1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/perf_event.h>
3 #include <linux/types.h>
4 
5 #include <asm/cpu_device_id.h>
6 #include <asm/perf_event.h>
7 #include <asm/msr.h>
8 
9 #include "../perf_event.h"
10 
11 /*
12  * Intel LBR_SELECT bits
13  * Intel Vol3a, April 2011, Section 16.7 Table 16-10
14  *
15  * Hardware branch filter (not available on all CPUs)
16  */
17 #define LBR_KERNEL_BIT		0 /* do not capture at ring0 */
18 #define LBR_USER_BIT		1 /* do not capture at ring > 0 */
19 #define LBR_JCC_BIT		2 /* do not capture conditional branches */
20 #define LBR_REL_CALL_BIT	3 /* do not capture relative calls */
21 #define LBR_IND_CALL_BIT	4 /* do not capture indirect calls */
22 #define LBR_RETURN_BIT		5 /* do not capture near returns */
23 #define LBR_IND_JMP_BIT		6 /* do not capture indirect jumps */
24 #define LBR_REL_JMP_BIT		7 /* do not capture relative jumps */
25 #define LBR_FAR_BIT		8 /* do not capture far branches */
26 #define LBR_CALL_STACK_BIT	9 /* enable call stack */
27 
28 /*
29  * Following bit only exists in Linux; we mask it out before writing it to
30  * the actual MSR. But it helps the constraint perf code to understand
31  * that this is a separate configuration.
32  */
33 #define LBR_NO_INFO_BIT	       63 /* don't read LBR_INFO. */
34 
35 #define LBR_KERNEL	(1 << LBR_KERNEL_BIT)
36 #define LBR_USER	(1 << LBR_USER_BIT)
37 #define LBR_JCC		(1 << LBR_JCC_BIT)
38 #define LBR_REL_CALL	(1 << LBR_REL_CALL_BIT)
39 #define LBR_IND_CALL	(1 << LBR_IND_CALL_BIT)
40 #define LBR_RETURN	(1 << LBR_RETURN_BIT)
41 #define LBR_REL_JMP	(1 << LBR_REL_JMP_BIT)
42 #define LBR_IND_JMP	(1 << LBR_IND_JMP_BIT)
43 #define LBR_FAR		(1 << LBR_FAR_BIT)
44 #define LBR_CALL_STACK	(1 << LBR_CALL_STACK_BIT)
45 #define LBR_NO_INFO	(1ULL << LBR_NO_INFO_BIT)
46 
47 #define LBR_PLM (LBR_KERNEL | LBR_USER)
48 
49 #define LBR_SEL_MASK	0x3ff	/* valid bits in LBR_SELECT */
50 #define LBR_NOT_SUPP	-1	/* LBR filter not supported */
51 #define LBR_IGN		0	/* ignored */
52 
53 #define LBR_ANY		 \
54 	(LBR_JCC	|\
55 	 LBR_REL_CALL	|\
56 	 LBR_IND_CALL	|\
57 	 LBR_RETURN	|\
58 	 LBR_REL_JMP	|\
59 	 LBR_IND_JMP	|\
60 	 LBR_FAR)
61 
62 #define LBR_FROM_FLAG_MISPRED	BIT_ULL(63)
63 #define LBR_FROM_FLAG_IN_TX	BIT_ULL(62)
64 #define LBR_FROM_FLAG_ABORT	BIT_ULL(61)
65 
66 #define LBR_FROM_SIGNEXT_2MSB	(BIT_ULL(60) | BIT_ULL(59))
67 
68 /*
69  * Intel LBR_CTL bits
70  *
71  * Hardware branch filter for Arch LBR
72  */
73 #define ARCH_LBR_KERNEL_BIT		1  /* capture at ring0 */
74 #define ARCH_LBR_USER_BIT		2  /* capture at ring > 0 */
75 #define ARCH_LBR_CALL_STACK_BIT		3  /* enable call stack */
76 #define ARCH_LBR_JCC_BIT		16 /* capture conditional branches */
77 #define ARCH_LBR_REL_JMP_BIT		17 /* capture relative jumps */
78 #define ARCH_LBR_IND_JMP_BIT		18 /* capture indirect jumps */
79 #define ARCH_LBR_REL_CALL_BIT		19 /* capture relative calls */
80 #define ARCH_LBR_IND_CALL_BIT		20 /* capture indirect calls */
81 #define ARCH_LBR_RETURN_BIT		21 /* capture near returns */
82 #define ARCH_LBR_OTHER_BRANCH_BIT	22 /* capture other branches */
83 
84 #define ARCH_LBR_KERNEL			(1ULL << ARCH_LBR_KERNEL_BIT)
85 #define ARCH_LBR_USER			(1ULL << ARCH_LBR_USER_BIT)
86 #define ARCH_LBR_CALL_STACK		(1ULL << ARCH_LBR_CALL_STACK_BIT)
87 #define ARCH_LBR_JCC			(1ULL << ARCH_LBR_JCC_BIT)
88 #define ARCH_LBR_REL_JMP		(1ULL << ARCH_LBR_REL_JMP_BIT)
89 #define ARCH_LBR_IND_JMP		(1ULL << ARCH_LBR_IND_JMP_BIT)
90 #define ARCH_LBR_REL_CALL		(1ULL << ARCH_LBR_REL_CALL_BIT)
91 #define ARCH_LBR_IND_CALL		(1ULL << ARCH_LBR_IND_CALL_BIT)
92 #define ARCH_LBR_RETURN			(1ULL << ARCH_LBR_RETURN_BIT)
93 #define ARCH_LBR_OTHER_BRANCH		(1ULL << ARCH_LBR_OTHER_BRANCH_BIT)
94 
95 #define ARCH_LBR_ANY			 \
96 	(ARCH_LBR_JCC			|\
97 	 ARCH_LBR_REL_JMP		|\
98 	 ARCH_LBR_IND_JMP		|\
99 	 ARCH_LBR_REL_CALL		|\
100 	 ARCH_LBR_IND_CALL		|\
101 	 ARCH_LBR_RETURN		|\
102 	 ARCH_LBR_OTHER_BRANCH)
103 
104 #define ARCH_LBR_CTL_MASK			0x7f000e
105 
106 static void intel_pmu_lbr_filter(struct cpu_hw_events *cpuc);
107 
is_lbr_call_stack_bit_set(u64 config)108 static __always_inline bool is_lbr_call_stack_bit_set(u64 config)
109 {
110 	if (static_cpu_has(X86_FEATURE_ARCH_LBR))
111 		return !!(config & ARCH_LBR_CALL_STACK);
112 
113 	return !!(config & LBR_CALL_STACK);
114 }
115 
116 /*
117  * We only support LBR implementations that have FREEZE_LBRS_ON_PMI
118  * otherwise it becomes near impossible to get a reliable stack.
119  */
120 
__intel_pmu_lbr_enable(bool pmi)121 static void __intel_pmu_lbr_enable(bool pmi)
122 {
123 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
124 	u64 debugctl, lbr_select = 0, orig_debugctl;
125 
126 	/*
127 	 * No need to unfreeze manually, as v4 can do that as part
128 	 * of the GLOBAL_STATUS ack.
129 	 */
130 	if (pmi && x86_pmu.version >= 4)
131 		return;
132 
133 	/*
134 	 * No need to reprogram LBR_SELECT in a PMI, as it
135 	 * did not change.
136 	 */
137 	if (cpuc->lbr_sel)
138 		lbr_select = cpuc->lbr_sel->config & x86_pmu.lbr_sel_mask;
139 	if (!static_cpu_has(X86_FEATURE_ARCH_LBR) && !pmi && cpuc->lbr_sel)
140 		wrmsrl(MSR_LBR_SELECT, lbr_select);
141 
142 	rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
143 	orig_debugctl = debugctl;
144 
145 	if (!static_cpu_has(X86_FEATURE_ARCH_LBR))
146 		debugctl |= DEBUGCTLMSR_LBR;
147 	/*
148 	 * LBR callstack does not work well with FREEZE_LBRS_ON_PMI.
149 	 * If FREEZE_LBRS_ON_PMI is set, PMI near call/return instructions
150 	 * may cause superfluous increase/decrease of LBR_TOS.
151 	 */
152 	if (is_lbr_call_stack_bit_set(lbr_select))
153 		debugctl &= ~DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
154 	else
155 		debugctl |= DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
156 
157 	if (orig_debugctl != debugctl)
158 		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
159 
160 	if (static_cpu_has(X86_FEATURE_ARCH_LBR))
161 		wrmsrl(MSR_ARCH_LBR_CTL, lbr_select | ARCH_LBR_CTL_LBREN);
162 }
163 
intel_pmu_lbr_reset_32(void)164 void intel_pmu_lbr_reset_32(void)
165 {
166 	int i;
167 
168 	for (i = 0; i < x86_pmu.lbr_nr; i++)
169 		wrmsrl(x86_pmu.lbr_from + i, 0);
170 }
171 
intel_pmu_lbr_reset_64(void)172 void intel_pmu_lbr_reset_64(void)
173 {
174 	int i;
175 
176 	for (i = 0; i < x86_pmu.lbr_nr; i++) {
177 		wrmsrl(x86_pmu.lbr_from + i, 0);
178 		wrmsrl(x86_pmu.lbr_to   + i, 0);
179 		if (x86_pmu.lbr_has_info)
180 			wrmsrl(x86_pmu.lbr_info + i, 0);
181 	}
182 }
183 
intel_pmu_arch_lbr_reset(void)184 static void intel_pmu_arch_lbr_reset(void)
185 {
186 	/* Write to ARCH_LBR_DEPTH MSR, all LBR entries are reset to 0 */
187 	wrmsrl(MSR_ARCH_LBR_DEPTH, x86_pmu.lbr_nr);
188 }
189 
intel_pmu_lbr_reset(void)190 void intel_pmu_lbr_reset(void)
191 {
192 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
193 
194 	if (!x86_pmu.lbr_nr)
195 		return;
196 
197 	x86_pmu.lbr_reset();
198 
199 	cpuc->last_task_ctx = NULL;
200 	cpuc->last_log_id = 0;
201 	if (!static_cpu_has(X86_FEATURE_ARCH_LBR) && cpuc->lbr_select)
202 		wrmsrl(MSR_LBR_SELECT, 0);
203 }
204 
205 /*
206  * TOS = most recently recorded branch
207  */
intel_pmu_lbr_tos(void)208 static inline u64 intel_pmu_lbr_tos(void)
209 {
210 	u64 tos;
211 
212 	rdmsrl(x86_pmu.lbr_tos, tos);
213 	return tos;
214 }
215 
216 enum {
217 	LBR_NONE,
218 	LBR_VALID,
219 };
220 
221 /*
222  * For format LBR_FORMAT_EIP_FLAGS2, bits 61:62 in MSR_LAST_BRANCH_FROM_x
223  * are the TSX flags when TSX is supported, but when TSX is not supported
224  * they have no consistent behavior:
225  *
226  *   - For wrmsr(), bits 61:62 are considered part of the sign extension.
227  *   - For HW updates (branch captures) bits 61:62 are always OFF and are not
228  *     part of the sign extension.
229  *
230  * Therefore, if:
231  *
232  *   1) LBR format LBR_FORMAT_EIP_FLAGS2
233  *   2) CPU has no TSX support enabled
234  *
235  * ... then any value passed to wrmsr() must be sign extended to 63 bits and any
236  * value from rdmsr() must be converted to have a 61 bits sign extension,
237  * ignoring the TSX flags.
238  */
lbr_from_signext_quirk_needed(void)239 static inline bool lbr_from_signext_quirk_needed(void)
240 {
241 	bool tsx_support = boot_cpu_has(X86_FEATURE_HLE) ||
242 			   boot_cpu_has(X86_FEATURE_RTM);
243 
244 	return !tsx_support;
245 }
246 
247 static DEFINE_STATIC_KEY_FALSE(lbr_from_quirk_key);
248 
249 /* If quirk is enabled, ensure sign extension is 63 bits: */
lbr_from_signext_quirk_wr(u64 val)250 inline u64 lbr_from_signext_quirk_wr(u64 val)
251 {
252 	if (static_branch_unlikely(&lbr_from_quirk_key)) {
253 		/*
254 		 * Sign extend into bits 61:62 while preserving bit 63.
255 		 *
256 		 * Quirk is enabled when TSX is disabled. Therefore TSX bits
257 		 * in val are always OFF and must be changed to be sign
258 		 * extension bits. Since bits 59:60 are guaranteed to be
259 		 * part of the sign extension bits, we can just copy them
260 		 * to 61:62.
261 		 */
262 		val |= (LBR_FROM_SIGNEXT_2MSB & val) << 2;
263 	}
264 	return val;
265 }
266 
267 /*
268  * If quirk is needed, ensure sign extension is 61 bits:
269  */
lbr_from_signext_quirk_rd(u64 val)270 static u64 lbr_from_signext_quirk_rd(u64 val)
271 {
272 	if (static_branch_unlikely(&lbr_from_quirk_key)) {
273 		/*
274 		 * Quirk is on when TSX is not enabled. Therefore TSX
275 		 * flags must be read as OFF.
276 		 */
277 		val &= ~(LBR_FROM_FLAG_IN_TX | LBR_FROM_FLAG_ABORT);
278 	}
279 	return val;
280 }
281 
wrlbr_from(unsigned int idx,u64 val)282 static __always_inline void wrlbr_from(unsigned int idx, u64 val)
283 {
284 	val = lbr_from_signext_quirk_wr(val);
285 	wrmsrl(x86_pmu.lbr_from + idx, val);
286 }
287 
wrlbr_to(unsigned int idx,u64 val)288 static __always_inline void wrlbr_to(unsigned int idx, u64 val)
289 {
290 	wrmsrl(x86_pmu.lbr_to + idx, val);
291 }
292 
wrlbr_info(unsigned int idx,u64 val)293 static __always_inline void wrlbr_info(unsigned int idx, u64 val)
294 {
295 	wrmsrl(x86_pmu.lbr_info + idx, val);
296 }
297 
rdlbr_from(unsigned int idx,struct lbr_entry * lbr)298 static __always_inline u64 rdlbr_from(unsigned int idx, struct lbr_entry *lbr)
299 {
300 	u64 val;
301 
302 	if (lbr)
303 		return lbr->from;
304 
305 	rdmsrl(x86_pmu.lbr_from + idx, val);
306 
307 	return lbr_from_signext_quirk_rd(val);
308 }
309 
rdlbr_to(unsigned int idx,struct lbr_entry * lbr)310 static __always_inline u64 rdlbr_to(unsigned int idx, struct lbr_entry *lbr)
311 {
312 	u64 val;
313 
314 	if (lbr)
315 		return lbr->to;
316 
317 	rdmsrl(x86_pmu.lbr_to + idx, val);
318 
319 	return val;
320 }
321 
rdlbr_info(unsigned int idx,struct lbr_entry * lbr)322 static __always_inline u64 rdlbr_info(unsigned int idx, struct lbr_entry *lbr)
323 {
324 	u64 val;
325 
326 	if (lbr)
327 		return lbr->info;
328 
329 	rdmsrl(x86_pmu.lbr_info + idx, val);
330 
331 	return val;
332 }
333 
334 static inline void
wrlbr_all(struct lbr_entry * lbr,unsigned int idx,bool need_info)335 wrlbr_all(struct lbr_entry *lbr, unsigned int idx, bool need_info)
336 {
337 	wrlbr_from(idx, lbr->from);
338 	wrlbr_to(idx, lbr->to);
339 	if (need_info)
340 		wrlbr_info(idx, lbr->info);
341 }
342 
343 static inline bool
rdlbr_all(struct lbr_entry * lbr,unsigned int idx,bool need_info)344 rdlbr_all(struct lbr_entry *lbr, unsigned int idx, bool need_info)
345 {
346 	u64 from = rdlbr_from(idx, NULL);
347 
348 	/* Don't read invalid entry */
349 	if (!from)
350 		return false;
351 
352 	lbr->from = from;
353 	lbr->to = rdlbr_to(idx, NULL);
354 	if (need_info)
355 		lbr->info = rdlbr_info(idx, NULL);
356 
357 	return true;
358 }
359 
intel_pmu_lbr_restore(void * ctx)360 void intel_pmu_lbr_restore(void *ctx)
361 {
362 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
363 	struct x86_perf_task_context *task_ctx = ctx;
364 	bool need_info = x86_pmu.lbr_has_info;
365 	u64 tos = task_ctx->tos;
366 	unsigned lbr_idx, mask;
367 	int i;
368 
369 	mask = x86_pmu.lbr_nr - 1;
370 	for (i = 0; i < task_ctx->valid_lbrs; i++) {
371 		lbr_idx = (tos - i) & mask;
372 		wrlbr_all(&task_ctx->lbr[i], lbr_idx, need_info);
373 	}
374 
375 	for (; i < x86_pmu.lbr_nr; i++) {
376 		lbr_idx = (tos - i) & mask;
377 		wrlbr_from(lbr_idx, 0);
378 		wrlbr_to(lbr_idx, 0);
379 		if (need_info)
380 			wrlbr_info(lbr_idx, 0);
381 	}
382 
383 	wrmsrl(x86_pmu.lbr_tos, tos);
384 
385 	if (cpuc->lbr_select)
386 		wrmsrl(MSR_LBR_SELECT, task_ctx->lbr_sel);
387 }
388 
intel_pmu_arch_lbr_restore(void * ctx)389 static void intel_pmu_arch_lbr_restore(void *ctx)
390 {
391 	struct x86_perf_task_context_arch_lbr *task_ctx = ctx;
392 	struct lbr_entry *entries = task_ctx->entries;
393 	int i;
394 
395 	/* Fast reset the LBRs before restore if the call stack is not full. */
396 	if (!entries[x86_pmu.lbr_nr - 1].from)
397 		intel_pmu_arch_lbr_reset();
398 
399 	for (i = 0; i < x86_pmu.lbr_nr; i++) {
400 		if (!entries[i].from)
401 			break;
402 		wrlbr_all(&entries[i], i, true);
403 	}
404 }
405 
406 /*
407  * Restore the Architecture LBR state from the xsave area in the perf
408  * context data for the task via the XRSTORS instruction.
409  */
intel_pmu_arch_lbr_xrstors(void * ctx)410 static void intel_pmu_arch_lbr_xrstors(void *ctx)
411 {
412 	struct x86_perf_task_context_arch_lbr_xsave *task_ctx = ctx;
413 
414 	xrstors(&task_ctx->xsave, XFEATURE_MASK_LBR);
415 }
416 
lbr_is_reset_in_cstate(void * ctx)417 static __always_inline bool lbr_is_reset_in_cstate(void *ctx)
418 {
419 	if (static_cpu_has(X86_FEATURE_ARCH_LBR))
420 		return x86_pmu.lbr_deep_c_reset && !rdlbr_from(0, NULL);
421 
422 	return !rdlbr_from(((struct x86_perf_task_context *)ctx)->tos, NULL);
423 }
424 
has_lbr_callstack_users(void * ctx)425 static inline bool has_lbr_callstack_users(void *ctx)
426 {
427 	return task_context_opt(ctx)->lbr_callstack_users ||
428 	       x86_pmu.lbr_callstack_users;
429 }
430 
__intel_pmu_lbr_restore(void * ctx)431 static void __intel_pmu_lbr_restore(void *ctx)
432 {
433 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
434 
435 	if (!has_lbr_callstack_users(ctx) ||
436 	    task_context_opt(ctx)->lbr_stack_state == LBR_NONE) {
437 		intel_pmu_lbr_reset();
438 		return;
439 	}
440 
441 	/*
442 	 * Does not restore the LBR registers, if
443 	 * - No one else touched them, and
444 	 * - Was not cleared in Cstate
445 	 */
446 	if ((ctx == cpuc->last_task_ctx) &&
447 	    (task_context_opt(ctx)->log_id == cpuc->last_log_id) &&
448 	    !lbr_is_reset_in_cstate(ctx)) {
449 		task_context_opt(ctx)->lbr_stack_state = LBR_NONE;
450 		return;
451 	}
452 
453 	x86_pmu.lbr_restore(ctx);
454 
455 	task_context_opt(ctx)->lbr_stack_state = LBR_NONE;
456 }
457 
intel_pmu_lbr_save(void * ctx)458 void intel_pmu_lbr_save(void *ctx)
459 {
460 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
461 	struct x86_perf_task_context *task_ctx = ctx;
462 	bool need_info = x86_pmu.lbr_has_info;
463 	unsigned lbr_idx, mask;
464 	u64 tos;
465 	int i;
466 
467 	mask = x86_pmu.lbr_nr - 1;
468 	tos = intel_pmu_lbr_tos();
469 	for (i = 0; i < x86_pmu.lbr_nr; i++) {
470 		lbr_idx = (tos - i) & mask;
471 		if (!rdlbr_all(&task_ctx->lbr[i], lbr_idx, need_info))
472 			break;
473 	}
474 	task_ctx->valid_lbrs = i;
475 	task_ctx->tos = tos;
476 
477 	if (cpuc->lbr_select)
478 		rdmsrl(MSR_LBR_SELECT, task_ctx->lbr_sel);
479 }
480 
intel_pmu_arch_lbr_save(void * ctx)481 static void intel_pmu_arch_lbr_save(void *ctx)
482 {
483 	struct x86_perf_task_context_arch_lbr *task_ctx = ctx;
484 	struct lbr_entry *entries = task_ctx->entries;
485 	int i;
486 
487 	for (i = 0; i < x86_pmu.lbr_nr; i++) {
488 		if (!rdlbr_all(&entries[i], i, true))
489 			break;
490 	}
491 
492 	/* LBR call stack is not full. Reset is required in restore. */
493 	if (i < x86_pmu.lbr_nr)
494 		entries[x86_pmu.lbr_nr - 1].from = 0;
495 }
496 
497 /*
498  * Save the Architecture LBR state to the xsave area in the perf
499  * context data for the task via the XSAVES instruction.
500  */
intel_pmu_arch_lbr_xsaves(void * ctx)501 static void intel_pmu_arch_lbr_xsaves(void *ctx)
502 {
503 	struct x86_perf_task_context_arch_lbr_xsave *task_ctx = ctx;
504 
505 	xsaves(&task_ctx->xsave, XFEATURE_MASK_LBR);
506 }
507 
__intel_pmu_lbr_save(void * ctx)508 static void __intel_pmu_lbr_save(void *ctx)
509 {
510 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
511 
512 	if (!has_lbr_callstack_users(ctx)) {
513 		task_context_opt(ctx)->lbr_stack_state = LBR_NONE;
514 		return;
515 	}
516 
517 	x86_pmu.lbr_save(ctx);
518 
519 	task_context_opt(ctx)->lbr_stack_state = LBR_VALID;
520 
521 	cpuc->last_task_ctx = ctx;
522 	cpuc->last_log_id = ++task_context_opt(ctx)->log_id;
523 }
524 
intel_pmu_lbr_sched_task(struct perf_event_pmu_context * pmu_ctx,struct task_struct * task,bool sched_in)525 void intel_pmu_lbr_sched_task(struct perf_event_pmu_context *pmu_ctx,
526 			      struct task_struct *task, bool sched_in)
527 {
528 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
529 	struct perf_ctx_data *ctx_data;
530 	void *task_ctx;
531 
532 	if (!cpuc->lbr_users)
533 		return;
534 
535 	/*
536 	 * If LBR callstack feature is enabled and the stack was saved when
537 	 * the task was scheduled out, restore the stack. Otherwise flush
538 	 * the LBR stack.
539 	 */
540 	rcu_read_lock();
541 	ctx_data = rcu_dereference(task->perf_ctx_data);
542 	task_ctx = ctx_data ? ctx_data->data : NULL;
543 	if (task_ctx) {
544 		if (sched_in)
545 			__intel_pmu_lbr_restore(task_ctx);
546 		else
547 			__intel_pmu_lbr_save(task_ctx);
548 		rcu_read_unlock();
549 		return;
550 	}
551 	rcu_read_unlock();
552 
553 	/*
554 	 * Since a context switch can flip the address space and LBR entries
555 	 * are not tagged with an identifier, we need to wipe the LBR, even for
556 	 * per-cpu events. You simply cannot resolve the branches from the old
557 	 * address space.
558 	 */
559 	if (sched_in)
560 		intel_pmu_lbr_reset();
561 }
562 
branch_user_callstack(unsigned br_sel)563 static inline bool branch_user_callstack(unsigned br_sel)
564 {
565 	return (br_sel & X86_BR_USER) && (br_sel & X86_BR_CALL_STACK);
566 }
567 
intel_pmu_lbr_add(struct perf_event * event)568 void intel_pmu_lbr_add(struct perf_event *event)
569 {
570 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
571 
572 	if (!x86_pmu.lbr_nr)
573 		return;
574 
575 	if (event->hw.flags & PERF_X86_EVENT_LBR_SELECT)
576 		cpuc->lbr_select = 1;
577 
578 	cpuc->br_sel = event->hw.branch_reg.reg;
579 
580 	if (branch_user_callstack(cpuc->br_sel)) {
581 		if (event->attach_state & PERF_ATTACH_TASK) {
582 			struct task_struct *task = event->hw.target;
583 			struct perf_ctx_data *ctx_data;
584 
585 			rcu_read_lock();
586 			ctx_data = rcu_dereference(task->perf_ctx_data);
587 			if (ctx_data)
588 				task_context_opt(ctx_data->data)->lbr_callstack_users++;
589 			rcu_read_unlock();
590 		} else
591 			x86_pmu.lbr_callstack_users++;
592 	}
593 	/*
594 	 * Request pmu::sched_task() callback, which will fire inside the
595 	 * regular perf event scheduling, so that call will:
596 	 *
597 	 *  - restore or wipe; when LBR-callstack,
598 	 *  - wipe; otherwise,
599 	 *
600 	 * when this is from __perf_event_task_sched_in().
601 	 *
602 	 * However, if this is from perf_install_in_context(), no such callback
603 	 * will follow and we'll need to reset the LBR here if this is the
604 	 * first LBR event.
605 	 *
606 	 * The problem is, we cannot tell these cases apart... but we can
607 	 * exclude the biggest chunk of cases by looking at
608 	 * event->total_time_running. An event that has accrued runtime cannot
609 	 * be 'new'. Conversely, a new event can get installed through the
610 	 * context switch path for the first time.
611 	 */
612 	if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip > 0)
613 		cpuc->lbr_pebs_users++;
614 	perf_sched_cb_inc(event->pmu);
615 	if (!cpuc->lbr_users++ && !event->total_time_running)
616 		intel_pmu_lbr_reset();
617 }
618 
release_lbr_buffers(void)619 void release_lbr_buffers(void)
620 {
621 	struct kmem_cache *kmem_cache;
622 	struct cpu_hw_events *cpuc;
623 	int cpu;
624 
625 	if (!static_cpu_has(X86_FEATURE_ARCH_LBR))
626 		return;
627 
628 	for_each_possible_cpu(cpu) {
629 		cpuc = per_cpu_ptr(&cpu_hw_events, cpu);
630 		kmem_cache = x86_get_pmu(cpu)->task_ctx_cache;
631 		if (kmem_cache && cpuc->lbr_xsave) {
632 			kmem_cache_free(kmem_cache, cpuc->lbr_xsave);
633 			cpuc->lbr_xsave = NULL;
634 		}
635 	}
636 }
637 
reserve_lbr_buffers(void)638 void reserve_lbr_buffers(void)
639 {
640 	struct kmem_cache *kmem_cache;
641 	struct cpu_hw_events *cpuc;
642 	int cpu;
643 
644 	if (!static_cpu_has(X86_FEATURE_ARCH_LBR))
645 		return;
646 
647 	for_each_possible_cpu(cpu) {
648 		cpuc = per_cpu_ptr(&cpu_hw_events, cpu);
649 		kmem_cache = x86_get_pmu(cpu)->task_ctx_cache;
650 		if (!kmem_cache || cpuc->lbr_xsave)
651 			continue;
652 
653 		cpuc->lbr_xsave = kmem_cache_alloc_node(kmem_cache,
654 							GFP_KERNEL | __GFP_ZERO,
655 							cpu_to_node(cpu));
656 	}
657 }
658 
intel_pmu_lbr_del(struct perf_event * event)659 void intel_pmu_lbr_del(struct perf_event *event)
660 {
661 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
662 
663 	if (!x86_pmu.lbr_nr)
664 		return;
665 
666 	if (branch_user_callstack(cpuc->br_sel)) {
667 		if (event->attach_state & PERF_ATTACH_TASK) {
668 			struct task_struct *task = event->hw.target;
669 			struct perf_ctx_data *ctx_data;
670 
671 			rcu_read_lock();
672 			ctx_data = rcu_dereference(task->perf_ctx_data);
673 			if (ctx_data)
674 				task_context_opt(ctx_data->data)->lbr_callstack_users--;
675 			rcu_read_unlock();
676 		} else
677 			x86_pmu.lbr_callstack_users--;
678 	}
679 
680 	if (event->hw.flags & PERF_X86_EVENT_LBR_SELECT)
681 		cpuc->lbr_select = 0;
682 
683 	if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip > 0)
684 		cpuc->lbr_pebs_users--;
685 	cpuc->lbr_users--;
686 	WARN_ON_ONCE(cpuc->lbr_users < 0);
687 	WARN_ON_ONCE(cpuc->lbr_pebs_users < 0);
688 	perf_sched_cb_dec(event->pmu);
689 
690 	/*
691 	 * The logged occurrences information is only valid for the
692 	 * current LBR group. If another LBR group is scheduled in
693 	 * later, the information from the stale LBRs will be wrongly
694 	 * interpreted. Reset the LBRs here.
695 	 *
696 	 * Only clear once for a branch counter group with the leader
697 	 * event. Because
698 	 * - Cannot simply reset the LBRs with the !cpuc->lbr_users.
699 	 *   Because it's possible that the last LBR user is not in a
700 	 *   branch counter group, e.g., a branch_counters group +
701 	 *   several normal LBR events.
702 	 * - The LBR reset can be done with any one of the events in a
703 	 *   branch counter group, since they are always scheduled together.
704 	 *   It's easy to force the leader event an LBR event.
705 	 */
706 	if (is_branch_counters_group(event) && event == event->group_leader)
707 		intel_pmu_lbr_reset();
708 }
709 
vlbr_exclude_host(void)710 static inline bool vlbr_exclude_host(void)
711 {
712 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
713 
714 	return test_bit(INTEL_PMC_IDX_FIXED_VLBR,
715 		(unsigned long *)&cpuc->intel_ctrl_guest_mask);
716 }
717 
intel_pmu_lbr_enable_all(bool pmi)718 void intel_pmu_lbr_enable_all(bool pmi)
719 {
720 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
721 
722 	if (cpuc->lbr_users && !vlbr_exclude_host())
723 		__intel_pmu_lbr_enable(pmi);
724 }
725 
intel_pmu_lbr_disable_all(void)726 void intel_pmu_lbr_disable_all(void)
727 {
728 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
729 
730 	if (cpuc->lbr_users && !vlbr_exclude_host()) {
731 		if (static_cpu_has(X86_FEATURE_ARCH_LBR))
732 			return __intel_pmu_arch_lbr_disable();
733 
734 		__intel_pmu_lbr_disable();
735 	}
736 }
737 
intel_pmu_lbr_read_32(struct cpu_hw_events * cpuc)738 void intel_pmu_lbr_read_32(struct cpu_hw_events *cpuc)
739 {
740 	unsigned long mask = x86_pmu.lbr_nr - 1;
741 	struct perf_branch_entry *br = cpuc->lbr_entries;
742 	u64 tos = intel_pmu_lbr_tos();
743 	int i;
744 
745 	for (i = 0; i < x86_pmu.lbr_nr; i++) {
746 		unsigned long lbr_idx = (tos - i) & mask;
747 		union {
748 			struct {
749 				u32 from;
750 				u32 to;
751 			};
752 			u64     lbr;
753 		} msr_lastbranch;
754 
755 		rdmsrl(x86_pmu.lbr_from + lbr_idx, msr_lastbranch.lbr);
756 
757 		perf_clear_branch_entry_bitfields(br);
758 
759 		br->from	= msr_lastbranch.from;
760 		br->to		= msr_lastbranch.to;
761 		br++;
762 	}
763 	cpuc->lbr_stack.nr = i;
764 	cpuc->lbr_stack.hw_idx = tos;
765 }
766 
767 /*
768  * Due to lack of segmentation in Linux the effective address (offset)
769  * is the same as the linear address, allowing us to merge the LIP and EIP
770  * LBR formats.
771  */
intel_pmu_lbr_read_64(struct cpu_hw_events * cpuc)772 void intel_pmu_lbr_read_64(struct cpu_hw_events *cpuc)
773 {
774 	bool need_info = false, call_stack = false;
775 	unsigned long mask = x86_pmu.lbr_nr - 1;
776 	struct perf_branch_entry *br = cpuc->lbr_entries;
777 	u64 tos = intel_pmu_lbr_tos();
778 	int i;
779 	int out = 0;
780 	int num = x86_pmu.lbr_nr;
781 
782 	if (cpuc->lbr_sel) {
783 		need_info = !(cpuc->lbr_sel->config & LBR_NO_INFO);
784 		if (cpuc->lbr_sel->config & LBR_CALL_STACK)
785 			call_stack = true;
786 	}
787 
788 	for (i = 0; i < num; i++) {
789 		unsigned long lbr_idx = (tos - i) & mask;
790 		u64 from, to, mis = 0, pred = 0, in_tx = 0, abort = 0;
791 		u16 cycles = 0;
792 
793 		from = rdlbr_from(lbr_idx, NULL);
794 		to   = rdlbr_to(lbr_idx, NULL);
795 
796 		/*
797 		 * Read LBR call stack entries
798 		 * until invalid entry (0s) is detected.
799 		 */
800 		if (call_stack && !from)
801 			break;
802 
803 		if (x86_pmu.lbr_has_info) {
804 			if (need_info) {
805 				u64 info;
806 
807 				info = rdlbr_info(lbr_idx, NULL);
808 				mis = !!(info & LBR_INFO_MISPRED);
809 				pred = !mis;
810 				cycles = (info & LBR_INFO_CYCLES);
811 				if (x86_pmu.lbr_has_tsx) {
812 					in_tx = !!(info & LBR_INFO_IN_TX);
813 					abort = !!(info & LBR_INFO_ABORT);
814 				}
815 			}
816 		} else {
817 			int skip = 0;
818 
819 			if (x86_pmu.lbr_from_flags) {
820 				mis = !!(from & LBR_FROM_FLAG_MISPRED);
821 				pred = !mis;
822 				skip = 1;
823 			}
824 			if (x86_pmu.lbr_has_tsx) {
825 				in_tx = !!(from & LBR_FROM_FLAG_IN_TX);
826 				abort = !!(from & LBR_FROM_FLAG_ABORT);
827 				skip = 3;
828 			}
829 			from = (u64)((((s64)from) << skip) >> skip);
830 
831 			if (x86_pmu.lbr_to_cycles) {
832 				cycles = ((to >> 48) & LBR_INFO_CYCLES);
833 				to = (u64)((((s64)to) << 16) >> 16);
834 			}
835 		}
836 
837 		/*
838 		 * Some CPUs report duplicated abort records,
839 		 * with the second entry not having an abort bit set.
840 		 * Skip them here. This loop runs backwards,
841 		 * so we need to undo the previous record.
842 		 * If the abort just happened outside the window
843 		 * the extra entry cannot be removed.
844 		 */
845 		if (abort && x86_pmu.lbr_double_abort && out > 0)
846 			out--;
847 
848 		perf_clear_branch_entry_bitfields(br+out);
849 		br[out].from	 = from;
850 		br[out].to	 = to;
851 		br[out].mispred	 = mis;
852 		br[out].predicted = pred;
853 		br[out].in_tx	 = in_tx;
854 		br[out].abort	 = abort;
855 		br[out].cycles	 = cycles;
856 		out++;
857 	}
858 	cpuc->lbr_stack.nr = out;
859 	cpuc->lbr_stack.hw_idx = tos;
860 }
861 
862 static DEFINE_STATIC_KEY_FALSE(x86_lbr_mispred);
863 static DEFINE_STATIC_KEY_FALSE(x86_lbr_cycles);
864 static DEFINE_STATIC_KEY_FALSE(x86_lbr_type);
865 
get_lbr_br_type(u64 info)866 static __always_inline int get_lbr_br_type(u64 info)
867 {
868 	int type = 0;
869 
870 	if (static_branch_likely(&x86_lbr_type))
871 		type = (info & LBR_INFO_BR_TYPE) >> LBR_INFO_BR_TYPE_OFFSET;
872 
873 	return type;
874 }
875 
get_lbr_mispred(u64 info)876 static __always_inline bool get_lbr_mispred(u64 info)
877 {
878 	bool mispred = 0;
879 
880 	if (static_branch_likely(&x86_lbr_mispred))
881 		mispred = !!(info & LBR_INFO_MISPRED);
882 
883 	return mispred;
884 }
885 
get_lbr_cycles(u64 info)886 static __always_inline u16 get_lbr_cycles(u64 info)
887 {
888 	u16 cycles = info & LBR_INFO_CYCLES;
889 
890 	if (static_cpu_has(X86_FEATURE_ARCH_LBR) &&
891 	    (!static_branch_likely(&x86_lbr_cycles) ||
892 	     !(info & LBR_INFO_CYC_CNT_VALID)))
893 		cycles = 0;
894 
895 	return cycles;
896 }
897 
898 static_assert((64 - PERF_BRANCH_ENTRY_INFO_BITS_MAX) > LBR_INFO_BR_CNTR_NUM * LBR_INFO_BR_CNTR_BITS);
899 
intel_pmu_store_lbr(struct cpu_hw_events * cpuc,struct lbr_entry * entries)900 static void intel_pmu_store_lbr(struct cpu_hw_events *cpuc,
901 				struct lbr_entry *entries)
902 {
903 	struct perf_branch_entry *e;
904 	struct lbr_entry *lbr;
905 	u64 from, to, info;
906 	int i;
907 
908 	for (i = 0; i < x86_pmu.lbr_nr; i++) {
909 		lbr = entries ? &entries[i] : NULL;
910 		e = &cpuc->lbr_entries[i];
911 
912 		from = rdlbr_from(i, lbr);
913 		/*
914 		 * Read LBR entries until invalid entry (0s) is detected.
915 		 */
916 		if (!from)
917 			break;
918 
919 		to = rdlbr_to(i, lbr);
920 		info = rdlbr_info(i, lbr);
921 
922 		perf_clear_branch_entry_bitfields(e);
923 
924 		e->from		= from;
925 		e->to		= to;
926 		e->mispred	= get_lbr_mispred(info);
927 		e->predicted	= !e->mispred;
928 		e->in_tx	= !!(info & LBR_INFO_IN_TX);
929 		e->abort	= !!(info & LBR_INFO_ABORT);
930 		e->cycles	= get_lbr_cycles(info);
931 		e->type		= get_lbr_br_type(info);
932 
933 		/*
934 		 * Leverage the reserved field of cpuc->lbr_entries[i] to
935 		 * temporarily store the branch counters information.
936 		 * The later code will decide what content can be disclosed
937 		 * to the perf tool. Pleae see intel_pmu_lbr_counters_reorder().
938 		 */
939 		e->reserved	= (info >> LBR_INFO_BR_CNTR_OFFSET) & LBR_INFO_BR_CNTR_FULL_MASK;
940 	}
941 
942 	cpuc->lbr_stack.nr = i;
943 }
944 
945 /*
946  * The enabled order may be different from the counter order.
947  * Update the lbr_counters with the enabled order.
948  */
intel_pmu_lbr_counters_reorder(struct cpu_hw_events * cpuc,struct perf_event * event)949 static void intel_pmu_lbr_counters_reorder(struct cpu_hw_events *cpuc,
950 					   struct perf_event *event)
951 {
952 	int i, j, pos = 0, order[X86_PMC_IDX_MAX];
953 	struct perf_event *leader, *sibling;
954 	u64 src, dst, cnt;
955 
956 	leader = event->group_leader;
957 	if (branch_sample_counters(leader))
958 		order[pos++] = leader->hw.idx;
959 
960 	for_each_sibling_event(sibling, leader) {
961 		if (!branch_sample_counters(sibling))
962 			continue;
963 		order[pos++] = sibling->hw.idx;
964 	}
965 
966 	WARN_ON_ONCE(!pos);
967 
968 	for (i = 0; i < cpuc->lbr_stack.nr; i++) {
969 		src = cpuc->lbr_entries[i].reserved;
970 		dst = 0;
971 		for (j = 0; j < pos; j++) {
972 			cnt = (src >> (order[j] * LBR_INFO_BR_CNTR_BITS)) & LBR_INFO_BR_CNTR_MASK;
973 			dst |= cnt << j * LBR_INFO_BR_CNTR_BITS;
974 		}
975 		cpuc->lbr_counters[i] = dst;
976 		cpuc->lbr_entries[i].reserved = 0;
977 	}
978 }
979 
intel_pmu_lbr_save_brstack(struct perf_sample_data * data,struct cpu_hw_events * cpuc,struct perf_event * event)980 void intel_pmu_lbr_save_brstack(struct perf_sample_data *data,
981 				struct cpu_hw_events *cpuc,
982 				struct perf_event *event)
983 {
984 	if (is_branch_counters_group(event)) {
985 		intel_pmu_lbr_counters_reorder(cpuc, event);
986 		perf_sample_save_brstack(data, event, &cpuc->lbr_stack, cpuc->lbr_counters);
987 		return;
988 	}
989 
990 	perf_sample_save_brstack(data, event, &cpuc->lbr_stack, NULL);
991 }
992 
intel_pmu_arch_lbr_read(struct cpu_hw_events * cpuc)993 static void intel_pmu_arch_lbr_read(struct cpu_hw_events *cpuc)
994 {
995 	intel_pmu_store_lbr(cpuc, NULL);
996 }
997 
intel_pmu_arch_lbr_read_xsave(struct cpu_hw_events * cpuc)998 static void intel_pmu_arch_lbr_read_xsave(struct cpu_hw_events *cpuc)
999 {
1000 	struct x86_perf_task_context_arch_lbr_xsave *xsave = cpuc->lbr_xsave;
1001 
1002 	if (!xsave) {
1003 		intel_pmu_store_lbr(cpuc, NULL);
1004 		return;
1005 	}
1006 	xsaves(&xsave->xsave, XFEATURE_MASK_LBR);
1007 
1008 	intel_pmu_store_lbr(cpuc, xsave->lbr.entries);
1009 }
1010 
intel_pmu_lbr_read(void)1011 void intel_pmu_lbr_read(void)
1012 {
1013 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1014 
1015 	/*
1016 	 * Don't read when all LBRs users are using adaptive PEBS.
1017 	 *
1018 	 * This could be smarter and actually check the event,
1019 	 * but this simple approach seems to work for now.
1020 	 */
1021 	if (!cpuc->lbr_users || vlbr_exclude_host() ||
1022 	    cpuc->lbr_users == cpuc->lbr_pebs_users)
1023 		return;
1024 
1025 	x86_pmu.lbr_read(cpuc);
1026 
1027 	intel_pmu_lbr_filter(cpuc);
1028 }
1029 
1030 /*
1031  * SW filter is used:
1032  * - in case there is no HW filter
1033  * - in case the HW filter has errata or limitations
1034  */
intel_pmu_setup_sw_lbr_filter(struct perf_event * event)1035 static int intel_pmu_setup_sw_lbr_filter(struct perf_event *event)
1036 {
1037 	u64 br_type = event->attr.branch_sample_type;
1038 	int mask = 0;
1039 
1040 	if (br_type & PERF_SAMPLE_BRANCH_USER)
1041 		mask |= X86_BR_USER;
1042 
1043 	if (br_type & PERF_SAMPLE_BRANCH_KERNEL)
1044 		mask |= X86_BR_KERNEL;
1045 
1046 	/* we ignore BRANCH_HV here */
1047 
1048 	if (br_type & PERF_SAMPLE_BRANCH_ANY)
1049 		mask |= X86_BR_ANY;
1050 
1051 	if (br_type & PERF_SAMPLE_BRANCH_ANY_CALL)
1052 		mask |= X86_BR_ANY_CALL;
1053 
1054 	if (br_type & PERF_SAMPLE_BRANCH_ANY_RETURN)
1055 		mask |= X86_BR_RET | X86_BR_IRET | X86_BR_SYSRET;
1056 
1057 	if (br_type & PERF_SAMPLE_BRANCH_IND_CALL)
1058 		mask |= X86_BR_IND_CALL;
1059 
1060 	if (br_type & PERF_SAMPLE_BRANCH_ABORT_TX)
1061 		mask |= X86_BR_ABORT;
1062 
1063 	if (br_type & PERF_SAMPLE_BRANCH_IN_TX)
1064 		mask |= X86_BR_IN_TX;
1065 
1066 	if (br_type & PERF_SAMPLE_BRANCH_NO_TX)
1067 		mask |= X86_BR_NO_TX;
1068 
1069 	if (br_type & PERF_SAMPLE_BRANCH_COND)
1070 		mask |= X86_BR_JCC;
1071 
1072 	if (br_type & PERF_SAMPLE_BRANCH_CALL_STACK) {
1073 		if (!x86_pmu_has_lbr_callstack())
1074 			return -EOPNOTSUPP;
1075 		if (mask & ~(X86_BR_USER | X86_BR_KERNEL))
1076 			return -EINVAL;
1077 		mask |= X86_BR_CALL | X86_BR_IND_CALL | X86_BR_RET |
1078 			X86_BR_CALL_STACK;
1079 	}
1080 
1081 	if (br_type & PERF_SAMPLE_BRANCH_IND_JUMP)
1082 		mask |= X86_BR_IND_JMP;
1083 
1084 	if (br_type & PERF_SAMPLE_BRANCH_CALL)
1085 		mask |= X86_BR_CALL | X86_BR_ZERO_CALL;
1086 
1087 	if (br_type & PERF_SAMPLE_BRANCH_TYPE_SAVE)
1088 		mask |= X86_BR_TYPE_SAVE;
1089 
1090 	/*
1091 	 * stash actual user request into reg, it may
1092 	 * be used by fixup code for some CPU
1093 	 */
1094 	event->hw.branch_reg.reg = mask;
1095 	return 0;
1096 }
1097 
1098 /*
1099  * setup the HW LBR filter
1100  * Used only when available, may not be enough to disambiguate
1101  * all branches, may need the help of the SW filter
1102  */
intel_pmu_setup_hw_lbr_filter(struct perf_event * event)1103 static int intel_pmu_setup_hw_lbr_filter(struct perf_event *event)
1104 {
1105 	struct hw_perf_event_extra *reg;
1106 	u64 br_type = event->attr.branch_sample_type;
1107 	u64 mask = 0, v;
1108 	int i;
1109 
1110 	for (i = 0; i < PERF_SAMPLE_BRANCH_MAX_SHIFT; i++) {
1111 		if (!(br_type & (1ULL << i)))
1112 			continue;
1113 
1114 		v = x86_pmu.lbr_sel_map[i];
1115 		if (v == LBR_NOT_SUPP)
1116 			return -EOPNOTSUPP;
1117 
1118 		if (v != LBR_IGN)
1119 			mask |= v;
1120 	}
1121 
1122 	reg = &event->hw.branch_reg;
1123 	reg->idx = EXTRA_REG_LBR;
1124 
1125 	if (static_cpu_has(X86_FEATURE_ARCH_LBR)) {
1126 		reg->config = mask;
1127 
1128 		/*
1129 		 * The Arch LBR HW can retrieve the common branch types
1130 		 * from the LBR_INFO. It doesn't require the high overhead
1131 		 * SW disassemble.
1132 		 * Enable the branch type by default for the Arch LBR.
1133 		 */
1134 		reg->reg |= X86_BR_TYPE_SAVE;
1135 		return 0;
1136 	}
1137 
1138 	/*
1139 	 * The first 9 bits (LBR_SEL_MASK) in LBR_SELECT operate
1140 	 * in suppress mode. So LBR_SELECT should be set to
1141 	 * (~mask & LBR_SEL_MASK) | (mask & ~LBR_SEL_MASK)
1142 	 * But the 10th bit LBR_CALL_STACK does not operate
1143 	 * in suppress mode.
1144 	 */
1145 	reg->config = mask ^ (x86_pmu.lbr_sel_mask & ~LBR_CALL_STACK);
1146 
1147 	if ((br_type & PERF_SAMPLE_BRANCH_NO_CYCLES) &&
1148 	    (br_type & PERF_SAMPLE_BRANCH_NO_FLAGS) &&
1149 	    x86_pmu.lbr_has_info)
1150 		reg->config |= LBR_NO_INFO;
1151 
1152 	return 0;
1153 }
1154 
intel_pmu_setup_lbr_filter(struct perf_event * event)1155 int intel_pmu_setup_lbr_filter(struct perf_event *event)
1156 {
1157 	int ret = 0;
1158 
1159 	/*
1160 	 * no LBR on this PMU
1161 	 */
1162 	if (!x86_pmu.lbr_nr)
1163 		return -EOPNOTSUPP;
1164 
1165 	/*
1166 	 * setup SW LBR filter
1167 	 */
1168 	ret = intel_pmu_setup_sw_lbr_filter(event);
1169 	if (ret)
1170 		return ret;
1171 
1172 	/*
1173 	 * setup HW LBR filter, if any
1174 	 */
1175 	if (x86_pmu.lbr_sel_map)
1176 		ret = intel_pmu_setup_hw_lbr_filter(event);
1177 
1178 	return ret;
1179 }
1180 
1181 enum {
1182 	ARCH_LBR_BR_TYPE_JCC			= 0,
1183 	ARCH_LBR_BR_TYPE_NEAR_IND_JMP		= 1,
1184 	ARCH_LBR_BR_TYPE_NEAR_REL_JMP		= 2,
1185 	ARCH_LBR_BR_TYPE_NEAR_IND_CALL		= 3,
1186 	ARCH_LBR_BR_TYPE_NEAR_REL_CALL		= 4,
1187 	ARCH_LBR_BR_TYPE_NEAR_RET		= 5,
1188 	ARCH_LBR_BR_TYPE_KNOWN_MAX		= ARCH_LBR_BR_TYPE_NEAR_RET,
1189 
1190 	ARCH_LBR_BR_TYPE_MAP_MAX		= 16,
1191 };
1192 
1193 static const int arch_lbr_br_type_map[ARCH_LBR_BR_TYPE_MAP_MAX] = {
1194 	[ARCH_LBR_BR_TYPE_JCC]			= X86_BR_JCC,
1195 	[ARCH_LBR_BR_TYPE_NEAR_IND_JMP]		= X86_BR_IND_JMP,
1196 	[ARCH_LBR_BR_TYPE_NEAR_REL_JMP]		= X86_BR_JMP,
1197 	[ARCH_LBR_BR_TYPE_NEAR_IND_CALL]	= X86_BR_IND_CALL,
1198 	[ARCH_LBR_BR_TYPE_NEAR_REL_CALL]	= X86_BR_CALL,
1199 	[ARCH_LBR_BR_TYPE_NEAR_RET]		= X86_BR_RET,
1200 };
1201 
1202 /*
1203  * implement actual branch filter based on user demand.
1204  * Hardware may not exactly satisfy that request, thus
1205  * we need to inspect opcodes. Mismatched branches are
1206  * discarded. Therefore, the number of branches returned
1207  * in PERF_SAMPLE_BRANCH_STACK sample may vary.
1208  */
1209 static void
intel_pmu_lbr_filter(struct cpu_hw_events * cpuc)1210 intel_pmu_lbr_filter(struct cpu_hw_events *cpuc)
1211 {
1212 	u64 from, to;
1213 	int br_sel = cpuc->br_sel;
1214 	int i, j, type, to_plm;
1215 	bool compress = false;
1216 
1217 	/* if sampling all branches, then nothing to filter */
1218 	if (((br_sel & X86_BR_ALL) == X86_BR_ALL) &&
1219 	    ((br_sel & X86_BR_TYPE_SAVE) != X86_BR_TYPE_SAVE))
1220 		return;
1221 
1222 	for (i = 0; i < cpuc->lbr_stack.nr; i++) {
1223 
1224 		from = cpuc->lbr_entries[i].from;
1225 		to = cpuc->lbr_entries[i].to;
1226 		type = cpuc->lbr_entries[i].type;
1227 
1228 		/*
1229 		 * Parse the branch type recorded in LBR_x_INFO MSR.
1230 		 * Doesn't support OTHER_BRANCH decoding for now.
1231 		 * OTHER_BRANCH branch type still rely on software decoding.
1232 		 */
1233 		if (static_cpu_has(X86_FEATURE_ARCH_LBR) &&
1234 		    type <= ARCH_LBR_BR_TYPE_KNOWN_MAX) {
1235 			to_plm = kernel_ip(to) ? X86_BR_KERNEL : X86_BR_USER;
1236 			type = arch_lbr_br_type_map[type] | to_plm;
1237 		} else
1238 			type = branch_type(from, to, cpuc->lbr_entries[i].abort);
1239 		if (type != X86_BR_NONE && (br_sel & X86_BR_ANYTX)) {
1240 			if (cpuc->lbr_entries[i].in_tx)
1241 				type |= X86_BR_IN_TX;
1242 			else
1243 				type |= X86_BR_NO_TX;
1244 		}
1245 
1246 		/* if type does not correspond, then discard */
1247 		if (type == X86_BR_NONE || (br_sel & type) != type) {
1248 			cpuc->lbr_entries[i].from = 0;
1249 			compress = true;
1250 		}
1251 
1252 		if ((br_sel & X86_BR_TYPE_SAVE) == X86_BR_TYPE_SAVE)
1253 			cpuc->lbr_entries[i].type = common_branch_type(type);
1254 	}
1255 
1256 	if (!compress)
1257 		return;
1258 
1259 	/* remove all entries with from=0 */
1260 	for (i = 0; i < cpuc->lbr_stack.nr; ) {
1261 		if (!cpuc->lbr_entries[i].from) {
1262 			j = i;
1263 			while (++j < cpuc->lbr_stack.nr) {
1264 				cpuc->lbr_entries[j-1] = cpuc->lbr_entries[j];
1265 				cpuc->lbr_counters[j-1] = cpuc->lbr_counters[j];
1266 			}
1267 			cpuc->lbr_stack.nr--;
1268 			if (!cpuc->lbr_entries[i].from)
1269 				continue;
1270 		}
1271 		i++;
1272 	}
1273 }
1274 
intel_pmu_store_pebs_lbrs(struct lbr_entry * lbr)1275 void intel_pmu_store_pebs_lbrs(struct lbr_entry *lbr)
1276 {
1277 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1278 
1279 	/* Cannot get TOS for large PEBS and Arch LBR */
1280 	if (static_cpu_has(X86_FEATURE_ARCH_LBR) ||
1281 	    (cpuc->n_pebs == cpuc->n_large_pebs))
1282 		cpuc->lbr_stack.hw_idx = -1ULL;
1283 	else
1284 		cpuc->lbr_stack.hw_idx = intel_pmu_lbr_tos();
1285 
1286 	intel_pmu_store_lbr(cpuc, lbr);
1287 	intel_pmu_lbr_filter(cpuc);
1288 }
1289 
1290 /*
1291  * Map interface branch filters onto LBR filters
1292  */
1293 static const int nhm_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1294 	[PERF_SAMPLE_BRANCH_ANY_SHIFT]		= LBR_ANY,
1295 	[PERF_SAMPLE_BRANCH_USER_SHIFT]		= LBR_USER,
1296 	[PERF_SAMPLE_BRANCH_KERNEL_SHIFT]	= LBR_KERNEL,
1297 	[PERF_SAMPLE_BRANCH_HV_SHIFT]		= LBR_IGN,
1298 	[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]	= LBR_RETURN | LBR_REL_JMP
1299 						| LBR_IND_JMP | LBR_FAR,
1300 	/*
1301 	 * NHM/WSM erratum: must include REL_JMP+IND_JMP to get CALL branches
1302 	 */
1303 	[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] =
1304 	 LBR_REL_CALL | LBR_IND_CALL | LBR_REL_JMP | LBR_IND_JMP | LBR_FAR,
1305 	/*
1306 	 * NHM/WSM erratum: must include IND_JMP to capture IND_CALL
1307 	 */
1308 	[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL | LBR_IND_JMP,
1309 	[PERF_SAMPLE_BRANCH_COND_SHIFT]     = LBR_JCC,
1310 	[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
1311 };
1312 
1313 static const int snb_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1314 	[PERF_SAMPLE_BRANCH_ANY_SHIFT]		= LBR_ANY,
1315 	[PERF_SAMPLE_BRANCH_USER_SHIFT]		= LBR_USER,
1316 	[PERF_SAMPLE_BRANCH_KERNEL_SHIFT]	= LBR_KERNEL,
1317 	[PERF_SAMPLE_BRANCH_HV_SHIFT]		= LBR_IGN,
1318 	[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]	= LBR_RETURN | LBR_FAR,
1319 	[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT]	= LBR_REL_CALL | LBR_IND_CALL
1320 						| LBR_FAR,
1321 	[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT]	= LBR_IND_CALL,
1322 	[PERF_SAMPLE_BRANCH_COND_SHIFT]		= LBR_JCC,
1323 	[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT]	= LBR_IND_JMP,
1324 	[PERF_SAMPLE_BRANCH_CALL_SHIFT]		= LBR_REL_CALL,
1325 };
1326 
1327 static const int hsw_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1328 	[PERF_SAMPLE_BRANCH_ANY_SHIFT]		= LBR_ANY,
1329 	[PERF_SAMPLE_BRANCH_USER_SHIFT]		= LBR_USER,
1330 	[PERF_SAMPLE_BRANCH_KERNEL_SHIFT]	= LBR_KERNEL,
1331 	[PERF_SAMPLE_BRANCH_HV_SHIFT]		= LBR_IGN,
1332 	[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]	= LBR_RETURN | LBR_FAR,
1333 	[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT]	= LBR_REL_CALL | LBR_IND_CALL
1334 						| LBR_FAR,
1335 	[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT]	= LBR_IND_CALL,
1336 	[PERF_SAMPLE_BRANCH_COND_SHIFT]		= LBR_JCC,
1337 	[PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT]	= LBR_REL_CALL | LBR_IND_CALL
1338 						| LBR_RETURN | LBR_CALL_STACK,
1339 	[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT]	= LBR_IND_JMP,
1340 	[PERF_SAMPLE_BRANCH_CALL_SHIFT]		= LBR_REL_CALL,
1341 };
1342 
1343 static int arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1344 	[PERF_SAMPLE_BRANCH_ANY_SHIFT]		= ARCH_LBR_ANY,
1345 	[PERF_SAMPLE_BRANCH_USER_SHIFT]		= ARCH_LBR_USER,
1346 	[PERF_SAMPLE_BRANCH_KERNEL_SHIFT]	= ARCH_LBR_KERNEL,
1347 	[PERF_SAMPLE_BRANCH_HV_SHIFT]		= LBR_IGN,
1348 	[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]	= ARCH_LBR_RETURN |
1349 						  ARCH_LBR_OTHER_BRANCH,
1350 	[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT]     = ARCH_LBR_REL_CALL |
1351 						  ARCH_LBR_IND_CALL |
1352 						  ARCH_LBR_OTHER_BRANCH,
1353 	[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT]     = ARCH_LBR_IND_CALL,
1354 	[PERF_SAMPLE_BRANCH_COND_SHIFT]         = ARCH_LBR_JCC,
1355 	[PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT]   = ARCH_LBR_REL_CALL |
1356 						  ARCH_LBR_IND_CALL |
1357 						  ARCH_LBR_RETURN |
1358 						  ARCH_LBR_CALL_STACK,
1359 	[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT]	= ARCH_LBR_IND_JMP,
1360 	[PERF_SAMPLE_BRANCH_CALL_SHIFT]		= ARCH_LBR_REL_CALL,
1361 };
1362 
1363 /* core */
intel_pmu_lbr_init_core(void)1364 void __init intel_pmu_lbr_init_core(void)
1365 {
1366 	x86_pmu.lbr_nr     = 4;
1367 	x86_pmu.lbr_tos    = MSR_LBR_TOS;
1368 	x86_pmu.lbr_from   = MSR_LBR_CORE_FROM;
1369 	x86_pmu.lbr_to     = MSR_LBR_CORE_TO;
1370 
1371 	/*
1372 	 * SW branch filter usage:
1373 	 * - compensate for lack of HW filter
1374 	 */
1375 }
1376 
1377 /* nehalem/westmere */
intel_pmu_lbr_init_nhm(void)1378 void __init intel_pmu_lbr_init_nhm(void)
1379 {
1380 	x86_pmu.lbr_nr     = 16;
1381 	x86_pmu.lbr_tos    = MSR_LBR_TOS;
1382 	x86_pmu.lbr_from   = MSR_LBR_NHM_FROM;
1383 	x86_pmu.lbr_to     = MSR_LBR_NHM_TO;
1384 
1385 	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1386 	x86_pmu.lbr_sel_map  = nhm_lbr_sel_map;
1387 
1388 	/*
1389 	 * SW branch filter usage:
1390 	 * - workaround LBR_SEL errata (see above)
1391 	 * - support syscall, sysret capture.
1392 	 *   That requires LBR_FAR but that means far
1393 	 *   jmp need to be filtered out
1394 	 */
1395 }
1396 
1397 /* sandy bridge */
intel_pmu_lbr_init_snb(void)1398 void __init intel_pmu_lbr_init_snb(void)
1399 {
1400 	x86_pmu.lbr_nr	 = 16;
1401 	x86_pmu.lbr_tos	 = MSR_LBR_TOS;
1402 	x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1403 	x86_pmu.lbr_to   = MSR_LBR_NHM_TO;
1404 
1405 	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1406 	x86_pmu.lbr_sel_map  = snb_lbr_sel_map;
1407 
1408 	/*
1409 	 * SW branch filter usage:
1410 	 * - support syscall, sysret capture.
1411 	 *   That requires LBR_FAR but that means far
1412 	 *   jmp need to be filtered out
1413 	 */
1414 }
1415 
1416 static inline struct kmem_cache *
create_lbr_kmem_cache(size_t size,size_t align)1417 create_lbr_kmem_cache(size_t size, size_t align)
1418 {
1419 	return kmem_cache_create("x86_lbr", size, align, 0, NULL);
1420 }
1421 
1422 /* haswell */
intel_pmu_lbr_init_hsw(void)1423 void intel_pmu_lbr_init_hsw(void)
1424 {
1425 	size_t size = sizeof(struct x86_perf_task_context);
1426 
1427 	x86_pmu.lbr_nr	 = 16;
1428 	x86_pmu.lbr_tos	 = MSR_LBR_TOS;
1429 	x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1430 	x86_pmu.lbr_to   = MSR_LBR_NHM_TO;
1431 
1432 	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1433 	x86_pmu.lbr_sel_map  = hsw_lbr_sel_map;
1434 
1435 	x86_get_pmu(smp_processor_id())->task_ctx_cache = create_lbr_kmem_cache(size, 0);
1436 }
1437 
1438 /* skylake */
intel_pmu_lbr_init_skl(void)1439 __init void intel_pmu_lbr_init_skl(void)
1440 {
1441 	size_t size = sizeof(struct x86_perf_task_context);
1442 
1443 	x86_pmu.lbr_nr	 = 32;
1444 	x86_pmu.lbr_tos	 = MSR_LBR_TOS;
1445 	x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1446 	x86_pmu.lbr_to   = MSR_LBR_NHM_TO;
1447 	x86_pmu.lbr_info = MSR_LBR_INFO_0;
1448 
1449 	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1450 	x86_pmu.lbr_sel_map  = hsw_lbr_sel_map;
1451 
1452 	x86_get_pmu(smp_processor_id())->task_ctx_cache = create_lbr_kmem_cache(size, 0);
1453 
1454 	/*
1455 	 * SW branch filter usage:
1456 	 * - support syscall, sysret capture.
1457 	 *   That requires LBR_FAR but that means far
1458 	 *   jmp need to be filtered out
1459 	 */
1460 }
1461 
1462 /* atom */
intel_pmu_lbr_init_atom(void)1463 void __init intel_pmu_lbr_init_atom(void)
1464 {
1465 	/*
1466 	 * only models starting at stepping 10 seems
1467 	 * to have an operational LBR which can freeze
1468 	 * on PMU interrupt
1469 	 */
1470 	if (boot_cpu_data.x86_vfm == INTEL_ATOM_BONNELL
1471 	    && boot_cpu_data.x86_stepping < 10) {
1472 		pr_cont("LBR disabled due to erratum");
1473 		return;
1474 	}
1475 
1476 	x86_pmu.lbr_nr	   = 8;
1477 	x86_pmu.lbr_tos    = MSR_LBR_TOS;
1478 	x86_pmu.lbr_from   = MSR_LBR_CORE_FROM;
1479 	x86_pmu.lbr_to     = MSR_LBR_CORE_TO;
1480 
1481 	/*
1482 	 * SW branch filter usage:
1483 	 * - compensate for lack of HW filter
1484 	 */
1485 }
1486 
1487 /* slm */
intel_pmu_lbr_init_slm(void)1488 void __init intel_pmu_lbr_init_slm(void)
1489 {
1490 	x86_pmu.lbr_nr	   = 8;
1491 	x86_pmu.lbr_tos    = MSR_LBR_TOS;
1492 	x86_pmu.lbr_from   = MSR_LBR_CORE_FROM;
1493 	x86_pmu.lbr_to     = MSR_LBR_CORE_TO;
1494 
1495 	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1496 	x86_pmu.lbr_sel_map  = nhm_lbr_sel_map;
1497 
1498 	/*
1499 	 * SW branch filter usage:
1500 	 * - compensate for lack of HW filter
1501 	 */
1502 	pr_cont("8-deep LBR, ");
1503 }
1504 
1505 /* Knights Landing */
intel_pmu_lbr_init_knl(void)1506 void intel_pmu_lbr_init_knl(void)
1507 {
1508 	x86_pmu.lbr_nr	   = 8;
1509 	x86_pmu.lbr_tos    = MSR_LBR_TOS;
1510 	x86_pmu.lbr_from   = MSR_LBR_NHM_FROM;
1511 	x86_pmu.lbr_to     = MSR_LBR_NHM_TO;
1512 
1513 	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1514 	x86_pmu.lbr_sel_map  = snb_lbr_sel_map;
1515 
1516 	/* Knights Landing does have MISPREDICT bit */
1517 	if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_LIP)
1518 		x86_pmu.intel_cap.lbr_format = LBR_FORMAT_EIP_FLAGS;
1519 }
1520 
intel_pmu_lbr_init(void)1521 void intel_pmu_lbr_init(void)
1522 {
1523 	switch (x86_pmu.intel_cap.lbr_format) {
1524 	case LBR_FORMAT_EIP_FLAGS2:
1525 		x86_pmu.lbr_has_tsx = 1;
1526 		x86_pmu.lbr_from_flags = 1;
1527 		if (lbr_from_signext_quirk_needed())
1528 			static_branch_enable(&lbr_from_quirk_key);
1529 		break;
1530 
1531 	case LBR_FORMAT_EIP_FLAGS:
1532 		x86_pmu.lbr_from_flags = 1;
1533 		break;
1534 
1535 	case LBR_FORMAT_INFO:
1536 		x86_pmu.lbr_has_tsx = 1;
1537 		fallthrough;
1538 	case LBR_FORMAT_INFO2:
1539 		x86_pmu.lbr_has_info = 1;
1540 		break;
1541 
1542 	case LBR_FORMAT_TIME:
1543 		x86_pmu.lbr_from_flags = 1;
1544 		x86_pmu.lbr_to_cycles = 1;
1545 		break;
1546 	}
1547 
1548 	if (x86_pmu.lbr_has_info) {
1549 		/*
1550 		 * Only used in combination with baseline pebs.
1551 		 */
1552 		static_branch_enable(&x86_lbr_mispred);
1553 		static_branch_enable(&x86_lbr_cycles);
1554 	}
1555 }
1556 
1557 /*
1558  * LBR state size is variable based on the max number of registers.
1559  * This calculates the expected state size, which should match
1560  * what the hardware enumerates for the size of XFEATURE_LBR.
1561  */
get_lbr_state_size(void)1562 static inline unsigned int get_lbr_state_size(void)
1563 {
1564 	return sizeof(struct arch_lbr_state) +
1565 	       x86_pmu.lbr_nr * sizeof(struct lbr_entry);
1566 }
1567 
is_arch_lbr_xsave_available(void)1568 static bool is_arch_lbr_xsave_available(void)
1569 {
1570 	if (!boot_cpu_has(X86_FEATURE_XSAVES))
1571 		return false;
1572 
1573 	/*
1574 	 * Check the LBR state with the corresponding software structure.
1575 	 * Disable LBR XSAVES support if the size doesn't match.
1576 	 */
1577 	if (xfeature_size(XFEATURE_LBR) == 0)
1578 		return false;
1579 
1580 	if (WARN_ON(xfeature_size(XFEATURE_LBR) != get_lbr_state_size()))
1581 		return false;
1582 
1583 	return true;
1584 }
1585 
intel_pmu_arch_lbr_init(void)1586 void __init intel_pmu_arch_lbr_init(void)
1587 {
1588 	struct pmu *pmu = x86_get_pmu(smp_processor_id());
1589 	union cpuid28_eax eax;
1590 	union cpuid28_ebx ebx;
1591 	union cpuid28_ecx ecx;
1592 	unsigned int unused_edx;
1593 	bool arch_lbr_xsave;
1594 	size_t size;
1595 	u64 lbr_nr;
1596 
1597 	/* Arch LBR Capabilities */
1598 	cpuid(28, &eax.full, &ebx.full, &ecx.full, &unused_edx);
1599 
1600 	lbr_nr = fls(eax.split.lbr_depth_mask) * 8;
1601 	if (!lbr_nr)
1602 		goto clear_arch_lbr;
1603 
1604 	/* Apply the max depth of Arch LBR */
1605 	if (wrmsrl_safe(MSR_ARCH_LBR_DEPTH, lbr_nr))
1606 		goto clear_arch_lbr;
1607 
1608 	x86_pmu.lbr_depth_mask = eax.split.lbr_depth_mask;
1609 	x86_pmu.lbr_deep_c_reset = eax.split.lbr_deep_c_reset;
1610 	x86_pmu.lbr_lip = eax.split.lbr_lip;
1611 	x86_pmu.lbr_cpl = ebx.split.lbr_cpl;
1612 	x86_pmu.lbr_filter = ebx.split.lbr_filter;
1613 	x86_pmu.lbr_call_stack = ebx.split.lbr_call_stack;
1614 	x86_pmu.lbr_mispred = ecx.split.lbr_mispred;
1615 	x86_pmu.lbr_timed_lbr = ecx.split.lbr_timed_lbr;
1616 	x86_pmu.lbr_br_type = ecx.split.lbr_br_type;
1617 	x86_pmu.lbr_counters = ecx.split.lbr_counters;
1618 	x86_pmu.lbr_nr = lbr_nr;
1619 
1620 	if (!!x86_pmu.lbr_counters)
1621 		x86_pmu.flags |= PMU_FL_BR_CNTR;
1622 
1623 	if (x86_pmu.lbr_mispred)
1624 		static_branch_enable(&x86_lbr_mispred);
1625 	if (x86_pmu.lbr_timed_lbr)
1626 		static_branch_enable(&x86_lbr_cycles);
1627 	if (x86_pmu.lbr_br_type)
1628 		static_branch_enable(&x86_lbr_type);
1629 
1630 	arch_lbr_xsave = is_arch_lbr_xsave_available();
1631 	if (arch_lbr_xsave) {
1632 		size = sizeof(struct x86_perf_task_context_arch_lbr_xsave) +
1633 		       get_lbr_state_size();
1634 		pmu->task_ctx_cache = create_lbr_kmem_cache(size,
1635 							    XSAVE_ALIGNMENT);
1636 	}
1637 
1638 	if (!pmu->task_ctx_cache) {
1639 		arch_lbr_xsave = false;
1640 
1641 		size = sizeof(struct x86_perf_task_context_arch_lbr) +
1642 		       lbr_nr * sizeof(struct lbr_entry);
1643 		pmu->task_ctx_cache = create_lbr_kmem_cache(size, 0);
1644 	}
1645 
1646 	x86_pmu.lbr_from = MSR_ARCH_LBR_FROM_0;
1647 	x86_pmu.lbr_to = MSR_ARCH_LBR_TO_0;
1648 	x86_pmu.lbr_info = MSR_ARCH_LBR_INFO_0;
1649 
1650 	/* LBR callstack requires both CPL and Branch Filtering support */
1651 	if (!x86_pmu.lbr_cpl ||
1652 	    !x86_pmu.lbr_filter ||
1653 	    !x86_pmu.lbr_call_stack)
1654 		arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT] = LBR_NOT_SUPP;
1655 
1656 	if (!x86_pmu.lbr_cpl) {
1657 		arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_NOT_SUPP;
1658 		arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_NOT_SUPP;
1659 	} else if (!x86_pmu.lbr_filter) {
1660 		arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_NOT_SUPP;
1661 		arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_NOT_SUPP;
1662 		arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = LBR_NOT_SUPP;
1663 		arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_NOT_SUPP;
1664 		arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_NOT_SUPP;
1665 		arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_NOT_SUPP;
1666 		arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_CALL_SHIFT] = LBR_NOT_SUPP;
1667 	}
1668 
1669 	x86_pmu.lbr_ctl_mask = ARCH_LBR_CTL_MASK;
1670 	x86_pmu.lbr_ctl_map  = arch_lbr_ctl_map;
1671 
1672 	if (!x86_pmu.lbr_cpl && !x86_pmu.lbr_filter)
1673 		x86_pmu.lbr_ctl_map = NULL;
1674 
1675 	x86_pmu.lbr_reset = intel_pmu_arch_lbr_reset;
1676 	if (arch_lbr_xsave) {
1677 		x86_pmu.lbr_save = intel_pmu_arch_lbr_xsaves;
1678 		x86_pmu.lbr_restore = intel_pmu_arch_lbr_xrstors;
1679 		x86_pmu.lbr_read = intel_pmu_arch_lbr_read_xsave;
1680 		pr_cont("XSAVE ");
1681 	} else {
1682 		x86_pmu.lbr_save = intel_pmu_arch_lbr_save;
1683 		x86_pmu.lbr_restore = intel_pmu_arch_lbr_restore;
1684 		x86_pmu.lbr_read = intel_pmu_arch_lbr_read;
1685 	}
1686 
1687 	pr_cont("Architectural LBR, ");
1688 
1689 	return;
1690 
1691 clear_arch_lbr:
1692 	setup_clear_cpu_cap(X86_FEATURE_ARCH_LBR);
1693 }
1694 
1695 /**
1696  * x86_perf_get_lbr - get the LBR records information
1697  *
1698  * @lbr: the caller's memory to store the LBR records information
1699  */
x86_perf_get_lbr(struct x86_pmu_lbr * lbr)1700 void x86_perf_get_lbr(struct x86_pmu_lbr *lbr)
1701 {
1702 	lbr->nr = x86_pmu.lbr_nr;
1703 	lbr->from = x86_pmu.lbr_from;
1704 	lbr->to = x86_pmu.lbr_to;
1705 	lbr->info = x86_pmu.lbr_info;
1706 	lbr->has_callstack = x86_pmu_has_lbr_callstack();
1707 }
1708 EXPORT_SYMBOL_GPL(x86_perf_get_lbr);
1709 
1710 struct event_constraint vlbr_constraint =
1711 	__EVENT_CONSTRAINT(INTEL_FIXED_VLBR_EVENT, (1ULL << INTEL_PMC_IDX_FIXED_VLBR),
1712 			  FIXED_EVENT_FLAGS, 1, 0, PERF_X86_EVENT_LBR_SELECT);
1713