xref: /linux/arch/x86/kernel/hpet.c (revision ab93e0dd72c37d378dd936f031ffb83ff2bd87ce)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/export.h>
5 #include <linux/delay.h>
6 #include <linux/hpet.h>
7 #include <linux/cpu.h>
8 #include <linux/irq.h>
9 
10 #include <asm/cpuid/api.h>
11 #include <asm/irq_remapping.h>
12 #include <asm/hpet.h>
13 #include <asm/time.h>
14 #include <asm/mwait.h>
15 #include <asm/msr.h>
16 
17 #undef  pr_fmt
18 #define pr_fmt(fmt) "hpet: " fmt
19 
20 enum hpet_mode {
21 	HPET_MODE_UNUSED,
22 	HPET_MODE_LEGACY,
23 	HPET_MODE_CLOCKEVT,
24 	HPET_MODE_DEVICE,
25 };
26 
27 struct hpet_channel {
28 	struct clock_event_device	evt;
29 	unsigned int			num;
30 	unsigned int			cpu;
31 	unsigned int			irq;
32 	unsigned int			in_use;
33 	enum hpet_mode			mode;
34 	unsigned int			boot_cfg;
35 	char				name[10];
36 };
37 
38 struct hpet_base {
39 	unsigned int			nr_channels;
40 	unsigned int			nr_clockevents;
41 	unsigned int			boot_cfg;
42 	struct hpet_channel		*channels;
43 };
44 
45 #define HPET_MASK			CLOCKSOURCE_MASK(32)
46 
47 #define HPET_MIN_CYCLES			128
48 #define HPET_MIN_PROG_DELTA		(HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
49 
50 /*
51  * HPET address is set in acpi/boot.c, when an ACPI entry exists
52  */
53 unsigned long				hpet_address;
54 u8					hpet_blockid; /* OS timer block num */
55 bool					hpet_msi_disable;
56 
57 #if defined(CONFIG_X86_LOCAL_APIC) && defined(CONFIG_GENERIC_MSI_IRQ)
58 static DEFINE_PER_CPU(struct hpet_channel *, cpu_hpet_channel);
59 static struct irq_domain		*hpet_domain;
60 #endif
61 
62 static void __iomem			*hpet_virt_address;
63 
64 static struct hpet_base			hpet_base;
65 
66 static bool				hpet_legacy_int_enabled;
67 static unsigned long			hpet_freq;
68 
69 bool					boot_hpet_disable;
70 bool					hpet_force_user;
71 static bool				hpet_verbose;
72 
73 static inline
clockevent_to_channel(struct clock_event_device * evt)74 struct hpet_channel *clockevent_to_channel(struct clock_event_device *evt)
75 {
76 	return container_of(evt, struct hpet_channel, evt);
77 }
78 
hpet_readl(unsigned int a)79 inline unsigned int hpet_readl(unsigned int a)
80 {
81 	return readl(hpet_virt_address + a);
82 }
83 
hpet_writel(unsigned int d,unsigned int a)84 static inline void hpet_writel(unsigned int d, unsigned int a)
85 {
86 	writel(d, hpet_virt_address + a);
87 }
88 
hpet_set_mapping(void)89 static inline void hpet_set_mapping(void)
90 {
91 	hpet_virt_address = ioremap(hpet_address, HPET_MMAP_SIZE);
92 }
93 
hpet_clear_mapping(void)94 static inline void hpet_clear_mapping(void)
95 {
96 	iounmap(hpet_virt_address);
97 	hpet_virt_address = NULL;
98 }
99 
100 /*
101  * HPET command line enable / disable
102  */
hpet_setup(char * str)103 static int __init hpet_setup(char *str)
104 {
105 	while (str) {
106 		char *next = strchr(str, ',');
107 
108 		if (next)
109 			*next++ = 0;
110 		if (!strncmp("disable", str, 7))
111 			boot_hpet_disable = true;
112 		if (!strncmp("force", str, 5))
113 			hpet_force_user = true;
114 		if (!strncmp("verbose", str, 7))
115 			hpet_verbose = true;
116 		str = next;
117 	}
118 	return 1;
119 }
120 __setup("hpet=", hpet_setup);
121 
disable_hpet(char * str)122 static int __init disable_hpet(char *str)
123 {
124 	boot_hpet_disable = true;
125 	return 1;
126 }
127 __setup("nohpet", disable_hpet);
128 
is_hpet_capable(void)129 static inline int is_hpet_capable(void)
130 {
131 	return !boot_hpet_disable && hpet_address;
132 }
133 
134 /**
135  * is_hpet_enabled - Check whether the legacy HPET timer interrupt is enabled
136  */
is_hpet_enabled(void)137 int is_hpet_enabled(void)
138 {
139 	return is_hpet_capable() && hpet_legacy_int_enabled;
140 }
141 EXPORT_SYMBOL_GPL(is_hpet_enabled);
142 
_hpet_print_config(const char * function,int line)143 static void _hpet_print_config(const char *function, int line)
144 {
145 	u32 i, id, period, cfg, status, channels, l, h;
146 
147 	pr_info("%s(%d):\n", function, line);
148 
149 	id = hpet_readl(HPET_ID);
150 	period = hpet_readl(HPET_PERIOD);
151 	pr_info("ID: 0x%x, PERIOD: 0x%x\n", id, period);
152 
153 	cfg = hpet_readl(HPET_CFG);
154 	status = hpet_readl(HPET_STATUS);
155 	pr_info("CFG: 0x%x, STATUS: 0x%x\n", cfg, status);
156 
157 	l = hpet_readl(HPET_COUNTER);
158 	h = hpet_readl(HPET_COUNTER+4);
159 	pr_info("COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
160 
161 	channels = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
162 
163 	for (i = 0; i < channels; i++) {
164 		l = hpet_readl(HPET_Tn_CFG(i));
165 		h = hpet_readl(HPET_Tn_CFG(i)+4);
166 		pr_info("T%d: CFG_l: 0x%x, CFG_h: 0x%x\n", i, l, h);
167 
168 		l = hpet_readl(HPET_Tn_CMP(i));
169 		h = hpet_readl(HPET_Tn_CMP(i)+4);
170 		pr_info("T%d: CMP_l: 0x%x, CMP_h: 0x%x\n", i, l, h);
171 
172 		l = hpet_readl(HPET_Tn_ROUTE(i));
173 		h = hpet_readl(HPET_Tn_ROUTE(i)+4);
174 		pr_info("T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n", i, l, h);
175 	}
176 }
177 
178 #define hpet_print_config()					\
179 do {								\
180 	if (hpet_verbose)					\
181 		_hpet_print_config(__func__, __LINE__);	\
182 } while (0)
183 
184 /*
185  * When the HPET driver (/dev/hpet) is enabled, we need to reserve
186  * timer 0 and timer 1 in case of RTC emulation.
187  */
188 #ifdef CONFIG_HPET
189 
hpet_reserve_platform_timers(void)190 static void __init hpet_reserve_platform_timers(void)
191 {
192 	struct hpet_data hd;
193 	unsigned int i;
194 
195 	memset(&hd, 0, sizeof(hd));
196 	hd.hd_phys_address	= hpet_address;
197 	hd.hd_address		= hpet_virt_address;
198 	hd.hd_nirqs		= hpet_base.nr_channels;
199 
200 	/*
201 	 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
202 	 * is wrong for i8259!) not the output IRQ.  Many BIOS writers
203 	 * don't bother configuring *any* comparator interrupts.
204 	 */
205 	hd.hd_irq[0] = HPET_LEGACY_8254;
206 	hd.hd_irq[1] = HPET_LEGACY_RTC;
207 
208 	for (i = 0; i < hpet_base.nr_channels; i++) {
209 		struct hpet_channel *hc = hpet_base.channels + i;
210 
211 		if (i >= 2)
212 			hd.hd_irq[i] = hc->irq;
213 
214 		switch (hc->mode) {
215 		case HPET_MODE_UNUSED:
216 		case HPET_MODE_DEVICE:
217 			hc->mode = HPET_MODE_DEVICE;
218 			break;
219 		case HPET_MODE_CLOCKEVT:
220 		case HPET_MODE_LEGACY:
221 			hpet_reserve_timer(&hd, hc->num);
222 			break;
223 		}
224 	}
225 
226 	hpet_alloc(&hd);
227 }
228 
hpet_select_device_channel(void)229 static void __init hpet_select_device_channel(void)
230 {
231 	int i;
232 
233 	for (i = 0; i < hpet_base.nr_channels; i++) {
234 		struct hpet_channel *hc = hpet_base.channels + i;
235 
236 		/* Associate the first unused channel to /dev/hpet */
237 		if (hc->mode == HPET_MODE_UNUSED) {
238 			hc->mode = HPET_MODE_DEVICE;
239 			return;
240 		}
241 	}
242 }
243 
244 #else
hpet_reserve_platform_timers(void)245 static inline void hpet_reserve_platform_timers(void) { }
hpet_select_device_channel(void)246 static inline void hpet_select_device_channel(void) {}
247 #endif
248 
249 /* Common HPET functions */
hpet_stop_counter(void)250 static void hpet_stop_counter(void)
251 {
252 	u32 cfg = hpet_readl(HPET_CFG);
253 
254 	cfg &= ~HPET_CFG_ENABLE;
255 	hpet_writel(cfg, HPET_CFG);
256 }
257 
hpet_reset_counter(void)258 static void hpet_reset_counter(void)
259 {
260 	hpet_writel(0, HPET_COUNTER);
261 	hpet_writel(0, HPET_COUNTER + 4);
262 }
263 
hpet_start_counter(void)264 static void hpet_start_counter(void)
265 {
266 	unsigned int cfg = hpet_readl(HPET_CFG);
267 
268 	cfg |= HPET_CFG_ENABLE;
269 	hpet_writel(cfg, HPET_CFG);
270 }
271 
hpet_restart_counter(void)272 static void hpet_restart_counter(void)
273 {
274 	hpet_stop_counter();
275 	hpet_reset_counter();
276 	hpet_start_counter();
277 }
278 
hpet_resume_device(void)279 static void hpet_resume_device(void)
280 {
281 	force_hpet_resume();
282 }
283 
hpet_resume_counter(struct clocksource * cs)284 static void hpet_resume_counter(struct clocksource *cs)
285 {
286 	hpet_resume_device();
287 	hpet_restart_counter();
288 }
289 
hpet_enable_legacy_int(void)290 static void hpet_enable_legacy_int(void)
291 {
292 	unsigned int cfg = hpet_readl(HPET_CFG);
293 
294 	cfg |= HPET_CFG_LEGACY;
295 	hpet_writel(cfg, HPET_CFG);
296 	hpet_legacy_int_enabled = true;
297 }
298 
hpet_clkevt_set_state_periodic(struct clock_event_device * evt)299 static int hpet_clkevt_set_state_periodic(struct clock_event_device *evt)
300 {
301 	unsigned int channel = clockevent_to_channel(evt)->num;
302 	unsigned int cfg, cmp, now;
303 	uint64_t delta;
304 
305 	hpet_stop_counter();
306 	delta = ((uint64_t)(NSEC_PER_SEC / HZ)) * evt->mult;
307 	delta >>= evt->shift;
308 	now = hpet_readl(HPET_COUNTER);
309 	cmp = now + (unsigned int)delta;
310 	cfg = hpet_readl(HPET_Tn_CFG(channel));
311 	cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL |
312 	       HPET_TN_32BIT;
313 	hpet_writel(cfg, HPET_Tn_CFG(channel));
314 	hpet_writel(cmp, HPET_Tn_CMP(channel));
315 	udelay(1);
316 	/*
317 	 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
318 	 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
319 	 * bit is automatically cleared after the first write.
320 	 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
321 	 * Publication # 24674)
322 	 */
323 	hpet_writel((unsigned int)delta, HPET_Tn_CMP(channel));
324 	hpet_start_counter();
325 	hpet_print_config();
326 
327 	return 0;
328 }
329 
hpet_clkevt_set_state_oneshot(struct clock_event_device * evt)330 static int hpet_clkevt_set_state_oneshot(struct clock_event_device *evt)
331 {
332 	unsigned int channel = clockevent_to_channel(evt)->num;
333 	unsigned int cfg;
334 
335 	cfg = hpet_readl(HPET_Tn_CFG(channel));
336 	cfg &= ~HPET_TN_PERIODIC;
337 	cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
338 	hpet_writel(cfg, HPET_Tn_CFG(channel));
339 
340 	return 0;
341 }
342 
hpet_clkevt_set_state_shutdown(struct clock_event_device * evt)343 static int hpet_clkevt_set_state_shutdown(struct clock_event_device *evt)
344 {
345 	unsigned int channel = clockevent_to_channel(evt)->num;
346 	unsigned int cfg;
347 
348 	cfg = hpet_readl(HPET_Tn_CFG(channel));
349 	cfg &= ~HPET_TN_ENABLE;
350 	hpet_writel(cfg, HPET_Tn_CFG(channel));
351 
352 	return 0;
353 }
354 
hpet_clkevt_legacy_resume(struct clock_event_device * evt)355 static int hpet_clkevt_legacy_resume(struct clock_event_device *evt)
356 {
357 	hpet_enable_legacy_int();
358 	hpet_print_config();
359 	return 0;
360 }
361 
362 static int
hpet_clkevt_set_next_event(unsigned long delta,struct clock_event_device * evt)363 hpet_clkevt_set_next_event(unsigned long delta, struct clock_event_device *evt)
364 {
365 	unsigned int channel = clockevent_to_channel(evt)->num;
366 	u32 cnt;
367 	s32 res;
368 
369 	cnt = hpet_readl(HPET_COUNTER);
370 	cnt += (u32) delta;
371 	hpet_writel(cnt, HPET_Tn_CMP(channel));
372 
373 	/*
374 	 * HPETs are a complete disaster. The compare register is
375 	 * based on a equal comparison and neither provides a less
376 	 * than or equal functionality (which would require to take
377 	 * the wraparound into account) nor a simple count down event
378 	 * mode. Further the write to the comparator register is
379 	 * delayed internally up to two HPET clock cycles in certain
380 	 * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
381 	 * longer delays. We worked around that by reading back the
382 	 * compare register, but that required another workaround for
383 	 * ICH9,10 chips where the first readout after write can
384 	 * return the old stale value. We already had a minimum
385 	 * programming delta of 5us enforced, but a NMI or SMI hitting
386 	 * between the counter readout and the comparator write can
387 	 * move us behind that point easily. Now instead of reading
388 	 * the compare register back several times, we make the ETIME
389 	 * decision based on the following: Return ETIME if the
390 	 * counter value after the write is less than HPET_MIN_CYCLES
391 	 * away from the event or if the counter is already ahead of
392 	 * the event. The minimum programming delta for the generic
393 	 * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
394 	 */
395 	res = (s32)(cnt - hpet_readl(HPET_COUNTER));
396 
397 	return res < HPET_MIN_CYCLES ? -ETIME : 0;
398 }
399 
hpet_init_clockevent(struct hpet_channel * hc,unsigned int rating)400 static void hpet_init_clockevent(struct hpet_channel *hc, unsigned int rating)
401 {
402 	struct clock_event_device *evt = &hc->evt;
403 
404 	evt->rating		= rating;
405 	evt->irq		= hc->irq;
406 	evt->name		= hc->name;
407 	evt->cpumask		= cpumask_of(hc->cpu);
408 	evt->set_state_oneshot	= hpet_clkevt_set_state_oneshot;
409 	evt->set_next_event	= hpet_clkevt_set_next_event;
410 	evt->set_state_shutdown	= hpet_clkevt_set_state_shutdown;
411 
412 	evt->features = CLOCK_EVT_FEAT_ONESHOT;
413 	if (hc->boot_cfg & HPET_TN_PERIODIC) {
414 		evt->features		|= CLOCK_EVT_FEAT_PERIODIC;
415 		evt->set_state_periodic	= hpet_clkevt_set_state_periodic;
416 	}
417 }
418 
hpet_legacy_clockevent_register(struct hpet_channel * hc)419 static void __init hpet_legacy_clockevent_register(struct hpet_channel *hc)
420 {
421 	/*
422 	 * Start HPET with the boot CPU's cpumask and make it global after
423 	 * the IO_APIC has been initialized.
424 	 */
425 	hc->cpu = boot_cpu_data.cpu_index;
426 	strscpy(hc->name, "hpet", sizeof(hc->name));
427 	hpet_init_clockevent(hc, 50);
428 
429 	hc->evt.tick_resume	= hpet_clkevt_legacy_resume;
430 
431 	/*
432 	 * Legacy horrors and sins from the past. HPET used periodic mode
433 	 * unconditionally forever on the legacy channel 0. Removing the
434 	 * below hack and using the conditional in hpet_init_clockevent()
435 	 * makes at least Qemu and one hardware machine fail to boot.
436 	 * There are two issues which cause the boot failure:
437 	 *
438 	 * #1 After the timer delivery test in IOAPIC and the IOAPIC setup
439 	 *    the next interrupt is not delivered despite the HPET channel
440 	 *    being programmed correctly. Reprogramming the HPET after
441 	 *    switching to IOAPIC makes it work again. After fixing this,
442 	 *    the next issue surfaces:
443 	 *
444 	 * #2 Due to the unconditional periodic mode availability the Local
445 	 *    APIC timer calibration can hijack the global clockevents
446 	 *    event handler without causing damage. Using oneshot at this
447 	 *    stage makes if hang because the HPET does not get
448 	 *    reprogrammed due to the handler hijacking. Duh, stupid me!
449 	 *
450 	 * Both issues require major surgery and especially the kick HPET
451 	 * again after enabling IOAPIC results in really nasty hackery.
452 	 * This 'assume periodic works' magic has survived since HPET
453 	 * support got added, so it's questionable whether this should be
454 	 * fixed. Both Qemu and the failing hardware machine support
455 	 * periodic mode despite the fact that both don't advertise it in
456 	 * the configuration register and both need that extra kick after
457 	 * switching to IOAPIC. Seems to be a feature...
458 	 */
459 	hc->evt.features		|= CLOCK_EVT_FEAT_PERIODIC;
460 	hc->evt.set_state_periodic	= hpet_clkevt_set_state_periodic;
461 
462 	/* Start HPET legacy interrupts */
463 	hpet_enable_legacy_int();
464 
465 	clockevents_config_and_register(&hc->evt, hpet_freq,
466 					HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
467 	global_clock_event = &hc->evt;
468 	pr_debug("Clockevent registered\n");
469 }
470 
471 /*
472  * HPET MSI Support
473  */
474 #if defined(CONFIG_X86_LOCAL_APIC) && defined(CONFIG_GENERIC_MSI_IRQ)
hpet_msi_unmask(struct irq_data * data)475 static void hpet_msi_unmask(struct irq_data *data)
476 {
477 	struct hpet_channel *hc = irq_data_get_irq_handler_data(data);
478 	unsigned int cfg;
479 
480 	cfg = hpet_readl(HPET_Tn_CFG(hc->num));
481 	cfg |= HPET_TN_ENABLE | HPET_TN_FSB;
482 	hpet_writel(cfg, HPET_Tn_CFG(hc->num));
483 }
484 
hpet_msi_mask(struct irq_data * data)485 static void hpet_msi_mask(struct irq_data *data)
486 {
487 	struct hpet_channel *hc = irq_data_get_irq_handler_data(data);
488 	unsigned int cfg;
489 
490 	cfg = hpet_readl(HPET_Tn_CFG(hc->num));
491 	cfg &= ~(HPET_TN_ENABLE | HPET_TN_FSB);
492 	hpet_writel(cfg, HPET_Tn_CFG(hc->num));
493 }
494 
hpet_msi_write(struct hpet_channel * hc,struct msi_msg * msg)495 static void hpet_msi_write(struct hpet_channel *hc, struct msi_msg *msg)
496 {
497 	hpet_writel(msg->data, HPET_Tn_ROUTE(hc->num));
498 	hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hc->num) + 4);
499 }
500 
hpet_msi_write_msg(struct irq_data * data,struct msi_msg * msg)501 static void hpet_msi_write_msg(struct irq_data *data, struct msi_msg *msg)
502 {
503 	hpet_msi_write(irq_data_get_irq_handler_data(data), msg);
504 }
505 
506 static struct irq_chip hpet_msi_controller __ro_after_init = {
507 	.name = "HPET-MSI",
508 	.irq_unmask = hpet_msi_unmask,
509 	.irq_mask = hpet_msi_mask,
510 	.irq_ack = irq_chip_ack_parent,
511 	.irq_set_affinity = msi_domain_set_affinity,
512 	.irq_retrigger = irq_chip_retrigger_hierarchy,
513 	.irq_write_msi_msg = hpet_msi_write_msg,
514 	.flags = IRQCHIP_SKIP_SET_WAKE | IRQCHIP_AFFINITY_PRE_STARTUP,
515 };
516 
hpet_msi_init(struct irq_domain * domain,struct msi_domain_info * info,unsigned int virq,irq_hw_number_t hwirq,msi_alloc_info_t * arg)517 static int hpet_msi_init(struct irq_domain *domain,
518 			 struct msi_domain_info *info, unsigned int virq,
519 			 irq_hw_number_t hwirq, msi_alloc_info_t *arg)
520 {
521 	irq_domain_set_info(domain, virq, arg->hwirq, info->chip, NULL,
522 			    handle_edge_irq, arg->data, "edge");
523 
524 	return 0;
525 }
526 
527 static struct msi_domain_ops hpet_msi_domain_ops = {
528 	.msi_init	= hpet_msi_init,
529 };
530 
531 static struct msi_domain_info hpet_msi_domain_info = {
532 	.ops		= &hpet_msi_domain_ops,
533 	.chip		= &hpet_msi_controller,
534 	.flags		= MSI_FLAG_USE_DEF_DOM_OPS,
535 };
536 
hpet_create_irq_domain(int hpet_id)537 static struct irq_domain *hpet_create_irq_domain(int hpet_id)
538 {
539 	struct msi_domain_info *domain_info;
540 	struct irq_domain *parent, *d;
541 	struct fwnode_handle *fn;
542 	struct irq_fwspec fwspec;
543 
544 	if (x86_vector_domain == NULL)
545 		return NULL;
546 
547 	domain_info = kzalloc(sizeof(*domain_info), GFP_KERNEL);
548 	if (!domain_info)
549 		return NULL;
550 
551 	*domain_info = hpet_msi_domain_info;
552 	domain_info->data = (void *)(long)hpet_id;
553 
554 	fn = irq_domain_alloc_named_id_fwnode(hpet_msi_controller.name,
555 					      hpet_id);
556 	if (!fn) {
557 		kfree(domain_info);
558 		return NULL;
559 	}
560 
561 	fwspec.fwnode = fn;
562 	fwspec.param_count = 1;
563 	fwspec.param[0] = hpet_id;
564 
565 	parent = irq_find_matching_fwspec(&fwspec, DOMAIN_BUS_GENERIC_MSI);
566 	if (!parent) {
567 		irq_domain_free_fwnode(fn);
568 		kfree(domain_info);
569 		return NULL;
570 	}
571 	if (parent != x86_vector_domain)
572 		hpet_msi_controller.name = "IR-HPET-MSI";
573 
574 	d = msi_create_irq_domain(fn, domain_info, parent);
575 	if (!d) {
576 		irq_domain_free_fwnode(fn);
577 		kfree(domain_info);
578 	}
579 	return d;
580 }
581 
hpet_dev_id(struct irq_domain * domain)582 static inline int hpet_dev_id(struct irq_domain *domain)
583 {
584 	struct msi_domain_info *info = msi_get_domain_info(domain);
585 
586 	return (int)(long)info->data;
587 }
588 
hpet_assign_irq(struct irq_domain * domain,struct hpet_channel * hc,int dev_num)589 static int hpet_assign_irq(struct irq_domain *domain, struct hpet_channel *hc,
590 			   int dev_num)
591 {
592 	struct irq_alloc_info info;
593 
594 	init_irq_alloc_info(&info, NULL);
595 	info.type = X86_IRQ_ALLOC_TYPE_HPET;
596 	info.data = hc;
597 	info.devid = hpet_dev_id(domain);
598 	info.hwirq = dev_num;
599 
600 	return irq_domain_alloc_irqs(domain, 1, NUMA_NO_NODE, &info);
601 }
602 
hpet_clkevt_msi_resume(struct clock_event_device * evt)603 static int hpet_clkevt_msi_resume(struct clock_event_device *evt)
604 {
605 	struct hpet_channel *hc = clockevent_to_channel(evt);
606 	struct irq_data *data = irq_get_irq_data(hc->irq);
607 	struct msi_msg msg;
608 
609 	/* Restore the MSI msg and unmask the interrupt */
610 	irq_chip_compose_msi_msg(data, &msg);
611 	hpet_msi_write(hc, &msg);
612 	hpet_msi_unmask(data);
613 	return 0;
614 }
615 
hpet_msi_interrupt_handler(int irq,void * data)616 static irqreturn_t hpet_msi_interrupt_handler(int irq, void *data)
617 {
618 	struct hpet_channel *hc = data;
619 	struct clock_event_device *evt = &hc->evt;
620 
621 	if (!evt->event_handler) {
622 		pr_info("Spurious interrupt HPET channel %d\n", hc->num);
623 		return IRQ_HANDLED;
624 	}
625 
626 	evt->event_handler(evt);
627 	return IRQ_HANDLED;
628 }
629 
hpet_setup_msi_irq(struct hpet_channel * hc)630 static int hpet_setup_msi_irq(struct hpet_channel *hc)
631 {
632 	if (request_irq(hc->irq, hpet_msi_interrupt_handler,
633 			IRQF_TIMER | IRQF_NOBALANCING,
634 			hc->name, hc))
635 		return -1;
636 
637 	disable_irq(hc->irq);
638 	irq_set_affinity(hc->irq, cpumask_of(hc->cpu));
639 	enable_irq(hc->irq);
640 
641 	pr_debug("%s irq %u for MSI\n", hc->name, hc->irq);
642 
643 	return 0;
644 }
645 
646 /* Invoked from the hotplug callback on @cpu */
init_one_hpet_msi_clockevent(struct hpet_channel * hc,int cpu)647 static void init_one_hpet_msi_clockevent(struct hpet_channel *hc, int cpu)
648 {
649 	struct clock_event_device *evt = &hc->evt;
650 
651 	hc->cpu = cpu;
652 	per_cpu(cpu_hpet_channel, cpu) = hc;
653 	hpet_setup_msi_irq(hc);
654 
655 	hpet_init_clockevent(hc, 110);
656 	evt->tick_resume = hpet_clkevt_msi_resume;
657 
658 	clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
659 					0x7FFFFFFF);
660 }
661 
hpet_get_unused_clockevent(void)662 static struct hpet_channel *hpet_get_unused_clockevent(void)
663 {
664 	int i;
665 
666 	for (i = 0; i < hpet_base.nr_channels; i++) {
667 		struct hpet_channel *hc = hpet_base.channels + i;
668 
669 		if (hc->mode != HPET_MODE_CLOCKEVT || hc->in_use)
670 			continue;
671 		hc->in_use = 1;
672 		return hc;
673 	}
674 	return NULL;
675 }
676 
hpet_cpuhp_online(unsigned int cpu)677 static int hpet_cpuhp_online(unsigned int cpu)
678 {
679 	struct hpet_channel *hc = hpet_get_unused_clockevent();
680 
681 	if (hc)
682 		init_one_hpet_msi_clockevent(hc, cpu);
683 	return 0;
684 }
685 
hpet_cpuhp_dead(unsigned int cpu)686 static int hpet_cpuhp_dead(unsigned int cpu)
687 {
688 	struct hpet_channel *hc = per_cpu(cpu_hpet_channel, cpu);
689 
690 	if (!hc)
691 		return 0;
692 	free_irq(hc->irq, hc);
693 	hc->in_use = 0;
694 	per_cpu(cpu_hpet_channel, cpu) = NULL;
695 	return 0;
696 }
697 
hpet_select_clockevents(void)698 static void __init hpet_select_clockevents(void)
699 {
700 	unsigned int i;
701 
702 	hpet_base.nr_clockevents = 0;
703 
704 	/* No point if MSI is disabled or CPU has an Always Running APIC Timer */
705 	if (hpet_msi_disable || boot_cpu_has(X86_FEATURE_ARAT))
706 		return;
707 
708 	hpet_print_config();
709 
710 	hpet_domain = hpet_create_irq_domain(hpet_blockid);
711 	if (!hpet_domain)
712 		return;
713 
714 	for (i = 0; i < hpet_base.nr_channels; i++) {
715 		struct hpet_channel *hc = hpet_base.channels + i;
716 		int irq;
717 
718 		if (hc->mode != HPET_MODE_UNUSED)
719 			continue;
720 
721 		/* Only consider HPET channel with MSI support */
722 		if (!(hc->boot_cfg & HPET_TN_FSB_CAP))
723 			continue;
724 
725 		sprintf(hc->name, "hpet%d", i);
726 
727 		irq = hpet_assign_irq(hpet_domain, hc, hc->num);
728 		if (irq <= 0)
729 			continue;
730 
731 		hc->irq = irq;
732 		hc->mode = HPET_MODE_CLOCKEVT;
733 
734 		if (++hpet_base.nr_clockevents == num_possible_cpus())
735 			break;
736 	}
737 
738 	pr_info("%d channels of %d reserved for per-cpu timers\n",
739 		hpet_base.nr_channels, hpet_base.nr_clockevents);
740 }
741 
742 #else
743 
hpet_select_clockevents(void)744 static inline void hpet_select_clockevents(void) { }
745 
746 #define hpet_cpuhp_online	NULL
747 #define hpet_cpuhp_dead		NULL
748 
749 #endif
750 
751 /*
752  * Clock source related code
753  */
754 #if defined(CONFIG_SMP) && defined(CONFIG_64BIT)
755 /*
756  * Reading the HPET counter is a very slow operation. If a large number of
757  * CPUs are trying to access the HPET counter simultaneously, it can cause
758  * massive delays and slow down system performance dramatically. This may
759  * happen when HPET is the default clock source instead of TSC. For a
760  * really large system with hundreds of CPUs, the slowdown may be so
761  * severe, that it can actually crash the system because of a NMI watchdog
762  * soft lockup, for example.
763  *
764  * If multiple CPUs are trying to access the HPET counter at the same time,
765  * we don't actually need to read the counter multiple times. Instead, the
766  * other CPUs can use the counter value read by the first CPU in the group.
767  *
768  * This special feature is only enabled on x86-64 systems. It is unlikely
769  * that 32-bit x86 systems will have enough CPUs to require this feature
770  * with its associated locking overhead. We also need 64-bit atomic read.
771  *
772  * The lock and the HPET value are stored together and can be read in a
773  * single atomic 64-bit read. It is explicitly assumed that arch_spinlock_t
774  * is 32 bits in size.
775  */
776 union hpet_lock {
777 	struct {
778 		arch_spinlock_t lock;
779 		u32 value;
780 	};
781 	u64 lockval;
782 };
783 
784 static union hpet_lock hpet __cacheline_aligned = {
785 	{ .lock = __ARCH_SPIN_LOCK_UNLOCKED, },
786 };
787 
read_hpet(struct clocksource * cs)788 static u64 read_hpet(struct clocksource *cs)
789 {
790 	unsigned long flags;
791 	union hpet_lock old, new;
792 
793 	BUILD_BUG_ON(sizeof(union hpet_lock) != 8);
794 
795 	/*
796 	 * Read HPET directly if in NMI.
797 	 */
798 	if (in_nmi())
799 		return (u64)hpet_readl(HPET_COUNTER);
800 
801 	/*
802 	 * Read the current state of the lock and HPET value atomically.
803 	 */
804 	old.lockval = READ_ONCE(hpet.lockval);
805 
806 	if (arch_spin_is_locked(&old.lock))
807 		goto contended;
808 
809 	local_irq_save(flags);
810 	if (arch_spin_trylock(&hpet.lock)) {
811 		new.value = hpet_readl(HPET_COUNTER);
812 		/*
813 		 * Use WRITE_ONCE() to prevent store tearing.
814 		 */
815 		WRITE_ONCE(hpet.value, new.value);
816 		arch_spin_unlock(&hpet.lock);
817 		local_irq_restore(flags);
818 		return (u64)new.value;
819 	}
820 	local_irq_restore(flags);
821 
822 contended:
823 	/*
824 	 * Contended case
825 	 * --------------
826 	 * Wait until the HPET value change or the lock is free to indicate
827 	 * its value is up-to-date.
828 	 *
829 	 * It is possible that old.value has already contained the latest
830 	 * HPET value while the lock holder was in the process of releasing
831 	 * the lock. Checking for lock state change will enable us to return
832 	 * the value immediately instead of waiting for the next HPET reader
833 	 * to come along.
834 	 */
835 	do {
836 		cpu_relax();
837 		new.lockval = READ_ONCE(hpet.lockval);
838 	} while ((new.value == old.value) && arch_spin_is_locked(&new.lock));
839 
840 	return (u64)new.value;
841 }
842 #else
843 /*
844  * For UP or 32-bit.
845  */
read_hpet(struct clocksource * cs)846 static u64 read_hpet(struct clocksource *cs)
847 {
848 	return (u64)hpet_readl(HPET_COUNTER);
849 }
850 #endif
851 
852 static struct clocksource clocksource_hpet = {
853 	.name		= "hpet",
854 	.rating		= 250,
855 	.read		= read_hpet,
856 	.mask		= HPET_MASK,
857 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
858 	.resume		= hpet_resume_counter,
859 };
860 
861 /*
862  * AMD SB700 based systems with spread spectrum enabled use a SMM based
863  * HPET emulation to provide proper frequency setting.
864  *
865  * On such systems the SMM code is initialized with the first HPET register
866  * access and takes some time to complete. During this time the config
867  * register reads 0xffffffff. We check for max 1000 loops whether the
868  * config register reads a non-0xffffffff value to make sure that the
869  * HPET is up and running before we proceed any further.
870  *
871  * A counting loop is safe, as the HPET access takes thousands of CPU cycles.
872  *
873  * On non-SB700 based machines this check is only done once and has no
874  * side effects.
875  */
hpet_cfg_working(void)876 static bool __init hpet_cfg_working(void)
877 {
878 	int i;
879 
880 	for (i = 0; i < 1000; i++) {
881 		if (hpet_readl(HPET_CFG) != 0xFFFFFFFF)
882 			return true;
883 	}
884 
885 	pr_warn("Config register invalid. Disabling HPET\n");
886 	return false;
887 }
888 
hpet_counting(void)889 static bool __init hpet_counting(void)
890 {
891 	u64 start, now, t1;
892 
893 	hpet_restart_counter();
894 
895 	t1 = hpet_readl(HPET_COUNTER);
896 	start = rdtsc();
897 
898 	/*
899 	 * We don't know the TSC frequency yet, but waiting for
900 	 * 200000 TSC cycles is safe:
901 	 * 4 GHz == 50us
902 	 * 1 GHz == 200us
903 	 */
904 	do {
905 		if (t1 != hpet_readl(HPET_COUNTER))
906 			return true;
907 		now = rdtsc();
908 	} while ((now - start) < 200000UL);
909 
910 	pr_warn("Counter not counting. HPET disabled\n");
911 	return false;
912 }
913 
mwait_pc10_supported(void)914 static bool __init mwait_pc10_supported(void)
915 {
916 	unsigned int eax, ebx, ecx, mwait_substates;
917 
918 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
919 		return false;
920 
921 	if (!cpu_feature_enabled(X86_FEATURE_MWAIT))
922 		return false;
923 
924 	cpuid(CPUID_LEAF_MWAIT, &eax, &ebx, &ecx, &mwait_substates);
925 
926 	return (ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) &&
927 	       (ecx & CPUID5_ECX_INTERRUPT_BREAK) &&
928 	       (mwait_substates & (0xF << 28));
929 }
930 
931 /*
932  * Check whether the system supports PC10. If so force disable HPET as that
933  * stops counting in PC10. This check is overbroad as it does not take any
934  * of the following into account:
935  *
936  *	- ACPI tables
937  *	- Enablement of intel_idle
938  *	- Command line arguments which limit intel_idle C-state support
939  *
940  * That's perfectly fine. HPET is a piece of hardware designed by committee
941  * and the only reasons why it is still in use on modern systems is the
942  * fact that it is impossible to reliably query TSC and CPU frequency via
943  * CPUID or firmware.
944  *
945  * If HPET is functional it is useful for calibrating TSC, but this can be
946  * done via PMTIMER as well which seems to be the last remaining timer on
947  * X86/INTEL platforms that has not been completely wreckaged by feature
948  * creep.
949  *
950  * In theory HPET support should be removed altogether, but there are older
951  * systems out there which depend on it because TSC and APIC timer are
952  * dysfunctional in deeper C-states.
953  *
954  * It's only 20 years now that hardware people have been asked to provide
955  * reliable and discoverable facilities which can be used for timekeeping
956  * and per CPU timer interrupts.
957  *
958  * The probability that this problem is going to be solved in the
959  * foreseeable future is close to zero, so the kernel has to be cluttered
960  * with heuristics to keep up with the ever growing amount of hardware and
961  * firmware trainwrecks. Hopefully some day hardware people will understand
962  * that the approach of "This can be fixed in software" is not sustainable.
963  * Hope dies last...
964  */
hpet_is_pc10_damaged(void)965 static bool __init hpet_is_pc10_damaged(void)
966 {
967 	unsigned long long pcfg;
968 
969 	/* Check whether PC10 substates are supported */
970 	if (!mwait_pc10_supported())
971 		return false;
972 
973 	/* Check whether PC10 is enabled in PKG C-state limit */
974 	rdmsrq(MSR_PKG_CST_CONFIG_CONTROL, pcfg);
975 	if ((pcfg & 0xF) < 8)
976 		return false;
977 
978 	if (hpet_force_user) {
979 		pr_warn("HPET force enabled via command line, but dysfunctional in PC10.\n");
980 		return false;
981 	}
982 
983 	pr_info("HPET dysfunctional in PC10. Force disabled.\n");
984 	boot_hpet_disable = true;
985 	return true;
986 }
987 
988 /**
989  * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
990  */
hpet_enable(void)991 int __init hpet_enable(void)
992 {
993 	u32 hpet_period, cfg, id, irq;
994 	unsigned int i, channels;
995 	struct hpet_channel *hc;
996 	u64 freq;
997 
998 	if (!is_hpet_capable())
999 		return 0;
1000 
1001 	if (hpet_is_pc10_damaged())
1002 		return 0;
1003 
1004 	hpet_set_mapping();
1005 	if (!hpet_virt_address)
1006 		return 0;
1007 
1008 	/* Validate that the config register is working */
1009 	if (!hpet_cfg_working())
1010 		goto out_nohpet;
1011 
1012 	/*
1013 	 * Read the period and check for a sane value:
1014 	 */
1015 	hpet_period = hpet_readl(HPET_PERIOD);
1016 	if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
1017 		goto out_nohpet;
1018 
1019 	/* The period is a femtoseconds value. Convert it to a frequency. */
1020 	freq = FSEC_PER_SEC;
1021 	do_div(freq, hpet_period);
1022 	hpet_freq = freq;
1023 
1024 	/*
1025 	 * Read the HPET ID register to retrieve the IRQ routing
1026 	 * information and the number of channels
1027 	 */
1028 	id = hpet_readl(HPET_ID);
1029 	hpet_print_config();
1030 
1031 	/* This is the HPET channel number which is zero based */
1032 	channels = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
1033 
1034 	/*
1035 	 * The legacy routing mode needs at least two channels, tick timer
1036 	 * and the rtc emulation channel.
1037 	 */
1038 	if (IS_ENABLED(CONFIG_HPET_EMULATE_RTC) && channels < 2)
1039 		goto out_nohpet;
1040 
1041 	hc = kcalloc(channels, sizeof(*hc), GFP_KERNEL);
1042 	if (!hc) {
1043 		pr_warn("Disabling HPET.\n");
1044 		goto out_nohpet;
1045 	}
1046 	hpet_base.channels = hc;
1047 	hpet_base.nr_channels = channels;
1048 
1049 	/* Read, store and sanitize the global configuration */
1050 	cfg = hpet_readl(HPET_CFG);
1051 	hpet_base.boot_cfg = cfg;
1052 	cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
1053 	hpet_writel(cfg, HPET_CFG);
1054 	if (cfg)
1055 		pr_warn("Global config: Unknown bits %#x\n", cfg);
1056 
1057 	/* Read, store and sanitize the per channel configuration */
1058 	for (i = 0; i < channels; i++, hc++) {
1059 		hc->num = i;
1060 
1061 		cfg = hpet_readl(HPET_Tn_CFG(i));
1062 		hc->boot_cfg = cfg;
1063 		irq = (cfg & Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
1064 		hc->irq = irq;
1065 
1066 		cfg &= ~(HPET_TN_ENABLE | HPET_TN_LEVEL | HPET_TN_FSB);
1067 		hpet_writel(cfg, HPET_Tn_CFG(i));
1068 
1069 		cfg &= ~(HPET_TN_PERIODIC | HPET_TN_PERIODIC_CAP
1070 			 | HPET_TN_64BIT_CAP | HPET_TN_32BIT | HPET_TN_ROUTE
1071 			 | HPET_TN_FSB | HPET_TN_FSB_CAP);
1072 		if (cfg)
1073 			pr_warn("Channel #%u config: Unknown bits %#x\n", i, cfg);
1074 	}
1075 	hpet_print_config();
1076 
1077 	/*
1078 	 * Validate that the counter is counting. This needs to be done
1079 	 * after sanitizing the config registers to properly deal with
1080 	 * force enabled HPETs.
1081 	 */
1082 	if (!hpet_counting())
1083 		goto out_nohpet;
1084 
1085 	if (tsc_clocksource_watchdog_disabled())
1086 		clocksource_hpet.flags |= CLOCK_SOURCE_MUST_VERIFY;
1087 	clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
1088 
1089 	if (id & HPET_ID_LEGSUP) {
1090 		hpet_legacy_clockevent_register(&hpet_base.channels[0]);
1091 		hpet_base.channels[0].mode = HPET_MODE_LEGACY;
1092 		if (IS_ENABLED(CONFIG_HPET_EMULATE_RTC))
1093 			hpet_base.channels[1].mode = HPET_MODE_LEGACY;
1094 		return 1;
1095 	}
1096 	return 0;
1097 
1098 out_nohpet:
1099 	kfree(hpet_base.channels);
1100 	hpet_base.channels = NULL;
1101 	hpet_base.nr_channels = 0;
1102 	hpet_clear_mapping();
1103 	hpet_address = 0;
1104 	return 0;
1105 }
1106 
1107 /*
1108  * The late initialization runs after the PCI quirks have been invoked
1109  * which might have detected a system on which the HPET can be enforced.
1110  *
1111  * Also, the MSI machinery is not working yet when the HPET is initialized
1112  * early.
1113  *
1114  * If the HPET is enabled, then:
1115  *
1116  *  1) Reserve one channel for /dev/hpet if CONFIG_HPET=y
1117  *  2) Reserve up to num_possible_cpus() channels as per CPU clockevents
1118  *  3) Setup /dev/hpet if CONFIG_HPET=y
1119  *  4) Register hotplug callbacks when clockevents are available
1120  */
hpet_late_init(void)1121 static __init int hpet_late_init(void)
1122 {
1123 	int ret;
1124 
1125 	if (!hpet_address) {
1126 		if (!force_hpet_address)
1127 			return -ENODEV;
1128 
1129 		hpet_address = force_hpet_address;
1130 		hpet_enable();
1131 	}
1132 
1133 	if (!hpet_virt_address)
1134 		return -ENODEV;
1135 
1136 	hpet_select_device_channel();
1137 	hpet_select_clockevents();
1138 	hpet_reserve_platform_timers();
1139 	hpet_print_config();
1140 
1141 	if (!hpet_base.nr_clockevents)
1142 		return 0;
1143 
1144 	ret = cpuhp_setup_state(CPUHP_AP_X86_HPET_ONLINE, "x86/hpet:online",
1145 				hpet_cpuhp_online, NULL);
1146 	if (ret)
1147 		return ret;
1148 	ret = cpuhp_setup_state(CPUHP_X86_HPET_DEAD, "x86/hpet:dead", NULL,
1149 				hpet_cpuhp_dead);
1150 	if (ret)
1151 		goto err_cpuhp;
1152 	return 0;
1153 
1154 err_cpuhp:
1155 	cpuhp_remove_state(CPUHP_AP_X86_HPET_ONLINE);
1156 	return ret;
1157 }
1158 fs_initcall(hpet_late_init);
1159 
hpet_disable(void)1160 void hpet_disable(void)
1161 {
1162 	unsigned int i;
1163 	u32 cfg;
1164 
1165 	if (!is_hpet_capable() || !hpet_virt_address)
1166 		return;
1167 
1168 	/* Restore boot configuration with the enable bit cleared */
1169 	cfg = hpet_base.boot_cfg;
1170 	cfg &= ~HPET_CFG_ENABLE;
1171 	hpet_writel(cfg, HPET_CFG);
1172 
1173 	/* Restore the channel boot configuration */
1174 	for (i = 0; i < hpet_base.nr_channels; i++)
1175 		hpet_writel(hpet_base.channels[i].boot_cfg, HPET_Tn_CFG(i));
1176 
1177 	/* If the HPET was enabled at boot time, reenable it */
1178 	if (hpet_base.boot_cfg & HPET_CFG_ENABLE)
1179 		hpet_writel(hpet_base.boot_cfg, HPET_CFG);
1180 }
1181 
1182 #ifdef CONFIG_HPET_EMULATE_RTC
1183 
1184 /*
1185  * HPET in LegacyReplacement mode eats up the RTC interrupt line. When HPET
1186  * is enabled, we support RTC interrupt functionality in software.
1187  *
1188  * RTC has 3 kinds of interrupts:
1189  *
1190  *  1) Update Interrupt - generate an interrupt, every second, when the
1191  *     RTC clock is updated
1192  *  2) Alarm Interrupt - generate an interrupt at a specific time of day
1193  *  3) Periodic Interrupt - generate periodic interrupt, with frequencies
1194  *     2Hz-8192Hz (2Hz-64Hz for non-root user) (all frequencies in powers of 2)
1195  *
1196  * (1) and (2) above are implemented using polling at a frequency of 64 Hz:
1197  * DEFAULT_RTC_INT_FREQ.
1198  *
1199  * The exact frequency is a tradeoff between accuracy and interrupt overhead.
1200  *
1201  * For (3), we use interrupts at 64 Hz, or the user specified periodic frequency,
1202  * if it's higher.
1203  */
1204 #include <linux/mc146818rtc.h>
1205 #include <linux/rtc.h>
1206 
1207 #define DEFAULT_RTC_INT_FREQ	64
1208 #define DEFAULT_RTC_SHIFT	6
1209 #define RTC_NUM_INTS		1
1210 
1211 static unsigned long hpet_rtc_flags;
1212 static int hpet_prev_update_sec;
1213 static struct rtc_time hpet_alarm_time;
1214 static unsigned long hpet_pie_count;
1215 static u32 hpet_t1_cmp;
1216 static u32 hpet_default_delta;
1217 static u32 hpet_pie_delta;
1218 static unsigned long hpet_pie_limit;
1219 
1220 static rtc_irq_handler irq_handler;
1221 
1222 /*
1223  * Check that the HPET counter c1 is ahead of c2
1224  */
hpet_cnt_ahead(u32 c1,u32 c2)1225 static inline int hpet_cnt_ahead(u32 c1, u32 c2)
1226 {
1227 	return (s32)(c2 - c1) < 0;
1228 }
1229 
1230 /*
1231  * Registers a IRQ handler.
1232  */
hpet_register_irq_handler(rtc_irq_handler handler)1233 int hpet_register_irq_handler(rtc_irq_handler handler)
1234 {
1235 	if (!is_hpet_enabled())
1236 		return -ENODEV;
1237 	if (irq_handler)
1238 		return -EBUSY;
1239 
1240 	irq_handler = handler;
1241 
1242 	return 0;
1243 }
1244 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
1245 
1246 /*
1247  * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1248  * and does cleanup.
1249  */
hpet_unregister_irq_handler(rtc_irq_handler handler)1250 void hpet_unregister_irq_handler(rtc_irq_handler handler)
1251 {
1252 	if (!is_hpet_enabled())
1253 		return;
1254 
1255 	irq_handler = NULL;
1256 	hpet_rtc_flags = 0;
1257 }
1258 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1259 
1260 /*
1261  * Channel 1 for RTC emulation. We use one shot mode, as periodic mode
1262  * is not supported by all HPET implementations for channel 1.
1263  *
1264  * hpet_rtc_timer_init() is called when the rtc is initialized.
1265  */
hpet_rtc_timer_init(void)1266 int hpet_rtc_timer_init(void)
1267 {
1268 	unsigned int cfg, cnt, delta;
1269 	unsigned long flags;
1270 
1271 	if (!is_hpet_enabled())
1272 		return 0;
1273 
1274 	if (!hpet_default_delta) {
1275 		struct clock_event_device *evt = &hpet_base.channels[0].evt;
1276 		uint64_t clc;
1277 
1278 		clc = (uint64_t) evt->mult * NSEC_PER_SEC;
1279 		clc >>= evt->shift + DEFAULT_RTC_SHIFT;
1280 		hpet_default_delta = clc;
1281 	}
1282 
1283 	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1284 		delta = hpet_default_delta;
1285 	else
1286 		delta = hpet_pie_delta;
1287 
1288 	local_irq_save(flags);
1289 
1290 	cnt = delta + hpet_readl(HPET_COUNTER);
1291 	hpet_writel(cnt, HPET_T1_CMP);
1292 	hpet_t1_cmp = cnt;
1293 
1294 	cfg = hpet_readl(HPET_T1_CFG);
1295 	cfg &= ~HPET_TN_PERIODIC;
1296 	cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1297 	hpet_writel(cfg, HPET_T1_CFG);
1298 
1299 	local_irq_restore(flags);
1300 
1301 	return 1;
1302 }
1303 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1304 
hpet_disable_rtc_channel(void)1305 static void hpet_disable_rtc_channel(void)
1306 {
1307 	u32 cfg = hpet_readl(HPET_T1_CFG);
1308 
1309 	cfg &= ~HPET_TN_ENABLE;
1310 	hpet_writel(cfg, HPET_T1_CFG);
1311 }
1312 
1313 /*
1314  * The functions below are called from rtc driver.
1315  * Return 0 if HPET is not being used.
1316  * Otherwise do the necessary changes and return 1.
1317  */
hpet_mask_rtc_irq_bit(unsigned long bit_mask)1318 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1319 {
1320 	if (!is_hpet_enabled())
1321 		return 0;
1322 
1323 	hpet_rtc_flags &= ~bit_mask;
1324 	if (unlikely(!hpet_rtc_flags))
1325 		hpet_disable_rtc_channel();
1326 
1327 	return 1;
1328 }
1329 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1330 
hpet_set_rtc_irq_bit(unsigned long bit_mask)1331 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1332 {
1333 	unsigned long oldbits = hpet_rtc_flags;
1334 
1335 	if (!is_hpet_enabled())
1336 		return 0;
1337 
1338 	hpet_rtc_flags |= bit_mask;
1339 
1340 	if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1341 		hpet_prev_update_sec = -1;
1342 
1343 	if (!oldbits)
1344 		hpet_rtc_timer_init();
1345 
1346 	return 1;
1347 }
1348 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1349 
hpet_set_alarm_time(unsigned char hrs,unsigned char min,unsigned char sec)1350 int hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
1351 {
1352 	if (!is_hpet_enabled())
1353 		return 0;
1354 
1355 	hpet_alarm_time.tm_hour = hrs;
1356 	hpet_alarm_time.tm_min = min;
1357 	hpet_alarm_time.tm_sec = sec;
1358 
1359 	return 1;
1360 }
1361 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1362 
hpet_set_periodic_freq(unsigned long freq)1363 int hpet_set_periodic_freq(unsigned long freq)
1364 {
1365 	uint64_t clc;
1366 
1367 	if (!is_hpet_enabled())
1368 		return 0;
1369 
1370 	if (freq <= DEFAULT_RTC_INT_FREQ) {
1371 		hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1372 	} else {
1373 		struct clock_event_device *evt = &hpet_base.channels[0].evt;
1374 
1375 		clc = (uint64_t) evt->mult * NSEC_PER_SEC;
1376 		do_div(clc, freq);
1377 		clc >>= evt->shift;
1378 		hpet_pie_delta = clc;
1379 		hpet_pie_limit = 0;
1380 	}
1381 
1382 	return 1;
1383 }
1384 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1385 
hpet_rtc_timer_reinit(void)1386 static void hpet_rtc_timer_reinit(void)
1387 {
1388 	unsigned int delta;
1389 	int lost_ints = -1;
1390 
1391 	if (unlikely(!hpet_rtc_flags))
1392 		hpet_disable_rtc_channel();
1393 
1394 	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1395 		delta = hpet_default_delta;
1396 	else
1397 		delta = hpet_pie_delta;
1398 
1399 	/*
1400 	 * Increment the comparator value until we are ahead of the
1401 	 * current count.
1402 	 */
1403 	do {
1404 		hpet_t1_cmp += delta;
1405 		hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1406 		lost_ints++;
1407 	} while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1408 
1409 	if (lost_ints) {
1410 		if (hpet_rtc_flags & RTC_PIE)
1411 			hpet_pie_count += lost_ints;
1412 		if (printk_ratelimit())
1413 			pr_warn("Lost %d RTC interrupts\n", lost_ints);
1414 	}
1415 }
1416 
hpet_rtc_interrupt(int irq,void * dev_id)1417 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1418 {
1419 	struct rtc_time curr_time;
1420 	unsigned long rtc_int_flag = 0;
1421 
1422 	hpet_rtc_timer_reinit();
1423 	memset(&curr_time, 0, sizeof(struct rtc_time));
1424 
1425 	if (hpet_rtc_flags & (RTC_UIE | RTC_AIE)) {
1426 		if (unlikely(mc146818_get_time(&curr_time, 10) < 0)) {
1427 			pr_err_ratelimited("unable to read current time from RTC\n");
1428 			return IRQ_HANDLED;
1429 		}
1430 	}
1431 
1432 	if (hpet_rtc_flags & RTC_UIE &&
1433 	    curr_time.tm_sec != hpet_prev_update_sec) {
1434 		if (hpet_prev_update_sec >= 0)
1435 			rtc_int_flag = RTC_UF;
1436 		hpet_prev_update_sec = curr_time.tm_sec;
1437 	}
1438 
1439 	if (hpet_rtc_flags & RTC_PIE && ++hpet_pie_count >= hpet_pie_limit) {
1440 		rtc_int_flag |= RTC_PF;
1441 		hpet_pie_count = 0;
1442 	}
1443 
1444 	if (hpet_rtc_flags & RTC_AIE &&
1445 	    (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1446 	    (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1447 	    (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1448 		rtc_int_flag |= RTC_AF;
1449 
1450 	if (rtc_int_flag) {
1451 		rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1452 		if (irq_handler)
1453 			irq_handler(rtc_int_flag, dev_id);
1454 	}
1455 	return IRQ_HANDLED;
1456 }
1457 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1458 #endif
1459