1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4 */
5 #include <linux/kallsyms.h>
6 #include <linux/kprobes.h>
7 #include <linux/uaccess.h>
8 #include <linux/utsname.h>
9 #include <linux/hardirq.h>
10 #include <linux/kdebug.h>
11 #include <linux/module.h>
12 #include <linux/ptrace.h>
13 #include <linux/sched/debug.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/ftrace.h>
16 #include <linux/kexec.h>
17 #include <linux/bug.h>
18 #include <linux/nmi.h>
19 #include <linux/sysfs.h>
20 #include <linux/kasan.h>
21
22 #include <asm/cpu_entry_area.h>
23 #include <asm/stacktrace.h>
24 #include <asm/unwind.h>
25
26 static int die_counter;
27
28 static struct pt_regs exec_summary_regs;
29
in_task_stack(unsigned long * stack,struct task_struct * task,struct stack_info * info)30 bool noinstr in_task_stack(unsigned long *stack, struct task_struct *task,
31 struct stack_info *info)
32 {
33 unsigned long *begin = task_stack_page(task);
34 unsigned long *end = task_stack_page(task) + THREAD_SIZE;
35
36 if (stack < begin || stack >= end)
37 return false;
38
39 info->type = STACK_TYPE_TASK;
40 info->begin = begin;
41 info->end = end;
42 info->next_sp = NULL;
43
44 return true;
45 }
46
47 /* Called from get_stack_info_noinstr - so must be noinstr too */
in_entry_stack(unsigned long * stack,struct stack_info * info)48 bool noinstr in_entry_stack(unsigned long *stack, struct stack_info *info)
49 {
50 struct entry_stack *ss = cpu_entry_stack(smp_processor_id());
51
52 void *begin = ss;
53 void *end = ss + 1;
54
55 if ((void *)stack < begin || (void *)stack >= end)
56 return false;
57
58 info->type = STACK_TYPE_ENTRY;
59 info->begin = begin;
60 info->end = end;
61 info->next_sp = NULL;
62
63 return true;
64 }
65
printk_stack_address(unsigned long address,int reliable,const char * log_lvl)66 static void printk_stack_address(unsigned long address, int reliable,
67 const char *log_lvl)
68 {
69 touch_nmi_watchdog();
70 printk("%s %s%pBb\n", log_lvl, reliable ? "" : "? ", (void *)address);
71 }
72
copy_code(struct pt_regs * regs,u8 * buf,unsigned long src,unsigned int nbytes)73 static int copy_code(struct pt_regs *regs, u8 *buf, unsigned long src,
74 unsigned int nbytes)
75 {
76 if (!user_mode(regs))
77 return copy_from_kernel_nofault(buf, (u8 *)src, nbytes);
78
79 /* The user space code from other tasks cannot be accessed. */
80 if (regs != task_pt_regs(current))
81 return -EPERM;
82
83 /*
84 * Even if named copy_from_user_nmi() this can be invoked from
85 * other contexts and will not try to resolve a pagefault, which is
86 * the correct thing to do here as this code can be called from any
87 * context.
88 */
89 return copy_from_user_nmi(buf, (void __user *)src, nbytes);
90 }
91
92 /*
93 * There are a couple of reasons for the 2/3rd prologue, courtesy of Linus:
94 *
95 * In case where we don't have the exact kernel image (which, if we did, we can
96 * simply disassemble and navigate to the RIP), the purpose of the bigger
97 * prologue is to have more context and to be able to correlate the code from
98 * the different toolchains better.
99 *
100 * In addition, it helps in recreating the register allocation of the failing
101 * kernel and thus make sense of the register dump.
102 *
103 * What is more, the additional complication of a variable length insn arch like
104 * x86 warrants having longer byte sequence before rIP so that the disassembler
105 * can "sync" up properly and find instruction boundaries when decoding the
106 * opcode bytes.
107 *
108 * Thus, the 2/3rds prologue and 64 byte OPCODE_BUFSIZE is just a random
109 * guesstimate in attempt to achieve all of the above.
110 */
show_opcodes(struct pt_regs * regs,const char * loglvl)111 void show_opcodes(struct pt_regs *regs, const char *loglvl)
112 {
113 #define PROLOGUE_SIZE 42
114 #define EPILOGUE_SIZE 21
115 #define OPCODE_BUFSIZE (PROLOGUE_SIZE + 1 + EPILOGUE_SIZE)
116 u8 opcodes[OPCODE_BUFSIZE];
117 unsigned long prologue = regs->ip - PROLOGUE_SIZE;
118
119 switch (copy_code(regs, opcodes, prologue, sizeof(opcodes))) {
120 case 0:
121 printk("%sCode: %" __stringify(PROLOGUE_SIZE) "ph <%02x> %"
122 __stringify(EPILOGUE_SIZE) "ph\n", loglvl, opcodes,
123 opcodes[PROLOGUE_SIZE], opcodes + PROLOGUE_SIZE + 1);
124 break;
125 case -EPERM:
126 /* No access to the user space stack of other tasks. Ignore. */
127 break;
128 default:
129 printk("%sCode: Unable to access opcode bytes at 0x%lx.\n",
130 loglvl, prologue);
131 break;
132 }
133 }
134
show_ip(struct pt_regs * regs,const char * loglvl)135 void show_ip(struct pt_regs *regs, const char *loglvl)
136 {
137 #ifdef CONFIG_X86_32
138 printk("%sEIP: %pS\n", loglvl, (void *)regs->ip);
139 #else
140 printk("%sRIP: %04x:%pS\n", loglvl, (int)regs->cs, (void *)regs->ip);
141 #endif
142 show_opcodes(regs, loglvl);
143 }
144
show_iret_regs(struct pt_regs * regs,const char * log_lvl)145 void show_iret_regs(struct pt_regs *regs, const char *log_lvl)
146 {
147 show_ip(regs, log_lvl);
148 printk("%sRSP: %04x:%016lx EFLAGS: %08lx", log_lvl, (int)regs->ss,
149 regs->sp, regs->flags);
150 }
151
show_regs_if_on_stack(struct stack_info * info,struct pt_regs * regs,bool partial,const char * log_lvl)152 static void show_regs_if_on_stack(struct stack_info *info, struct pt_regs *regs,
153 bool partial, const char *log_lvl)
154 {
155 /*
156 * These on_stack() checks aren't strictly necessary: the unwind code
157 * has already validated the 'regs' pointer. The checks are done for
158 * ordering reasons: if the registers are on the next stack, we don't
159 * want to print them out yet. Otherwise they'll be shown as part of
160 * the wrong stack. Later, when show_trace_log_lvl() switches to the
161 * next stack, this function will be called again with the same regs so
162 * they can be printed in the right context.
163 */
164 if (!partial && on_stack(info, regs, sizeof(*regs))) {
165 __show_regs(regs, SHOW_REGS_SHORT, log_lvl);
166
167 } else if (partial && on_stack(info, (void *)regs + IRET_FRAME_OFFSET,
168 IRET_FRAME_SIZE)) {
169 /*
170 * When an interrupt or exception occurs in entry code, the
171 * full pt_regs might not have been saved yet. In that case
172 * just print the iret frame.
173 */
174 show_iret_regs(regs, log_lvl);
175 }
176 }
177
178 /*
179 * This function reads pointers from the stack and dereferences them. The
180 * pointers may not have their KMSAN shadow set up properly, which may result
181 * in false positive reports. Disable instrumentation to avoid those.
182 */
183 __no_kmsan_checks
show_trace_log_lvl(struct task_struct * task,struct pt_regs * regs,unsigned long * stack,const char * log_lvl)184 static void show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs,
185 unsigned long *stack, const char *log_lvl)
186 {
187 struct unwind_state state;
188 struct stack_info stack_info = {0};
189 unsigned long visit_mask = 0;
190 int graph_idx = 0;
191 bool partial = false;
192
193 printk("%sCall Trace:\n", log_lvl);
194
195 unwind_start(&state, task, regs, stack);
196 stack = stack ?: get_stack_pointer(task, regs);
197 regs = unwind_get_entry_regs(&state, &partial);
198
199 /*
200 * Iterate through the stacks, starting with the current stack pointer.
201 * Each stack has a pointer to the next one.
202 *
203 * x86-64 can have several stacks:
204 * - task stack
205 * - interrupt stack
206 * - HW exception stacks (double fault, nmi, debug, mce)
207 * - entry stack
208 *
209 * x86-32 can have up to four stacks:
210 * - task stack
211 * - softirq stack
212 * - hardirq stack
213 * - entry stack
214 */
215 for (; stack; stack = stack_info.next_sp) {
216 const char *stack_name;
217
218 stack = PTR_ALIGN(stack, sizeof(long));
219
220 if (get_stack_info(stack, task, &stack_info, &visit_mask)) {
221 /*
222 * We weren't on a valid stack. It's possible that
223 * we overflowed a valid stack into a guard page.
224 * See if the next page up is valid so that we can
225 * generate some kind of backtrace if this happens.
226 */
227 stack = (unsigned long *)PAGE_ALIGN((unsigned long)stack);
228 if (get_stack_info(stack, task, &stack_info, &visit_mask))
229 break;
230 }
231
232 stack_name = stack_type_name(stack_info.type);
233 if (stack_name)
234 printk("%s <%s>\n", log_lvl, stack_name);
235
236 if (regs)
237 show_regs_if_on_stack(&stack_info, regs, partial, log_lvl);
238
239 /*
240 * Scan the stack, printing any text addresses we find. At the
241 * same time, follow proper stack frames with the unwinder.
242 *
243 * Addresses found during the scan which are not reported by
244 * the unwinder are considered to be additional clues which are
245 * sometimes useful for debugging and are prefixed with '?'.
246 * This also serves as a failsafe option in case the unwinder
247 * goes off in the weeds.
248 */
249 for (; stack < stack_info.end; stack++) {
250 unsigned long real_addr;
251 int reliable = 0;
252 unsigned long addr = READ_ONCE_NOCHECK(*stack);
253 unsigned long *ret_addr_p =
254 unwind_get_return_address_ptr(&state);
255
256 if (!__kernel_text_address(addr))
257 continue;
258
259 /*
260 * Don't print regs->ip again if it was already printed
261 * by show_regs_if_on_stack().
262 */
263 if (regs && stack == ®s->ip)
264 goto next;
265
266 if (stack == ret_addr_p)
267 reliable = 1;
268
269 /*
270 * When function graph tracing is enabled for a
271 * function, its return address on the stack is
272 * replaced with the address of an ftrace handler
273 * (return_to_handler). In that case, before printing
274 * the "real" address, we want to print the handler
275 * address as an "unreliable" hint that function graph
276 * tracing was involved.
277 */
278 real_addr = ftrace_graph_ret_addr(task, &graph_idx,
279 addr, stack);
280 if (real_addr != addr)
281 printk_stack_address(addr, 0, log_lvl);
282 printk_stack_address(real_addr, reliable, log_lvl);
283
284 if (!reliable)
285 continue;
286
287 next:
288 /*
289 * Get the next frame from the unwinder. No need to
290 * check for an error: if anything goes wrong, the rest
291 * of the addresses will just be printed as unreliable.
292 */
293 unwind_next_frame(&state);
294
295 /* if the frame has entry regs, print them */
296 regs = unwind_get_entry_regs(&state, &partial);
297 if (regs)
298 show_regs_if_on_stack(&stack_info, regs, partial, log_lvl);
299 }
300
301 if (stack_name)
302 printk("%s </%s>\n", log_lvl, stack_name);
303 }
304 }
305
show_stack(struct task_struct * task,unsigned long * sp,const char * loglvl)306 void show_stack(struct task_struct *task, unsigned long *sp,
307 const char *loglvl)
308 {
309 task = task ? : current;
310
311 /*
312 * Stack frames below this one aren't interesting. Don't show them
313 * if we're printing for %current.
314 */
315 if (!sp && task == current)
316 sp = get_stack_pointer(current, NULL);
317
318 show_trace_log_lvl(task, NULL, sp, loglvl);
319 }
320
show_stack_regs(struct pt_regs * regs)321 void show_stack_regs(struct pt_regs *regs)
322 {
323 show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT);
324 }
325
326 static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
327 static int die_owner = -1;
328 static unsigned int die_nest_count;
329
oops_begin(void)330 unsigned long oops_begin(void)
331 {
332 int cpu;
333 unsigned long flags;
334
335 oops_enter();
336
337 /* racy, but better than risking deadlock. */
338 raw_local_irq_save(flags);
339 cpu = smp_processor_id();
340 if (!arch_spin_trylock(&die_lock)) {
341 if (cpu == die_owner)
342 /* nested oops. should stop eventually */;
343 else
344 arch_spin_lock(&die_lock);
345 }
346 die_nest_count++;
347 die_owner = cpu;
348 console_verbose();
349 bust_spinlocks(1);
350 return flags;
351 }
352 NOKPROBE_SYMBOL(oops_begin);
353
354 void __noreturn rewind_stack_and_make_dead(int signr);
355
oops_end(unsigned long flags,struct pt_regs * regs,int signr)356 void oops_end(unsigned long flags, struct pt_regs *regs, int signr)
357 {
358 if (regs && kexec_should_crash(current))
359 crash_kexec(regs);
360
361 bust_spinlocks(0);
362 die_owner = -1;
363 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
364 die_nest_count--;
365 if (!die_nest_count)
366 /* Nest count reaches zero, release the lock. */
367 arch_spin_unlock(&die_lock);
368 raw_local_irq_restore(flags);
369 oops_exit();
370
371 /* Executive summary in case the oops scrolled away */
372 __show_regs(&exec_summary_regs, SHOW_REGS_ALL, KERN_DEFAULT);
373
374 if (!signr)
375 return;
376 if (in_interrupt())
377 panic("Fatal exception in interrupt");
378 if (panic_on_oops)
379 panic("Fatal exception");
380
381 /*
382 * We're not going to return, but we might be on an IST stack or
383 * have very little stack space left. Rewind the stack and kill
384 * the task.
385 * Before we rewind the stack, we have to tell KASAN that we're going to
386 * reuse the task stack and that existing poisons are invalid.
387 */
388 kasan_unpoison_task_stack(current);
389 rewind_stack_and_make_dead(signr);
390 }
391 NOKPROBE_SYMBOL(oops_end);
392
__die_header(const char * str,struct pt_regs * regs,long err)393 static void __die_header(const char *str, struct pt_regs *regs, long err)
394 {
395 /* Save the regs of the first oops for the executive summary later. */
396 if (!die_counter)
397 exec_summary_regs = *regs;
398
399 printk(KERN_DEFAULT
400 "Oops: %s: %04lx [#%d]%s%s%s%s\n", str, err & 0xffff,
401 ++die_counter,
402 IS_ENABLED(CONFIG_SMP) ? " SMP" : "",
403 debug_pagealloc_enabled() ? " DEBUG_PAGEALLOC" : "",
404 IS_ENABLED(CONFIG_KASAN) ? " KASAN" : "",
405 IS_ENABLED(CONFIG_MITIGATION_PAGE_TABLE_ISOLATION) ?
406 (boot_cpu_has(X86_FEATURE_PTI) ? " PTI" : " NOPTI") : "");
407 }
408 NOKPROBE_SYMBOL(__die_header);
409
__die_body(const char * str,struct pt_regs * regs,long err)410 static int __die_body(const char *str, struct pt_regs *regs, long err)
411 {
412 show_regs(regs);
413 print_modules();
414
415 if (notify_die(DIE_OOPS, str, regs, err,
416 current->thread.trap_nr, SIGSEGV) == NOTIFY_STOP)
417 return 1;
418
419 return 0;
420 }
421 NOKPROBE_SYMBOL(__die_body);
422
__die(const char * str,struct pt_regs * regs,long err)423 int __die(const char *str, struct pt_regs *regs, long err)
424 {
425 __die_header(str, regs, err);
426 return __die_body(str, regs, err);
427 }
428 NOKPROBE_SYMBOL(__die);
429
430 /*
431 * This is gone through when something in the kernel has done something bad
432 * and is about to be terminated:
433 */
die(const char * str,struct pt_regs * regs,long err)434 void die(const char *str, struct pt_regs *regs, long err)
435 {
436 unsigned long flags = oops_begin();
437 int sig = SIGSEGV;
438
439 if (__die(str, regs, err))
440 sig = 0;
441 oops_end(flags, regs, sig);
442 }
443
die_addr(const char * str,struct pt_regs * regs,long err,long gp_addr)444 void die_addr(const char *str, struct pt_regs *regs, long err, long gp_addr)
445 {
446 unsigned long flags = oops_begin();
447 int sig = SIGSEGV;
448
449 __die_header(str, regs, err);
450 if (gp_addr)
451 kasan_non_canonical_hook(gp_addr);
452 if (__die_body(str, regs, err))
453 sig = 0;
454 oops_end(flags, regs, sig);
455 }
456
show_regs(struct pt_regs * regs)457 void show_regs(struct pt_regs *regs)
458 {
459 enum show_regs_mode print_kernel_regs;
460
461 show_regs_print_info(KERN_DEFAULT);
462
463 print_kernel_regs = user_mode(regs) ? SHOW_REGS_USER : SHOW_REGS_ALL;
464 __show_regs(regs, print_kernel_regs, KERN_DEFAULT);
465
466 /*
467 * When in-kernel, we also print out the stack at the time of the fault..
468 */
469 if (!user_mode(regs))
470 show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT);
471 }
472