;
1647 /*
1648 * Set the flag to make sure throtl_pending_timer_fn() won't
1649 * stop until all throttled bios are dispatched.
1650 */
1651 tg->flags |= THROTL_TG_CANCELING;
1652
1653 /*
1654 * Do not dispatch cgroup without THROTL_TG_PENDING or cgroup
1655 * will be inserted to service queue without THROTL_TG_PENDING
1656 * set in tg_update_disptime below. Then IO dispatched from
1657 * child in tg_dispatch_one_bio will trigger double insertion
1658 * and corrupt the tree.
1659 */
1660 if (!(tg->flags & THROTL_TG_PENDING))
1661 return;
1662
1663 /*
1664 * Update disptime after setting the above flag to make sure
1665 * throtl_select_dispatch() won't exit without dispatching.
1666 */
1667 tg_update_disptime(tg);
1668
1669 throtl_schedule_pending_timer(sq, jiffies + 1);
1670 }
1671
throtl_pd_offline(struct blkg_policy_data * pd)1672 static void throtl_pd_offline(struct blkg_policy_data *pd)
1673 {
1674 tg_flush_bios(pd_to_tg(pd));
1675 }
1676
1677 struct blkcg_policy blkcg_policy_throtl = {
1678 .dfl_cftypes = throtl_files,
1679 .legacy_cftypes = throtl_legacy_files,
1680
1681 .pd_alloc_fn = throtl_pd_alloc,
1682 .pd_init_fn = throtl_pd_init,
1683 .pd_online_fn = throtl_pd_online,
1684 .pd_offline_fn = throtl_pd_offline,
1685 .pd_free_fn = throtl_pd_free,
1686 };
1687
blk_throtl_cancel_bios(struct gendisk * disk)1688 void blk_throtl_cancel_bios(struct gendisk *disk)
1689 {
1690 struct request_queue *q = disk->queue;
1691 struct cgroup_subsys_state *pos_css;
1692 struct blkcg_gq *blkg;
1693
1694 if (!blk_throtl_activated(q))
1695 return;
1696
1697 spin_lock_irq(&q->queue_lock);
1698 /*
1699 * queue_lock is held, rcu lock is not needed here technically.
1700 * However, rcu lock is still held to emphasize that following
1701 * path need RCU protection and to prevent warning from lockdep.
1702 */
1703 rcu_read_lock();
1704 blkg_for_each_descendant_post(blkg, pos_css, q->root_blkg) {
1705 /*
1706 * disk_release will call pd_offline_fn to cancel bios.
1707 * However, disk_release can't be called if someone get
1708 * the refcount of device and issued bios which are
1709 * inflight after del_gendisk.
1710 * Cancel bios here to ensure no bios are inflight after
1711 * del_gendisk.
1712 */
1713 tg_flush_bios(blkg_to_tg(blkg));
1714 }
1715 rcu_read_unlock();
1716 spin_unlock_irq(&q->queue_lock);
1717 }
1718
tg_within_limit(struct throtl_grp * tg,struct bio * bio,bool rw)1719 static bool tg_within_limit(struct throtl_grp *tg, struct bio *bio, bool rw)
1720 {
1721 struct throtl_service_queue *sq = &tg->service_queue;
1722
1723 /*
1724 * For a split bio, we need to specifically distinguish whether the
1725 * iops queue is empty.
1726 */
1727 if (bio_flagged(bio, BIO_BPS_THROTTLED))
1728 return sq->nr_queued_iops[rw] == 0 &&
1729 tg_dispatch_iops_time(tg, bio) == 0;
1730
1731 /*
1732 * Throtl is FIFO - if bios are already queued, should queue.
1733 * If the bps queue is empty and @bio is within the bps limit, charge
1734 * bps here for direct placement into the iops queue.
1735 */
1736 if (sq_queued(&tg->service_queue, rw)) {
1737 if (sq->nr_queued_bps[rw] == 0 &&
1738 tg_dispatch_bps_time(tg, bio) == 0)
1739 throtl_charge_bps_bio(tg, bio);
1740
1741 return false;
1742 }
1743
1744 return tg_dispatch_time(tg, bio) == 0;
1745 }
1746
__blk_throtl_bio(struct bio * bio)1747 bool __blk_throtl_bio(struct bio *bio)
1748 {
1749 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1750 struct blkcg_gq *blkg = bio->bi_blkg;
1751 struct throtl_qnode *qn = NULL;
1752 struct throtl_grp *tg = blkg_to_tg(blkg);
1753 struct throtl_service_queue *sq;
1754 bool rw = bio_data_dir(bio);
1755 bool throttled = false;
1756 struct throtl_data *td = tg->td;
1757
1758 rcu_read_lock();
1759 spin_lock_irq(&q->queue_lock);
1760 sq = &tg->service_queue;
1761
1762 while (true) {
1763 if (tg_within_limit(tg, bio, rw)) {
1764 /* within limits, let's charge and dispatch directly */
1765 throtl_charge_iops_bio(tg, bio);
1766
1767 /*
1768 * We need to trim slice even when bios are not being
1769 * queued otherwise it might happen that a bio is not
1770 * queued for a long time and slice keeps on extending
1771 * and trim is not called for a long time. Now if limits
1772 * are reduced suddenly we take into account all the IO
1773 * dispatched so far at new low rate and * newly queued
1774 * IO gets a really long dispatch time.
1775 *
1776 * So keep on trimming slice even if bio is not queued.
1777 */
1778 throtl_trim_slice(tg, rw);
1779 } else if (bio_issue_as_root_blkg(bio)) {
1780 /*
1781 * IOs which may cause priority inversions are
1782 * dispatched directly, even if they're over limit.
1783 *
1784 * Charge and dispatch directly, and our throttle
1785 * control algorithm is adaptive, and extra IO bytes
1786 * will be throttled for paying the debt
1787 */
1788 throtl_charge_bps_bio(tg, bio);
1789 throtl_charge_iops_bio(tg, bio);
1790 } else {
1791 /* if above limits, break to queue */
1792 break;
1793 }
1794
1795 /*
1796 * @bio passed through this layer without being throttled.
1797 * Climb up the ladder. If we're already at the top, it
1798 * can be executed directly.
1799 */
1800 qn = &tg->qnode_on_parent[rw];
1801 sq = sq->parent_sq;
1802 tg = sq_to_tg(sq);
1803 if (!tg) {
1804 bio_set_flag(bio, BIO_BPS_THROTTLED);
1805 goto out_unlock;
1806 }
1807 }
1808
1809 /* out-of-limit, queue to @tg */
1810 throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
1811 rw == READ ? 'R' : 'W',
1812 tg->bytes_disp[rw], bio->bi_iter.bi_size,
1813 tg_bps_limit(tg, rw),
1814 tg->io_disp[rw], tg_iops_limit(tg, rw),
1815 sq_queued(sq, READ), sq_queued(sq, WRITE));
1816
1817 td->nr_queued[rw]++;
1818 throtl_add_bio_tg(bio, qn, tg);
1819 throttled = true;
1820
1821 /*
1822 * Update @tg's dispatch time and force schedule dispatch if @tg
1823 * was empty before @bio, or the iops queue is empty and @bio will
1824 * add to. The forced scheduling isn't likely to cause undue
1825 * delay as @bio is likely to be dispatched directly if its @tg's
1826 * disptime is not in the future.
1827 */
1828 if (tg->flags & THROTL_TG_WAS_EMPTY ||
1829 tg->flags & THROTL_TG_IOPS_WAS_EMPTY) {
1830 tg_update_disptime(tg);
1831 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
1832 }
1833
1834 out_unlock:
1835 spin_unlock_irq(&q->queue_lock);
1836
1837 rcu_read_unlock();
1838 return throttled;
1839 }
1840
blk_throtl_exit(struct gendisk * disk)1841 void blk_throtl_exit(struct gendisk *disk)
1842 {
1843 struct request_queue *q = disk->queue;
1844
1845 /*
1846 * blkg_destroy_all() already deactivate throtl policy, just check and
1847 * free throtl data.
1848 */
1849 if (!q->td)
1850 return;
1851
1852 timer_delete_sync(&q->td->service_queue.pending_timer);
1853 throtl_shutdown_wq(q);
1854 kfree(q->td);
1855 }
1856
throtl_init(void)1857 static int __init throtl_init(void)
1858 {
1859 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
1860 if (!kthrotld_workqueue)
1861 panic("Failed to create kthrotld\n");
1862
1863 return blkcg_policy_register(&blkcg_policy_throtl);
1864 }
1865
1866 module_init(throtl_init);
1867