xref: /linux/arch/x86/power/cpu.c (revision ab93e0dd72c37d378dd936f031ffb83ff2bd87ce)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Suspend support specific for i386/x86-64.
4  *
5  * Copyright (c) 2007 Rafael J. Wysocki <rjw@sisk.pl>
6  * Copyright (c) 2002 Pavel Machek <pavel@ucw.cz>
7  * Copyright (c) 2001 Patrick Mochel <mochel@osdl.org>
8  */
9 
10 #include <linux/suspend.h>
11 #include <linux/export.h>
12 #include <linux/smp.h>
13 #include <linux/perf_event.h>
14 #include <linux/tboot.h>
15 #include <linux/dmi.h>
16 #include <linux/pgtable.h>
17 
18 #include <asm/proto.h>
19 #include <asm/mtrr.h>
20 #include <asm/page.h>
21 #include <asm/mce.h>
22 #include <asm/suspend.h>
23 #include <asm/fpu/api.h>
24 #include <asm/debugreg.h>
25 #include <asm/cpu.h>
26 #include <asm/cacheinfo.h>
27 #include <asm/mmu_context.h>
28 #include <asm/cpu_device_id.h>
29 #include <asm/microcode.h>
30 #include <asm/msr.h>
31 #include <asm/fred.h>
32 
33 #ifdef CONFIG_X86_32
34 __visible unsigned long saved_context_ebx;
35 __visible unsigned long saved_context_esp, saved_context_ebp;
36 __visible unsigned long saved_context_esi, saved_context_edi;
37 __visible unsigned long saved_context_eflags;
38 #endif
39 struct saved_context saved_context;
40 
msr_save_context(struct saved_context * ctxt)41 static void msr_save_context(struct saved_context *ctxt)
42 {
43 	struct saved_msr *msr = ctxt->saved_msrs.array;
44 	struct saved_msr *end = msr + ctxt->saved_msrs.num;
45 
46 	while (msr < end) {
47 		if (msr->valid)
48 			rdmsrq(msr->info.msr_no, msr->info.reg.q);
49 		msr++;
50 	}
51 }
52 
msr_restore_context(struct saved_context * ctxt)53 static void msr_restore_context(struct saved_context *ctxt)
54 {
55 	struct saved_msr *msr = ctxt->saved_msrs.array;
56 	struct saved_msr *end = msr + ctxt->saved_msrs.num;
57 
58 	while (msr < end) {
59 		if (msr->valid)
60 			wrmsrq(msr->info.msr_no, msr->info.reg.q);
61 		msr++;
62 	}
63 }
64 
65 /**
66  * __save_processor_state() - Save CPU registers before creating a
67  *                             hibernation image and before restoring
68  *                             the memory state from it
69  * @ctxt: Structure to store the registers contents in.
70  *
71  * NOTE: If there is a CPU register the modification of which by the
72  * boot kernel (ie. the kernel used for loading the hibernation image)
73  * might affect the operations of the restored target kernel (ie. the one
74  * saved in the hibernation image), then its contents must be saved by this
75  * function.  In other words, if kernel A is hibernated and different
76  * kernel B is used for loading the hibernation image into memory, the
77  * kernel A's __save_processor_state() function must save all registers
78  * needed by kernel A, so that it can operate correctly after the resume
79  * regardless of what kernel B does in the meantime.
80  */
__save_processor_state(struct saved_context * ctxt)81 static void __save_processor_state(struct saved_context *ctxt)
82 {
83 #ifdef CONFIG_X86_32
84 	mtrr_save_fixed_ranges(NULL);
85 #endif
86 	kernel_fpu_begin();
87 
88 	/*
89 	 * descriptor tables
90 	 */
91 	store_idt(&ctxt->idt);
92 
93 	/*
94 	 * We save it here, but restore it only in the hibernate case.
95 	 * For ACPI S3 resume, this is loaded via 'early_gdt_desc' in 64-bit
96 	 * mode in "secondary_startup_64". In 32-bit mode it is done via
97 	 * 'pmode_gdt' in wakeup_start.
98 	 */
99 	ctxt->gdt_desc.size = GDT_SIZE - 1;
100 	ctxt->gdt_desc.address = (unsigned long)get_cpu_gdt_rw(smp_processor_id());
101 
102 	store_tr(ctxt->tr);
103 
104 	/* XMM0..XMM15 should be handled by kernel_fpu_begin(). */
105 	/*
106 	 * segment registers
107 	 */
108 	savesegment(gs, ctxt->gs);
109 #ifdef CONFIG_X86_64
110 	savesegment(fs, ctxt->fs);
111 	savesegment(ds, ctxt->ds);
112 	savesegment(es, ctxt->es);
113 
114 	rdmsrq(MSR_FS_BASE, ctxt->fs_base);
115 	rdmsrq(MSR_GS_BASE, ctxt->kernelmode_gs_base);
116 	rdmsrq(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base);
117 	mtrr_save_fixed_ranges(NULL);
118 
119 	rdmsrq(MSR_EFER, ctxt->efer);
120 #endif
121 
122 	/*
123 	 * control registers
124 	 */
125 	ctxt->cr0 = read_cr0();
126 	ctxt->cr2 = read_cr2();
127 	ctxt->cr3 = __read_cr3();
128 	ctxt->cr4 = __read_cr4();
129 	ctxt->misc_enable_saved = !rdmsrq_safe(MSR_IA32_MISC_ENABLE,
130 					       &ctxt->misc_enable);
131 	msr_save_context(ctxt);
132 }
133 
134 /* Needed by apm.c */
save_processor_state(void)135 void save_processor_state(void)
136 {
137 	__save_processor_state(&saved_context);
138 	x86_platform.save_sched_clock_state();
139 }
140 #ifdef CONFIG_X86_32
141 EXPORT_SYMBOL(save_processor_state);
142 #endif
143 
do_fpu_end(void)144 static void do_fpu_end(void)
145 {
146 	/*
147 	 * Restore FPU regs if necessary.
148 	 */
149 	kernel_fpu_end();
150 }
151 
fix_processor_context(void)152 static void fix_processor_context(void)
153 {
154 	int cpu = smp_processor_id();
155 #ifdef CONFIG_X86_64
156 	struct desc_struct *desc = get_cpu_gdt_rw(cpu);
157 	tss_desc tss;
158 #endif
159 
160 	/*
161 	 * We need to reload TR, which requires that we change the
162 	 * GDT entry to indicate "available" first.
163 	 *
164 	 * XXX: This could probably all be replaced by a call to
165 	 * force_reload_TR().
166 	 */
167 	set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
168 
169 #ifdef CONFIG_X86_64
170 	memcpy(&tss, &desc[GDT_ENTRY_TSS], sizeof(tss_desc));
171 	tss.type = 0x9; /* The available 64-bit TSS (see AMD vol 2, pg 91 */
172 	write_gdt_entry(desc, GDT_ENTRY_TSS, &tss, DESC_TSS);
173 
174 	syscall_init();				/* This sets MSR_*STAR and related */
175 #else
176 	if (boot_cpu_has(X86_FEATURE_SEP))
177 		enable_sep_cpu();
178 #endif
179 	load_TR_desc();				/* This does ltr */
180 	load_mm_ldt(current->active_mm);	/* This does lldt */
181 	initialize_tlbstate_and_flush();
182 
183 	fpu__resume_cpu();
184 
185 	/* The processor is back on the direct GDT, load back the fixmap */
186 	load_fixmap_gdt(cpu);
187 }
188 
189 /**
190  * __restore_processor_state() - Restore the contents of CPU registers saved
191  *                               by __save_processor_state()
192  * @ctxt: Structure to load the registers contents from.
193  *
194  * The asm code that gets us here will have restored a usable GDT, although
195  * it will be pointing to the wrong alias.
196  */
__restore_processor_state(struct saved_context * ctxt)197 static void notrace __restore_processor_state(struct saved_context *ctxt)
198 {
199 	struct cpuinfo_x86 *c;
200 
201 	if (ctxt->misc_enable_saved)
202 		wrmsrq(MSR_IA32_MISC_ENABLE, ctxt->misc_enable);
203 	/*
204 	 * control registers
205 	 */
206 	/* cr4 was introduced in the Pentium CPU */
207 #ifdef CONFIG_X86_32
208 	if (ctxt->cr4)
209 		__write_cr4(ctxt->cr4);
210 #else
211 /* CONFIG X86_64 */
212 	wrmsrq(MSR_EFER, ctxt->efer);
213 	__write_cr4(ctxt->cr4);
214 #endif
215 	write_cr3(ctxt->cr3);
216 	write_cr2(ctxt->cr2);
217 	write_cr0(ctxt->cr0);
218 
219 	/* Restore the IDT. */
220 	load_idt(&ctxt->idt);
221 
222 	/*
223 	 * Just in case the asm code got us here with the SS, DS, or ES
224 	 * out of sync with the GDT, update them.
225 	 */
226 	loadsegment(ss, __KERNEL_DS);
227 	loadsegment(ds, __USER_DS);
228 	loadsegment(es, __USER_DS);
229 
230 	/*
231 	 * Restore percpu access.  Percpu access can happen in exception
232 	 * handlers or in complicated helpers like load_gs_index().
233 	 */
234 #ifdef CONFIG_X86_64
235 	wrmsrq(MSR_GS_BASE, ctxt->kernelmode_gs_base);
236 
237 	/*
238 	 * Reinitialize FRED to ensure the FRED MSRs contain the same values
239 	 * as before hibernation.
240 	 *
241 	 * Note, the setup of FRED RSPs requires access to percpu data
242 	 * structures.  Therefore, FRED reinitialization can only occur after
243 	 * the percpu access pointer (i.e., MSR_GS_BASE) is restored.
244 	 */
245 	if (ctxt->cr4 & X86_CR4_FRED) {
246 		cpu_init_fred_exceptions();
247 		cpu_init_fred_rsps();
248 	}
249 #else
250 	loadsegment(fs, __KERNEL_PERCPU);
251 #endif
252 
253 	/* Restore the TSS, RO GDT, LDT, and usermode-relevant MSRs. */
254 	fix_processor_context();
255 
256 	/*
257 	 * Now that we have descriptor tables fully restored and working
258 	 * exception handling, restore the usermode segments.
259 	 */
260 #ifdef CONFIG_X86_64
261 	loadsegment(ds, ctxt->es);
262 	loadsegment(es, ctxt->es);
263 	loadsegment(fs, ctxt->fs);
264 	load_gs_index(ctxt->gs);
265 
266 	/*
267 	 * Restore FSBASE and GSBASE after restoring the selectors, since
268 	 * restoring the selectors clobbers the bases.  Keep in mind
269 	 * that MSR_KERNEL_GS_BASE is horribly misnamed.
270 	 */
271 	wrmsrq(MSR_FS_BASE, ctxt->fs_base);
272 	wrmsrq(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base);
273 #else
274 	loadsegment(gs, ctxt->gs);
275 #endif
276 
277 	do_fpu_end();
278 	tsc_verify_tsc_adjust(true);
279 	x86_platform.restore_sched_clock_state();
280 	cache_bp_restore();
281 	perf_restore_debug_store();
282 
283 	c = &cpu_data(smp_processor_id());
284 	if (cpu_has(c, X86_FEATURE_MSR_IA32_FEAT_CTL))
285 		init_ia32_feat_ctl(c);
286 
287 	microcode_bsp_resume();
288 
289 	/*
290 	 * This needs to happen after the microcode has been updated upon resume
291 	 * because some of the MSRs are "emulated" in microcode.
292 	 */
293 	msr_restore_context(ctxt);
294 }
295 
296 /* Needed by apm.c */
restore_processor_state(void)297 void notrace restore_processor_state(void)
298 {
299 	__restore_processor_state(&saved_context);
300 }
301 #ifdef CONFIG_X86_32
302 EXPORT_SYMBOL(restore_processor_state);
303 #endif
304 
305 #if defined(CONFIG_HIBERNATION) && defined(CONFIG_HOTPLUG_CPU)
resume_play_dead(void)306 static void __noreturn resume_play_dead(void)
307 {
308 	play_dead_common();
309 	tboot_shutdown(TB_SHUTDOWN_WFS);
310 	hlt_play_dead();
311 }
312 
hibernate_resume_nonboot_cpu_disable(void)313 int hibernate_resume_nonboot_cpu_disable(void)
314 {
315 	void (*play_dead)(void) = smp_ops.play_dead;
316 	int ret;
317 
318 	/*
319 	 * Ensure that MONITOR/MWAIT will not be used in the "play dead" loop
320 	 * during hibernate image restoration, because it is likely that the
321 	 * monitored address will be actually written to at that time and then
322 	 * the "dead" CPU will attempt to execute instructions again, but the
323 	 * address in its instruction pointer may not be possible to resolve
324 	 * any more at that point (the page tables used by it previously may
325 	 * have been overwritten by hibernate image data).
326 	 *
327 	 * First, make sure that we wake up all the potentially disabled SMT
328 	 * threads which have been initially brought up and then put into
329 	 * mwait/cpuidle sleep.
330 	 * Those will be put to proper (not interfering with hibernation
331 	 * resume) sleep afterwards, and the resumed kernel will decide itself
332 	 * what to do with them.
333 	 */
334 	ret = cpuhp_smt_enable();
335 	if (ret)
336 		return ret;
337 	smp_ops.play_dead = resume_play_dead;
338 	ret = freeze_secondary_cpus(0);
339 	smp_ops.play_dead = play_dead;
340 	return ret;
341 }
342 #endif
343 
344 /*
345  * When bsp_check() is called in hibernate and suspend, cpu hotplug
346  * is disabled already. So it's unnecessary to handle race condition between
347  * cpumask query and cpu hotplug.
348  */
bsp_check(void)349 static int bsp_check(void)
350 {
351 	if (cpumask_first(cpu_online_mask) != 0) {
352 		pr_warn("CPU0 is offline.\n");
353 		return -ENODEV;
354 	}
355 
356 	return 0;
357 }
358 
bsp_pm_callback(struct notifier_block * nb,unsigned long action,void * ptr)359 static int bsp_pm_callback(struct notifier_block *nb, unsigned long action,
360 			   void *ptr)
361 {
362 	int ret = 0;
363 
364 	switch (action) {
365 	case PM_SUSPEND_PREPARE:
366 	case PM_HIBERNATION_PREPARE:
367 		ret = bsp_check();
368 		break;
369 	default:
370 		break;
371 	}
372 	return notifier_from_errno(ret);
373 }
374 
bsp_pm_check_init(void)375 static int __init bsp_pm_check_init(void)
376 {
377 	/*
378 	 * Set this bsp_pm_callback as lower priority than
379 	 * cpu_hotplug_pm_callback. So cpu_hotplug_pm_callback will be called
380 	 * earlier to disable cpu hotplug before bsp online check.
381 	 */
382 	pm_notifier(bsp_pm_callback, -INT_MAX);
383 	return 0;
384 }
385 
386 core_initcall(bsp_pm_check_init);
387 
msr_build_context(const u32 * msr_id,const int num)388 static int msr_build_context(const u32 *msr_id, const int num)
389 {
390 	struct saved_msrs *saved_msrs = &saved_context.saved_msrs;
391 	struct saved_msr *msr_array;
392 	int total_num;
393 	int i, j;
394 
395 	total_num = saved_msrs->num + num;
396 
397 	msr_array = kmalloc_array(total_num, sizeof(struct saved_msr), GFP_KERNEL);
398 	if (!msr_array) {
399 		pr_err("x86/pm: Can not allocate memory to save/restore MSRs during suspend.\n");
400 		return -ENOMEM;
401 	}
402 
403 	if (saved_msrs->array) {
404 		/*
405 		 * Multiple callbacks can invoke this function, so copy any
406 		 * MSR save requests from previous invocations.
407 		 */
408 		memcpy(msr_array, saved_msrs->array,
409 		       sizeof(struct saved_msr) * saved_msrs->num);
410 
411 		kfree(saved_msrs->array);
412 	}
413 
414 	for (i = saved_msrs->num, j = 0; i < total_num; i++, j++) {
415 		u64 dummy;
416 
417 		msr_array[i].info.msr_no	= msr_id[j];
418 		msr_array[i].valid		= !rdmsrq_safe(msr_id[j], &dummy);
419 		msr_array[i].info.reg.q		= 0;
420 	}
421 	saved_msrs->num   = total_num;
422 	saved_msrs->array = msr_array;
423 
424 	return 0;
425 }
426 
427 /*
428  * The following sections are a quirk framework for problematic BIOSen:
429  * Sometimes MSRs are modified by the BIOSen after suspended to
430  * RAM, this might cause unexpected behavior after wakeup.
431  * Thus we save/restore these specified MSRs across suspend/resume
432  * in order to work around it.
433  *
434  * For any further problematic BIOSen/platforms,
435  * please add your own function similar to msr_initialize_bdw.
436  */
msr_initialize_bdw(const struct dmi_system_id * d)437 static int msr_initialize_bdw(const struct dmi_system_id *d)
438 {
439 	/* Add any extra MSR ids into this array. */
440 	u32 bdw_msr_id[] = { MSR_IA32_THERM_CONTROL };
441 
442 	pr_info("x86/pm: %s detected, MSR saving is needed during suspending.\n", d->ident);
443 	return msr_build_context(bdw_msr_id, ARRAY_SIZE(bdw_msr_id));
444 }
445 
446 static const struct dmi_system_id msr_save_dmi_table[] = {
447 	{
448 	 .callback = msr_initialize_bdw,
449 	 .ident = "BROADWELL BDX_EP",
450 	 .matches = {
451 		DMI_MATCH(DMI_PRODUCT_NAME, "GRANTLEY"),
452 		DMI_MATCH(DMI_PRODUCT_VERSION, "E63448-400"),
453 		},
454 	},
455 	{}
456 };
457 
msr_save_cpuid_features(const struct x86_cpu_id * c)458 static int msr_save_cpuid_features(const struct x86_cpu_id *c)
459 {
460 	u32 cpuid_msr_id[] = {
461 		MSR_AMD64_CPUID_FN_1,
462 	};
463 
464 	pr_info("x86/pm: family %#hx cpu detected, MSR saving is needed during suspending.\n",
465 		c->family);
466 
467 	return msr_build_context(cpuid_msr_id, ARRAY_SIZE(cpuid_msr_id));
468 }
469 
470 static const struct x86_cpu_id msr_save_cpu_table[] = {
471 	X86_MATCH_VENDOR_FAM(AMD, 0x15, &msr_save_cpuid_features),
472 	X86_MATCH_VENDOR_FAM(AMD, 0x16, &msr_save_cpuid_features),
473 	{}
474 };
475 
476 typedef int (*pm_cpu_match_t)(const struct x86_cpu_id *);
pm_cpu_check(const struct x86_cpu_id * c)477 static int pm_cpu_check(const struct x86_cpu_id *c)
478 {
479 	const struct x86_cpu_id *m;
480 	int ret = 0;
481 
482 	m = x86_match_cpu(msr_save_cpu_table);
483 	if (m) {
484 		pm_cpu_match_t fn;
485 
486 		fn = (pm_cpu_match_t)m->driver_data;
487 		ret = fn(m);
488 	}
489 
490 	return ret;
491 }
492 
pm_save_spec_msr(void)493 static void pm_save_spec_msr(void)
494 {
495 	struct msr_enumeration {
496 		u32 msr_no;
497 		u32 feature;
498 	} msr_enum[] = {
499 		{ MSR_IA32_SPEC_CTRL,	 X86_FEATURE_MSR_SPEC_CTRL },
500 		{ MSR_IA32_TSX_CTRL,	 X86_FEATURE_MSR_TSX_CTRL },
501 		{ MSR_TSX_FORCE_ABORT,	 X86_FEATURE_TSX_FORCE_ABORT },
502 		{ MSR_IA32_MCU_OPT_CTRL, X86_FEATURE_SRBDS_CTRL },
503 		{ MSR_AMD64_LS_CFG,	 X86_FEATURE_LS_CFG_SSBD },
504 		{ MSR_AMD64_DE_CFG,	 X86_FEATURE_LFENCE_RDTSC },
505 	};
506 	int i;
507 
508 	for (i = 0; i < ARRAY_SIZE(msr_enum); i++) {
509 		if (boot_cpu_has(msr_enum[i].feature))
510 			msr_build_context(&msr_enum[i].msr_no, 1);
511 	}
512 }
513 
pm_check_save_msr(void)514 static int pm_check_save_msr(void)
515 {
516 	dmi_check_system(msr_save_dmi_table);
517 	pm_cpu_check(msr_save_cpu_table);
518 	pm_save_spec_msr();
519 
520 	return 0;
521 }
522 
523 device_initcall(pm_check_save_msr);
524