1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/perf_event.h>
3 #include <linux/types.h>
4
5 #include <asm/cpu_device_id.h>
6 #include <asm/perf_event.h>
7 #include <asm/msr.h>
8
9 #include "../perf_event.h"
10
11 /*
12 * Intel LBR_SELECT bits
13 * Intel Vol3a, April 2011, Section 16.7 Table 16-10
14 *
15 * Hardware branch filter (not available on all CPUs)
16 */
17 #define LBR_KERNEL_BIT 0 /* do not capture at ring0 */
18 #define LBR_USER_BIT 1 /* do not capture at ring > 0 */
19 #define LBR_JCC_BIT 2 /* do not capture conditional branches */
20 #define LBR_REL_CALL_BIT 3 /* do not capture relative calls */
21 #define LBR_IND_CALL_BIT 4 /* do not capture indirect calls */
22 #define LBR_RETURN_BIT 5 /* do not capture near returns */
23 #define LBR_IND_JMP_BIT 6 /* do not capture indirect jumps */
24 #define LBR_REL_JMP_BIT 7 /* do not capture relative jumps */
25 #define LBR_FAR_BIT 8 /* do not capture far branches */
26 #define LBR_CALL_STACK_BIT 9 /* enable call stack */
27
28 /*
29 * Following bit only exists in Linux; we mask it out before writing it to
30 * the actual MSR. But it helps the constraint perf code to understand
31 * that this is a separate configuration.
32 */
33 #define LBR_NO_INFO_BIT 63 /* don't read LBR_INFO. */
34
35 #define LBR_KERNEL (1 << LBR_KERNEL_BIT)
36 #define LBR_USER (1 << LBR_USER_BIT)
37 #define LBR_JCC (1 << LBR_JCC_BIT)
38 #define LBR_REL_CALL (1 << LBR_REL_CALL_BIT)
39 #define LBR_IND_CALL (1 << LBR_IND_CALL_BIT)
40 #define LBR_RETURN (1 << LBR_RETURN_BIT)
41 #define LBR_REL_JMP (1 << LBR_REL_JMP_BIT)
42 #define LBR_IND_JMP (1 << LBR_IND_JMP_BIT)
43 #define LBR_FAR (1 << LBR_FAR_BIT)
44 #define LBR_CALL_STACK (1 << LBR_CALL_STACK_BIT)
45 #define LBR_NO_INFO (1ULL << LBR_NO_INFO_BIT)
46
47 #define LBR_PLM (LBR_KERNEL | LBR_USER)
48
49 #define LBR_SEL_MASK 0x3ff /* valid bits in LBR_SELECT */
50 #define LBR_NOT_SUPP -1 /* LBR filter not supported */
51 #define LBR_IGN 0 /* ignored */
52
53 #define LBR_ANY \
54 (LBR_JCC |\
55 LBR_REL_CALL |\
56 LBR_IND_CALL |\
57 LBR_RETURN |\
58 LBR_REL_JMP |\
59 LBR_IND_JMP |\
60 LBR_FAR)
61
62 #define LBR_FROM_FLAG_MISPRED BIT_ULL(63)
63 #define LBR_FROM_FLAG_IN_TX BIT_ULL(62)
64 #define LBR_FROM_FLAG_ABORT BIT_ULL(61)
65
66 #define LBR_FROM_SIGNEXT_2MSB (BIT_ULL(60) | BIT_ULL(59))
67
68 /*
69 * Intel LBR_CTL bits
70 *
71 * Hardware branch filter for Arch LBR
72 */
73 #define ARCH_LBR_KERNEL_BIT 1 /* capture at ring0 */
74 #define ARCH_LBR_USER_BIT 2 /* capture at ring > 0 */
75 #define ARCH_LBR_CALL_STACK_BIT 3 /* enable call stack */
76 #define ARCH_LBR_JCC_BIT 16 /* capture conditional branches */
77 #define ARCH_LBR_REL_JMP_BIT 17 /* capture relative jumps */
78 #define ARCH_LBR_IND_JMP_BIT 18 /* capture indirect jumps */
79 #define ARCH_LBR_REL_CALL_BIT 19 /* capture relative calls */
80 #define ARCH_LBR_IND_CALL_BIT 20 /* capture indirect calls */
81 #define ARCH_LBR_RETURN_BIT 21 /* capture near returns */
82 #define ARCH_LBR_OTHER_BRANCH_BIT 22 /* capture other branches */
83
84 #define ARCH_LBR_KERNEL (1ULL << ARCH_LBR_KERNEL_BIT)
85 #define ARCH_LBR_USER (1ULL << ARCH_LBR_USER_BIT)
86 #define ARCH_LBR_CALL_STACK (1ULL << ARCH_LBR_CALL_STACK_BIT)
87 #define ARCH_LBR_JCC (1ULL << ARCH_LBR_JCC_BIT)
88 #define ARCH_LBR_REL_JMP (1ULL << ARCH_LBR_REL_JMP_BIT)
89 #define ARCH_LBR_IND_JMP (1ULL << ARCH_LBR_IND_JMP_BIT)
90 #define ARCH_LBR_REL_CALL (1ULL << ARCH_LBR_REL_CALL_BIT)
91 #define ARCH_LBR_IND_CALL (1ULL << ARCH_LBR_IND_CALL_BIT)
92 #define ARCH_LBR_RETURN (1ULL << ARCH_LBR_RETURN_BIT)
93 #define ARCH_LBR_OTHER_BRANCH (1ULL << ARCH_LBR_OTHER_BRANCH_BIT)
94
95 #define ARCH_LBR_ANY \
96 (ARCH_LBR_JCC |\
97 ARCH_LBR_REL_JMP |\
98 ARCH_LBR_IND_JMP |\
99 ARCH_LBR_REL_CALL |\
100 ARCH_LBR_IND_CALL |\
101 ARCH_LBR_RETURN |\
102 ARCH_LBR_OTHER_BRANCH)
103
104 #define ARCH_LBR_CTL_MASK 0x7f000e
105
106 static void intel_pmu_lbr_filter(struct cpu_hw_events *cpuc);
107
is_lbr_call_stack_bit_set(u64 config)108 static __always_inline bool is_lbr_call_stack_bit_set(u64 config)
109 {
110 if (static_cpu_has(X86_FEATURE_ARCH_LBR))
111 return !!(config & ARCH_LBR_CALL_STACK);
112
113 return !!(config & LBR_CALL_STACK);
114 }
115
116 /*
117 * We only support LBR implementations that have FREEZE_LBRS_ON_PMI
118 * otherwise it becomes near impossible to get a reliable stack.
119 */
120
__intel_pmu_lbr_enable(bool pmi)121 static void __intel_pmu_lbr_enable(bool pmi)
122 {
123 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
124 u64 debugctl, lbr_select = 0, orig_debugctl;
125
126 /*
127 * No need to unfreeze manually, as v4 can do that as part
128 * of the GLOBAL_STATUS ack.
129 */
130 if (pmi && x86_pmu.version >= 4)
131 return;
132
133 /*
134 * No need to reprogram LBR_SELECT in a PMI, as it
135 * did not change.
136 */
137 if (cpuc->lbr_sel)
138 lbr_select = cpuc->lbr_sel->config & x86_pmu.lbr_sel_mask;
139 if (!static_cpu_has(X86_FEATURE_ARCH_LBR) && !pmi && cpuc->lbr_sel)
140 wrmsrl(MSR_LBR_SELECT, lbr_select);
141
142 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
143 orig_debugctl = debugctl;
144
145 if (!static_cpu_has(X86_FEATURE_ARCH_LBR))
146 debugctl |= DEBUGCTLMSR_LBR;
147 /*
148 * LBR callstack does not work well with FREEZE_LBRS_ON_PMI.
149 * If FREEZE_LBRS_ON_PMI is set, PMI near call/return instructions
150 * may cause superfluous increase/decrease of LBR_TOS.
151 */
152 if (is_lbr_call_stack_bit_set(lbr_select))
153 debugctl &= ~DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
154 else
155 debugctl |= DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
156
157 if (orig_debugctl != debugctl)
158 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
159
160 if (static_cpu_has(X86_FEATURE_ARCH_LBR))
161 wrmsrl(MSR_ARCH_LBR_CTL, lbr_select | ARCH_LBR_CTL_LBREN);
162 }
163
intel_pmu_lbr_reset_32(void)164 void intel_pmu_lbr_reset_32(void)
165 {
166 int i;
167
168 for (i = 0; i < x86_pmu.lbr_nr; i++)
169 wrmsrl(x86_pmu.lbr_from + i, 0);
170 }
171
intel_pmu_lbr_reset_64(void)172 void intel_pmu_lbr_reset_64(void)
173 {
174 int i;
175
176 for (i = 0; i < x86_pmu.lbr_nr; i++) {
177 wrmsrl(x86_pmu.lbr_from + i, 0);
178 wrmsrl(x86_pmu.lbr_to + i, 0);
179 if (x86_pmu.lbr_has_info)
180 wrmsrl(x86_pmu.lbr_info + i, 0);
181 }
182 }
183
intel_pmu_arch_lbr_reset(void)184 static void intel_pmu_arch_lbr_reset(void)
185 {
186 /* Write to ARCH_LBR_DEPTH MSR, all LBR entries are reset to 0 */
187 wrmsrl(MSR_ARCH_LBR_DEPTH, x86_pmu.lbr_nr);
188 }
189
intel_pmu_lbr_reset(void)190 void intel_pmu_lbr_reset(void)
191 {
192 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
193
194 if (!x86_pmu.lbr_nr)
195 return;
196
197 x86_pmu.lbr_reset();
198
199 cpuc->last_task_ctx = NULL;
200 cpuc->last_log_id = 0;
201 if (!static_cpu_has(X86_FEATURE_ARCH_LBR) && cpuc->lbr_select)
202 wrmsrl(MSR_LBR_SELECT, 0);
203 }
204
205 /*
206 * TOS = most recently recorded branch
207 */
intel_pmu_lbr_tos(void)208 static inline u64 intel_pmu_lbr_tos(void)
209 {
210 u64 tos;
211
212 rdmsrl(x86_pmu.lbr_tos, tos);
213 return tos;
214 }
215
216 enum {
217 LBR_NONE,
218 LBR_VALID,
219 };
220
221 /*
222 * For format LBR_FORMAT_EIP_FLAGS2, bits 61:62 in MSR_LAST_BRANCH_FROM_x
223 * are the TSX flags when TSX is supported, but when TSX is not supported
224 * they have no consistent behavior:
225 *
226 * - For wrmsr(), bits 61:62 are considered part of the sign extension.
227 * - For HW updates (branch captures) bits 61:62 are always OFF and are not
228 * part of the sign extension.
229 *
230 * Therefore, if:
231 *
232 * 1) LBR format LBR_FORMAT_EIP_FLAGS2
233 * 2) CPU has no TSX support enabled
234 *
235 * ... then any value passed to wrmsr() must be sign extended to 63 bits and any
236 * value from rdmsr() must be converted to have a 61 bits sign extension,
237 * ignoring the TSX flags.
238 */
lbr_from_signext_quirk_needed(void)239 static inline bool lbr_from_signext_quirk_needed(void)
240 {
241 bool tsx_support = boot_cpu_has(X86_FEATURE_HLE) ||
242 boot_cpu_has(X86_FEATURE_RTM);
243
244 return !tsx_support;
245 }
246
247 static DEFINE_STATIC_KEY_FALSE(lbr_from_quirk_key);
248
249 /* If quirk is enabled, ensure sign extension is 63 bits: */
lbr_from_signext_quirk_wr(u64 val)250 inline u64 lbr_from_signext_quirk_wr(u64 val)
251 {
252 if (static_branch_unlikely(&lbr_from_quirk_key)) {
253 /*
254 * Sign extend into bits 61:62 while preserving bit 63.
255 *
256 * Quirk is enabled when TSX is disabled. Therefore TSX bits
257 * in val are always OFF and must be changed to be sign
258 * extension bits. Since bits 59:60 are guaranteed to be
259 * part of the sign extension bits, we can just copy them
260 * to 61:62.
261 */
262 val |= (LBR_FROM_SIGNEXT_2MSB & val) << 2;
263 }
264 return val;
265 }
266
267 /*
268 * If quirk is needed, ensure sign extension is 61 bits:
269 */
lbr_from_signext_quirk_rd(u64 val)270 static u64 lbr_from_signext_quirk_rd(u64 val)
271 {
272 if (static_branch_unlikely(&lbr_from_quirk_key)) {
273 /*
274 * Quirk is on when TSX is not enabled. Therefore TSX
275 * flags must be read as OFF.
276 */
277 val &= ~(LBR_FROM_FLAG_IN_TX | LBR_FROM_FLAG_ABORT);
278 }
279 return val;
280 }
281
wrlbr_from(unsigned int idx,u64 val)282 static __always_inline void wrlbr_from(unsigned int idx, u64 val)
283 {
284 val = lbr_from_signext_quirk_wr(val);
285 wrmsrl(x86_pmu.lbr_from + idx, val);
286 }
287
wrlbr_to(unsigned int idx,u64 val)288 static __always_inline void wrlbr_to(unsigned int idx, u64 val)
289 {
290 wrmsrl(x86_pmu.lbr_to + idx, val);
291 }
292
wrlbr_info(unsigned int idx,u64 val)293 static __always_inline void wrlbr_info(unsigned int idx, u64 val)
294 {
295 wrmsrl(x86_pmu.lbr_info + idx, val);
296 }
297
rdlbr_from(unsigned int idx,struct lbr_entry * lbr)298 static __always_inline u64 rdlbr_from(unsigned int idx, struct lbr_entry *lbr)
299 {
300 u64 val;
301
302 if (lbr)
303 return lbr->from;
304
305 rdmsrl(x86_pmu.lbr_from + idx, val);
306
307 return lbr_from_signext_quirk_rd(val);
308 }
309
rdlbr_to(unsigned int idx,struct lbr_entry * lbr)310 static __always_inline u64 rdlbr_to(unsigned int idx, struct lbr_entry *lbr)
311 {
312 u64 val;
313
314 if (lbr)
315 return lbr->to;
316
317 rdmsrl(x86_pmu.lbr_to + idx, val);
318
319 return val;
320 }
321
rdlbr_info(unsigned int idx,struct lbr_entry * lbr)322 static __always_inline u64 rdlbr_info(unsigned int idx, struct lbr_entry *lbr)
323 {
324 u64 val;
325
326 if (lbr)
327 return lbr->info;
328
329 rdmsrl(x86_pmu.lbr_info + idx, val);
330
331 return val;
332 }
333
334 static inline void
wrlbr_all(struct lbr_entry * lbr,unsigned int idx,bool need_info)335 wrlbr_all(struct lbr_entry *lbr, unsigned int idx, bool need_info)
336 {
337 wrlbr_from(idx, lbr->from);
338 wrlbr_to(idx, lbr->to);
339 if (need_info)
340 wrlbr_info(idx, lbr->info);
341 }
342
343 static inline bool
rdlbr_all(struct lbr_entry * lbr,unsigned int idx,bool need_info)344 rdlbr_all(struct lbr_entry *lbr, unsigned int idx, bool need_info)
345 {
346 u64 from = rdlbr_from(idx, NULL);
347
348 /* Don't read invalid entry */
349 if (!from)
350 return false;
351
352 lbr->from = from;
353 lbr->to = rdlbr_to(idx, NULL);
354 if (need_info)
355 lbr->info = rdlbr_info(idx, NULL);
356
357 return true;
358 }
359
intel_pmu_lbr_restore(void * ctx)360 void intel_pmu_lbr_restore(void *ctx)
361 {
362 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
363 struct x86_perf_task_context *task_ctx = ctx;
364 bool need_info = x86_pmu.lbr_has_info;
365 u64 tos = task_ctx->tos;
366 unsigned lbr_idx, mask;
367 int i;
368
369 mask = x86_pmu.lbr_nr - 1;
370 for (i = 0; i < task_ctx->valid_lbrs; i++) {
371 lbr_idx = (tos - i) & mask;
372 wrlbr_all(&task_ctx->lbr[i], lbr_idx, need_info);
373 }
374
375 for (; i < x86_pmu.lbr_nr; i++) {
376 lbr_idx = (tos - i) & mask;
377 wrlbr_from(lbr_idx, 0);
378 wrlbr_to(lbr_idx, 0);
379 if (need_info)
380 wrlbr_info(lbr_idx, 0);
381 }
382
383 wrmsrl(x86_pmu.lbr_tos, tos);
384
385 if (cpuc->lbr_select)
386 wrmsrl(MSR_LBR_SELECT, task_ctx->lbr_sel);
387 }
388
intel_pmu_arch_lbr_restore(void * ctx)389 static void intel_pmu_arch_lbr_restore(void *ctx)
390 {
391 struct x86_perf_task_context_arch_lbr *task_ctx = ctx;
392 struct lbr_entry *entries = task_ctx->entries;
393 int i;
394
395 /* Fast reset the LBRs before restore if the call stack is not full. */
396 if (!entries[x86_pmu.lbr_nr - 1].from)
397 intel_pmu_arch_lbr_reset();
398
399 for (i = 0; i < x86_pmu.lbr_nr; i++) {
400 if (!entries[i].from)
401 break;
402 wrlbr_all(&entries[i], i, true);
403 }
404 }
405
406 /*
407 * Restore the Architecture LBR state from the xsave area in the perf
408 * context data for the task via the XRSTORS instruction.
409 */
intel_pmu_arch_lbr_xrstors(void * ctx)410 static void intel_pmu_arch_lbr_xrstors(void *ctx)
411 {
412 struct x86_perf_task_context_arch_lbr_xsave *task_ctx = ctx;
413
414 xrstors(&task_ctx->xsave, XFEATURE_MASK_LBR);
415 }
416
lbr_is_reset_in_cstate(void * ctx)417 static __always_inline bool lbr_is_reset_in_cstate(void *ctx)
418 {
419 if (static_cpu_has(X86_FEATURE_ARCH_LBR))
420 return x86_pmu.lbr_deep_c_reset && !rdlbr_from(0, NULL);
421
422 return !rdlbr_from(((struct x86_perf_task_context *)ctx)->tos, NULL);
423 }
424
has_lbr_callstack_users(void * ctx)425 static inline bool has_lbr_callstack_users(void *ctx)
426 {
427 return task_context_opt(ctx)->lbr_callstack_users ||
428 x86_pmu.lbr_callstack_users;
429 }
430
__intel_pmu_lbr_restore(void * ctx)431 static void __intel_pmu_lbr_restore(void *ctx)
432 {
433 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
434
435 if (!has_lbr_callstack_users(ctx) ||
436 task_context_opt(ctx)->lbr_stack_state == LBR_NONE) {
437 intel_pmu_lbr_reset();
438 return;
439 }
440
441 /*
442 * Does not restore the LBR registers, if
443 * - No one else touched them, and
444 * - Was not cleared in Cstate
445 */
446 if ((ctx == cpuc->last_task_ctx) &&
447 (task_context_opt(ctx)->log_id == cpuc->last_log_id) &&
448 !lbr_is_reset_in_cstate(ctx)) {
449 task_context_opt(ctx)->lbr_stack_state = LBR_NONE;
450 return;
451 }
452
453 x86_pmu.lbr_restore(ctx);
454
455 task_context_opt(ctx)->lbr_stack_state = LBR_NONE;
456 }
457
intel_pmu_lbr_save(void * ctx)458 void intel_pmu_lbr_save(void *ctx)
459 {
460 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
461 struct x86_perf_task_context *task_ctx = ctx;
462 bool need_info = x86_pmu.lbr_has_info;
463 unsigned lbr_idx, mask;
464 u64 tos;
465 int i;
466
467 mask = x86_pmu.lbr_nr - 1;
468 tos = intel_pmu_lbr_tos();
469 for (i = 0; i < x86_pmu.lbr_nr; i++) {
470 lbr_idx = (tos - i) & mask;
471 if (!rdlbr_all(&task_ctx->lbr[i], lbr_idx, need_info))
472 break;
473 }
474 task_ctx->valid_lbrs = i;
475 task_ctx->tos = tos;
476
477 if (cpuc->lbr_select)
478 rdmsrl(MSR_LBR_SELECT, task_ctx->lbr_sel);
479 }
480
intel_pmu_arch_lbr_save(void * ctx)481 static void intel_pmu_arch_lbr_save(void *ctx)
482 {
483 struct x86_perf_task_context_arch_lbr *task_ctx = ctx;
484 struct lbr_entry *entries = task_ctx->entries;
485 int i;
486
487 for (i = 0; i < x86_pmu.lbr_nr; i++) {
488 if (!rdlbr_all(&entries[i], i, true))
489 break;
490 }
491
492 /* LBR call stack is not full. Reset is required in restore. */
493 if (i < x86_pmu.lbr_nr)
494 entries[x86_pmu.lbr_nr - 1].from = 0;
495 }
496
497 /*
498 * Save the Architecture LBR state to the xsave area in the perf
499 * context data for the task via the XSAVES instruction.
500 */
intel_pmu_arch_lbr_xsaves(void * ctx)501 static void intel_pmu_arch_lbr_xsaves(void *ctx)
502 {
503 struct x86_perf_task_context_arch_lbr_xsave *task_ctx = ctx;
504
505 xsaves(&task_ctx->xsave, XFEATURE_MASK_LBR);
506 }
507
__intel_pmu_lbr_save(void * ctx)508 static void __intel_pmu_lbr_save(void *ctx)
509 {
510 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
511
512 if (!has_lbr_callstack_users(ctx)) {
513 task_context_opt(ctx)->lbr_stack_state = LBR_NONE;
514 return;
515 }
516
517 x86_pmu.lbr_save(ctx);
518
519 task_context_opt(ctx)->lbr_stack_state = LBR_VALID;
520
521 cpuc->last_task_ctx = ctx;
522 cpuc->last_log_id = ++task_context_opt(ctx)->log_id;
523 }
524
intel_pmu_lbr_sched_task(struct perf_event_pmu_context * pmu_ctx,struct task_struct * task,bool sched_in)525 void intel_pmu_lbr_sched_task(struct perf_event_pmu_context *pmu_ctx,
526 struct task_struct *task, bool sched_in)
527 {
528 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
529 struct perf_ctx_data *ctx_data;
530 void *task_ctx;
531
532 if (!cpuc->lbr_users)
533 return;
534
535 /*
536 * If LBR callstack feature is enabled and the stack was saved when
537 * the task was scheduled out, restore the stack. Otherwise flush
538 * the LBR stack.
539 */
540 rcu_read_lock();
541 ctx_data = rcu_dereference(task->perf_ctx_data);
542 task_ctx = ctx_data ? ctx_data->data : NULL;
543 if (task_ctx) {
544 if (sched_in)
545 __intel_pmu_lbr_restore(task_ctx);
546 else
547 __intel_pmu_lbr_save(task_ctx);
548 rcu_read_unlock();
549 return;
550 }
551 rcu_read_unlock();
552
553 /*
554 * Since a context switch can flip the address space and LBR entries
555 * are not tagged with an identifier, we need to wipe the LBR, even for
556 * per-cpu events. You simply cannot resolve the branches from the old
557 * address space.
558 */
559 if (sched_in)
560 intel_pmu_lbr_reset();
561 }
562
branch_user_callstack(unsigned br_sel)563 static inline bool branch_user_callstack(unsigned br_sel)
564 {
565 return (br_sel & X86_BR_USER) && (br_sel & X86_BR_CALL_STACK);
566 }
567
intel_pmu_lbr_add(struct perf_event * event)568 void intel_pmu_lbr_add(struct perf_event *event)
569 {
570 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
571
572 if (!x86_pmu.lbr_nr)
573 return;
574
575 if (event->hw.flags & PERF_X86_EVENT_LBR_SELECT)
576 cpuc->lbr_select = 1;
577
578 cpuc->br_sel = event->hw.branch_reg.reg;
579
580 if (branch_user_callstack(cpuc->br_sel)) {
581 if (event->attach_state & PERF_ATTACH_TASK) {
582 struct task_struct *task = event->hw.target;
583 struct perf_ctx_data *ctx_data;
584
585 rcu_read_lock();
586 ctx_data = rcu_dereference(task->perf_ctx_data);
587 if (ctx_data)
588 task_context_opt(ctx_data->data)->lbr_callstack_users++;
589 rcu_read_unlock();
590 } else
591 x86_pmu.lbr_callstack_users++;
592 }
593 /*
594 * Request pmu::sched_task() callback, which will fire inside the
595 * regular perf event scheduling, so that call will:
596 *
597 * - restore or wipe; when LBR-callstack,
598 * - wipe; otherwise,
599 *
600 * when this is from __perf_event_task_sched_in().
601 *
602 * However, if this is from perf_install_in_context(), no such callback
603 * will follow and we'll need to reset the LBR here if this is the
604 * first LBR event.
605 *
606 * The problem is, we cannot tell these cases apart... but we can
607 * exclude the biggest chunk of cases by looking at
608 * event->total_time_running. An event that has accrued runtime cannot
609 * be 'new'. Conversely, a new event can get installed through the
610 * context switch path for the first time.
611 */
612 if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip > 0)
613 cpuc->lbr_pebs_users++;
614 perf_sched_cb_inc(event->pmu);
615 if (!cpuc->lbr_users++ && !event->total_time_running)
616 intel_pmu_lbr_reset();
617 }
618
release_lbr_buffers(void)619 void release_lbr_buffers(void)
620 {
621 struct kmem_cache *kmem_cache;
622 struct cpu_hw_events *cpuc;
623 int cpu;
624
625 if (!static_cpu_has(X86_FEATURE_ARCH_LBR))
626 return;
627
628 for_each_possible_cpu(cpu) {
629 cpuc = per_cpu_ptr(&cpu_hw_events, cpu);
630 kmem_cache = x86_get_pmu(cpu)->task_ctx_cache;
631 if (kmem_cache && cpuc->lbr_xsave) {
632 kmem_cache_free(kmem_cache, cpuc->lbr_xsave);
633 cpuc->lbr_xsave = NULL;
634 }
635 }
636 }
637
reserve_lbr_buffers(void)638 void reserve_lbr_buffers(void)
639 {
640 struct kmem_cache *kmem_cache;
641 struct cpu_hw_events *cpuc;
642 int cpu;
643
644 if (!static_cpu_has(X86_FEATURE_ARCH_LBR))
645 return;
646
647 for_each_possible_cpu(cpu) {
648 cpuc = per_cpu_ptr(&cpu_hw_events, cpu);
649 kmem_cache = x86_get_pmu(cpu)->task_ctx_cache;
650 if (!kmem_cache || cpuc->lbr_xsave)
651 continue;
652
653 cpuc->lbr_xsave = kmem_cache_alloc_node(kmem_cache,
654 GFP_KERNEL | __GFP_ZERO,
655 cpu_to_node(cpu));
656 }
657 }
658
intel_pmu_lbr_del(struct perf_event * event)659 void intel_pmu_lbr_del(struct perf_event *event)
660 {
661 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
662
663 if (!x86_pmu.lbr_nr)
664 return;
665
666 if (branch_user_callstack(cpuc->br_sel)) {
667 if (event->attach_state & PERF_ATTACH_TASK) {
668 struct task_struct *task = event->hw.target;
669 struct perf_ctx_data *ctx_data;
670
671 rcu_read_lock();
672 ctx_data = rcu_dereference(task->perf_ctx_data);
673 if (ctx_data)
674 task_context_opt(ctx_data->data)->lbr_callstack_users--;
675 rcu_read_unlock();
676 } else
677 x86_pmu.lbr_callstack_users--;
678 }
679
680 if (event->hw.flags & PERF_X86_EVENT_LBR_SELECT)
681 cpuc->lbr_select = 0;
682
683 if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip > 0)
684 cpuc->lbr_pebs_users--;
685 cpuc->lbr_users--;
686 WARN_ON_ONCE(cpuc->lbr_users < 0);
687 WARN_ON_ONCE(cpuc->lbr_pebs_users < 0);
688 perf_sched_cb_dec(event->pmu);
689
690 /*
691 * The logged occurrences information is only valid for the
692 * current LBR group. If another LBR group is scheduled in
693 * later, the information from the stale LBRs will be wrongly
694 * interpreted. Reset the LBRs here.
695 *
696 * Only clear once for a branch counter group with the leader
697 * event. Because
698 * - Cannot simply reset the LBRs with the !cpuc->lbr_users.
699 * Because it's possible that the last LBR user is not in a
700 * branch counter group, e.g., a branch_counters group +
701 * several normal LBR events.
702 * - The LBR reset can be done with any one of the events in a
703 * branch counter group, since they are always scheduled together.
704 * It's easy to force the leader event an LBR event.
705 */
706 if (is_branch_counters_group(event) && event == event->group_leader)
707 intel_pmu_lbr_reset();
708 }
709
vlbr_exclude_host(void)710 static inline bool vlbr_exclude_host(void)
711 {
712 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
713
714 return test_bit(INTEL_PMC_IDX_FIXED_VLBR,
715 (unsigned long *)&cpuc->intel_ctrl_guest_mask);
716 }
717
intel_pmu_lbr_enable_all(bool pmi)718 void intel_pmu_lbr_enable_all(bool pmi)
719 {
720 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
721
722 if (cpuc->lbr_users && !vlbr_exclude_host())
723 __intel_pmu_lbr_enable(pmi);
724 }
725
intel_pmu_lbr_disable_all(void)726 void intel_pmu_lbr_disable_all(void)
727 {
728 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
729
730 if (cpuc->lbr_users && !vlbr_exclude_host()) {
731 if (static_cpu_has(X86_FEATURE_ARCH_LBR))
732 return __intel_pmu_arch_lbr_disable();
733
734 __intel_pmu_lbr_disable();
735 }
736 }
737
intel_pmu_lbr_read_32(struct cpu_hw_events * cpuc)738 void intel_pmu_lbr_read_32(struct cpu_hw_events *cpuc)
739 {
740 unsigned long mask = x86_pmu.lbr_nr - 1;
741 struct perf_branch_entry *br = cpuc->lbr_entries;
742 u64 tos = intel_pmu_lbr_tos();
743 int i;
744
745 for (i = 0; i < x86_pmu.lbr_nr; i++) {
746 unsigned long lbr_idx = (tos - i) & mask;
747 union {
748 struct {
749 u32 from;
750 u32 to;
751 };
752 u64 lbr;
753 } msr_lastbranch;
754
755 rdmsrl(x86_pmu.lbr_from + lbr_idx, msr_lastbranch.lbr);
756
757 perf_clear_branch_entry_bitfields(br);
758
759 br->from = msr_lastbranch.from;
760 br->to = msr_lastbranch.to;
761 br++;
762 }
763 cpuc->lbr_stack.nr = i;
764 cpuc->lbr_stack.hw_idx = tos;
765 }
766
767 /*
768 * Due to lack of segmentation in Linux the effective address (offset)
769 * is the same as the linear address, allowing us to merge the LIP and EIP
770 * LBR formats.
771 */
intel_pmu_lbr_read_64(struct cpu_hw_events * cpuc)772 void intel_pmu_lbr_read_64(struct cpu_hw_events *cpuc)
773 {
774 bool need_info = false, call_stack = false;
775 unsigned long mask = x86_pmu.lbr_nr - 1;
776 struct perf_branch_entry *br = cpuc->lbr_entries;
777 u64 tos = intel_pmu_lbr_tos();
778 int i;
779 int out = 0;
780 int num = x86_pmu.lbr_nr;
781
782 if (cpuc->lbr_sel) {
783 need_info = !(cpuc->lbr_sel->config & LBR_NO_INFO);
784 if (cpuc->lbr_sel->config & LBR_CALL_STACK)
785 call_stack = true;
786 }
787
788 for (i = 0; i < num; i++) {
789 unsigned long lbr_idx = (tos - i) & mask;
790 u64 from, to, mis = 0, pred = 0, in_tx = 0, abort = 0;
791 u16 cycles = 0;
792
793 from = rdlbr_from(lbr_idx, NULL);
794 to = rdlbr_to(lbr_idx, NULL);
795
796 /*
797 * Read LBR call stack entries
798 * until invalid entry (0s) is detected.
799 */
800 if (call_stack && !from)
801 break;
802
803 if (x86_pmu.lbr_has_info) {
804 if (need_info) {
805 u64 info;
806
807 info = rdlbr_info(lbr_idx, NULL);
808 mis = !!(info & LBR_INFO_MISPRED);
809 pred = !mis;
810 cycles = (info & LBR_INFO_CYCLES);
811 if (x86_pmu.lbr_has_tsx) {
812 in_tx = !!(info & LBR_INFO_IN_TX);
813 abort = !!(info & LBR_INFO_ABORT);
814 }
815 }
816 } else {
817 int skip = 0;
818
819 if (x86_pmu.lbr_from_flags) {
820 mis = !!(from & LBR_FROM_FLAG_MISPRED);
821 pred = !mis;
822 skip = 1;
823 }
824 if (x86_pmu.lbr_has_tsx) {
825 in_tx = !!(from & LBR_FROM_FLAG_IN_TX);
826 abort = !!(from & LBR_FROM_FLAG_ABORT);
827 skip = 3;
828 }
829 from = (u64)((((s64)from) << skip) >> skip);
830
831 if (x86_pmu.lbr_to_cycles) {
832 cycles = ((to >> 48) & LBR_INFO_CYCLES);
833 to = (u64)((((s64)to) << 16) >> 16);
834 }
835 }
836
837 /*
838 * Some CPUs report duplicated abort records,
839 * with the second entry not having an abort bit set.
840 * Skip them here. This loop runs backwards,
841 * so we need to undo the previous record.
842 * If the abort just happened outside the window
843 * the extra entry cannot be removed.
844 */
845 if (abort && x86_pmu.lbr_double_abort && out > 0)
846 out--;
847
848 perf_clear_branch_entry_bitfields(br+out);
849 br[out].from = from;
850 br[out].to = to;
851 br[out].mispred = mis;
852 br[out].predicted = pred;
853 br[out].in_tx = in_tx;
854 br[out].abort = abort;
855 br[out].cycles = cycles;
856 out++;
857 }
858 cpuc->lbr_stack.nr = out;
859 cpuc->lbr_stack.hw_idx = tos;
860 }
861
862 static DEFINE_STATIC_KEY_FALSE(x86_lbr_mispred);
863 static DEFINE_STATIC_KEY_FALSE(x86_lbr_cycles);
864 static DEFINE_STATIC_KEY_FALSE(x86_lbr_type);
865
get_lbr_br_type(u64 info)866 static __always_inline int get_lbr_br_type(u64 info)
867 {
868 int type = 0;
869
870 if (static_branch_likely(&x86_lbr_type))
871 type = (info & LBR_INFO_BR_TYPE) >> LBR_INFO_BR_TYPE_OFFSET;
872
873 return type;
874 }
875
get_lbr_mispred(u64 info)876 static __always_inline bool get_lbr_mispred(u64 info)
877 {
878 bool mispred = 0;
879
880 if (static_branch_likely(&x86_lbr_mispred))
881 mispred = !!(info & LBR_INFO_MISPRED);
882
883 return mispred;
884 }
885
get_lbr_cycles(u64 info)886 static __always_inline u16 get_lbr_cycles(u64 info)
887 {
888 u16 cycles = info & LBR_INFO_CYCLES;
889
890 if (static_cpu_has(X86_FEATURE_ARCH_LBR) &&
891 (!static_branch_likely(&x86_lbr_cycles) ||
892 !(info & LBR_INFO_CYC_CNT_VALID)))
893 cycles = 0;
894
895 return cycles;
896 }
897
898 static_assert((64 - PERF_BRANCH_ENTRY_INFO_BITS_MAX) > LBR_INFO_BR_CNTR_NUM * LBR_INFO_BR_CNTR_BITS);
899
intel_pmu_store_lbr(struct cpu_hw_events * cpuc,struct lbr_entry * entries)900 static void intel_pmu_store_lbr(struct cpu_hw_events *cpuc,
901 struct lbr_entry *entries)
902 {
903 struct perf_branch_entry *e;
904 struct lbr_entry *lbr;
905 u64 from, to, info;
906 int i;
907
908 for (i = 0; i < x86_pmu.lbr_nr; i++) {
909 lbr = entries ? &entries[i] : NULL;
910 e = &cpuc->lbr_entries[i];
911
912 from = rdlbr_from(i, lbr);
913 /*
914 * Read LBR entries until invalid entry (0s) is detected.
915 */
916 if (!from)
917 break;
918
919 to = rdlbr_to(i, lbr);
920 info = rdlbr_info(i, lbr);
921
922 perf_clear_branch_entry_bitfields(e);
923
924 e->from = from;
925 e->to = to;
926 e->mispred = get_lbr_mispred(info);
927 e->predicted = !e->mispred;
928 e->in_tx = !!(info & LBR_INFO_IN_TX);
929 e->abort = !!(info & LBR_INFO_ABORT);
930 e->cycles = get_lbr_cycles(info);
931 e->type = get_lbr_br_type(info);
932
933 /*
934 * Leverage the reserved field of cpuc->lbr_entries[i] to
935 * temporarily store the branch counters information.
936 * The later code will decide what content can be disclosed
937 * to the perf tool. Pleae see intel_pmu_lbr_counters_reorder().
938 */
939 e->reserved = (info >> LBR_INFO_BR_CNTR_OFFSET) & LBR_INFO_BR_CNTR_FULL_MASK;
940 }
941
942 cpuc->lbr_stack.nr = i;
943 }
944
945 /*
946 * The enabled order may be different from the counter order.
947 * Update the lbr_counters with the enabled order.
948 */
intel_pmu_lbr_counters_reorder(struct cpu_hw_events * cpuc,struct perf_event * event)949 static void intel_pmu_lbr_counters_reorder(struct cpu_hw_events *cpuc,
950 struct perf_event *event)
951 {
952 int i, j, pos = 0, order[X86_PMC_IDX_MAX];
953 struct perf_event *leader, *sibling;
954 u64 src, dst, cnt;
955
956 leader = event->group_leader;
957 if (branch_sample_counters(leader))
958 order[pos++] = leader->hw.idx;
959
960 for_each_sibling_event(sibling, leader) {
961 if (!branch_sample_counters(sibling))
962 continue;
963 order[pos++] = sibling->hw.idx;
964 }
965
966 WARN_ON_ONCE(!pos);
967
968 for (i = 0; i < cpuc->lbr_stack.nr; i++) {
969 src = cpuc->lbr_entries[i].reserved;
970 dst = 0;
971 for (j = 0; j < pos; j++) {
972 cnt = (src >> (order[j] * LBR_INFO_BR_CNTR_BITS)) & LBR_INFO_BR_CNTR_MASK;
973 dst |= cnt << j * LBR_INFO_BR_CNTR_BITS;
974 }
975 cpuc->lbr_counters[i] = dst;
976 cpuc->lbr_entries[i].reserved = 0;
977 }
978 }
979
intel_pmu_lbr_save_brstack(struct perf_sample_data * data,struct cpu_hw_events * cpuc,struct perf_event * event)980 void intel_pmu_lbr_save_brstack(struct perf_sample_data *data,
981 struct cpu_hw_events *cpuc,
982 struct perf_event *event)
983 {
984 if (is_branch_counters_group(event)) {
985 intel_pmu_lbr_counters_reorder(cpuc, event);
986 perf_sample_save_brstack(data, event, &cpuc->lbr_stack, cpuc->lbr_counters);
987 return;
988 }
989
990 perf_sample_save_brstack(data, event, &cpuc->lbr_stack, NULL);
991 }
992
intel_pmu_arch_lbr_read(struct cpu_hw_events * cpuc)993 static void intel_pmu_arch_lbr_read(struct cpu_hw_events *cpuc)
994 {
995 intel_pmu_store_lbr(cpuc, NULL);
996 }
997
intel_pmu_arch_lbr_read_xsave(struct cpu_hw_events * cpuc)998 static void intel_pmu_arch_lbr_read_xsave(struct cpu_hw_events *cpuc)
999 {
1000 struct x86_perf_task_context_arch_lbr_xsave *xsave = cpuc->lbr_xsave;
1001
1002 if (!xsave) {
1003 intel_pmu_store_lbr(cpuc, NULL);
1004 return;
1005 }
1006 xsaves(&xsave->xsave, XFEATURE_MASK_LBR);
1007
1008 intel_pmu_store_lbr(cpuc, xsave->lbr.entries);
1009 }
1010
intel_pmu_lbr_read(void)1011 void intel_pmu_lbr_read(void)
1012 {
1013 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1014
1015 /*
1016 * Don't read when all LBRs users are using adaptive PEBS.
1017 *
1018 * This could be smarter and actually check the event,
1019 * but this simple approach seems to work for now.
1020 */
1021 if (!cpuc->lbr_users || vlbr_exclude_host() ||
1022 cpuc->lbr_users == cpuc->lbr_pebs_users)
1023 return;
1024
1025 x86_pmu.lbr_read(cpuc);
1026
1027 intel_pmu_lbr_filter(cpuc);
1028 }
1029
1030 /*
1031 * SW filter is used:
1032 * - in case there is no HW filter
1033 * - in case the HW filter has errata or limitations
1034 */
intel_pmu_setup_sw_lbr_filter(struct perf_event * event)1035 static int intel_pmu_setup_sw_lbr_filter(struct perf_event *event)
1036 {
1037 u64 br_type = event->attr.branch_sample_type;
1038 int mask = 0;
1039
1040 if (br_type & PERF_SAMPLE_BRANCH_USER)
1041 mask |= X86_BR_USER;
1042
1043 if (br_type & PERF_SAMPLE_BRANCH_KERNEL)
1044 mask |= X86_BR_KERNEL;
1045
1046 /* we ignore BRANCH_HV here */
1047
1048 if (br_type & PERF_SAMPLE_BRANCH_ANY)
1049 mask |= X86_BR_ANY;
1050
1051 if (br_type & PERF_SAMPLE_BRANCH_ANY_CALL)
1052 mask |= X86_BR_ANY_CALL;
1053
1054 if (br_type & PERF_SAMPLE_BRANCH_ANY_RETURN)
1055 mask |= X86_BR_RET | X86_BR_IRET | X86_BR_SYSRET;
1056
1057 if (br_type & PERF_SAMPLE_BRANCH_IND_CALL)
1058 mask |= X86_BR_IND_CALL;
1059
1060 if (br_type & PERF_SAMPLE_BRANCH_ABORT_TX)
1061 mask |= X86_BR_ABORT;
1062
1063 if (br_type & PERF_SAMPLE_BRANCH_IN_TX)
1064 mask |= X86_BR_IN_TX;
1065
1066 if (br_type & PERF_SAMPLE_BRANCH_NO_TX)
1067 mask |= X86_BR_NO_TX;
1068
1069 if (br_type & PERF_SAMPLE_BRANCH_COND)
1070 mask |= X86_BR_JCC;
1071
1072 if (br_type & PERF_SAMPLE_BRANCH_CALL_STACK) {
1073 if (!x86_pmu_has_lbr_callstack())
1074 return -EOPNOTSUPP;
1075 if (mask & ~(X86_BR_USER | X86_BR_KERNEL))
1076 return -EINVAL;
1077 mask |= X86_BR_CALL | X86_BR_IND_CALL | X86_BR_RET |
1078 X86_BR_CALL_STACK;
1079 }
1080
1081 if (br_type & PERF_SAMPLE_BRANCH_IND_JUMP)
1082 mask |= X86_BR_IND_JMP;
1083
1084 if (br_type & PERF_SAMPLE_BRANCH_CALL)
1085 mask |= X86_BR_CALL | X86_BR_ZERO_CALL;
1086
1087 if (br_type & PERF_SAMPLE_BRANCH_TYPE_SAVE)
1088 mask |= X86_BR_TYPE_SAVE;
1089
1090 /*
1091 * stash actual user request into reg, it may
1092 * be used by fixup code for some CPU
1093 */
1094 event->hw.branch_reg.reg = mask;
1095 return 0;
1096 }
1097
1098 /*
1099 * setup the HW LBR filter
1100 * Used only when available, may not be enough to disambiguate
1101 * all branches, may need the help of the SW filter
1102 */
intel_pmu_setup_hw_lbr_filter(struct perf_event * event)1103 static int intel_pmu_setup_hw_lbr_filter(struct perf_event *event)
1104 {
1105 struct hw_perf_event_extra *reg;
1106 u64 br_type = event->attr.branch_sample_type;
1107 u64 mask = 0, v;
1108 int i;
1109
1110 for (i = 0; i < PERF_SAMPLE_BRANCH_MAX_SHIFT; i++) {
1111 if (!(br_type & (1ULL << i)))
1112 continue;
1113
1114 v = x86_pmu.lbr_sel_map[i];
1115 if (v == LBR_NOT_SUPP)
1116 return -EOPNOTSUPP;
1117
1118 if (v != LBR_IGN)
1119 mask |= v;
1120 }
1121
1122 reg = &event->hw.branch_reg;
1123 reg->idx = EXTRA_REG_LBR;
1124
1125 if (static_cpu_has(X86_FEATURE_ARCH_LBR)) {
1126 reg->config = mask;
1127
1128 /*
1129 * The Arch LBR HW can retrieve the common branch types
1130 * from the LBR_INFO. It doesn't require the high overhead
1131 * SW disassemble.
1132 * Enable the branch type by default for the Arch LBR.
1133 */
1134 reg->reg |= X86_BR_TYPE_SAVE;
1135 return 0;
1136 }
1137
1138 /*
1139 * The first 9 bits (LBR_SEL_MASK) in LBR_SELECT operate
1140 * in suppress mode. So LBR_SELECT should be set to
1141 * (~mask & LBR_SEL_MASK) | (mask & ~LBR_SEL_MASK)
1142 * But the 10th bit LBR_CALL_STACK does not operate
1143 * in suppress mode.
1144 */
1145 reg->config = mask ^ (x86_pmu.lbr_sel_mask & ~LBR_CALL_STACK);
1146
1147 if ((br_type & PERF_SAMPLE_BRANCH_NO_CYCLES) &&
1148 (br_type & PERF_SAMPLE_BRANCH_NO_FLAGS) &&
1149 x86_pmu.lbr_has_info)
1150 reg->config |= LBR_NO_INFO;
1151
1152 return 0;
1153 }
1154
intel_pmu_setup_lbr_filter(struct perf_event * event)1155 int intel_pmu_setup_lbr_filter(struct perf_event *event)
1156 {
1157 int ret = 0;
1158
1159 /*
1160 * no LBR on this PMU
1161 */
1162 if (!x86_pmu.lbr_nr)
1163 return -EOPNOTSUPP;
1164
1165 /*
1166 * setup SW LBR filter
1167 */
1168 ret = intel_pmu_setup_sw_lbr_filter(event);
1169 if (ret)
1170 return ret;
1171
1172 /*
1173 * setup HW LBR filter, if any
1174 */
1175 if (x86_pmu.lbr_sel_map)
1176 ret = intel_pmu_setup_hw_lbr_filter(event);
1177
1178 return ret;
1179 }
1180
1181 enum {
1182 ARCH_LBR_BR_TYPE_JCC = 0,
1183 ARCH_LBR_BR_TYPE_NEAR_IND_JMP = 1,
1184 ARCH_LBR_BR_TYPE_NEAR_REL_JMP = 2,
1185 ARCH_LBR_BR_TYPE_NEAR_IND_CALL = 3,
1186 ARCH_LBR_BR_TYPE_NEAR_REL_CALL = 4,
1187 ARCH_LBR_BR_TYPE_NEAR_RET = 5,
1188 ARCH_LBR_BR_TYPE_KNOWN_MAX = ARCH_LBR_BR_TYPE_NEAR_RET,
1189
1190 ARCH_LBR_BR_TYPE_MAP_MAX = 16,
1191 };
1192
1193 static const int arch_lbr_br_type_map[ARCH_LBR_BR_TYPE_MAP_MAX] = {
1194 [ARCH_LBR_BR_TYPE_JCC] = X86_BR_JCC,
1195 [ARCH_LBR_BR_TYPE_NEAR_IND_JMP] = X86_BR_IND_JMP,
1196 [ARCH_LBR_BR_TYPE_NEAR_REL_JMP] = X86_BR_JMP,
1197 [ARCH_LBR_BR_TYPE_NEAR_IND_CALL] = X86_BR_IND_CALL,
1198 [ARCH_LBR_BR_TYPE_NEAR_REL_CALL] = X86_BR_CALL,
1199 [ARCH_LBR_BR_TYPE_NEAR_RET] = X86_BR_RET,
1200 };
1201
1202 /*
1203 * implement actual branch filter based on user demand.
1204 * Hardware may not exactly satisfy that request, thus
1205 * we need to inspect opcodes. Mismatched branches are
1206 * discarded. Therefore, the number of branches returned
1207 * in PERF_SAMPLE_BRANCH_STACK sample may vary.
1208 */
1209 static void
intel_pmu_lbr_filter(struct cpu_hw_events * cpuc)1210 intel_pmu_lbr_filter(struct cpu_hw_events *cpuc)
1211 {
1212 u64 from, to;
1213 int br_sel = cpuc->br_sel;
1214 int i, j, type, to_plm;
1215 bool compress = false;
1216
1217 /* if sampling all branches, then nothing to filter */
1218 if (((br_sel & X86_BR_ALL) == X86_BR_ALL) &&
1219 ((br_sel & X86_BR_TYPE_SAVE) != X86_BR_TYPE_SAVE))
1220 return;
1221
1222 for (i = 0; i < cpuc->lbr_stack.nr; i++) {
1223
1224 from = cpuc->lbr_entries[i].from;
1225 to = cpuc->lbr_entries[i].to;
1226 type = cpuc->lbr_entries[i].type;
1227
1228 /*
1229 * Parse the branch type recorded in LBR_x_INFO MSR.
1230 * Doesn't support OTHER_BRANCH decoding for now.
1231 * OTHER_BRANCH branch type still rely on software decoding.
1232 */
1233 if (static_cpu_has(X86_FEATURE_ARCH_LBR) &&
1234 type <= ARCH_LBR_BR_TYPE_KNOWN_MAX) {
1235 to_plm = kernel_ip(to) ? X86_BR_KERNEL : X86_BR_USER;
1236 type = arch_lbr_br_type_map[type] | to_plm;
1237 } else
1238 type = branch_type(from, to, cpuc->lbr_entries[i].abort);
1239 if (type != X86_BR_NONE && (br_sel & X86_BR_ANYTX)) {
1240 if (cpuc->lbr_entries[i].in_tx)
1241 type |= X86_BR_IN_TX;
1242 else
1243 type |= X86_BR_NO_TX;
1244 }
1245
1246 /* if type does not correspond, then discard */
1247 if (type == X86_BR_NONE || (br_sel & type) != type) {
1248 cpuc->lbr_entries[i].from = 0;
1249 compress = true;
1250 }
1251
1252 if ((br_sel & X86_BR_TYPE_SAVE) == X86_BR_TYPE_SAVE)
1253 cpuc->lbr_entries[i].type = common_branch_type(type);
1254 }
1255
1256 if (!compress)
1257 return;
1258
1259 /* remove all entries with from=0 */
1260 for (i = 0; i < cpuc->lbr_stack.nr; ) {
1261 if (!cpuc->lbr_entries[i].from) {
1262 j = i;
1263 while (++j < cpuc->lbr_stack.nr) {
1264 cpuc->lbr_entries[j-1] = cpuc->lbr_entries[j];
1265 cpuc->lbr_counters[j-1] = cpuc->lbr_counters[j];
1266 }
1267 cpuc->lbr_stack.nr--;
1268 if (!cpuc->lbr_entries[i].from)
1269 continue;
1270 }
1271 i++;
1272 }
1273 }
1274
intel_pmu_store_pebs_lbrs(struct lbr_entry * lbr)1275 void intel_pmu_store_pebs_lbrs(struct lbr_entry *lbr)
1276 {
1277 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1278
1279 /* Cannot get TOS for large PEBS and Arch LBR */
1280 if (static_cpu_has(X86_FEATURE_ARCH_LBR) ||
1281 (cpuc->n_pebs == cpuc->n_large_pebs))
1282 cpuc->lbr_stack.hw_idx = -1ULL;
1283 else
1284 cpuc->lbr_stack.hw_idx = intel_pmu_lbr_tos();
1285
1286 intel_pmu_store_lbr(cpuc, lbr);
1287 intel_pmu_lbr_filter(cpuc);
1288 }
1289
1290 /*
1291 * Map interface branch filters onto LBR filters
1292 */
1293 static const int nhm_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1294 [PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY,
1295 [PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER,
1296 [PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL,
1297 [PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN,
1298 [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_REL_JMP
1299 | LBR_IND_JMP | LBR_FAR,
1300 /*
1301 * NHM/WSM erratum: must include REL_JMP+IND_JMP to get CALL branches
1302 */
1303 [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] =
1304 LBR_REL_CALL | LBR_IND_CALL | LBR_REL_JMP | LBR_IND_JMP | LBR_FAR,
1305 /*
1306 * NHM/WSM erratum: must include IND_JMP to capture IND_CALL
1307 */
1308 [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL | LBR_IND_JMP,
1309 [PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC,
1310 [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
1311 };
1312
1313 static const int snb_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1314 [PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY,
1315 [PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER,
1316 [PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL,
1317 [PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN,
1318 [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_FAR,
1319 [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = LBR_REL_CALL | LBR_IND_CALL
1320 | LBR_FAR,
1321 [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL,
1322 [PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC,
1323 [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
1324 [PERF_SAMPLE_BRANCH_CALL_SHIFT] = LBR_REL_CALL,
1325 };
1326
1327 static const int hsw_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1328 [PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY,
1329 [PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER,
1330 [PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL,
1331 [PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN,
1332 [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_FAR,
1333 [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = LBR_REL_CALL | LBR_IND_CALL
1334 | LBR_FAR,
1335 [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL,
1336 [PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC,
1337 [PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT] = LBR_REL_CALL | LBR_IND_CALL
1338 | LBR_RETURN | LBR_CALL_STACK,
1339 [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
1340 [PERF_SAMPLE_BRANCH_CALL_SHIFT] = LBR_REL_CALL,
1341 };
1342
1343 static int arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1344 [PERF_SAMPLE_BRANCH_ANY_SHIFT] = ARCH_LBR_ANY,
1345 [PERF_SAMPLE_BRANCH_USER_SHIFT] = ARCH_LBR_USER,
1346 [PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = ARCH_LBR_KERNEL,
1347 [PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN,
1348 [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = ARCH_LBR_RETURN |
1349 ARCH_LBR_OTHER_BRANCH,
1350 [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = ARCH_LBR_REL_CALL |
1351 ARCH_LBR_IND_CALL |
1352 ARCH_LBR_OTHER_BRANCH,
1353 [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = ARCH_LBR_IND_CALL,
1354 [PERF_SAMPLE_BRANCH_COND_SHIFT] = ARCH_LBR_JCC,
1355 [PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT] = ARCH_LBR_REL_CALL |
1356 ARCH_LBR_IND_CALL |
1357 ARCH_LBR_RETURN |
1358 ARCH_LBR_CALL_STACK,
1359 [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = ARCH_LBR_IND_JMP,
1360 [PERF_SAMPLE_BRANCH_CALL_SHIFT] = ARCH_LBR_REL_CALL,
1361 };
1362
1363 /* core */
intel_pmu_lbr_init_core(void)1364 void __init intel_pmu_lbr_init_core(void)
1365 {
1366 x86_pmu.lbr_nr = 4;
1367 x86_pmu.lbr_tos = MSR_LBR_TOS;
1368 x86_pmu.lbr_from = MSR_LBR_CORE_FROM;
1369 x86_pmu.lbr_to = MSR_LBR_CORE_TO;
1370
1371 /*
1372 * SW branch filter usage:
1373 * - compensate for lack of HW filter
1374 */
1375 }
1376
1377 /* nehalem/westmere */
intel_pmu_lbr_init_nhm(void)1378 void __init intel_pmu_lbr_init_nhm(void)
1379 {
1380 x86_pmu.lbr_nr = 16;
1381 x86_pmu.lbr_tos = MSR_LBR_TOS;
1382 x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1383 x86_pmu.lbr_to = MSR_LBR_NHM_TO;
1384
1385 x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1386 x86_pmu.lbr_sel_map = nhm_lbr_sel_map;
1387
1388 /*
1389 * SW branch filter usage:
1390 * - workaround LBR_SEL errata (see above)
1391 * - support syscall, sysret capture.
1392 * That requires LBR_FAR but that means far
1393 * jmp need to be filtered out
1394 */
1395 }
1396
1397 /* sandy bridge */
intel_pmu_lbr_init_snb(void)1398 void __init intel_pmu_lbr_init_snb(void)
1399 {
1400 x86_pmu.lbr_nr = 16;
1401 x86_pmu.lbr_tos = MSR_LBR_TOS;
1402 x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1403 x86_pmu.lbr_to = MSR_LBR_NHM_TO;
1404
1405 x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1406 x86_pmu.lbr_sel_map = snb_lbr_sel_map;
1407
1408 /*
1409 * SW branch filter usage:
1410 * - support syscall, sysret capture.
1411 * That requires LBR_FAR but that means far
1412 * jmp need to be filtered out
1413 */
1414 }
1415
1416 static inline struct kmem_cache *
create_lbr_kmem_cache(size_t size,size_t align)1417 create_lbr_kmem_cache(size_t size, size_t align)
1418 {
1419 return kmem_cache_create("x86_lbr", size, align, 0, NULL);
1420 }
1421
1422 /* haswell */
intel_pmu_lbr_init_hsw(void)1423 void intel_pmu_lbr_init_hsw(void)
1424 {
1425 size_t size = sizeof(struct x86_perf_task_context);
1426
1427 x86_pmu.lbr_nr = 16;
1428 x86_pmu.lbr_tos = MSR_LBR_TOS;
1429 x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1430 x86_pmu.lbr_to = MSR_LBR_NHM_TO;
1431
1432 x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1433 x86_pmu.lbr_sel_map = hsw_lbr_sel_map;
1434
1435 x86_get_pmu(smp_processor_id())->task_ctx_cache = create_lbr_kmem_cache(size, 0);
1436 }
1437
1438 /* skylake */
intel_pmu_lbr_init_skl(void)1439 __init void intel_pmu_lbr_init_skl(void)
1440 {
1441 size_t size = sizeof(struct x86_perf_task_context);
1442
1443 x86_pmu.lbr_nr = 32;
1444 x86_pmu.lbr_tos = MSR_LBR_TOS;
1445 x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1446 x86_pmu.lbr_to = MSR_LBR_NHM_TO;
1447 x86_pmu.lbr_info = MSR_LBR_INFO_0;
1448
1449 x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1450 x86_pmu.lbr_sel_map = hsw_lbr_sel_map;
1451
1452 x86_get_pmu(smp_processor_id())->task_ctx_cache = create_lbr_kmem_cache(size, 0);
1453
1454 /*
1455 * SW branch filter usage:
1456 * - support syscall, sysret capture.
1457 * That requires LBR_FAR but that means far
1458 * jmp need to be filtered out
1459 */
1460 }
1461
1462 /* atom */
intel_pmu_lbr_init_atom(void)1463 void __init intel_pmu_lbr_init_atom(void)
1464 {
1465 /*
1466 * only models starting at stepping 10 seems
1467 * to have an operational LBR which can freeze
1468 * on PMU interrupt
1469 */
1470 if (boot_cpu_data.x86_vfm == INTEL_ATOM_BONNELL
1471 && boot_cpu_data.x86_stepping < 10) {
1472 pr_cont("LBR disabled due to erratum");
1473 return;
1474 }
1475
1476 x86_pmu.lbr_nr = 8;
1477 x86_pmu.lbr_tos = MSR_LBR_TOS;
1478 x86_pmu.lbr_from = MSR_LBR_CORE_FROM;
1479 x86_pmu.lbr_to = MSR_LBR_CORE_TO;
1480
1481 /*
1482 * SW branch filter usage:
1483 * - compensate for lack of HW filter
1484 */
1485 }
1486
1487 /* slm */
intel_pmu_lbr_init_slm(void)1488 void __init intel_pmu_lbr_init_slm(void)
1489 {
1490 x86_pmu.lbr_nr = 8;
1491 x86_pmu.lbr_tos = MSR_LBR_TOS;
1492 x86_pmu.lbr_from = MSR_LBR_CORE_FROM;
1493 x86_pmu.lbr_to = MSR_LBR_CORE_TO;
1494
1495 x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1496 x86_pmu.lbr_sel_map = nhm_lbr_sel_map;
1497
1498 /*
1499 * SW branch filter usage:
1500 * - compensate for lack of HW filter
1501 */
1502 pr_cont("8-deep LBR, ");
1503 }
1504
1505 /* Knights Landing */
intel_pmu_lbr_init_knl(void)1506 void intel_pmu_lbr_init_knl(void)
1507 {
1508 x86_pmu.lbr_nr = 8;
1509 x86_pmu.lbr_tos = MSR_LBR_TOS;
1510 x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1511 x86_pmu.lbr_to = MSR_LBR_NHM_TO;
1512
1513 x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1514 x86_pmu.lbr_sel_map = snb_lbr_sel_map;
1515
1516 /* Knights Landing does have MISPREDICT bit */
1517 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_LIP)
1518 x86_pmu.intel_cap.lbr_format = LBR_FORMAT_EIP_FLAGS;
1519 }
1520
intel_pmu_lbr_init(void)1521 void intel_pmu_lbr_init(void)
1522 {
1523 switch (x86_pmu.intel_cap.lbr_format) {
1524 case LBR_FORMAT_EIP_FLAGS2:
1525 x86_pmu.lbr_has_tsx = 1;
1526 x86_pmu.lbr_from_flags = 1;
1527 if (lbr_from_signext_quirk_needed())
1528 static_branch_enable(&lbr_from_quirk_key);
1529 break;
1530
1531 case LBR_FORMAT_EIP_FLAGS:
1532 x86_pmu.lbr_from_flags = 1;
1533 break;
1534
1535 case LBR_FORMAT_INFO:
1536 x86_pmu.lbr_has_tsx = 1;
1537 fallthrough;
1538 case LBR_FORMAT_INFO2:
1539 x86_pmu.lbr_has_info = 1;
1540 break;
1541
1542 case LBR_FORMAT_TIME:
1543 x86_pmu.lbr_from_flags = 1;
1544 x86_pmu.lbr_to_cycles = 1;
1545 break;
1546 }
1547
1548 if (x86_pmu.lbr_has_info) {
1549 /*
1550 * Only used in combination with baseline pebs.
1551 */
1552 static_branch_enable(&x86_lbr_mispred);
1553 static_branch_enable(&x86_lbr_cycles);
1554 }
1555 }
1556
1557 /*
1558 * LBR state size is variable based on the max number of registers.
1559 * This calculates the expected state size, which should match
1560 * what the hardware enumerates for the size of XFEATURE_LBR.
1561 */
get_lbr_state_size(void)1562 static inline unsigned int get_lbr_state_size(void)
1563 {
1564 return sizeof(struct arch_lbr_state) +
1565 x86_pmu.lbr_nr * sizeof(struct lbr_entry);
1566 }
1567
is_arch_lbr_xsave_available(void)1568 static bool is_arch_lbr_xsave_available(void)
1569 {
1570 if (!boot_cpu_has(X86_FEATURE_XSAVES))
1571 return false;
1572
1573 /*
1574 * Check the LBR state with the corresponding software structure.
1575 * Disable LBR XSAVES support if the size doesn't match.
1576 */
1577 if (xfeature_size(XFEATURE_LBR) == 0)
1578 return false;
1579
1580 if (WARN_ON(xfeature_size(XFEATURE_LBR) != get_lbr_state_size()))
1581 return false;
1582
1583 return true;
1584 }
1585
intel_pmu_arch_lbr_init(void)1586 void __init intel_pmu_arch_lbr_init(void)
1587 {
1588 struct pmu *pmu = x86_get_pmu(smp_processor_id());
1589 union cpuid28_eax eax;
1590 union cpuid28_ebx ebx;
1591 union cpuid28_ecx ecx;
1592 unsigned int unused_edx;
1593 bool arch_lbr_xsave;
1594 size_t size;
1595 u64 lbr_nr;
1596
1597 /* Arch LBR Capabilities */
1598 cpuid(28, &eax.full, &ebx.full, &ecx.full, &unused_edx);
1599
1600 lbr_nr = fls(eax.split.lbr_depth_mask) * 8;
1601 if (!lbr_nr)
1602 goto clear_arch_lbr;
1603
1604 /* Apply the max depth of Arch LBR */
1605 if (wrmsrl_safe(MSR_ARCH_LBR_DEPTH, lbr_nr))
1606 goto clear_arch_lbr;
1607
1608 x86_pmu.lbr_depth_mask = eax.split.lbr_depth_mask;
1609 x86_pmu.lbr_deep_c_reset = eax.split.lbr_deep_c_reset;
1610 x86_pmu.lbr_lip = eax.split.lbr_lip;
1611 x86_pmu.lbr_cpl = ebx.split.lbr_cpl;
1612 x86_pmu.lbr_filter = ebx.split.lbr_filter;
1613 x86_pmu.lbr_call_stack = ebx.split.lbr_call_stack;
1614 x86_pmu.lbr_mispred = ecx.split.lbr_mispred;
1615 x86_pmu.lbr_timed_lbr = ecx.split.lbr_timed_lbr;
1616 x86_pmu.lbr_br_type = ecx.split.lbr_br_type;
1617 x86_pmu.lbr_counters = ecx.split.lbr_counters;
1618 x86_pmu.lbr_nr = lbr_nr;
1619
1620 if (!!x86_pmu.lbr_counters)
1621 x86_pmu.flags |= PMU_FL_BR_CNTR;
1622
1623 if (x86_pmu.lbr_mispred)
1624 static_branch_enable(&x86_lbr_mispred);
1625 if (x86_pmu.lbr_timed_lbr)
1626 static_branch_enable(&x86_lbr_cycles);
1627 if (x86_pmu.lbr_br_type)
1628 static_branch_enable(&x86_lbr_type);
1629
1630 arch_lbr_xsave = is_arch_lbr_xsave_available();
1631 if (arch_lbr_xsave) {
1632 size = sizeof(struct x86_perf_task_context_arch_lbr_xsave) +
1633 get_lbr_state_size();
1634 pmu->task_ctx_cache = create_lbr_kmem_cache(size,
1635 XSAVE_ALIGNMENT);
1636 }
1637
1638 if (!pmu->task_ctx_cache) {
1639 arch_lbr_xsave = false;
1640
1641 size = sizeof(struct x86_perf_task_context_arch_lbr) +
1642 lbr_nr * sizeof(struct lbr_entry);
1643 pmu->task_ctx_cache = create_lbr_kmem_cache(size, 0);
1644 }
1645
1646 x86_pmu.lbr_from = MSR_ARCH_LBR_FROM_0;
1647 x86_pmu.lbr_to = MSR_ARCH_LBR_TO_0;
1648 x86_pmu.lbr_info = MSR_ARCH_LBR_INFO_0;
1649
1650 /* LBR callstack requires both CPL and Branch Filtering support */
1651 if (!x86_pmu.lbr_cpl ||
1652 !x86_pmu.lbr_filter ||
1653 !x86_pmu.lbr_call_stack)
1654 arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT] = LBR_NOT_SUPP;
1655
1656 if (!x86_pmu.lbr_cpl) {
1657 arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_NOT_SUPP;
1658 arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_NOT_SUPP;
1659 } else if (!x86_pmu.lbr_filter) {
1660 arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_NOT_SUPP;
1661 arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_NOT_SUPP;
1662 arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = LBR_NOT_SUPP;
1663 arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_NOT_SUPP;
1664 arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_NOT_SUPP;
1665 arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_NOT_SUPP;
1666 arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_CALL_SHIFT] = LBR_NOT_SUPP;
1667 }
1668
1669 x86_pmu.lbr_ctl_mask = ARCH_LBR_CTL_MASK;
1670 x86_pmu.lbr_ctl_map = arch_lbr_ctl_map;
1671
1672 if (!x86_pmu.lbr_cpl && !x86_pmu.lbr_filter)
1673 x86_pmu.lbr_ctl_map = NULL;
1674
1675 x86_pmu.lbr_reset = intel_pmu_arch_lbr_reset;
1676 if (arch_lbr_xsave) {
1677 x86_pmu.lbr_save = intel_pmu_arch_lbr_xsaves;
1678 x86_pmu.lbr_restore = intel_pmu_arch_lbr_xrstors;
1679 x86_pmu.lbr_read = intel_pmu_arch_lbr_read_xsave;
1680 pr_cont("XSAVE ");
1681 } else {
1682 x86_pmu.lbr_save = intel_pmu_arch_lbr_save;
1683 x86_pmu.lbr_restore = intel_pmu_arch_lbr_restore;
1684 x86_pmu.lbr_read = intel_pmu_arch_lbr_read;
1685 }
1686
1687 pr_cont("Architectural LBR, ");
1688
1689 return;
1690
1691 clear_arch_lbr:
1692 setup_clear_cpu_cap(X86_FEATURE_ARCH_LBR);
1693 }
1694
1695 /**
1696 * x86_perf_get_lbr - get the LBR records information
1697 *
1698 * @lbr: the caller's memory to store the LBR records information
1699 */
x86_perf_get_lbr(struct x86_pmu_lbr * lbr)1700 void x86_perf_get_lbr(struct x86_pmu_lbr *lbr)
1701 {
1702 lbr->nr = x86_pmu.lbr_nr;
1703 lbr->from = x86_pmu.lbr_from;
1704 lbr->to = x86_pmu.lbr_to;
1705 lbr->info = x86_pmu.lbr_info;
1706 lbr->has_callstack = x86_pmu_has_lbr_callstack();
1707 }
1708 EXPORT_SYMBOL_GPL(x86_perf_get_lbr);
1709
1710 struct event_constraint vlbr_constraint =
1711 __EVENT_CONSTRAINT(INTEL_FIXED_VLBR_EVENT, (1ULL << INTEL_PMC_IDX_FIXED_VLBR),
1712 FIXED_EVENT_FLAGS, 1, 0, PERF_X86_EVENT_LBR_SELECT);
1713