1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef BLK_INTERNAL_H
3 #define BLK_INTERNAL_H
4
5 #include <linux/bio-integrity.h>
6 #include <linux/blk-crypto.h>
7 #include <linux/lockdep.h>
8 #include <linux/memblock.h> /* for max_pfn/max_low_pfn */
9 #include <linux/sched/sysctl.h>
10 #include <linux/timekeeping.h>
11 #include <xen/xen.h>
12 #include "blk-crypto-internal.h"
13
14 struct elevator_type;
15
16 #define BLK_DEV_MAX_SECTORS (LLONG_MAX >> 9)
17 #define BLK_MIN_SEGMENT_SIZE 4096
18
19 /* Max future timer expiry for timeouts */
20 #define BLK_MAX_TIMEOUT (5 * HZ)
21
22 extern struct dentry *blk_debugfs_root;
23
24 struct blk_flush_queue {
25 spinlock_t mq_flush_lock;
26 unsigned int flush_pending_idx:1;
27 unsigned int flush_running_idx:1;
28 blk_status_t rq_status;
29 unsigned long flush_pending_since;
30 struct list_head flush_queue[2];
31 unsigned long flush_data_in_flight;
32 struct request *flush_rq;
33 };
34
35 bool is_flush_rq(struct request *req);
36
37 struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size,
38 gfp_t flags);
39 void blk_free_flush_queue(struct blk_flush_queue *q);
40
41 bool __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic);
42 bool blk_queue_start_drain(struct request_queue *q);
43 bool __blk_freeze_queue_start(struct request_queue *q,
44 struct task_struct *owner);
45 int __bio_queue_enter(struct request_queue *q, struct bio *bio);
46 void submit_bio_noacct_nocheck(struct bio *bio);
47 void bio_await_chain(struct bio *bio);
48
blk_try_enter_queue(struct request_queue * q,bool pm)49 static inline bool blk_try_enter_queue(struct request_queue *q, bool pm)
50 {
51 rcu_read_lock();
52 if (!percpu_ref_tryget_live_rcu(&q->q_usage_counter))
53 goto fail;
54
55 /*
56 * The code that increments the pm_only counter must ensure that the
57 * counter is globally visible before the queue is unfrozen.
58 */
59 if (blk_queue_pm_only(q) &&
60 (!pm || queue_rpm_status(q) == RPM_SUSPENDED))
61 goto fail_put;
62
63 rcu_read_unlock();
64 return true;
65
66 fail_put:
67 blk_queue_exit(q);
68 fail:
69 rcu_read_unlock();
70 return false;
71 }
72
bio_queue_enter(struct bio * bio)73 static inline int bio_queue_enter(struct bio *bio)
74 {
75 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
76
77 if (blk_try_enter_queue(q, false)) {
78 rwsem_acquire_read(&q->io_lockdep_map, 0, 0, _RET_IP_);
79 rwsem_release(&q->io_lockdep_map, _RET_IP_);
80 return 0;
81 }
82 return __bio_queue_enter(q, bio);
83 }
84
blk_wait_io(struct completion * done)85 static inline void blk_wait_io(struct completion *done)
86 {
87 /* Prevent hang_check timer from firing at us during very long I/O */
88 unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
89
90 if (timeout)
91 while (!wait_for_completion_io_timeout(done, timeout))
92 ;
93 else
94 wait_for_completion_io(done);
95 }
96
97 struct block_device *blkdev_get_no_open(dev_t dev, bool autoload);
98 void blkdev_put_no_open(struct block_device *bdev);
99
100 #define BIO_INLINE_VECS 4
101 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
102 gfp_t gfp_mask);
103 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs);
104
105 bool bvec_try_merge_hw_page(struct request_queue *q, struct bio_vec *bv,
106 struct page *page, unsigned len, unsigned offset,
107 bool *same_page);
108
biovec_phys_mergeable(struct request_queue * q,struct bio_vec * vec1,struct bio_vec * vec2)109 static inline bool biovec_phys_mergeable(struct request_queue *q,
110 struct bio_vec *vec1, struct bio_vec *vec2)
111 {
112 unsigned long mask = queue_segment_boundary(q);
113 phys_addr_t addr1 = bvec_phys(vec1);
114 phys_addr_t addr2 = bvec_phys(vec2);
115
116 /*
117 * Merging adjacent physical pages may not work correctly under KMSAN
118 * if their metadata pages aren't adjacent. Just disable merging.
119 */
120 if (IS_ENABLED(CONFIG_KMSAN))
121 return false;
122
123 if (addr1 + vec1->bv_len != addr2)
124 return false;
125 if (xen_domain() && !xen_biovec_phys_mergeable(vec1, vec2->bv_page))
126 return false;
127 if ((addr1 | mask) != ((addr2 + vec2->bv_len - 1) | mask))
128 return false;
129 return true;
130 }
131
__bvec_gap_to_prev(const struct queue_limits * lim,struct bio_vec * bprv,unsigned int offset)132 static inline bool __bvec_gap_to_prev(const struct queue_limits *lim,
133 struct bio_vec *bprv, unsigned int offset)
134 {
135 return (offset & lim->virt_boundary_mask) ||
136 ((bprv->bv_offset + bprv->bv_len) & lim->virt_boundary_mask);
137 }
138
139 /*
140 * Check if adding a bio_vec after bprv with offset would create a gap in
141 * the SG list. Most drivers don't care about this, but some do.
142 */
bvec_gap_to_prev(const struct queue_limits * lim,struct bio_vec * bprv,unsigned int offset)143 static inline bool bvec_gap_to_prev(const struct queue_limits *lim,
144 struct bio_vec *bprv, unsigned int offset)
145 {
146 if (!lim->virt_boundary_mask)
147 return false;
148 return __bvec_gap_to_prev(lim, bprv, offset);
149 }
150
rq_mergeable(struct request * rq)151 static inline bool rq_mergeable(struct request *rq)
152 {
153 if (blk_rq_is_passthrough(rq))
154 return false;
155
156 if (req_op(rq) == REQ_OP_FLUSH)
157 return false;
158
159 if (req_op(rq) == REQ_OP_WRITE_ZEROES)
160 return false;
161
162 if (req_op(rq) == REQ_OP_ZONE_APPEND)
163 return false;
164
165 if (rq->cmd_flags & REQ_NOMERGE_FLAGS)
166 return false;
167 if (rq->rq_flags & RQF_NOMERGE_FLAGS)
168 return false;
169
170 return true;
171 }
172
173 /*
174 * There are two different ways to handle DISCARD merges:
175 * 1) If max_discard_segments > 1, the driver treats every bio as a range and
176 * send the bios to controller together. The ranges don't need to be
177 * contiguous.
178 * 2) Otherwise, the request will be normal read/write requests. The ranges
179 * need to be contiguous.
180 */
blk_discard_mergable(struct request * req)181 static inline bool blk_discard_mergable(struct request *req)
182 {
183 if (req_op(req) == REQ_OP_DISCARD &&
184 queue_max_discard_segments(req->q) > 1)
185 return true;
186 return false;
187 }
188
blk_rq_get_max_segments(struct request * rq)189 static inline unsigned int blk_rq_get_max_segments(struct request *rq)
190 {
191 if (req_op(rq) == REQ_OP_DISCARD)
192 return queue_max_discard_segments(rq->q);
193 return queue_max_segments(rq->q);
194 }
195
blk_queue_get_max_sectors(struct request * rq)196 static inline unsigned int blk_queue_get_max_sectors(struct request *rq)
197 {
198 struct request_queue *q = rq->q;
199 enum req_op op = req_op(rq);
200
201 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE))
202 return min(q->limits.max_discard_sectors,
203 UINT_MAX >> SECTOR_SHIFT);
204
205 if (unlikely(op == REQ_OP_WRITE_ZEROES))
206 return q->limits.max_write_zeroes_sectors;
207
208 if (rq->cmd_flags & REQ_ATOMIC)
209 return q->limits.atomic_write_max_sectors;
210
211 return q->limits.max_sectors;
212 }
213
214 #ifdef CONFIG_BLK_DEV_INTEGRITY
215 void blk_flush_integrity(void);
216 void bio_integrity_free(struct bio *bio);
217
218 /*
219 * Integrity payloads can either be owned by the submitter, in which case
220 * bio_uninit will free them, or owned and generated by the block layer,
221 * in which case we'll verify them here (for reads) and free them before
222 * the bio is handed back to the submitted.
223 */
224 bool __bio_integrity_endio(struct bio *bio);
bio_integrity_endio(struct bio * bio)225 static inline bool bio_integrity_endio(struct bio *bio)
226 {
227 struct bio_integrity_payload *bip = bio_integrity(bio);
228
229 if (bip && (bip->bip_flags & BIP_BLOCK_INTEGRITY))
230 return __bio_integrity_endio(bio);
231 return true;
232 }
233
234 bool blk_integrity_merge_rq(struct request_queue *, struct request *,
235 struct request *);
236 bool blk_integrity_merge_bio(struct request_queue *, struct request *,
237 struct bio *);
238
integrity_req_gap_back_merge(struct request * req,struct bio * next)239 static inline bool integrity_req_gap_back_merge(struct request *req,
240 struct bio *next)
241 {
242 struct bio_integrity_payload *bip = bio_integrity(req->bio);
243 struct bio_integrity_payload *bip_next = bio_integrity(next);
244
245 return bvec_gap_to_prev(&req->q->limits,
246 &bip->bip_vec[bip->bip_vcnt - 1],
247 bip_next->bip_vec[0].bv_offset);
248 }
249
integrity_req_gap_front_merge(struct request * req,struct bio * bio)250 static inline bool integrity_req_gap_front_merge(struct request *req,
251 struct bio *bio)
252 {
253 struct bio_integrity_payload *bip = bio_integrity(bio);
254 struct bio_integrity_payload *bip_next = bio_integrity(req->bio);
255
256 return bvec_gap_to_prev(&req->q->limits,
257 &bip->bip_vec[bip->bip_vcnt - 1],
258 bip_next->bip_vec[0].bv_offset);
259 }
260
261 extern const struct attribute_group blk_integrity_attr_group;
262 #else /* CONFIG_BLK_DEV_INTEGRITY */
blk_integrity_merge_rq(struct request_queue * rq,struct request * r1,struct request * r2)263 static inline bool blk_integrity_merge_rq(struct request_queue *rq,
264 struct request *r1, struct request *r2)
265 {
266 return true;
267 }
blk_integrity_merge_bio(struct request_queue * rq,struct request * r,struct bio * b)268 static inline bool blk_integrity_merge_bio(struct request_queue *rq,
269 struct request *r, struct bio *b)
270 {
271 return true;
272 }
integrity_req_gap_back_merge(struct request * req,struct bio * next)273 static inline bool integrity_req_gap_back_merge(struct request *req,
274 struct bio *next)
275 {
276 return false;
277 }
integrity_req_gap_front_merge(struct request * req,struct bio * bio)278 static inline bool integrity_req_gap_front_merge(struct request *req,
279 struct bio *bio)
280 {
281 return false;
282 }
283
blk_flush_integrity(void)284 static inline void blk_flush_integrity(void)
285 {
286 }
bio_integrity_endio(struct bio * bio)287 static inline bool bio_integrity_endio(struct bio *bio)
288 {
289 return true;
290 }
bio_integrity_free(struct bio * bio)291 static inline void bio_integrity_free(struct bio *bio)
292 {
293 }
294 #endif /* CONFIG_BLK_DEV_INTEGRITY */
295
296 unsigned long blk_rq_timeout(unsigned long timeout);
297 void blk_add_timer(struct request *req);
298
299 enum bio_merge_status {
300 BIO_MERGE_OK,
301 BIO_MERGE_NONE,
302 BIO_MERGE_FAILED,
303 };
304
305 enum bio_merge_status bio_attempt_back_merge(struct request *req,
306 struct bio *bio, unsigned int nr_segs);
307 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
308 unsigned int nr_segs);
309 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
310 struct bio *bio, unsigned int nr_segs);
311
312 /*
313 * Plug flush limits
314 */
315 #define BLK_MAX_REQUEST_COUNT 32
316 #define BLK_PLUG_FLUSH_SIZE (128 * 1024)
317
318 /*
319 * Internal elevator interface
320 */
321 #define ELV_ON_HASH(rq) ((rq)->rq_flags & RQF_HASHED)
322
323 bool blk_insert_flush(struct request *rq);
324
325 int elevator_switch(struct request_queue *q, struct elevator_type *new_e);
326 void elevator_disable(struct request_queue *q);
327 void elevator_exit(struct request_queue *q);
328 int elv_register_queue(struct request_queue *q, bool uevent);
329 void elv_unregister_queue(struct request_queue *q);
330
331 ssize_t part_size_show(struct device *dev, struct device_attribute *attr,
332 char *buf);
333 ssize_t part_stat_show(struct device *dev, struct device_attribute *attr,
334 char *buf);
335 ssize_t part_inflight_show(struct device *dev, struct device_attribute *attr,
336 char *buf);
337 ssize_t part_fail_show(struct device *dev, struct device_attribute *attr,
338 char *buf);
339 ssize_t part_fail_store(struct device *dev, struct device_attribute *attr,
340 const char *buf, size_t count);
341 ssize_t part_timeout_show(struct device *, struct device_attribute *, char *);
342 ssize_t part_timeout_store(struct device *, struct device_attribute *,
343 const char *, size_t);
344
345 struct bio *bio_split_discard(struct bio *bio, const struct queue_limits *lim,
346 unsigned *nsegs);
347 struct bio *bio_split_write_zeroes(struct bio *bio,
348 const struct queue_limits *lim, unsigned *nsegs);
349 struct bio *bio_split_rw(struct bio *bio, const struct queue_limits *lim,
350 unsigned *nr_segs);
351 struct bio *bio_split_zone_append(struct bio *bio,
352 const struct queue_limits *lim, unsigned *nr_segs);
353
354 /*
355 * All drivers must accept single-segments bios that are smaller than PAGE_SIZE.
356 *
357 * This is a quick and dirty check that relies on the fact that bi_io_vec[0] is
358 * always valid if a bio has data. The check might lead to occasional false
359 * positives when bios are cloned, but compared to the performance impact of
360 * cloned bios themselves the loop below doesn't matter anyway.
361 */
bio_may_need_split(struct bio * bio,const struct queue_limits * lim)362 static inline bool bio_may_need_split(struct bio *bio,
363 const struct queue_limits *lim)
364 {
365 if (lim->chunk_sectors)
366 return true;
367 if (bio->bi_vcnt != 1)
368 return true;
369 return bio->bi_io_vec->bv_len + bio->bi_io_vec->bv_offset >
370 lim->min_segment_size;
371 }
372
373 /**
374 * __bio_split_to_limits - split a bio to fit the queue limits
375 * @bio: bio to be split
376 * @lim: queue limits to split based on
377 * @nr_segs: returns the number of segments in the returned bio
378 *
379 * Check if @bio needs splitting based on the queue limits, and if so split off
380 * a bio fitting the limits from the beginning of @bio and return it. @bio is
381 * shortened to the remainder and re-submitted.
382 *
383 * The split bio is allocated from @q->bio_split, which is provided by the
384 * block layer.
385 */
__bio_split_to_limits(struct bio * bio,const struct queue_limits * lim,unsigned int * nr_segs)386 static inline struct bio *__bio_split_to_limits(struct bio *bio,
387 const struct queue_limits *lim, unsigned int *nr_segs)
388 {
389 switch (bio_op(bio)) {
390 case REQ_OP_READ:
391 case REQ_OP_WRITE:
392 if (bio_may_need_split(bio, lim))
393 return bio_split_rw(bio, lim, nr_segs);
394 *nr_segs = 1;
395 return bio;
396 case REQ_OP_ZONE_APPEND:
397 return bio_split_zone_append(bio, lim, nr_segs);
398 case REQ_OP_DISCARD:
399 case REQ_OP_SECURE_ERASE:
400 return bio_split_discard(bio, lim, nr_segs);
401 case REQ_OP_WRITE_ZEROES:
402 return bio_split_write_zeroes(bio, lim, nr_segs);
403 default:
404 /* other operations can't be split */
405 *nr_segs = 0;
406 return bio;
407 }
408 }
409
410 int ll_back_merge_fn(struct request *req, struct bio *bio,
411 unsigned int nr_segs);
412 bool blk_attempt_req_merge(struct request_queue *q, struct request *rq,
413 struct request *next);
414 unsigned int blk_recalc_rq_segments(struct request *rq);
415 bool blk_rq_merge_ok(struct request *rq, struct bio *bio);
416 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio);
417
418 int blk_set_default_limits(struct queue_limits *lim);
419 void blk_apply_bdi_limits(struct backing_dev_info *bdi,
420 struct queue_limits *lim);
421 int blk_dev_init(void);
422
423 void update_io_ticks(struct block_device *part, unsigned long now, bool end);
424 unsigned int part_in_flight(struct block_device *part);
425
req_set_nomerge(struct request_queue * q,struct request * req)426 static inline void req_set_nomerge(struct request_queue *q, struct request *req)
427 {
428 req->cmd_flags |= REQ_NOMERGE;
429 if (req == q->last_merge)
430 q->last_merge = NULL;
431 }
432
433 /*
434 * Internal io_context interface
435 */
436 struct io_cq *ioc_find_get_icq(struct request_queue *q);
437 struct io_cq *ioc_lookup_icq(struct request_queue *q);
438 #ifdef CONFIG_BLK_ICQ
439 void ioc_clear_queue(struct request_queue *q);
440 #else
ioc_clear_queue(struct request_queue * q)441 static inline void ioc_clear_queue(struct request_queue *q)
442 {
443 }
444 #endif /* CONFIG_BLK_ICQ */
445
446 struct bio *__blk_queue_bounce(struct bio *bio, struct request_queue *q);
447
blk_queue_may_bounce(struct request_queue * q)448 static inline bool blk_queue_may_bounce(struct request_queue *q)
449 {
450 return IS_ENABLED(CONFIG_BOUNCE) &&
451 (q->limits.features & BLK_FEAT_BOUNCE_HIGH) &&
452 max_low_pfn >= max_pfn;
453 }
454
blk_queue_bounce(struct bio * bio,struct request_queue * q)455 static inline struct bio *blk_queue_bounce(struct bio *bio,
456 struct request_queue *q)
457 {
458 if (unlikely(blk_queue_may_bounce(q) && bio_has_data(bio)))
459 return __blk_queue_bounce(bio, q);
460 return bio;
461 }
462
463 #ifdef CONFIG_BLK_DEV_ZONED
464 void disk_init_zone_resources(struct gendisk *disk);
465 void disk_free_zone_resources(struct gendisk *disk);
bio_zone_write_plugging(struct bio * bio)466 static inline bool bio_zone_write_plugging(struct bio *bio)
467 {
468 return bio_flagged(bio, BIO_ZONE_WRITE_PLUGGING);
469 }
470 void blk_zone_write_plug_bio_merged(struct bio *bio);
471 void blk_zone_write_plug_init_request(struct request *rq);
blk_zone_update_request_bio(struct request * rq,struct bio * bio)472 static inline void blk_zone_update_request_bio(struct request *rq,
473 struct bio *bio)
474 {
475 /*
476 * For zone append requests, the request sector indicates the location
477 * at which the BIO data was written. Return this value to the BIO
478 * issuer through the BIO iter sector.
479 * For plugged zone writes, which include emulated zone append, we need
480 * the original BIO sector so that blk_zone_write_plug_bio_endio() can
481 * lookup the zone write plug.
482 */
483 if (req_op(rq) == REQ_OP_ZONE_APPEND ||
484 bio_flagged(bio, BIO_EMULATES_ZONE_APPEND))
485 bio->bi_iter.bi_sector = rq->__sector;
486 }
487 void blk_zone_write_plug_bio_endio(struct bio *bio);
blk_zone_bio_endio(struct bio * bio)488 static inline void blk_zone_bio_endio(struct bio *bio)
489 {
490 /*
491 * For write BIOs to zoned devices, signal the completion of the BIO so
492 * that the next write BIO can be submitted by zone write plugging.
493 */
494 if (bio_zone_write_plugging(bio))
495 blk_zone_write_plug_bio_endio(bio);
496 }
497
498 void blk_zone_write_plug_finish_request(struct request *rq);
blk_zone_finish_request(struct request * rq)499 static inline void blk_zone_finish_request(struct request *rq)
500 {
501 if (rq->rq_flags & RQF_ZONE_WRITE_PLUGGING)
502 blk_zone_write_plug_finish_request(rq);
503 }
504 int blkdev_report_zones_ioctl(struct block_device *bdev, unsigned int cmd,
505 unsigned long arg);
506 int blkdev_zone_mgmt_ioctl(struct block_device *bdev, blk_mode_t mode,
507 unsigned int cmd, unsigned long arg);
508 #else /* CONFIG_BLK_DEV_ZONED */
disk_init_zone_resources(struct gendisk * disk)509 static inline void disk_init_zone_resources(struct gendisk *disk)
510 {
511 }
disk_free_zone_resources(struct gendisk * disk)512 static inline void disk_free_zone_resources(struct gendisk *disk)
513 {
514 }
bio_zone_write_plugging(struct bio * bio)515 static inline bool bio_zone_write_plugging(struct bio *bio)
516 {
517 return false;
518 }
blk_zone_write_plug_bio_merged(struct bio * bio)519 static inline void blk_zone_write_plug_bio_merged(struct bio *bio)
520 {
521 }
blk_zone_write_plug_init_request(struct request * rq)522 static inline void blk_zone_write_plug_init_request(struct request *rq)
523 {
524 }
blk_zone_update_request_bio(struct request * rq,struct bio * bio)525 static inline void blk_zone_update_request_bio(struct request *rq,
526 struct bio *bio)
527 {
528 }
blk_zone_bio_endio(struct bio * bio)529 static inline void blk_zone_bio_endio(struct bio *bio)
530 {
531 }
blk_zone_finish_request(struct request * rq)532 static inline void blk_zone_finish_request(struct request *rq)
533 {
534 }
blkdev_report_zones_ioctl(struct block_device * bdev,unsigned int cmd,unsigned long arg)535 static inline int blkdev_report_zones_ioctl(struct block_device *bdev,
536 unsigned int cmd, unsigned long arg)
537 {
538 return -ENOTTY;
539 }
blkdev_zone_mgmt_ioctl(struct block_device * bdev,blk_mode_t mode,unsigned int cmd,unsigned long arg)540 static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev,
541 blk_mode_t mode, unsigned int cmd, unsigned long arg)
542 {
543 return -ENOTTY;
544 }
545 #endif /* CONFIG_BLK_DEV_ZONED */
546
547 struct block_device *bdev_alloc(struct gendisk *disk, u8 partno);
548 void bdev_add(struct block_device *bdev, dev_t dev);
549 void bdev_unhash(struct block_device *bdev);
550 void bdev_drop(struct block_device *bdev);
551
552 int blk_alloc_ext_minor(void);
553 void blk_free_ext_minor(unsigned int minor);
554 #define ADDPART_FLAG_NONE 0
555 #define ADDPART_FLAG_RAID 1
556 #define ADDPART_FLAG_WHOLEDISK 2
557 #define ADDPART_FLAG_READONLY 4
558 int bdev_add_partition(struct gendisk *disk, int partno, sector_t start,
559 sector_t length);
560 int bdev_del_partition(struct gendisk *disk, int partno);
561 int bdev_resize_partition(struct gendisk *disk, int partno, sector_t start,
562 sector_t length);
563 void drop_partition(struct block_device *part);
564
565 void bdev_set_nr_sectors(struct block_device *bdev, sector_t sectors);
566
567 struct gendisk *__alloc_disk_node(struct request_queue *q, int node_id,
568 struct lock_class_key *lkclass);
569
570 /*
571 * Clean up a page appropriately, where the page may be pinned, may have a
572 * ref taken on it or neither.
573 */
bio_release_page(struct bio * bio,struct page * page)574 static inline void bio_release_page(struct bio *bio, struct page *page)
575 {
576 if (bio_flagged(bio, BIO_PAGE_PINNED))
577 unpin_user_page(page);
578 }
579
580 struct request_queue *blk_alloc_queue(struct queue_limits *lim, int node_id);
581
582 int disk_scan_partitions(struct gendisk *disk, blk_mode_t mode);
583
584 int disk_alloc_events(struct gendisk *disk);
585 void disk_add_events(struct gendisk *disk);
586 void disk_del_events(struct gendisk *disk);
587 void disk_release_events(struct gendisk *disk);
588 void disk_block_events(struct gendisk *disk);
589 void disk_unblock_events(struct gendisk *disk);
590 void disk_flush_events(struct gendisk *disk, unsigned int mask);
591 extern struct device_attribute dev_attr_events;
592 extern struct device_attribute dev_attr_events_async;
593 extern struct device_attribute dev_attr_events_poll_msecs;
594
595 extern struct attribute_group blk_trace_attr_group;
596
597 blk_mode_t file_to_blk_mode(struct file *file);
598 int truncate_bdev_range(struct block_device *bdev, blk_mode_t mode,
599 loff_t lstart, loff_t lend);
600 long blkdev_ioctl(struct file *file, unsigned cmd, unsigned long arg);
601 int blkdev_uring_cmd(struct io_uring_cmd *cmd, unsigned int issue_flags);
602 long compat_blkdev_ioctl(struct file *file, unsigned cmd, unsigned long arg);
603
604 extern const struct address_space_operations def_blk_aops;
605
606 int disk_register_independent_access_ranges(struct gendisk *disk);
607 void disk_unregister_independent_access_ranges(struct gendisk *disk);
608
609 #ifdef CONFIG_FAIL_MAKE_REQUEST
610 bool should_fail_request(struct block_device *part, unsigned int bytes);
611 #else /* CONFIG_FAIL_MAKE_REQUEST */
should_fail_request(struct block_device * part,unsigned int bytes)612 static inline bool should_fail_request(struct block_device *part,
613 unsigned int bytes)
614 {
615 return false;
616 }
617 #endif /* CONFIG_FAIL_MAKE_REQUEST */
618
619 /*
620 * Optimized request reference counting. Ideally we'd make timeouts be more
621 * clever, as that's the only reason we need references at all... But until
622 * this happens, this is faster than using refcount_t. Also see:
623 *
624 * abc54d634334 ("io_uring: switch to atomic_t for io_kiocb reference count")
625 */
626 #define req_ref_zero_or_close_to_overflow(req) \
627 ((unsigned int) atomic_read(&(req->ref)) + 127u <= 127u)
628
req_ref_inc_not_zero(struct request * req)629 static inline bool req_ref_inc_not_zero(struct request *req)
630 {
631 return atomic_inc_not_zero(&req->ref);
632 }
633
req_ref_put_and_test(struct request * req)634 static inline bool req_ref_put_and_test(struct request *req)
635 {
636 WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
637 return atomic_dec_and_test(&req->ref);
638 }
639
req_ref_set(struct request * req,int value)640 static inline void req_ref_set(struct request *req, int value)
641 {
642 atomic_set(&req->ref, value);
643 }
644
req_ref_read(struct request * req)645 static inline int req_ref_read(struct request *req)
646 {
647 return atomic_read(&req->ref);
648 }
649
blk_time_get_ns(void)650 static inline u64 blk_time_get_ns(void)
651 {
652 struct blk_plug *plug = current->plug;
653
654 if (!plug || !in_task())
655 return ktime_get_ns();
656
657 /*
658 * 0 could very well be a valid time, but rather than flag "this is
659 * a valid timestamp" separately, just accept that we'll do an extra
660 * ktime_get_ns() if we just happen to get 0 as the current time.
661 */
662 if (!plug->cur_ktime) {
663 plug->cur_ktime = ktime_get_ns();
664 current->flags |= PF_BLOCK_TS;
665 }
666 return plug->cur_ktime;
667 }
668
blk_time_get(void)669 static inline ktime_t blk_time_get(void)
670 {
671 return ns_to_ktime(blk_time_get_ns());
672 }
673
674 /*
675 * From most significant bit:
676 * 1 bit: reserved for other usage, see below
677 * 12 bits: original size of bio
678 * 51 bits: issue time of bio
679 */
680 #define BIO_ISSUE_RES_BITS 1
681 #define BIO_ISSUE_SIZE_BITS 12
682 #define BIO_ISSUE_RES_SHIFT (64 - BIO_ISSUE_RES_BITS)
683 #define BIO_ISSUE_SIZE_SHIFT (BIO_ISSUE_RES_SHIFT - BIO_ISSUE_SIZE_BITS)
684 #define BIO_ISSUE_TIME_MASK ((1ULL << BIO_ISSUE_SIZE_SHIFT) - 1)
685 #define BIO_ISSUE_SIZE_MASK \
686 (((1ULL << BIO_ISSUE_SIZE_BITS) - 1) << BIO_ISSUE_SIZE_SHIFT)
687 #define BIO_ISSUE_RES_MASK (~((1ULL << BIO_ISSUE_RES_SHIFT) - 1))
688
689 /* Reserved bit for blk-throtl */
690 #define BIO_ISSUE_THROTL_SKIP_LATENCY (1ULL << 63)
691
__bio_issue_time(u64 time)692 static inline u64 __bio_issue_time(u64 time)
693 {
694 return time & BIO_ISSUE_TIME_MASK;
695 }
696
bio_issue_time(struct bio_issue * issue)697 static inline u64 bio_issue_time(struct bio_issue *issue)
698 {
699 return __bio_issue_time(issue->value);
700 }
701
bio_issue_size(struct bio_issue * issue)702 static inline sector_t bio_issue_size(struct bio_issue *issue)
703 {
704 return ((issue->value & BIO_ISSUE_SIZE_MASK) >> BIO_ISSUE_SIZE_SHIFT);
705 }
706
bio_issue_init(struct bio_issue * issue,sector_t size)707 static inline void bio_issue_init(struct bio_issue *issue,
708 sector_t size)
709 {
710 size &= (1ULL << BIO_ISSUE_SIZE_BITS) - 1;
711 issue->value = ((issue->value & BIO_ISSUE_RES_MASK) |
712 (blk_time_get_ns() & BIO_ISSUE_TIME_MASK) |
713 ((u64)size << BIO_ISSUE_SIZE_SHIFT));
714 }
715
716 void bdev_release(struct file *bdev_file);
717 int bdev_open(struct block_device *bdev, blk_mode_t mode, void *holder,
718 const struct blk_holder_ops *hops, struct file *bdev_file);
719 int bdev_permission(dev_t dev, blk_mode_t mode, void *holder);
720
721 void blk_integrity_generate(struct bio *bio);
722 void blk_integrity_verify_iter(struct bio *bio, struct bvec_iter *saved_iter);
723 void blk_integrity_prepare(struct request *rq);
724 void blk_integrity_complete(struct request *rq, unsigned int nr_bytes);
725
726 #ifdef CONFIG_LOCKDEP
blk_freeze_acquire_lock(struct request_queue * q)727 static inline void blk_freeze_acquire_lock(struct request_queue *q)
728 {
729 if (!q->mq_freeze_disk_dead)
730 rwsem_acquire(&q->io_lockdep_map, 0, 1, _RET_IP_);
731 if (!q->mq_freeze_queue_dying)
732 rwsem_acquire(&q->q_lockdep_map, 0, 1, _RET_IP_);
733 }
734
blk_unfreeze_release_lock(struct request_queue * q)735 static inline void blk_unfreeze_release_lock(struct request_queue *q)
736 {
737 if (!q->mq_freeze_queue_dying)
738 rwsem_release(&q->q_lockdep_map, _RET_IP_);
739 if (!q->mq_freeze_disk_dead)
740 rwsem_release(&q->io_lockdep_map, _RET_IP_);
741 }
742 #else
blk_freeze_acquire_lock(struct request_queue * q)743 static inline void blk_freeze_acquire_lock(struct request_queue *q)
744 {
745 }
blk_unfreeze_release_lock(struct request_queue * q)746 static inline void blk_unfreeze_release_lock(struct request_queue *q)
747 {
748 }
749 #endif
750
751 #endif /* BLK_INTERNAL_H */
752