1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/export.h>
5 #include <linux/delay.h>
6 #include <linux/hpet.h>
7 #include <linux/cpu.h>
8 #include <linux/irq.h>
9
10 #include <asm/cpuid/api.h>
11 #include <asm/irq_remapping.h>
12 #include <asm/hpet.h>
13 #include <asm/time.h>
14 #include <asm/mwait.h>
15 #include <asm/msr.h>
16
17 #undef pr_fmt
18 #define pr_fmt(fmt) "hpet: " fmt
19
20 enum hpet_mode {
21 HPET_MODE_UNUSED,
22 HPET_MODE_LEGACY,
23 HPET_MODE_CLOCKEVT,
24 HPET_MODE_DEVICE,
25 };
26
27 struct hpet_channel {
28 struct clock_event_device evt;
29 unsigned int num;
30 unsigned int cpu;
31 unsigned int irq;
32 unsigned int in_use;
33 enum hpet_mode mode;
34 unsigned int boot_cfg;
35 char name[10];
36 };
37
38 struct hpet_base {
39 unsigned int nr_channels;
40 unsigned int nr_clockevents;
41 unsigned int boot_cfg;
42 struct hpet_channel *channels;
43 };
44
45 #define HPET_MASK CLOCKSOURCE_MASK(32)
46
47 #define HPET_MIN_CYCLES 128
48 #define HPET_MIN_PROG_DELTA (HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
49
50 /*
51 * HPET address is set in acpi/boot.c, when an ACPI entry exists
52 */
53 unsigned long hpet_address;
54 u8 hpet_blockid; /* OS timer block num */
55 bool hpet_msi_disable;
56
57 #if defined(CONFIG_X86_LOCAL_APIC) && defined(CONFIG_GENERIC_MSI_IRQ)
58 static DEFINE_PER_CPU(struct hpet_channel *, cpu_hpet_channel);
59 static struct irq_domain *hpet_domain;
60 #endif
61
62 static void __iomem *hpet_virt_address;
63
64 static struct hpet_base hpet_base;
65
66 static bool hpet_legacy_int_enabled;
67 static unsigned long hpet_freq;
68
69 bool boot_hpet_disable;
70 bool hpet_force_user;
71 static bool hpet_verbose;
72
73 static inline
clockevent_to_channel(struct clock_event_device * evt)74 struct hpet_channel *clockevent_to_channel(struct clock_event_device *evt)
75 {
76 return container_of(evt, struct hpet_channel, evt);
77 }
78
hpet_readl(unsigned int a)79 inline unsigned int hpet_readl(unsigned int a)
80 {
81 return readl(hpet_virt_address + a);
82 }
83
hpet_writel(unsigned int d,unsigned int a)84 static inline void hpet_writel(unsigned int d, unsigned int a)
85 {
86 writel(d, hpet_virt_address + a);
87 }
88
hpet_set_mapping(void)89 static inline void hpet_set_mapping(void)
90 {
91 hpet_virt_address = ioremap(hpet_address, HPET_MMAP_SIZE);
92 }
93
hpet_clear_mapping(void)94 static inline void hpet_clear_mapping(void)
95 {
96 iounmap(hpet_virt_address);
97 hpet_virt_address = NULL;
98 }
99
100 /*
101 * HPET command line enable / disable
102 */
hpet_setup(char * str)103 static int __init hpet_setup(char *str)
104 {
105 while (str) {
106 char *next = strchr(str, ',');
107
108 if (next)
109 *next++ = 0;
110 if (!strncmp("disable", str, 7))
111 boot_hpet_disable = true;
112 if (!strncmp("force", str, 5))
113 hpet_force_user = true;
114 if (!strncmp("verbose", str, 7))
115 hpet_verbose = true;
116 str = next;
117 }
118 return 1;
119 }
120 __setup("hpet=", hpet_setup);
121
disable_hpet(char * str)122 static int __init disable_hpet(char *str)
123 {
124 boot_hpet_disable = true;
125 return 1;
126 }
127 __setup("nohpet", disable_hpet);
128
is_hpet_capable(void)129 static inline int is_hpet_capable(void)
130 {
131 return !boot_hpet_disable && hpet_address;
132 }
133
134 /**
135 * is_hpet_enabled - Check whether the legacy HPET timer interrupt is enabled
136 */
is_hpet_enabled(void)137 int is_hpet_enabled(void)
138 {
139 return is_hpet_capable() && hpet_legacy_int_enabled;
140 }
141 EXPORT_SYMBOL_GPL(is_hpet_enabled);
142
_hpet_print_config(const char * function,int line)143 static void _hpet_print_config(const char *function, int line)
144 {
145 u32 i, id, period, cfg, status, channels, l, h;
146
147 pr_info("%s(%d):\n", function, line);
148
149 id = hpet_readl(HPET_ID);
150 period = hpet_readl(HPET_PERIOD);
151 pr_info("ID: 0x%x, PERIOD: 0x%x\n", id, period);
152
153 cfg = hpet_readl(HPET_CFG);
154 status = hpet_readl(HPET_STATUS);
155 pr_info("CFG: 0x%x, STATUS: 0x%x\n", cfg, status);
156
157 l = hpet_readl(HPET_COUNTER);
158 h = hpet_readl(HPET_COUNTER+4);
159 pr_info("COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
160
161 channels = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
162
163 for (i = 0; i < channels; i++) {
164 l = hpet_readl(HPET_Tn_CFG(i));
165 h = hpet_readl(HPET_Tn_CFG(i)+4);
166 pr_info("T%d: CFG_l: 0x%x, CFG_h: 0x%x\n", i, l, h);
167
168 l = hpet_readl(HPET_Tn_CMP(i));
169 h = hpet_readl(HPET_Tn_CMP(i)+4);
170 pr_info("T%d: CMP_l: 0x%x, CMP_h: 0x%x\n", i, l, h);
171
172 l = hpet_readl(HPET_Tn_ROUTE(i));
173 h = hpet_readl(HPET_Tn_ROUTE(i)+4);
174 pr_info("T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n", i, l, h);
175 }
176 }
177
178 #define hpet_print_config() \
179 do { \
180 if (hpet_verbose) \
181 _hpet_print_config(__func__, __LINE__); \
182 } while (0)
183
184 /*
185 * When the HPET driver (/dev/hpet) is enabled, we need to reserve
186 * timer 0 and timer 1 in case of RTC emulation.
187 */
188 #ifdef CONFIG_HPET
189
hpet_reserve_platform_timers(void)190 static void __init hpet_reserve_platform_timers(void)
191 {
192 struct hpet_data hd;
193 unsigned int i;
194
195 memset(&hd, 0, sizeof(hd));
196 hd.hd_phys_address = hpet_address;
197 hd.hd_address = hpet_virt_address;
198 hd.hd_nirqs = hpet_base.nr_channels;
199
200 /*
201 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
202 * is wrong for i8259!) not the output IRQ. Many BIOS writers
203 * don't bother configuring *any* comparator interrupts.
204 */
205 hd.hd_irq[0] = HPET_LEGACY_8254;
206 hd.hd_irq[1] = HPET_LEGACY_RTC;
207
208 for (i = 0; i < hpet_base.nr_channels; i++) {
209 struct hpet_channel *hc = hpet_base.channels + i;
210
211 if (i >= 2)
212 hd.hd_irq[i] = hc->irq;
213
214 switch (hc->mode) {
215 case HPET_MODE_UNUSED:
216 case HPET_MODE_DEVICE:
217 hc->mode = HPET_MODE_DEVICE;
218 break;
219 case HPET_MODE_CLOCKEVT:
220 case HPET_MODE_LEGACY:
221 hpet_reserve_timer(&hd, hc->num);
222 break;
223 }
224 }
225
226 hpet_alloc(&hd);
227 }
228
hpet_select_device_channel(void)229 static void __init hpet_select_device_channel(void)
230 {
231 int i;
232
233 for (i = 0; i < hpet_base.nr_channels; i++) {
234 struct hpet_channel *hc = hpet_base.channels + i;
235
236 /* Associate the first unused channel to /dev/hpet */
237 if (hc->mode == HPET_MODE_UNUSED) {
238 hc->mode = HPET_MODE_DEVICE;
239 return;
240 }
241 }
242 }
243
244 #else
hpet_reserve_platform_timers(void)245 static inline void hpet_reserve_platform_timers(void) { }
hpet_select_device_channel(void)246 static inline void hpet_select_device_channel(void) {}
247 #endif
248
249 /* Common HPET functions */
hpet_stop_counter(void)250 static void hpet_stop_counter(void)
251 {
252 u32 cfg = hpet_readl(HPET_CFG);
253
254 cfg &= ~HPET_CFG_ENABLE;
255 hpet_writel(cfg, HPET_CFG);
256 }
257
hpet_reset_counter(void)258 static void hpet_reset_counter(void)
259 {
260 hpet_writel(0, HPET_COUNTER);
261 hpet_writel(0, HPET_COUNTER + 4);
262 }
263
hpet_start_counter(void)264 static void hpet_start_counter(void)
265 {
266 unsigned int cfg = hpet_readl(HPET_CFG);
267
268 cfg |= HPET_CFG_ENABLE;
269 hpet_writel(cfg, HPET_CFG);
270 }
271
hpet_restart_counter(void)272 static void hpet_restart_counter(void)
273 {
274 hpet_stop_counter();
275 hpet_reset_counter();
276 hpet_start_counter();
277 }
278
hpet_resume_device(void)279 static void hpet_resume_device(void)
280 {
281 force_hpet_resume();
282 }
283
hpet_resume_counter(struct clocksource * cs)284 static void hpet_resume_counter(struct clocksource *cs)
285 {
286 hpet_resume_device();
287 hpet_restart_counter();
288 }
289
hpet_enable_legacy_int(void)290 static void hpet_enable_legacy_int(void)
291 {
292 unsigned int cfg = hpet_readl(HPET_CFG);
293
294 cfg |= HPET_CFG_LEGACY;
295 hpet_writel(cfg, HPET_CFG);
296 hpet_legacy_int_enabled = true;
297 }
298
hpet_clkevt_set_state_periodic(struct clock_event_device * evt)299 static int hpet_clkevt_set_state_periodic(struct clock_event_device *evt)
300 {
301 unsigned int channel = clockevent_to_channel(evt)->num;
302 unsigned int cfg, cmp, now;
303 uint64_t delta;
304
305 hpet_stop_counter();
306 delta = ((uint64_t)(NSEC_PER_SEC / HZ)) * evt->mult;
307 delta >>= evt->shift;
308 now = hpet_readl(HPET_COUNTER);
309 cmp = now + (unsigned int)delta;
310 cfg = hpet_readl(HPET_Tn_CFG(channel));
311 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL |
312 HPET_TN_32BIT;
313 hpet_writel(cfg, HPET_Tn_CFG(channel));
314 hpet_writel(cmp, HPET_Tn_CMP(channel));
315 udelay(1);
316 /*
317 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
318 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
319 * bit is automatically cleared after the first write.
320 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
321 * Publication # 24674)
322 */
323 hpet_writel((unsigned int)delta, HPET_Tn_CMP(channel));
324 hpet_start_counter();
325 hpet_print_config();
326
327 return 0;
328 }
329
hpet_clkevt_set_state_oneshot(struct clock_event_device * evt)330 static int hpet_clkevt_set_state_oneshot(struct clock_event_device *evt)
331 {
332 unsigned int channel = clockevent_to_channel(evt)->num;
333 unsigned int cfg;
334
335 cfg = hpet_readl(HPET_Tn_CFG(channel));
336 cfg &= ~HPET_TN_PERIODIC;
337 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
338 hpet_writel(cfg, HPET_Tn_CFG(channel));
339
340 return 0;
341 }
342
hpet_clkevt_set_state_shutdown(struct clock_event_device * evt)343 static int hpet_clkevt_set_state_shutdown(struct clock_event_device *evt)
344 {
345 unsigned int channel = clockevent_to_channel(evt)->num;
346 unsigned int cfg;
347
348 cfg = hpet_readl(HPET_Tn_CFG(channel));
349 cfg &= ~HPET_TN_ENABLE;
350 hpet_writel(cfg, HPET_Tn_CFG(channel));
351
352 return 0;
353 }
354
hpet_clkevt_legacy_resume(struct clock_event_device * evt)355 static int hpet_clkevt_legacy_resume(struct clock_event_device *evt)
356 {
357 hpet_enable_legacy_int();
358 hpet_print_config();
359 return 0;
360 }
361
362 static int
hpet_clkevt_set_next_event(unsigned long delta,struct clock_event_device * evt)363 hpet_clkevt_set_next_event(unsigned long delta, struct clock_event_device *evt)
364 {
365 unsigned int channel = clockevent_to_channel(evt)->num;
366 u32 cnt;
367 s32 res;
368
369 cnt = hpet_readl(HPET_COUNTER);
370 cnt += (u32) delta;
371 hpet_writel(cnt, HPET_Tn_CMP(channel));
372
373 /*
374 * HPETs are a complete disaster. The compare register is
375 * based on a equal comparison and neither provides a less
376 * than or equal functionality (which would require to take
377 * the wraparound into account) nor a simple count down event
378 * mode. Further the write to the comparator register is
379 * delayed internally up to two HPET clock cycles in certain
380 * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
381 * longer delays. We worked around that by reading back the
382 * compare register, but that required another workaround for
383 * ICH9,10 chips where the first readout after write can
384 * return the old stale value. We already had a minimum
385 * programming delta of 5us enforced, but a NMI or SMI hitting
386 * between the counter readout and the comparator write can
387 * move us behind that point easily. Now instead of reading
388 * the compare register back several times, we make the ETIME
389 * decision based on the following: Return ETIME if the
390 * counter value after the write is less than HPET_MIN_CYCLES
391 * away from the event or if the counter is already ahead of
392 * the event. The minimum programming delta for the generic
393 * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
394 */
395 res = (s32)(cnt - hpet_readl(HPET_COUNTER));
396
397 return res < HPET_MIN_CYCLES ? -ETIME : 0;
398 }
399
hpet_init_clockevent(struct hpet_channel * hc,unsigned int rating)400 static void hpet_init_clockevent(struct hpet_channel *hc, unsigned int rating)
401 {
402 struct clock_event_device *evt = &hc->evt;
403
404 evt->rating = rating;
405 evt->irq = hc->irq;
406 evt->name = hc->name;
407 evt->cpumask = cpumask_of(hc->cpu);
408 evt->set_state_oneshot = hpet_clkevt_set_state_oneshot;
409 evt->set_next_event = hpet_clkevt_set_next_event;
410 evt->set_state_shutdown = hpet_clkevt_set_state_shutdown;
411
412 evt->features = CLOCK_EVT_FEAT_ONESHOT;
413 if (hc->boot_cfg & HPET_TN_PERIODIC) {
414 evt->features |= CLOCK_EVT_FEAT_PERIODIC;
415 evt->set_state_periodic = hpet_clkevt_set_state_periodic;
416 }
417 }
418
hpet_legacy_clockevent_register(struct hpet_channel * hc)419 static void __init hpet_legacy_clockevent_register(struct hpet_channel *hc)
420 {
421 /*
422 * Start HPET with the boot CPU's cpumask and make it global after
423 * the IO_APIC has been initialized.
424 */
425 hc->cpu = boot_cpu_data.cpu_index;
426 strscpy(hc->name, "hpet", sizeof(hc->name));
427 hpet_init_clockevent(hc, 50);
428
429 hc->evt.tick_resume = hpet_clkevt_legacy_resume;
430
431 /*
432 * Legacy horrors and sins from the past. HPET used periodic mode
433 * unconditionally forever on the legacy channel 0. Removing the
434 * below hack and using the conditional in hpet_init_clockevent()
435 * makes at least Qemu and one hardware machine fail to boot.
436 * There are two issues which cause the boot failure:
437 *
438 * #1 After the timer delivery test in IOAPIC and the IOAPIC setup
439 * the next interrupt is not delivered despite the HPET channel
440 * being programmed correctly. Reprogramming the HPET after
441 * switching to IOAPIC makes it work again. After fixing this,
442 * the next issue surfaces:
443 *
444 * #2 Due to the unconditional periodic mode availability the Local
445 * APIC timer calibration can hijack the global clockevents
446 * event handler without causing damage. Using oneshot at this
447 * stage makes if hang because the HPET does not get
448 * reprogrammed due to the handler hijacking. Duh, stupid me!
449 *
450 * Both issues require major surgery and especially the kick HPET
451 * again after enabling IOAPIC results in really nasty hackery.
452 * This 'assume periodic works' magic has survived since HPET
453 * support got added, so it's questionable whether this should be
454 * fixed. Both Qemu and the failing hardware machine support
455 * periodic mode despite the fact that both don't advertise it in
456 * the configuration register and both need that extra kick after
457 * switching to IOAPIC. Seems to be a feature...
458 */
459 hc->evt.features |= CLOCK_EVT_FEAT_PERIODIC;
460 hc->evt.set_state_periodic = hpet_clkevt_set_state_periodic;
461
462 /* Start HPET legacy interrupts */
463 hpet_enable_legacy_int();
464
465 clockevents_config_and_register(&hc->evt, hpet_freq,
466 HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
467 global_clock_event = &hc->evt;
468 pr_debug("Clockevent registered\n");
469 }
470
471 /*
472 * HPET MSI Support
473 */
474 #if defined(CONFIG_X86_LOCAL_APIC) && defined(CONFIG_GENERIC_MSI_IRQ)
hpet_msi_unmask(struct irq_data * data)475 static void hpet_msi_unmask(struct irq_data *data)
476 {
477 struct hpet_channel *hc = irq_data_get_irq_handler_data(data);
478 unsigned int cfg;
479
480 cfg = hpet_readl(HPET_Tn_CFG(hc->num));
481 cfg |= HPET_TN_ENABLE | HPET_TN_FSB;
482 hpet_writel(cfg, HPET_Tn_CFG(hc->num));
483 }
484
hpet_msi_mask(struct irq_data * data)485 static void hpet_msi_mask(struct irq_data *data)
486 {
487 struct hpet_channel *hc = irq_data_get_irq_handler_data(data);
488 unsigned int cfg;
489
490 cfg = hpet_readl(HPET_Tn_CFG(hc->num));
491 cfg &= ~(HPET_TN_ENABLE | HPET_TN_FSB);
492 hpet_writel(cfg, HPET_Tn_CFG(hc->num));
493 }
494
hpet_msi_write(struct hpet_channel * hc,struct msi_msg * msg)495 static void hpet_msi_write(struct hpet_channel *hc, struct msi_msg *msg)
496 {
497 hpet_writel(msg->data, HPET_Tn_ROUTE(hc->num));
498 hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hc->num) + 4);
499 }
500
hpet_msi_write_msg(struct irq_data * data,struct msi_msg * msg)501 static void hpet_msi_write_msg(struct irq_data *data, struct msi_msg *msg)
502 {
503 hpet_msi_write(irq_data_get_irq_handler_data(data), msg);
504 }
505
506 static struct irq_chip hpet_msi_controller __ro_after_init = {
507 .name = "HPET-MSI",
508 .irq_unmask = hpet_msi_unmask,
509 .irq_mask = hpet_msi_mask,
510 .irq_ack = irq_chip_ack_parent,
511 .irq_set_affinity = msi_domain_set_affinity,
512 .irq_retrigger = irq_chip_retrigger_hierarchy,
513 .irq_write_msi_msg = hpet_msi_write_msg,
514 .flags = IRQCHIP_SKIP_SET_WAKE | IRQCHIP_AFFINITY_PRE_STARTUP,
515 };
516
hpet_msi_init(struct irq_domain * domain,struct msi_domain_info * info,unsigned int virq,irq_hw_number_t hwirq,msi_alloc_info_t * arg)517 static int hpet_msi_init(struct irq_domain *domain,
518 struct msi_domain_info *info, unsigned int virq,
519 irq_hw_number_t hwirq, msi_alloc_info_t *arg)
520 {
521 irq_domain_set_info(domain, virq, arg->hwirq, info->chip, NULL,
522 handle_edge_irq, arg->data, "edge");
523
524 return 0;
525 }
526
527 static struct msi_domain_ops hpet_msi_domain_ops = {
528 .msi_init = hpet_msi_init,
529 };
530
531 static struct msi_domain_info hpet_msi_domain_info = {
532 .ops = &hpet_msi_domain_ops,
533 .chip = &hpet_msi_controller,
534 .flags = MSI_FLAG_USE_DEF_DOM_OPS,
535 };
536
hpet_create_irq_domain(int hpet_id)537 static struct irq_domain *hpet_create_irq_domain(int hpet_id)
538 {
539 struct msi_domain_info *domain_info;
540 struct irq_domain *parent, *d;
541 struct fwnode_handle *fn;
542 struct irq_fwspec fwspec;
543
544 if (x86_vector_domain == NULL)
545 return NULL;
546
547 domain_info = kzalloc(sizeof(*domain_info), GFP_KERNEL);
548 if (!domain_info)
549 return NULL;
550
551 *domain_info = hpet_msi_domain_info;
552 domain_info->data = (void *)(long)hpet_id;
553
554 fn = irq_domain_alloc_named_id_fwnode(hpet_msi_controller.name,
555 hpet_id);
556 if (!fn) {
557 kfree(domain_info);
558 return NULL;
559 }
560
561 fwspec.fwnode = fn;
562 fwspec.param_count = 1;
563 fwspec.param[0] = hpet_id;
564
565 parent = irq_find_matching_fwspec(&fwspec, DOMAIN_BUS_GENERIC_MSI);
566 if (!parent) {
567 irq_domain_free_fwnode(fn);
568 kfree(domain_info);
569 return NULL;
570 }
571 if (parent != x86_vector_domain)
572 hpet_msi_controller.name = "IR-HPET-MSI";
573
574 d = msi_create_irq_domain(fn, domain_info, parent);
575 if (!d) {
576 irq_domain_free_fwnode(fn);
577 kfree(domain_info);
578 }
579 return d;
580 }
581
hpet_dev_id(struct irq_domain * domain)582 static inline int hpet_dev_id(struct irq_domain *domain)
583 {
584 struct msi_domain_info *info = msi_get_domain_info(domain);
585
586 return (int)(long)info->data;
587 }
588
hpet_assign_irq(struct irq_domain * domain,struct hpet_channel * hc,int dev_num)589 static int hpet_assign_irq(struct irq_domain *domain, struct hpet_channel *hc,
590 int dev_num)
591 {
592 struct irq_alloc_info info;
593
594 init_irq_alloc_info(&info, NULL);
595 info.type = X86_IRQ_ALLOC_TYPE_HPET;
596 info.data = hc;
597 info.devid = hpet_dev_id(domain);
598 info.hwirq = dev_num;
599
600 return irq_domain_alloc_irqs(domain, 1, NUMA_NO_NODE, &info);
601 }
602
hpet_clkevt_msi_resume(struct clock_event_device * evt)603 static int hpet_clkevt_msi_resume(struct clock_event_device *evt)
604 {
605 struct hpet_channel *hc = clockevent_to_channel(evt);
606 struct irq_data *data = irq_get_irq_data(hc->irq);
607 struct msi_msg msg;
608
609 /* Restore the MSI msg and unmask the interrupt */
610 irq_chip_compose_msi_msg(data, &msg);
611 hpet_msi_write(hc, &msg);
612 hpet_msi_unmask(data);
613 return 0;
614 }
615
hpet_msi_interrupt_handler(int irq,void * data)616 static irqreturn_t hpet_msi_interrupt_handler(int irq, void *data)
617 {
618 struct hpet_channel *hc = data;
619 struct clock_event_device *evt = &hc->evt;
620
621 if (!evt->event_handler) {
622 pr_info("Spurious interrupt HPET channel %d\n", hc->num);
623 return IRQ_HANDLED;
624 }
625
626 evt->event_handler(evt);
627 return IRQ_HANDLED;
628 }
629
hpet_setup_msi_irq(struct hpet_channel * hc)630 static int hpet_setup_msi_irq(struct hpet_channel *hc)
631 {
632 if (request_irq(hc->irq, hpet_msi_interrupt_handler,
633 IRQF_TIMER | IRQF_NOBALANCING,
634 hc->name, hc))
635 return -1;
636
637 disable_irq(hc->irq);
638 irq_set_affinity(hc->irq, cpumask_of(hc->cpu));
639 enable_irq(hc->irq);
640
641 pr_debug("%s irq %u for MSI\n", hc->name, hc->irq);
642
643 return 0;
644 }
645
646 /* Invoked from the hotplug callback on @cpu */
init_one_hpet_msi_clockevent(struct hpet_channel * hc,int cpu)647 static void init_one_hpet_msi_clockevent(struct hpet_channel *hc, int cpu)
648 {
649 struct clock_event_device *evt = &hc->evt;
650
651 hc->cpu = cpu;
652 per_cpu(cpu_hpet_channel, cpu) = hc;
653 hpet_setup_msi_irq(hc);
654
655 hpet_init_clockevent(hc, 110);
656 evt->tick_resume = hpet_clkevt_msi_resume;
657
658 clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
659 0x7FFFFFFF);
660 }
661
hpet_get_unused_clockevent(void)662 static struct hpet_channel *hpet_get_unused_clockevent(void)
663 {
664 int i;
665
666 for (i = 0; i < hpet_base.nr_channels; i++) {
667 struct hpet_channel *hc = hpet_base.channels + i;
668
669 if (hc->mode != HPET_MODE_CLOCKEVT || hc->in_use)
670 continue;
671 hc->in_use = 1;
672 return hc;
673 }
674 return NULL;
675 }
676
hpet_cpuhp_online(unsigned int cpu)677 static int hpet_cpuhp_online(unsigned int cpu)
678 {
679 struct hpet_channel *hc = hpet_get_unused_clockevent();
680
681 if (hc)
682 init_one_hpet_msi_clockevent(hc, cpu);
683 return 0;
684 }
685
hpet_cpuhp_dead(unsigned int cpu)686 static int hpet_cpuhp_dead(unsigned int cpu)
687 {
688 struct hpet_channel *hc = per_cpu(cpu_hpet_channel, cpu);
689
690 if (!hc)
691 return 0;
692 free_irq(hc->irq, hc);
693 hc->in_use = 0;
694 per_cpu(cpu_hpet_channel, cpu) = NULL;
695 return 0;
696 }
697
hpet_select_clockevents(void)698 static void __init hpet_select_clockevents(void)
699 {
700 unsigned int i;
701
702 hpet_base.nr_clockevents = 0;
703
704 /* No point if MSI is disabled or CPU has an Always Running APIC Timer */
705 if (hpet_msi_disable || boot_cpu_has(X86_FEATURE_ARAT))
706 return;
707
708 hpet_print_config();
709
710 hpet_domain = hpet_create_irq_domain(hpet_blockid);
711 if (!hpet_domain)
712 return;
713
714 for (i = 0; i < hpet_base.nr_channels; i++) {
715 struct hpet_channel *hc = hpet_base.channels + i;
716 int irq;
717
718 if (hc->mode != HPET_MODE_UNUSED)
719 continue;
720
721 /* Only consider HPET channel with MSI support */
722 if (!(hc->boot_cfg & HPET_TN_FSB_CAP))
723 continue;
724
725 sprintf(hc->name, "hpet%d", i);
726
727 irq = hpet_assign_irq(hpet_domain, hc, hc->num);
728 if (irq <= 0)
729 continue;
730
731 hc->irq = irq;
732 hc->mode = HPET_MODE_CLOCKEVT;
733
734 if (++hpet_base.nr_clockevents == num_possible_cpus())
735 break;
736 }
737
738 pr_info("%d channels of %d reserved for per-cpu timers\n",
739 hpet_base.nr_channels, hpet_base.nr_clockevents);
740 }
741
742 #else
743
hpet_select_clockevents(void)744 static inline void hpet_select_clockevents(void) { }
745
746 #define hpet_cpuhp_online NULL
747 #define hpet_cpuhp_dead NULL
748
749 #endif
750
751 /*
752 * Clock source related code
753 */
754 #if defined(CONFIG_SMP) && defined(CONFIG_64BIT)
755 /*
756 * Reading the HPET counter is a very slow operation. If a large number of
757 * CPUs are trying to access the HPET counter simultaneously, it can cause
758 * massive delays and slow down system performance dramatically. This may
759 * happen when HPET is the default clock source instead of TSC. For a
760 * really large system with hundreds of CPUs, the slowdown may be so
761 * severe, that it can actually crash the system because of a NMI watchdog
762 * soft lockup, for example.
763 *
764 * If multiple CPUs are trying to access the HPET counter at the same time,
765 * we don't actually need to read the counter multiple times. Instead, the
766 * other CPUs can use the counter value read by the first CPU in the group.
767 *
768 * This special feature is only enabled on x86-64 systems. It is unlikely
769 * that 32-bit x86 systems will have enough CPUs to require this feature
770 * with its associated locking overhead. We also need 64-bit atomic read.
771 *
772 * The lock and the HPET value are stored together and can be read in a
773 * single atomic 64-bit read. It is explicitly assumed that arch_spinlock_t
774 * is 32 bits in size.
775 */
776 union hpet_lock {
777 struct {
778 arch_spinlock_t lock;
779 u32 value;
780 };
781 u64 lockval;
782 };
783
784 static union hpet_lock hpet __cacheline_aligned = {
785 { .lock = __ARCH_SPIN_LOCK_UNLOCKED, },
786 };
787
read_hpet(struct clocksource * cs)788 static u64 read_hpet(struct clocksource *cs)
789 {
790 unsigned long flags;
791 union hpet_lock old, new;
792
793 BUILD_BUG_ON(sizeof(union hpet_lock) != 8);
794
795 /*
796 * Read HPET directly if in NMI.
797 */
798 if (in_nmi())
799 return (u64)hpet_readl(HPET_COUNTER);
800
801 /*
802 * Read the current state of the lock and HPET value atomically.
803 */
804 old.lockval = READ_ONCE(hpet.lockval);
805
806 if (arch_spin_is_locked(&old.lock))
807 goto contended;
808
809 local_irq_save(flags);
810 if (arch_spin_trylock(&hpet.lock)) {
811 new.value = hpet_readl(HPET_COUNTER);
812 /*
813 * Use WRITE_ONCE() to prevent store tearing.
814 */
815 WRITE_ONCE(hpet.value, new.value);
816 arch_spin_unlock(&hpet.lock);
817 local_irq_restore(flags);
818 return (u64)new.value;
819 }
820 local_irq_restore(flags);
821
822 contended:
823 /*
824 * Contended case
825 * --------------
826 * Wait until the HPET value change or the lock is free to indicate
827 * its value is up-to-date.
828 *
829 * It is possible that old.value has already contained the latest
830 * HPET value while the lock holder was in the process of releasing
831 * the lock. Checking for lock state change will enable us to return
832 * the value immediately instead of waiting for the next HPET reader
833 * to come along.
834 */
835 do {
836 cpu_relax();
837 new.lockval = READ_ONCE(hpet.lockval);
838 } while ((new.value == old.value) && arch_spin_is_locked(&new.lock));
839
840 return (u64)new.value;
841 }
842 #else
843 /*
844 * For UP or 32-bit.
845 */
read_hpet(struct clocksource * cs)846 static u64 read_hpet(struct clocksource *cs)
847 {
848 return (u64)hpet_readl(HPET_COUNTER);
849 }
850 #endif
851
852 static struct clocksource clocksource_hpet = {
853 .name = "hpet",
854 .rating = 250,
855 .read = read_hpet,
856 .mask = HPET_MASK,
857 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
858 .resume = hpet_resume_counter,
859 };
860
861 /*
862 * AMD SB700 based systems with spread spectrum enabled use a SMM based
863 * HPET emulation to provide proper frequency setting.
864 *
865 * On such systems the SMM code is initialized with the first HPET register
866 * access and takes some time to complete. During this time the config
867 * register reads 0xffffffff. We check for max 1000 loops whether the
868 * config register reads a non-0xffffffff value to make sure that the
869 * HPET is up and running before we proceed any further.
870 *
871 * A counting loop is safe, as the HPET access takes thousands of CPU cycles.
872 *
873 * On non-SB700 based machines this check is only done once and has no
874 * side effects.
875 */
hpet_cfg_working(void)876 static bool __init hpet_cfg_working(void)
877 {
878 int i;
879
880 for (i = 0; i < 1000; i++) {
881 if (hpet_readl(HPET_CFG) != 0xFFFFFFFF)
882 return true;
883 }
884
885 pr_warn("Config register invalid. Disabling HPET\n");
886 return false;
887 }
888
hpet_counting(void)889 static bool __init hpet_counting(void)
890 {
891 u64 start, now, t1;
892
893 hpet_restart_counter();
894
895 t1 = hpet_readl(HPET_COUNTER);
896 start = rdtsc();
897
898 /*
899 * We don't know the TSC frequency yet, but waiting for
900 * 200000 TSC cycles is safe:
901 * 4 GHz == 50us
902 * 1 GHz == 200us
903 */
904 do {
905 if (t1 != hpet_readl(HPET_COUNTER))
906 return true;
907 now = rdtsc();
908 } while ((now - start) < 200000UL);
909
910 pr_warn("Counter not counting. HPET disabled\n");
911 return false;
912 }
913
mwait_pc10_supported(void)914 static bool __init mwait_pc10_supported(void)
915 {
916 unsigned int eax, ebx, ecx, mwait_substates;
917
918 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
919 return false;
920
921 if (!cpu_feature_enabled(X86_FEATURE_MWAIT))
922 return false;
923
924 cpuid(CPUID_LEAF_MWAIT, &eax, &ebx, &ecx, &mwait_substates);
925
926 return (ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) &&
927 (ecx & CPUID5_ECX_INTERRUPT_BREAK) &&
928 (mwait_substates & (0xF << 28));
929 }
930
931 /*
932 * Check whether the system supports PC10. If so force disable HPET as that
933 * stops counting in PC10. This check is overbroad as it does not take any
934 * of the following into account:
935 *
936 * - ACPI tables
937 * - Enablement of intel_idle
938 * - Command line arguments which limit intel_idle C-state support
939 *
940 * That's perfectly fine. HPET is a piece of hardware designed by committee
941 * and the only reasons why it is still in use on modern systems is the
942 * fact that it is impossible to reliably query TSC and CPU frequency via
943 * CPUID or firmware.
944 *
945 * If HPET is functional it is useful for calibrating TSC, but this can be
946 * done via PMTIMER as well which seems to be the last remaining timer on
947 * X86/INTEL platforms that has not been completely wreckaged by feature
948 * creep.
949 *
950 * In theory HPET support should be removed altogether, but there are older
951 * systems out there which depend on it because TSC and APIC timer are
952 * dysfunctional in deeper C-states.
953 *
954 * It's only 20 years now that hardware people have been asked to provide
955 * reliable and discoverable facilities which can be used for timekeeping
956 * and per CPU timer interrupts.
957 *
958 * The probability that this problem is going to be solved in the
959 * foreseeable future is close to zero, so the kernel has to be cluttered
960 * with heuristics to keep up with the ever growing amount of hardware and
961 * firmware trainwrecks. Hopefully some day hardware people will understand
962 * that the approach of "This can be fixed in software" is not sustainable.
963 * Hope dies last...
964 */
hpet_is_pc10_damaged(void)965 static bool __init hpet_is_pc10_damaged(void)
966 {
967 unsigned long long pcfg;
968
969 /* Check whether PC10 substates are supported */
970 if (!mwait_pc10_supported())
971 return false;
972
973 /* Check whether PC10 is enabled in PKG C-state limit */
974 rdmsrq(MSR_PKG_CST_CONFIG_CONTROL, pcfg);
975 if ((pcfg & 0xF) < 8)
976 return false;
977
978 if (hpet_force_user) {
979 pr_warn("HPET force enabled via command line, but dysfunctional in PC10.\n");
980 return false;
981 }
982
983 pr_info("HPET dysfunctional in PC10. Force disabled.\n");
984 boot_hpet_disable = true;
985 return true;
986 }
987
988 /**
989 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
990 */
hpet_enable(void)991 int __init hpet_enable(void)
992 {
993 u32 hpet_period, cfg, id, irq;
994 unsigned int i, channels;
995 struct hpet_channel *hc;
996 u64 freq;
997
998 if (!is_hpet_capable())
999 return 0;
1000
1001 if (hpet_is_pc10_damaged())
1002 return 0;
1003
1004 hpet_set_mapping();
1005 if (!hpet_virt_address)
1006 return 0;
1007
1008 /* Validate that the config register is working */
1009 if (!hpet_cfg_working())
1010 goto out_nohpet;
1011
1012 /*
1013 * Read the period and check for a sane value:
1014 */
1015 hpet_period = hpet_readl(HPET_PERIOD);
1016 if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
1017 goto out_nohpet;
1018
1019 /* The period is a femtoseconds value. Convert it to a frequency. */
1020 freq = FSEC_PER_SEC;
1021 do_div(freq, hpet_period);
1022 hpet_freq = freq;
1023
1024 /*
1025 * Read the HPET ID register to retrieve the IRQ routing
1026 * information and the number of channels
1027 */
1028 id = hpet_readl(HPET_ID);
1029 hpet_print_config();
1030
1031 /* This is the HPET channel number which is zero based */
1032 channels = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
1033
1034 /*
1035 * The legacy routing mode needs at least two channels, tick timer
1036 * and the rtc emulation channel.
1037 */
1038 if (IS_ENABLED(CONFIG_HPET_EMULATE_RTC) && channels < 2)
1039 goto out_nohpet;
1040
1041 hc = kcalloc(channels, sizeof(*hc), GFP_KERNEL);
1042 if (!hc) {
1043 pr_warn("Disabling HPET.\n");
1044 goto out_nohpet;
1045 }
1046 hpet_base.channels = hc;
1047 hpet_base.nr_channels = channels;
1048
1049 /* Read, store and sanitize the global configuration */
1050 cfg = hpet_readl(HPET_CFG);
1051 hpet_base.boot_cfg = cfg;
1052 cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
1053 hpet_writel(cfg, HPET_CFG);
1054 if (cfg)
1055 pr_warn("Global config: Unknown bits %#x\n", cfg);
1056
1057 /* Read, store and sanitize the per channel configuration */
1058 for (i = 0; i < channels; i++, hc++) {
1059 hc->num = i;
1060
1061 cfg = hpet_readl(HPET_Tn_CFG(i));
1062 hc->boot_cfg = cfg;
1063 irq = (cfg & Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
1064 hc->irq = irq;
1065
1066 cfg &= ~(HPET_TN_ENABLE | HPET_TN_LEVEL | HPET_TN_FSB);
1067 hpet_writel(cfg, HPET_Tn_CFG(i));
1068
1069 cfg &= ~(HPET_TN_PERIODIC | HPET_TN_PERIODIC_CAP
1070 | HPET_TN_64BIT_CAP | HPET_TN_32BIT | HPET_TN_ROUTE
1071 | HPET_TN_FSB | HPET_TN_FSB_CAP);
1072 if (cfg)
1073 pr_warn("Channel #%u config: Unknown bits %#x\n", i, cfg);
1074 }
1075 hpet_print_config();
1076
1077 /*
1078 * Validate that the counter is counting. This needs to be done
1079 * after sanitizing the config registers to properly deal with
1080 * force enabled HPETs.
1081 */
1082 if (!hpet_counting())
1083 goto out_nohpet;
1084
1085 if (tsc_clocksource_watchdog_disabled())
1086 clocksource_hpet.flags |= CLOCK_SOURCE_MUST_VERIFY;
1087 clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
1088
1089 if (id & HPET_ID_LEGSUP) {
1090 hpet_legacy_clockevent_register(&hpet_base.channels[0]);
1091 hpet_base.channels[0].mode = HPET_MODE_LEGACY;
1092 if (IS_ENABLED(CONFIG_HPET_EMULATE_RTC))
1093 hpet_base.channels[1].mode = HPET_MODE_LEGACY;
1094 return 1;
1095 }
1096 return 0;
1097
1098 out_nohpet:
1099 kfree(hpet_base.channels);
1100 hpet_base.channels = NULL;
1101 hpet_base.nr_channels = 0;
1102 hpet_clear_mapping();
1103 hpet_address = 0;
1104 return 0;
1105 }
1106
1107 /*
1108 * The late initialization runs after the PCI quirks have been invoked
1109 * which might have detected a system on which the HPET can be enforced.
1110 *
1111 * Also, the MSI machinery is not working yet when the HPET is initialized
1112 * early.
1113 *
1114 * If the HPET is enabled, then:
1115 *
1116 * 1) Reserve one channel for /dev/hpet if CONFIG_HPET=y
1117 * 2) Reserve up to num_possible_cpus() channels as per CPU clockevents
1118 * 3) Setup /dev/hpet if CONFIG_HPET=y
1119 * 4) Register hotplug callbacks when clockevents are available
1120 */
hpet_late_init(void)1121 static __init int hpet_late_init(void)
1122 {
1123 int ret;
1124
1125 if (!hpet_address) {
1126 if (!force_hpet_address)
1127 return -ENODEV;
1128
1129 hpet_address = force_hpet_address;
1130 hpet_enable();
1131 }
1132
1133 if (!hpet_virt_address)
1134 return -ENODEV;
1135
1136 hpet_select_device_channel();
1137 hpet_select_clockevents();
1138 hpet_reserve_platform_timers();
1139 hpet_print_config();
1140
1141 if (!hpet_base.nr_clockevents)
1142 return 0;
1143
1144 ret = cpuhp_setup_state(CPUHP_AP_X86_HPET_ONLINE, "x86/hpet:online",
1145 hpet_cpuhp_online, NULL);
1146 if (ret)
1147 return ret;
1148 ret = cpuhp_setup_state(CPUHP_X86_HPET_DEAD, "x86/hpet:dead", NULL,
1149 hpet_cpuhp_dead);
1150 if (ret)
1151 goto err_cpuhp;
1152 return 0;
1153
1154 err_cpuhp:
1155 cpuhp_remove_state(CPUHP_AP_X86_HPET_ONLINE);
1156 return ret;
1157 }
1158 fs_initcall(hpet_late_init);
1159
hpet_disable(void)1160 void hpet_disable(void)
1161 {
1162 unsigned int i;
1163 u32 cfg;
1164
1165 if (!is_hpet_capable() || !hpet_virt_address)
1166 return;
1167
1168 /* Restore boot configuration with the enable bit cleared */
1169 cfg = hpet_base.boot_cfg;
1170 cfg &= ~HPET_CFG_ENABLE;
1171 hpet_writel(cfg, HPET_CFG);
1172
1173 /* Restore the channel boot configuration */
1174 for (i = 0; i < hpet_base.nr_channels; i++)
1175 hpet_writel(hpet_base.channels[i].boot_cfg, HPET_Tn_CFG(i));
1176
1177 /* If the HPET was enabled at boot time, reenable it */
1178 if (hpet_base.boot_cfg & HPET_CFG_ENABLE)
1179 hpet_writel(hpet_base.boot_cfg, HPET_CFG);
1180 }
1181
1182 #ifdef CONFIG_HPET_EMULATE_RTC
1183
1184 /*
1185 * HPET in LegacyReplacement mode eats up the RTC interrupt line. When HPET
1186 * is enabled, we support RTC interrupt functionality in software.
1187 *
1188 * RTC has 3 kinds of interrupts:
1189 *
1190 * 1) Update Interrupt - generate an interrupt, every second, when the
1191 * RTC clock is updated
1192 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
1193 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
1194 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all frequencies in powers of 2)
1195 *
1196 * (1) and (2) above are implemented using polling at a frequency of 64 Hz:
1197 * DEFAULT_RTC_INT_FREQ.
1198 *
1199 * The exact frequency is a tradeoff between accuracy and interrupt overhead.
1200 *
1201 * For (3), we use interrupts at 64 Hz, or the user specified periodic frequency,
1202 * if it's higher.
1203 */
1204 #include <linux/mc146818rtc.h>
1205 #include <linux/rtc.h>
1206
1207 #define DEFAULT_RTC_INT_FREQ 64
1208 #define DEFAULT_RTC_SHIFT 6
1209 #define RTC_NUM_INTS 1
1210
1211 static unsigned long hpet_rtc_flags;
1212 static int hpet_prev_update_sec;
1213 static struct rtc_time hpet_alarm_time;
1214 static unsigned long hpet_pie_count;
1215 static u32 hpet_t1_cmp;
1216 static u32 hpet_default_delta;
1217 static u32 hpet_pie_delta;
1218 static unsigned long hpet_pie_limit;
1219
1220 static rtc_irq_handler irq_handler;
1221
1222 /*
1223 * Check that the HPET counter c1 is ahead of c2
1224 */
hpet_cnt_ahead(u32 c1,u32 c2)1225 static inline int hpet_cnt_ahead(u32 c1, u32 c2)
1226 {
1227 return (s32)(c2 - c1) < 0;
1228 }
1229
1230 /*
1231 * Registers a IRQ handler.
1232 */
hpet_register_irq_handler(rtc_irq_handler handler)1233 int hpet_register_irq_handler(rtc_irq_handler handler)
1234 {
1235 if (!is_hpet_enabled())
1236 return -ENODEV;
1237 if (irq_handler)
1238 return -EBUSY;
1239
1240 irq_handler = handler;
1241
1242 return 0;
1243 }
1244 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
1245
1246 /*
1247 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1248 * and does cleanup.
1249 */
hpet_unregister_irq_handler(rtc_irq_handler handler)1250 void hpet_unregister_irq_handler(rtc_irq_handler handler)
1251 {
1252 if (!is_hpet_enabled())
1253 return;
1254
1255 irq_handler = NULL;
1256 hpet_rtc_flags = 0;
1257 }
1258 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1259
1260 /*
1261 * Channel 1 for RTC emulation. We use one shot mode, as periodic mode
1262 * is not supported by all HPET implementations for channel 1.
1263 *
1264 * hpet_rtc_timer_init() is called when the rtc is initialized.
1265 */
hpet_rtc_timer_init(void)1266 int hpet_rtc_timer_init(void)
1267 {
1268 unsigned int cfg, cnt, delta;
1269 unsigned long flags;
1270
1271 if (!is_hpet_enabled())
1272 return 0;
1273
1274 if (!hpet_default_delta) {
1275 struct clock_event_device *evt = &hpet_base.channels[0].evt;
1276 uint64_t clc;
1277
1278 clc = (uint64_t) evt->mult * NSEC_PER_SEC;
1279 clc >>= evt->shift + DEFAULT_RTC_SHIFT;
1280 hpet_default_delta = clc;
1281 }
1282
1283 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1284 delta = hpet_default_delta;
1285 else
1286 delta = hpet_pie_delta;
1287
1288 local_irq_save(flags);
1289
1290 cnt = delta + hpet_readl(HPET_COUNTER);
1291 hpet_writel(cnt, HPET_T1_CMP);
1292 hpet_t1_cmp = cnt;
1293
1294 cfg = hpet_readl(HPET_T1_CFG);
1295 cfg &= ~HPET_TN_PERIODIC;
1296 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1297 hpet_writel(cfg, HPET_T1_CFG);
1298
1299 local_irq_restore(flags);
1300
1301 return 1;
1302 }
1303 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1304
hpet_disable_rtc_channel(void)1305 static void hpet_disable_rtc_channel(void)
1306 {
1307 u32 cfg = hpet_readl(HPET_T1_CFG);
1308
1309 cfg &= ~HPET_TN_ENABLE;
1310 hpet_writel(cfg, HPET_T1_CFG);
1311 }
1312
1313 /*
1314 * The functions below are called from rtc driver.
1315 * Return 0 if HPET is not being used.
1316 * Otherwise do the necessary changes and return 1.
1317 */
hpet_mask_rtc_irq_bit(unsigned long bit_mask)1318 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1319 {
1320 if (!is_hpet_enabled())
1321 return 0;
1322
1323 hpet_rtc_flags &= ~bit_mask;
1324 if (unlikely(!hpet_rtc_flags))
1325 hpet_disable_rtc_channel();
1326
1327 return 1;
1328 }
1329 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1330
hpet_set_rtc_irq_bit(unsigned long bit_mask)1331 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1332 {
1333 unsigned long oldbits = hpet_rtc_flags;
1334
1335 if (!is_hpet_enabled())
1336 return 0;
1337
1338 hpet_rtc_flags |= bit_mask;
1339
1340 if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1341 hpet_prev_update_sec = -1;
1342
1343 if (!oldbits)
1344 hpet_rtc_timer_init();
1345
1346 return 1;
1347 }
1348 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1349
hpet_set_alarm_time(unsigned char hrs,unsigned char min,unsigned char sec)1350 int hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
1351 {
1352 if (!is_hpet_enabled())
1353 return 0;
1354
1355 hpet_alarm_time.tm_hour = hrs;
1356 hpet_alarm_time.tm_min = min;
1357 hpet_alarm_time.tm_sec = sec;
1358
1359 return 1;
1360 }
1361 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1362
hpet_set_periodic_freq(unsigned long freq)1363 int hpet_set_periodic_freq(unsigned long freq)
1364 {
1365 uint64_t clc;
1366
1367 if (!is_hpet_enabled())
1368 return 0;
1369
1370 if (freq <= DEFAULT_RTC_INT_FREQ) {
1371 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1372 } else {
1373 struct clock_event_device *evt = &hpet_base.channels[0].evt;
1374
1375 clc = (uint64_t) evt->mult * NSEC_PER_SEC;
1376 do_div(clc, freq);
1377 clc >>= evt->shift;
1378 hpet_pie_delta = clc;
1379 hpet_pie_limit = 0;
1380 }
1381
1382 return 1;
1383 }
1384 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1385
hpet_rtc_timer_reinit(void)1386 static void hpet_rtc_timer_reinit(void)
1387 {
1388 unsigned int delta;
1389 int lost_ints = -1;
1390
1391 if (unlikely(!hpet_rtc_flags))
1392 hpet_disable_rtc_channel();
1393
1394 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1395 delta = hpet_default_delta;
1396 else
1397 delta = hpet_pie_delta;
1398
1399 /*
1400 * Increment the comparator value until we are ahead of the
1401 * current count.
1402 */
1403 do {
1404 hpet_t1_cmp += delta;
1405 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1406 lost_ints++;
1407 } while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1408
1409 if (lost_ints) {
1410 if (hpet_rtc_flags & RTC_PIE)
1411 hpet_pie_count += lost_ints;
1412 if (printk_ratelimit())
1413 pr_warn("Lost %d RTC interrupts\n", lost_ints);
1414 }
1415 }
1416
hpet_rtc_interrupt(int irq,void * dev_id)1417 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1418 {
1419 struct rtc_time curr_time;
1420 unsigned long rtc_int_flag = 0;
1421
1422 hpet_rtc_timer_reinit();
1423 memset(&curr_time, 0, sizeof(struct rtc_time));
1424
1425 if (hpet_rtc_flags & (RTC_UIE | RTC_AIE)) {
1426 if (unlikely(mc146818_get_time(&curr_time, 10) < 0)) {
1427 pr_err_ratelimited("unable to read current time from RTC\n");
1428 return IRQ_HANDLED;
1429 }
1430 }
1431
1432 if (hpet_rtc_flags & RTC_UIE &&
1433 curr_time.tm_sec != hpet_prev_update_sec) {
1434 if (hpet_prev_update_sec >= 0)
1435 rtc_int_flag = RTC_UF;
1436 hpet_prev_update_sec = curr_time.tm_sec;
1437 }
1438
1439 if (hpet_rtc_flags & RTC_PIE && ++hpet_pie_count >= hpet_pie_limit) {
1440 rtc_int_flag |= RTC_PF;
1441 hpet_pie_count = 0;
1442 }
1443
1444 if (hpet_rtc_flags & RTC_AIE &&
1445 (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1446 (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1447 (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1448 rtc_int_flag |= RTC_AF;
1449
1450 if (rtc_int_flag) {
1451 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1452 if (irq_handler)
1453 irq_handler(rtc_int_flag, dev_id);
1454 }
1455 return IRQ_HANDLED;
1456 }
1457 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1458 #endif
1459