xref: /linux/arch/riscv/net/bpf_jit_comp64.c (revision ab93e0dd72c37d378dd936f031ffb83ff2bd87ce)
1 // SPDX-License-Identifier: GPL-2.0
2 /* BPF JIT compiler for RV64G
3  *
4  * Copyright(c) 2019 Björn Töpel <bjorn.topel@gmail.com>
5  *
6  */
7 
8 #include <linux/bitfield.h>
9 #include <linux/bpf.h>
10 #include <linux/filter.h>
11 #include <linux/memory.h>
12 #include <linux/stop_machine.h>
13 #include <asm/text-patching.h>
14 #include <asm/cfi.h>
15 #include <asm/percpu.h>
16 #include "bpf_jit.h"
17 
18 #define RV_MAX_REG_ARGS 8
19 #define RV_FENTRY_NINSNS 2
20 #define RV_FENTRY_NBYTES (RV_FENTRY_NINSNS * 4)
21 #define RV_KCFI_NINSNS (IS_ENABLED(CONFIG_CFI_CLANG) ? 1 : 0)
22 /* imm that allows emit_imm to emit max count insns */
23 #define RV_MAX_COUNT_IMM 0x7FFF7FF7FF7FF7FF
24 
25 #define RV_REG_TCC RV_REG_A6
26 #define RV_REG_TCC_SAVED RV_REG_S6 /* Store A6 in S6 if program do calls */
27 #define RV_REG_ARENA RV_REG_S7 /* For storing arena_vm_start */
28 
29 static const int regmap[] = {
30 	[BPF_REG_0] =	RV_REG_A5,
31 	[BPF_REG_1] =	RV_REG_A0,
32 	[BPF_REG_2] =	RV_REG_A1,
33 	[BPF_REG_3] =	RV_REG_A2,
34 	[BPF_REG_4] =	RV_REG_A3,
35 	[BPF_REG_5] =	RV_REG_A4,
36 	[BPF_REG_6] =	RV_REG_S1,
37 	[BPF_REG_7] =	RV_REG_S2,
38 	[BPF_REG_8] =	RV_REG_S3,
39 	[BPF_REG_9] =	RV_REG_S4,
40 	[BPF_REG_FP] =	RV_REG_S5,
41 	[BPF_REG_AX] =	RV_REG_T0,
42 };
43 
44 static const int pt_regmap[] = {
45 	[RV_REG_A0] = offsetof(struct pt_regs, a0),
46 	[RV_REG_A1] = offsetof(struct pt_regs, a1),
47 	[RV_REG_A2] = offsetof(struct pt_regs, a2),
48 	[RV_REG_A3] = offsetof(struct pt_regs, a3),
49 	[RV_REG_A4] = offsetof(struct pt_regs, a4),
50 	[RV_REG_A5] = offsetof(struct pt_regs, a5),
51 	[RV_REG_S1] = offsetof(struct pt_regs, s1),
52 	[RV_REG_S2] = offsetof(struct pt_regs, s2),
53 	[RV_REG_S3] = offsetof(struct pt_regs, s3),
54 	[RV_REG_S4] = offsetof(struct pt_regs, s4),
55 	[RV_REG_S5] = offsetof(struct pt_regs, s5),
56 	[RV_REG_T0] = offsetof(struct pt_regs, t0),
57 };
58 
59 enum {
60 	RV_CTX_F_SEEN_TAIL_CALL =	0,
61 	RV_CTX_F_SEEN_CALL =		RV_REG_RA,
62 	RV_CTX_F_SEEN_S1 =		RV_REG_S1,
63 	RV_CTX_F_SEEN_S2 =		RV_REG_S2,
64 	RV_CTX_F_SEEN_S3 =		RV_REG_S3,
65 	RV_CTX_F_SEEN_S4 =		RV_REG_S4,
66 	RV_CTX_F_SEEN_S5 =		RV_REG_S5,
67 	RV_CTX_F_SEEN_S6 =		RV_REG_S6,
68 };
69 
bpf_to_rv_reg(int bpf_reg,struct rv_jit_context * ctx)70 static u8 bpf_to_rv_reg(int bpf_reg, struct rv_jit_context *ctx)
71 {
72 	u8 reg = regmap[bpf_reg];
73 
74 	switch (reg) {
75 	case RV_CTX_F_SEEN_S1:
76 	case RV_CTX_F_SEEN_S2:
77 	case RV_CTX_F_SEEN_S3:
78 	case RV_CTX_F_SEEN_S4:
79 	case RV_CTX_F_SEEN_S5:
80 	case RV_CTX_F_SEEN_S6:
81 		__set_bit(reg, &ctx->flags);
82 	}
83 	return reg;
84 };
85 
seen_reg(int reg,struct rv_jit_context * ctx)86 static bool seen_reg(int reg, struct rv_jit_context *ctx)
87 {
88 	switch (reg) {
89 	case RV_CTX_F_SEEN_CALL:
90 	case RV_CTX_F_SEEN_S1:
91 	case RV_CTX_F_SEEN_S2:
92 	case RV_CTX_F_SEEN_S3:
93 	case RV_CTX_F_SEEN_S4:
94 	case RV_CTX_F_SEEN_S5:
95 	case RV_CTX_F_SEEN_S6:
96 		return test_bit(reg, &ctx->flags);
97 	}
98 	return false;
99 }
100 
mark_fp(struct rv_jit_context * ctx)101 static void mark_fp(struct rv_jit_context *ctx)
102 {
103 	__set_bit(RV_CTX_F_SEEN_S5, &ctx->flags);
104 }
105 
mark_call(struct rv_jit_context * ctx)106 static void mark_call(struct rv_jit_context *ctx)
107 {
108 	__set_bit(RV_CTX_F_SEEN_CALL, &ctx->flags);
109 }
110 
seen_call(struct rv_jit_context * ctx)111 static bool seen_call(struct rv_jit_context *ctx)
112 {
113 	return test_bit(RV_CTX_F_SEEN_CALL, &ctx->flags);
114 }
115 
mark_tail_call(struct rv_jit_context * ctx)116 static void mark_tail_call(struct rv_jit_context *ctx)
117 {
118 	__set_bit(RV_CTX_F_SEEN_TAIL_CALL, &ctx->flags);
119 }
120 
seen_tail_call(struct rv_jit_context * ctx)121 static bool seen_tail_call(struct rv_jit_context *ctx)
122 {
123 	return test_bit(RV_CTX_F_SEEN_TAIL_CALL, &ctx->flags);
124 }
125 
rv_tail_call_reg(struct rv_jit_context * ctx)126 static u8 rv_tail_call_reg(struct rv_jit_context *ctx)
127 {
128 	mark_tail_call(ctx);
129 
130 	if (seen_call(ctx)) {
131 		__set_bit(RV_CTX_F_SEEN_S6, &ctx->flags);
132 		return RV_REG_S6;
133 	}
134 	return RV_REG_A6;
135 }
136 
is_32b_int(s64 val)137 static bool is_32b_int(s64 val)
138 {
139 	return -(1L << 31) <= val && val < (1L << 31);
140 }
141 
in_auipc_jalr_range(s64 val)142 static bool in_auipc_jalr_range(s64 val)
143 {
144 	/*
145 	 * auipc+jalr can reach any signed PC-relative offset in the range
146 	 * [-2^31 - 2^11, 2^31 - 2^11).
147 	 */
148 	return (-(1L << 31) - (1L << 11)) <= val &&
149 		val < ((1L << 31) - (1L << 11));
150 }
151 
152 /* Modify rd pointer to alternate reg to avoid corrupting original reg */
emit_sextw_alt(u8 * rd,u8 ra,struct rv_jit_context * ctx)153 static void emit_sextw_alt(u8 *rd, u8 ra, struct rv_jit_context *ctx)
154 {
155 	emit_sextw(ra, *rd, ctx);
156 	*rd = ra;
157 }
158 
emit_zextw_alt(u8 * rd,u8 ra,struct rv_jit_context * ctx)159 static void emit_zextw_alt(u8 *rd, u8 ra, struct rv_jit_context *ctx)
160 {
161 	emit_zextw(ra, *rd, ctx);
162 	*rd = ra;
163 }
164 
165 /* Emit fixed-length instructions for address */
emit_addr(u8 rd,u64 addr,bool extra_pass,struct rv_jit_context * ctx)166 static int emit_addr(u8 rd, u64 addr, bool extra_pass, struct rv_jit_context *ctx)
167 {
168 	/*
169 	 * Use the ro_insns(RX) to calculate the offset as the BPF program will
170 	 * finally run from this memory region.
171 	 */
172 	u64 ip = (u64)(ctx->ro_insns + ctx->ninsns);
173 	s64 off = addr - ip;
174 	s64 upper = (off + (1 << 11)) >> 12;
175 	s64 lower = off & 0xfff;
176 
177 	if (extra_pass && !in_auipc_jalr_range(off)) {
178 		pr_err("bpf-jit: target offset 0x%llx is out of range\n", off);
179 		return -ERANGE;
180 	}
181 
182 	emit(rv_auipc(rd, upper), ctx);
183 	emit(rv_addi(rd, rd, lower), ctx);
184 	return 0;
185 }
186 
187 /* Emit variable-length instructions for 32-bit and 64-bit imm */
emit_imm(u8 rd,s64 val,struct rv_jit_context * ctx)188 static void emit_imm(u8 rd, s64 val, struct rv_jit_context *ctx)
189 {
190 	/* Note that the immediate from the add is sign-extended,
191 	 * which means that we need to compensate this by adding 2^12,
192 	 * when the 12th bit is set. A simpler way of doing this, and
193 	 * getting rid of the check, is to just add 2**11 before the
194 	 * shift. The "Loading a 32-Bit constant" example from the
195 	 * "Computer Organization and Design, RISC-V edition" book by
196 	 * Patterson/Hennessy highlights this fact.
197 	 *
198 	 * This also means that we need to process LSB to MSB.
199 	 */
200 	s64 upper = (val + (1 << 11)) >> 12;
201 	/* Sign-extend lower 12 bits to 64 bits since immediates for li, addiw,
202 	 * and addi are signed and RVC checks will perform signed comparisons.
203 	 */
204 	s64 lower = ((val & 0xfff) << 52) >> 52;
205 	int shift;
206 
207 	if (is_32b_int(val)) {
208 		if (upper)
209 			emit_lui(rd, upper, ctx);
210 
211 		if (!upper) {
212 			emit_li(rd, lower, ctx);
213 			return;
214 		}
215 
216 		emit_addiw(rd, rd, lower, ctx);
217 		return;
218 	}
219 
220 	shift = __ffs(upper);
221 	upper >>= shift;
222 	shift += 12;
223 
224 	emit_imm(rd, upper, ctx);
225 
226 	emit_slli(rd, rd, shift, ctx);
227 	if (lower)
228 		emit_addi(rd, rd, lower, ctx);
229 }
230 
__build_epilogue(bool is_tail_call,struct rv_jit_context * ctx)231 static void __build_epilogue(bool is_tail_call, struct rv_jit_context *ctx)
232 {
233 	int stack_adjust = ctx->stack_size, store_offset = stack_adjust - 8;
234 
235 	if (seen_reg(RV_REG_RA, ctx)) {
236 		emit_ld(RV_REG_RA, store_offset, RV_REG_SP, ctx);
237 		store_offset -= 8;
238 	}
239 	emit_ld(RV_REG_FP, store_offset, RV_REG_SP, ctx);
240 	store_offset -= 8;
241 	if (seen_reg(RV_REG_S1, ctx)) {
242 		emit_ld(RV_REG_S1, store_offset, RV_REG_SP, ctx);
243 		store_offset -= 8;
244 	}
245 	if (seen_reg(RV_REG_S2, ctx)) {
246 		emit_ld(RV_REG_S2, store_offset, RV_REG_SP, ctx);
247 		store_offset -= 8;
248 	}
249 	if (seen_reg(RV_REG_S3, ctx)) {
250 		emit_ld(RV_REG_S3, store_offset, RV_REG_SP, ctx);
251 		store_offset -= 8;
252 	}
253 	if (seen_reg(RV_REG_S4, ctx)) {
254 		emit_ld(RV_REG_S4, store_offset, RV_REG_SP, ctx);
255 		store_offset -= 8;
256 	}
257 	if (seen_reg(RV_REG_S5, ctx)) {
258 		emit_ld(RV_REG_S5, store_offset, RV_REG_SP, ctx);
259 		store_offset -= 8;
260 	}
261 	if (seen_reg(RV_REG_S6, ctx)) {
262 		emit_ld(RV_REG_S6, store_offset, RV_REG_SP, ctx);
263 		store_offset -= 8;
264 	}
265 	if (ctx->arena_vm_start) {
266 		emit_ld(RV_REG_ARENA, store_offset, RV_REG_SP, ctx);
267 		store_offset -= 8;
268 	}
269 
270 	emit_addi(RV_REG_SP, RV_REG_SP, stack_adjust, ctx);
271 	/* Set return value. */
272 	if (!is_tail_call)
273 		emit_addiw(RV_REG_A0, RV_REG_A5, 0, ctx);
274 	emit_jalr(RV_REG_ZERO, is_tail_call ? RV_REG_T3 : RV_REG_RA,
275 		  /* kcfi, fentry and TCC init insns will be skipped on tailcall */
276 		  is_tail_call ? (RV_KCFI_NINSNS + RV_FENTRY_NINSNS + 1) * 4 : 0,
277 		  ctx);
278 }
279 
emit_bcc(u8 cond,u8 rd,u8 rs,int rvoff,struct rv_jit_context * ctx)280 static void emit_bcc(u8 cond, u8 rd, u8 rs, int rvoff,
281 		     struct rv_jit_context *ctx)
282 {
283 	switch (cond) {
284 	case BPF_JEQ:
285 		emit(rv_beq(rd, rs, rvoff >> 1), ctx);
286 		return;
287 	case BPF_JGT:
288 		emit(rv_bltu(rs, rd, rvoff >> 1), ctx);
289 		return;
290 	case BPF_JLT:
291 		emit(rv_bltu(rd, rs, rvoff >> 1), ctx);
292 		return;
293 	case BPF_JGE:
294 		emit(rv_bgeu(rd, rs, rvoff >> 1), ctx);
295 		return;
296 	case BPF_JLE:
297 		emit(rv_bgeu(rs, rd, rvoff >> 1), ctx);
298 		return;
299 	case BPF_JNE:
300 		emit(rv_bne(rd, rs, rvoff >> 1), ctx);
301 		return;
302 	case BPF_JSGT:
303 		emit(rv_blt(rs, rd, rvoff >> 1), ctx);
304 		return;
305 	case BPF_JSLT:
306 		emit(rv_blt(rd, rs, rvoff >> 1), ctx);
307 		return;
308 	case BPF_JSGE:
309 		emit(rv_bge(rd, rs, rvoff >> 1), ctx);
310 		return;
311 	case BPF_JSLE:
312 		emit(rv_bge(rs, rd, rvoff >> 1), ctx);
313 	}
314 }
315 
emit_branch(u8 cond,u8 rd,u8 rs,int rvoff,struct rv_jit_context * ctx)316 static void emit_branch(u8 cond, u8 rd, u8 rs, int rvoff,
317 			struct rv_jit_context *ctx)
318 {
319 	s64 upper, lower;
320 
321 	if (is_13b_int(rvoff)) {
322 		emit_bcc(cond, rd, rs, rvoff, ctx);
323 		return;
324 	}
325 
326 	/* Adjust for jal */
327 	rvoff -= 4;
328 
329 	/* Transform, e.g.:
330 	 *   bne rd,rs,foo
331 	 * to
332 	 *   beq rd,rs,<.L1>
333 	 *   (auipc foo)
334 	 *   jal(r) foo
335 	 * .L1
336 	 */
337 	cond = invert_bpf_cond(cond);
338 	if (is_21b_int(rvoff)) {
339 		emit_bcc(cond, rd, rs, 8, ctx);
340 		emit(rv_jal(RV_REG_ZERO, rvoff >> 1), ctx);
341 		return;
342 	}
343 
344 	/* 32b No need for an additional rvoff adjustment, since we
345 	 * get that from the auipc at PC', where PC = PC' + 4.
346 	 */
347 	upper = (rvoff + (1 << 11)) >> 12;
348 	lower = rvoff & 0xfff;
349 
350 	emit_bcc(cond, rd, rs, 12, ctx);
351 	emit(rv_auipc(RV_REG_T1, upper), ctx);
352 	emit(rv_jalr(RV_REG_ZERO, RV_REG_T1, lower), ctx);
353 }
354 
emit_bpf_tail_call(int insn,struct rv_jit_context * ctx)355 static int emit_bpf_tail_call(int insn, struct rv_jit_context *ctx)
356 {
357 	int tc_ninsn, off, start_insn = ctx->ninsns;
358 	u8 tcc = rv_tail_call_reg(ctx);
359 
360 	/* a0: &ctx
361 	 * a1: &array
362 	 * a2: index
363 	 *
364 	 * if (index >= array->map.max_entries)
365 	 *	goto out;
366 	 */
367 	tc_ninsn = insn ? ctx->offset[insn] - ctx->offset[insn - 1] :
368 		   ctx->offset[0];
369 	emit_zextw(RV_REG_A2, RV_REG_A2, ctx);
370 
371 	off = offsetof(struct bpf_array, map.max_entries);
372 	if (is_12b_check(off, insn))
373 		return -1;
374 	emit(rv_lwu(RV_REG_T1, off, RV_REG_A1), ctx);
375 	off = ninsns_rvoff(tc_ninsn - (ctx->ninsns - start_insn));
376 	emit_branch(BPF_JGE, RV_REG_A2, RV_REG_T1, off, ctx);
377 
378 	/* if (--TCC < 0)
379 	 *     goto out;
380 	 */
381 	emit_addi(RV_REG_TCC, tcc, -1, ctx);
382 	off = ninsns_rvoff(tc_ninsn - (ctx->ninsns - start_insn));
383 	emit_branch(BPF_JSLT, RV_REG_TCC, RV_REG_ZERO, off, ctx);
384 
385 	/* prog = array->ptrs[index];
386 	 * if (!prog)
387 	 *     goto out;
388 	 */
389 	emit_sh3add(RV_REG_T2, RV_REG_A2, RV_REG_A1, ctx);
390 	off = offsetof(struct bpf_array, ptrs);
391 	if (is_12b_check(off, insn))
392 		return -1;
393 	emit_ld(RV_REG_T2, off, RV_REG_T2, ctx);
394 	off = ninsns_rvoff(tc_ninsn - (ctx->ninsns - start_insn));
395 	emit_branch(BPF_JEQ, RV_REG_T2, RV_REG_ZERO, off, ctx);
396 
397 	/* goto *(prog->bpf_func + 4); */
398 	off = offsetof(struct bpf_prog, bpf_func);
399 	if (is_12b_check(off, insn))
400 		return -1;
401 	emit_ld(RV_REG_T3, off, RV_REG_T2, ctx);
402 	__build_epilogue(true, ctx);
403 	return 0;
404 }
405 
init_regs(u8 * rd,u8 * rs,const struct bpf_insn * insn,struct rv_jit_context * ctx)406 static void init_regs(u8 *rd, u8 *rs, const struct bpf_insn *insn,
407 		      struct rv_jit_context *ctx)
408 {
409 	u8 code = insn->code;
410 
411 	switch (code) {
412 	case BPF_JMP | BPF_JA:
413 	case BPF_JMP | BPF_CALL:
414 	case BPF_JMP | BPF_EXIT:
415 	case BPF_JMP | BPF_TAIL_CALL:
416 		break;
417 	default:
418 		*rd = bpf_to_rv_reg(insn->dst_reg, ctx);
419 	}
420 
421 	if (code & (BPF_ALU | BPF_X) || code & (BPF_ALU64 | BPF_X) ||
422 	    code & (BPF_JMP | BPF_X) || code & (BPF_JMP32 | BPF_X) ||
423 	    code & BPF_LDX || code & BPF_STX)
424 		*rs = bpf_to_rv_reg(insn->src_reg, ctx);
425 }
426 
emit_jump_and_link(u8 rd,s64 rvoff,bool fixed_addr,struct rv_jit_context * ctx)427 static int emit_jump_and_link(u8 rd, s64 rvoff, bool fixed_addr,
428 			      struct rv_jit_context *ctx)
429 {
430 	s64 upper, lower;
431 
432 	if (rvoff && fixed_addr && is_21b_int(rvoff)) {
433 		emit(rv_jal(rd, rvoff >> 1), ctx);
434 		return 0;
435 	} else if (in_auipc_jalr_range(rvoff)) {
436 		upper = (rvoff + (1 << 11)) >> 12;
437 		lower = rvoff & 0xfff;
438 		emit(rv_auipc(RV_REG_T1, upper), ctx);
439 		emit(rv_jalr(rd, RV_REG_T1, lower), ctx);
440 		return 0;
441 	}
442 
443 	pr_err("bpf-jit: target offset 0x%llx is out of range\n", rvoff);
444 	return -ERANGE;
445 }
446 
is_signed_bpf_cond(u8 cond)447 static bool is_signed_bpf_cond(u8 cond)
448 {
449 	return cond == BPF_JSGT || cond == BPF_JSLT ||
450 		cond == BPF_JSGE || cond == BPF_JSLE;
451 }
452 
emit_call(u64 addr,bool fixed_addr,struct rv_jit_context * ctx)453 static int emit_call(u64 addr, bool fixed_addr, struct rv_jit_context *ctx)
454 {
455 	s64 off = 0;
456 	u64 ip;
457 
458 	if (addr && ctx->insns && ctx->ro_insns) {
459 		/*
460 		 * Use the ro_insns(RX) to calculate the offset as the BPF
461 		 * program will finally run from this memory region.
462 		 */
463 		ip = (u64)(long)(ctx->ro_insns + ctx->ninsns);
464 		off = addr - ip;
465 	}
466 
467 	return emit_jump_and_link(RV_REG_RA, off, fixed_addr, ctx);
468 }
469 
emit_kcfi(u32 hash,struct rv_jit_context * ctx)470 static inline void emit_kcfi(u32 hash, struct rv_jit_context *ctx)
471 {
472 	if (IS_ENABLED(CONFIG_CFI_CLANG))
473 		emit(hash, ctx);
474 }
475 
emit_load_8(bool sign_ext,u8 rd,s32 off,u8 rs,struct rv_jit_context * ctx)476 static int emit_load_8(bool sign_ext, u8 rd, s32 off, u8 rs, struct rv_jit_context *ctx)
477 {
478 	int insns_start;
479 
480 	if (is_12b_int(off)) {
481 		insns_start = ctx->ninsns;
482 		if (sign_ext)
483 			emit(rv_lb(rd, off, rs), ctx);
484 		else
485 			emit(rv_lbu(rd, off, rs), ctx);
486 		return ctx->ninsns - insns_start;
487 	}
488 
489 	emit_imm(RV_REG_T1, off, ctx);
490 	emit_add(RV_REG_T1, RV_REG_T1, rs, ctx);
491 	insns_start = ctx->ninsns;
492 	if (sign_ext)
493 		emit(rv_lb(rd, 0, RV_REG_T1), ctx);
494 	else
495 		emit(rv_lbu(rd, 0, RV_REG_T1), ctx);
496 	return ctx->ninsns - insns_start;
497 }
498 
emit_load_16(bool sign_ext,u8 rd,s32 off,u8 rs,struct rv_jit_context * ctx)499 static int emit_load_16(bool sign_ext, u8 rd, s32 off, u8 rs, struct rv_jit_context *ctx)
500 {
501 	int insns_start;
502 
503 	if (is_12b_int(off)) {
504 		insns_start = ctx->ninsns;
505 		if (sign_ext)
506 			emit(rv_lh(rd, off, rs), ctx);
507 		else
508 			emit(rv_lhu(rd, off, rs), ctx);
509 		return ctx->ninsns - insns_start;
510 	}
511 
512 	emit_imm(RV_REG_T1, off, ctx);
513 	emit_add(RV_REG_T1, RV_REG_T1, rs, ctx);
514 	insns_start = ctx->ninsns;
515 	if (sign_ext)
516 		emit(rv_lh(rd, 0, RV_REG_T1), ctx);
517 	else
518 		emit(rv_lhu(rd, 0, RV_REG_T1), ctx);
519 	return ctx->ninsns - insns_start;
520 }
521 
emit_load_32(bool sign_ext,u8 rd,s32 off,u8 rs,struct rv_jit_context * ctx)522 static int emit_load_32(bool sign_ext, u8 rd, s32 off, u8 rs, struct rv_jit_context *ctx)
523 {
524 	int insns_start;
525 
526 	if (is_12b_int(off)) {
527 		insns_start = ctx->ninsns;
528 		if (sign_ext)
529 			emit(rv_lw(rd, off, rs), ctx);
530 		else
531 			emit(rv_lwu(rd, off, rs), ctx);
532 		return ctx->ninsns - insns_start;
533 	}
534 
535 	emit_imm(RV_REG_T1, off, ctx);
536 	emit_add(RV_REG_T1, RV_REG_T1, rs, ctx);
537 	insns_start = ctx->ninsns;
538 	if (sign_ext)
539 		emit(rv_lw(rd, 0, RV_REG_T1), ctx);
540 	else
541 		emit(rv_lwu(rd, 0, RV_REG_T1), ctx);
542 	return ctx->ninsns - insns_start;
543 }
544 
emit_load_64(bool sign_ext,u8 rd,s32 off,u8 rs,struct rv_jit_context * ctx)545 static int emit_load_64(bool sign_ext, u8 rd, s32 off, u8 rs, struct rv_jit_context *ctx)
546 {
547 	int insns_start;
548 
549 	if (is_12b_int(off)) {
550 		insns_start = ctx->ninsns;
551 		emit_ld(rd, off, rs, ctx);
552 		return ctx->ninsns - insns_start;
553 	}
554 
555 	emit_imm(RV_REG_T1, off, ctx);
556 	emit_add(RV_REG_T1, RV_REG_T1, rs, ctx);
557 	insns_start = ctx->ninsns;
558 	emit_ld(rd, 0, RV_REG_T1, ctx);
559 	return ctx->ninsns - insns_start;
560 }
561 
emit_store_8(u8 rd,s32 off,u8 rs,struct rv_jit_context * ctx)562 static void emit_store_8(u8 rd, s32 off, u8 rs, struct rv_jit_context *ctx)
563 {
564 	if (is_12b_int(off)) {
565 		emit(rv_sb(rd, off, rs), ctx);
566 		return;
567 	}
568 
569 	emit_imm(RV_REG_T1, off, ctx);
570 	emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
571 	emit(rv_sb(RV_REG_T1, 0, rs), ctx);
572 }
573 
emit_store_16(u8 rd,s32 off,u8 rs,struct rv_jit_context * ctx)574 static void emit_store_16(u8 rd, s32 off, u8 rs, struct rv_jit_context *ctx)
575 {
576 	if (is_12b_int(off)) {
577 		emit(rv_sh(rd, off, rs), ctx);
578 		return;
579 	}
580 
581 	emit_imm(RV_REG_T1, off, ctx);
582 	emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
583 	emit(rv_sh(RV_REG_T1, 0, rs), ctx);
584 }
585 
emit_store_32(u8 rd,s32 off,u8 rs,struct rv_jit_context * ctx)586 static void emit_store_32(u8 rd, s32 off, u8 rs, struct rv_jit_context *ctx)
587 {
588 	if (is_12b_int(off)) {
589 		emit_sw(rd, off, rs, ctx);
590 		return;
591 	}
592 
593 	emit_imm(RV_REG_T1, off, ctx);
594 	emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
595 	emit_sw(RV_REG_T1, 0, rs, ctx);
596 }
597 
emit_store_64(u8 rd,s32 off,u8 rs,struct rv_jit_context * ctx)598 static void emit_store_64(u8 rd, s32 off, u8 rs, struct rv_jit_context *ctx)
599 {
600 	if (is_12b_int(off)) {
601 		emit_sd(rd, off, rs, ctx);
602 		return;
603 	}
604 
605 	emit_imm(RV_REG_T1, off, ctx);
606 	emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
607 	emit_sd(RV_REG_T1, 0, rs, ctx);
608 }
609 
emit_atomic_ld_st(u8 rd,u8 rs,const struct bpf_insn * insn,struct rv_jit_context * ctx)610 static int emit_atomic_ld_st(u8 rd, u8 rs, const struct bpf_insn *insn,
611 			     struct rv_jit_context *ctx)
612 {
613 	u8 code = insn->code;
614 	s32 imm = insn->imm;
615 	s16 off = insn->off;
616 
617 	switch (imm) {
618 	/* dst_reg = load_acquire(src_reg + off16) */
619 	case BPF_LOAD_ACQ:
620 		switch (BPF_SIZE(code)) {
621 		case BPF_B:
622 			emit_load_8(false, rd, off, rs, ctx);
623 			break;
624 		case BPF_H:
625 			emit_load_16(false, rd, off, rs, ctx);
626 			break;
627 		case BPF_W:
628 			emit_load_32(false, rd, off, rs, ctx);
629 			break;
630 		case BPF_DW:
631 			emit_load_64(false, rd, off, rs, ctx);
632 			break;
633 		}
634 		emit_fence_r_rw(ctx);
635 
636 		/* If our next insn is a redundant zext, return 1 to tell
637 		 * build_body() to skip it.
638 		 */
639 		if (BPF_SIZE(code) != BPF_DW && insn_is_zext(&insn[1]))
640 			return 1;
641 		break;
642 	/* store_release(dst_reg + off16, src_reg) */
643 	case BPF_STORE_REL:
644 		emit_fence_rw_w(ctx);
645 		switch (BPF_SIZE(code)) {
646 		case BPF_B:
647 			emit_store_8(rd, off, rs, ctx);
648 			break;
649 		case BPF_H:
650 			emit_store_16(rd, off, rs, ctx);
651 			break;
652 		case BPF_W:
653 			emit_store_32(rd, off, rs, ctx);
654 			break;
655 		case BPF_DW:
656 			emit_store_64(rd, off, rs, ctx);
657 			break;
658 		}
659 		break;
660 	default:
661 		pr_err_once("bpf-jit: invalid atomic load/store opcode %02x\n", imm);
662 		return -EINVAL;
663 	}
664 
665 	return 0;
666 }
667 
emit_atomic_rmw(u8 rd,u8 rs,const struct bpf_insn * insn,struct rv_jit_context * ctx)668 static int emit_atomic_rmw(u8 rd, u8 rs, const struct bpf_insn *insn,
669 			   struct rv_jit_context *ctx)
670 {
671 	u8 r0, code = insn->code;
672 	s16 off = insn->off;
673 	s32 imm = insn->imm;
674 	int jmp_offset;
675 	bool is64;
676 
677 	if (BPF_SIZE(code) != BPF_W && BPF_SIZE(code) != BPF_DW) {
678 		pr_err_once("bpf-jit: 1- and 2-byte RMW atomics are not supported\n");
679 		return -EINVAL;
680 	}
681 	is64 = BPF_SIZE(code) == BPF_DW;
682 
683 	if (off) {
684 		if (is_12b_int(off)) {
685 			emit_addi(RV_REG_T1, rd, off, ctx);
686 		} else {
687 			emit_imm(RV_REG_T1, off, ctx);
688 			emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
689 		}
690 		rd = RV_REG_T1;
691 	}
692 
693 	switch (imm) {
694 	/* lock *(u32/u64 *)(dst_reg + off16) <op>= src_reg */
695 	case BPF_ADD:
696 		emit(is64 ? rv_amoadd_d(RV_REG_ZERO, rs, rd, 0, 0) :
697 		     rv_amoadd_w(RV_REG_ZERO, rs, rd, 0, 0), ctx);
698 		break;
699 	case BPF_AND:
700 		emit(is64 ? rv_amoand_d(RV_REG_ZERO, rs, rd, 0, 0) :
701 		     rv_amoand_w(RV_REG_ZERO, rs, rd, 0, 0), ctx);
702 		break;
703 	case BPF_OR:
704 		emit(is64 ? rv_amoor_d(RV_REG_ZERO, rs, rd, 0, 0) :
705 		     rv_amoor_w(RV_REG_ZERO, rs, rd, 0, 0), ctx);
706 		break;
707 	case BPF_XOR:
708 		emit(is64 ? rv_amoxor_d(RV_REG_ZERO, rs, rd, 0, 0) :
709 		     rv_amoxor_w(RV_REG_ZERO, rs, rd, 0, 0), ctx);
710 		break;
711 	/* src_reg = atomic_fetch_<op>(dst_reg + off16, src_reg) */
712 	case BPF_ADD | BPF_FETCH:
713 		emit(is64 ? rv_amoadd_d(rs, rs, rd, 1, 1) :
714 		     rv_amoadd_w(rs, rs, rd, 1, 1), ctx);
715 		if (!is64)
716 			emit_zextw(rs, rs, ctx);
717 		break;
718 	case BPF_AND | BPF_FETCH:
719 		emit(is64 ? rv_amoand_d(rs, rs, rd, 1, 1) :
720 		     rv_amoand_w(rs, rs, rd, 1, 1), ctx);
721 		if (!is64)
722 			emit_zextw(rs, rs, ctx);
723 		break;
724 	case BPF_OR | BPF_FETCH:
725 		emit(is64 ? rv_amoor_d(rs, rs, rd, 1, 1) :
726 		     rv_amoor_w(rs, rs, rd, 1, 1), ctx);
727 		if (!is64)
728 			emit_zextw(rs, rs, ctx);
729 		break;
730 	case BPF_XOR | BPF_FETCH:
731 		emit(is64 ? rv_amoxor_d(rs, rs, rd, 1, 1) :
732 		     rv_amoxor_w(rs, rs, rd, 1, 1), ctx);
733 		if (!is64)
734 			emit_zextw(rs, rs, ctx);
735 		break;
736 	/* src_reg = atomic_xchg(dst_reg + off16, src_reg); */
737 	case BPF_XCHG:
738 		emit(is64 ? rv_amoswap_d(rs, rs, rd, 1, 1) :
739 		     rv_amoswap_w(rs, rs, rd, 1, 1), ctx);
740 		if (!is64)
741 			emit_zextw(rs, rs, ctx);
742 		break;
743 	/* r0 = atomic_cmpxchg(dst_reg + off16, r0, src_reg); */
744 	case BPF_CMPXCHG:
745 		r0 = bpf_to_rv_reg(BPF_REG_0, ctx);
746 		if (is64)
747 			emit_mv(RV_REG_T2, r0, ctx);
748 		else
749 			emit_addiw(RV_REG_T2, r0, 0, ctx);
750 		emit(is64 ? rv_lr_d(r0, 0, rd, 0, 0) :
751 		     rv_lr_w(r0, 0, rd, 0, 0), ctx);
752 		jmp_offset = ninsns_rvoff(8);
753 		emit(rv_bne(RV_REG_T2, r0, jmp_offset >> 1), ctx);
754 		emit(is64 ? rv_sc_d(RV_REG_T3, rs, rd, 0, 1) :
755 		     rv_sc_w(RV_REG_T3, rs, rd, 0, 1), ctx);
756 		jmp_offset = ninsns_rvoff(-6);
757 		emit(rv_bne(RV_REG_T3, 0, jmp_offset >> 1), ctx);
758 		emit_fence_rw_rw(ctx);
759 		break;
760 	default:
761 		pr_err_once("bpf-jit: invalid atomic RMW opcode %02x\n", imm);
762 		return -EINVAL;
763 	}
764 
765 	return 0;
766 }
767 
768 #define BPF_FIXUP_OFFSET_MASK   GENMASK(26, 0)
769 #define BPF_FIXUP_REG_MASK      GENMASK(31, 27)
770 #define REG_DONT_CLEAR_MARKER	0	/* RV_REG_ZERO unused in pt_regmap */
771 
ex_handler_bpf(const struct exception_table_entry * ex,struct pt_regs * regs)772 bool ex_handler_bpf(const struct exception_table_entry *ex,
773 		    struct pt_regs *regs)
774 {
775 	off_t offset = FIELD_GET(BPF_FIXUP_OFFSET_MASK, ex->fixup);
776 	int regs_offset = FIELD_GET(BPF_FIXUP_REG_MASK, ex->fixup);
777 
778 	if (regs_offset != REG_DONT_CLEAR_MARKER)
779 		*(unsigned long *)((void *)regs + pt_regmap[regs_offset]) = 0;
780 	regs->epc = (unsigned long)&ex->fixup - offset;
781 
782 	return true;
783 }
784 
785 /* For accesses to BTF pointers, add an entry to the exception table */
add_exception_handler(const struct bpf_insn * insn,struct rv_jit_context * ctx,int dst_reg,int insn_len)786 static int add_exception_handler(const struct bpf_insn *insn,
787 				 struct rv_jit_context *ctx,
788 				 int dst_reg, int insn_len)
789 {
790 	struct exception_table_entry *ex;
791 	unsigned long pc;
792 	off_t ins_offset;
793 	off_t fixup_offset;
794 
795 	if (!ctx->insns || !ctx->ro_insns || !ctx->prog->aux->extable ||
796 	    (BPF_MODE(insn->code) != BPF_PROBE_MEM && BPF_MODE(insn->code) != BPF_PROBE_MEMSX &&
797 	     BPF_MODE(insn->code) != BPF_PROBE_MEM32))
798 		return 0;
799 
800 	if (WARN_ON_ONCE(ctx->nexentries >= ctx->prog->aux->num_exentries))
801 		return -EINVAL;
802 
803 	if (WARN_ON_ONCE(insn_len > ctx->ninsns))
804 		return -EINVAL;
805 
806 	if (WARN_ON_ONCE(!rvc_enabled() && insn_len == 1))
807 		return -EINVAL;
808 
809 	ex = &ctx->prog->aux->extable[ctx->nexentries];
810 	pc = (unsigned long)&ctx->ro_insns[ctx->ninsns - insn_len];
811 
812 	/*
813 	 * This is the relative offset of the instruction that may fault from
814 	 * the exception table itself. This will be written to the exception
815 	 * table and if this instruction faults, the destination register will
816 	 * be set to '0' and the execution will jump to the next instruction.
817 	 */
818 	ins_offset = pc - (long)&ex->insn;
819 	if (WARN_ON_ONCE(ins_offset >= 0 || ins_offset < INT_MIN))
820 		return -ERANGE;
821 
822 	/*
823 	 * Since the extable follows the program, the fixup offset is always
824 	 * negative and limited to BPF_JIT_REGION_SIZE. Store a positive value
825 	 * to keep things simple, and put the destination register in the upper
826 	 * bits. We don't need to worry about buildtime or runtime sort
827 	 * modifying the upper bits because the table is already sorted, and
828 	 * isn't part of the main exception table.
829 	 *
830 	 * The fixup_offset is set to the next instruction from the instruction
831 	 * that may fault. The execution will jump to this after handling the
832 	 * fault.
833 	 */
834 	fixup_offset = (long)&ex->fixup - (pc + insn_len * sizeof(u16));
835 	if (!FIELD_FIT(BPF_FIXUP_OFFSET_MASK, fixup_offset))
836 		return -ERANGE;
837 
838 	/*
839 	 * The offsets above have been calculated using the RO buffer but we
840 	 * need to use the R/W buffer for writes.
841 	 * switch ex to rw buffer for writing.
842 	 */
843 	ex = (void *)ctx->insns + ((void *)ex - (void *)ctx->ro_insns);
844 
845 	ex->insn = ins_offset;
846 
847 	ex->fixup = FIELD_PREP(BPF_FIXUP_OFFSET_MASK, fixup_offset) |
848 		FIELD_PREP(BPF_FIXUP_REG_MASK, dst_reg);
849 	ex->type = EX_TYPE_BPF;
850 
851 	ctx->nexentries++;
852 	return 0;
853 }
854 
gen_jump_or_nops(void * target,void * ip,u32 * insns,bool is_call)855 static int gen_jump_or_nops(void *target, void *ip, u32 *insns, bool is_call)
856 {
857 	s64 rvoff;
858 	struct rv_jit_context ctx;
859 
860 	ctx.ninsns = 0;
861 	ctx.insns = (u16 *)insns;
862 
863 	if (!target) {
864 		emit(rv_nop(), &ctx);
865 		emit(rv_nop(), &ctx);
866 		return 0;
867 	}
868 
869 	rvoff = (s64)(target - ip);
870 	return emit_jump_and_link(is_call ? RV_REG_T0 : RV_REG_ZERO, rvoff, false, &ctx);
871 }
872 
bpf_arch_text_poke(void * ip,enum bpf_text_poke_type poke_type,void * old_addr,void * new_addr)873 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type poke_type,
874 		       void *old_addr, void *new_addr)
875 {
876 	u32 old_insns[RV_FENTRY_NINSNS], new_insns[RV_FENTRY_NINSNS];
877 	bool is_call = poke_type == BPF_MOD_CALL;
878 	int ret;
879 
880 	if (!is_kernel_text((unsigned long)ip) &&
881 	    !is_bpf_text_address((unsigned long)ip))
882 		return -ENOTSUPP;
883 
884 	ret = gen_jump_or_nops(old_addr, ip, old_insns, is_call);
885 	if (ret)
886 		return ret;
887 
888 	if (memcmp(ip, old_insns, RV_FENTRY_NBYTES))
889 		return -EFAULT;
890 
891 	ret = gen_jump_or_nops(new_addr, ip, new_insns, is_call);
892 	if (ret)
893 		return ret;
894 
895 	cpus_read_lock();
896 	mutex_lock(&text_mutex);
897 	if (memcmp(ip, new_insns, RV_FENTRY_NBYTES))
898 		ret = patch_text(ip, new_insns, RV_FENTRY_NBYTES);
899 	mutex_unlock(&text_mutex);
900 	cpus_read_unlock();
901 
902 	return ret;
903 }
904 
store_args(int nr_arg_slots,int args_off,struct rv_jit_context * ctx)905 static void store_args(int nr_arg_slots, int args_off, struct rv_jit_context *ctx)
906 {
907 	int i;
908 
909 	for (i = 0; i < nr_arg_slots; i++) {
910 		if (i < RV_MAX_REG_ARGS) {
911 			emit_sd(RV_REG_FP, -args_off, RV_REG_A0 + i, ctx);
912 		} else {
913 			/* skip slots for T0 and FP of traced function */
914 			emit_ld(RV_REG_T1, 16 + (i - RV_MAX_REG_ARGS) * 8, RV_REG_FP, ctx);
915 			emit_sd(RV_REG_FP, -args_off, RV_REG_T1, ctx);
916 		}
917 		args_off -= 8;
918 	}
919 }
920 
restore_args(int nr_reg_args,int args_off,struct rv_jit_context * ctx)921 static void restore_args(int nr_reg_args, int args_off, struct rv_jit_context *ctx)
922 {
923 	int i;
924 
925 	for (i = 0; i < nr_reg_args; i++) {
926 		emit_ld(RV_REG_A0 + i, -args_off, RV_REG_FP, ctx);
927 		args_off -= 8;
928 	}
929 }
930 
restore_stack_args(int nr_stack_args,int args_off,int stk_arg_off,struct rv_jit_context * ctx)931 static void restore_stack_args(int nr_stack_args, int args_off, int stk_arg_off,
932 			       struct rv_jit_context *ctx)
933 {
934 	int i;
935 
936 	for (i = 0; i < nr_stack_args; i++) {
937 		emit_ld(RV_REG_T1, -(args_off - RV_MAX_REG_ARGS * 8), RV_REG_FP, ctx);
938 		emit_sd(RV_REG_FP, -stk_arg_off, RV_REG_T1, ctx);
939 		args_off -= 8;
940 		stk_arg_off -= 8;
941 	}
942 }
943 
invoke_bpf_prog(struct bpf_tramp_link * l,int args_off,int retval_off,int run_ctx_off,bool save_ret,struct rv_jit_context * ctx)944 static int invoke_bpf_prog(struct bpf_tramp_link *l, int args_off, int retval_off,
945 			   int run_ctx_off, bool save_ret, struct rv_jit_context *ctx)
946 {
947 	int ret, branch_off;
948 	struct bpf_prog *p = l->link.prog;
949 	int cookie_off = offsetof(struct bpf_tramp_run_ctx, bpf_cookie);
950 
951 	if (l->cookie) {
952 		emit_imm(RV_REG_T1, l->cookie, ctx);
953 		emit_sd(RV_REG_FP, -run_ctx_off + cookie_off, RV_REG_T1, ctx);
954 	} else {
955 		emit_sd(RV_REG_FP, -run_ctx_off + cookie_off, RV_REG_ZERO, ctx);
956 	}
957 
958 	/* arg1: prog */
959 	emit_imm(RV_REG_A0, (const s64)p, ctx);
960 	/* arg2: &run_ctx */
961 	emit_addi(RV_REG_A1, RV_REG_FP, -run_ctx_off, ctx);
962 	ret = emit_call((const u64)bpf_trampoline_enter(p), true, ctx);
963 	if (ret)
964 		return ret;
965 
966 	/* store prog start time */
967 	emit_mv(RV_REG_S1, RV_REG_A0, ctx);
968 
969 	/* if (__bpf_prog_enter(prog) == 0)
970 	 *	goto skip_exec_of_prog;
971 	 */
972 	branch_off = ctx->ninsns;
973 	/* nop reserved for conditional jump */
974 	emit(rv_nop(), ctx);
975 
976 	/* arg1: &args_off */
977 	emit_addi(RV_REG_A0, RV_REG_FP, -args_off, ctx);
978 	if (!p->jited)
979 		/* arg2: progs[i]->insnsi for interpreter */
980 		emit_imm(RV_REG_A1, (const s64)p->insnsi, ctx);
981 	ret = emit_call((const u64)p->bpf_func, true, ctx);
982 	if (ret)
983 		return ret;
984 
985 	if (save_ret) {
986 		emit_sd(RV_REG_FP, -retval_off, RV_REG_A0, ctx);
987 		emit_sd(RV_REG_FP, -(retval_off - 8), regmap[BPF_REG_0], ctx);
988 	}
989 
990 	/* update branch with beqz */
991 	if (ctx->insns) {
992 		int offset = ninsns_rvoff(ctx->ninsns - branch_off);
993 		u32 insn = rv_beq(RV_REG_A0, RV_REG_ZERO, offset >> 1);
994 		*(u32 *)(ctx->insns + branch_off) = insn;
995 	}
996 
997 	/* arg1: prog */
998 	emit_imm(RV_REG_A0, (const s64)p, ctx);
999 	/* arg2: prog start time */
1000 	emit_mv(RV_REG_A1, RV_REG_S1, ctx);
1001 	/* arg3: &run_ctx */
1002 	emit_addi(RV_REG_A2, RV_REG_FP, -run_ctx_off, ctx);
1003 	ret = emit_call((const u64)bpf_trampoline_exit(p), true, ctx);
1004 
1005 	return ret;
1006 }
1007 
__arch_prepare_bpf_trampoline(struct bpf_tramp_image * im,const struct btf_func_model * m,struct bpf_tramp_links * tlinks,void * func_addr,u32 flags,struct rv_jit_context * ctx)1008 static int __arch_prepare_bpf_trampoline(struct bpf_tramp_image *im,
1009 					 const struct btf_func_model *m,
1010 					 struct bpf_tramp_links *tlinks,
1011 					 void *func_addr, u32 flags,
1012 					 struct rv_jit_context *ctx)
1013 {
1014 	int i, ret, offset;
1015 	int *branches_off = NULL;
1016 	int stack_size = 0, nr_arg_slots = 0;
1017 	int retval_off, args_off, nregs_off, ip_off, run_ctx_off, sreg_off, stk_arg_off;
1018 	struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY];
1019 	struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT];
1020 	struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN];
1021 	bool is_struct_ops = flags & BPF_TRAMP_F_INDIRECT;
1022 	void *orig_call = func_addr;
1023 	bool save_ret;
1024 	u32 insn;
1025 
1026 	/* Two types of generated trampoline stack layout:
1027 	 *
1028 	 * 1. trampoline called from function entry
1029 	 * --------------------------------------
1030 	 * FP + 8	    [ RA to parent func	] return address to parent
1031 	 *					  function
1032 	 * FP + 0	    [ FP of parent func ] frame pointer of parent
1033 	 *					  function
1034 	 * FP - 8           [ T0 to traced func ] return address of traced
1035 	 *					  function
1036 	 * FP - 16	    [ FP of traced func ] frame pointer of traced
1037 	 *					  function
1038 	 * --------------------------------------
1039 	 *
1040 	 * 2. trampoline called directly
1041 	 * --------------------------------------
1042 	 * FP - 8	    [ RA to caller func ] return address to caller
1043 	 *					  function
1044 	 * FP - 16	    [ FP of caller func	] frame pointer of caller
1045 	 *					  function
1046 	 * --------------------------------------
1047 	 *
1048 	 * FP - retval_off  [ return value      ] BPF_TRAMP_F_CALL_ORIG or
1049 	 *					  BPF_TRAMP_F_RET_FENTRY_RET
1050 	 *                  [ argN              ]
1051 	 *                  [ ...               ]
1052 	 * FP - args_off    [ arg1              ]
1053 	 *
1054 	 * FP - nregs_off   [ regs count        ]
1055 	 *
1056 	 * FP - ip_off      [ traced func	] BPF_TRAMP_F_IP_ARG
1057 	 *
1058 	 * FP - run_ctx_off [ bpf_tramp_run_ctx ]
1059 	 *
1060 	 * FP - sreg_off    [ callee saved reg	]
1061 	 *
1062 	 *		    [ pads              ] pads for 16 bytes alignment
1063 	 *
1064 	 *		    [ stack_argN        ]
1065 	 *		    [ ...               ]
1066 	 * FP - stk_arg_off [ stack_arg1        ] BPF_TRAMP_F_CALL_ORIG
1067 	 */
1068 
1069 	if (flags & (BPF_TRAMP_F_ORIG_STACK | BPF_TRAMP_F_SHARE_IPMODIFY))
1070 		return -ENOTSUPP;
1071 
1072 	if (m->nr_args > MAX_BPF_FUNC_ARGS)
1073 		return -ENOTSUPP;
1074 
1075 	for (i = 0; i < m->nr_args; i++)
1076 		nr_arg_slots += round_up(m->arg_size[i], 8) / 8;
1077 
1078 	/* room of trampoline frame to store return address and frame pointer */
1079 	stack_size += 16;
1080 
1081 	save_ret = flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET);
1082 	if (save_ret) {
1083 		stack_size += 16; /* Save both A5 (BPF R0) and A0 */
1084 		retval_off = stack_size;
1085 	}
1086 
1087 	stack_size += nr_arg_slots * 8;
1088 	args_off = stack_size;
1089 
1090 	stack_size += 8;
1091 	nregs_off = stack_size;
1092 
1093 	if (flags & BPF_TRAMP_F_IP_ARG) {
1094 		stack_size += 8;
1095 		ip_off = stack_size;
1096 	}
1097 
1098 	stack_size += round_up(sizeof(struct bpf_tramp_run_ctx), 8);
1099 	run_ctx_off = stack_size;
1100 
1101 	stack_size += 8;
1102 	sreg_off = stack_size;
1103 
1104 	if ((flags & BPF_TRAMP_F_CALL_ORIG) && (nr_arg_slots - RV_MAX_REG_ARGS > 0))
1105 		stack_size += (nr_arg_slots - RV_MAX_REG_ARGS) * 8;
1106 
1107 	stack_size = round_up(stack_size, STACK_ALIGN);
1108 
1109 	/* room for args on stack must be at the top of stack */
1110 	stk_arg_off = stack_size;
1111 
1112 	if (!is_struct_ops) {
1113 		/* For the trampoline called from function entry,
1114 		 * the frame of traced function and the frame of
1115 		 * trampoline need to be considered.
1116 		 */
1117 		emit_addi(RV_REG_SP, RV_REG_SP, -16, ctx);
1118 		emit_sd(RV_REG_SP, 8, RV_REG_RA, ctx);
1119 		emit_sd(RV_REG_SP, 0, RV_REG_FP, ctx);
1120 		emit_addi(RV_REG_FP, RV_REG_SP, 16, ctx);
1121 
1122 		emit_addi(RV_REG_SP, RV_REG_SP, -stack_size, ctx);
1123 		emit_sd(RV_REG_SP, stack_size - 8, RV_REG_T0, ctx);
1124 		emit_sd(RV_REG_SP, stack_size - 16, RV_REG_FP, ctx);
1125 		emit_addi(RV_REG_FP, RV_REG_SP, stack_size, ctx);
1126 	} else {
1127 		/* emit kcfi hash */
1128 		emit_kcfi(cfi_get_func_hash(func_addr), ctx);
1129 		/* For the trampoline called directly, just handle
1130 		 * the frame of trampoline.
1131 		 */
1132 		emit_addi(RV_REG_SP, RV_REG_SP, -stack_size, ctx);
1133 		emit_sd(RV_REG_SP, stack_size - 8, RV_REG_RA, ctx);
1134 		emit_sd(RV_REG_SP, stack_size - 16, RV_REG_FP, ctx);
1135 		emit_addi(RV_REG_FP, RV_REG_SP, stack_size, ctx);
1136 	}
1137 
1138 	/* callee saved register S1 to pass start time */
1139 	emit_sd(RV_REG_FP, -sreg_off, RV_REG_S1, ctx);
1140 
1141 	/* store ip address of the traced function */
1142 	if (flags & BPF_TRAMP_F_IP_ARG) {
1143 		emit_imm(RV_REG_T1, (const s64)func_addr, ctx);
1144 		emit_sd(RV_REG_FP, -ip_off, RV_REG_T1, ctx);
1145 	}
1146 
1147 	emit_li(RV_REG_T1, nr_arg_slots, ctx);
1148 	emit_sd(RV_REG_FP, -nregs_off, RV_REG_T1, ctx);
1149 
1150 	store_args(nr_arg_slots, args_off, ctx);
1151 
1152 	/* skip to actual body of traced function */
1153 	if (flags & BPF_TRAMP_F_SKIP_FRAME)
1154 		orig_call += RV_FENTRY_NINSNS * 4;
1155 
1156 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
1157 		emit_imm(RV_REG_A0, ctx->insns ? (const s64)im : RV_MAX_COUNT_IMM, ctx);
1158 		ret = emit_call((const u64)__bpf_tramp_enter, true, ctx);
1159 		if (ret)
1160 			return ret;
1161 	}
1162 
1163 	for (i = 0; i < fentry->nr_links; i++) {
1164 		ret = invoke_bpf_prog(fentry->links[i], args_off, retval_off, run_ctx_off,
1165 				      flags & BPF_TRAMP_F_RET_FENTRY_RET, ctx);
1166 		if (ret)
1167 			return ret;
1168 	}
1169 
1170 	if (fmod_ret->nr_links) {
1171 		branches_off = kcalloc(fmod_ret->nr_links, sizeof(int), GFP_KERNEL);
1172 		if (!branches_off)
1173 			return -ENOMEM;
1174 
1175 		/* cleanup to avoid garbage return value confusion */
1176 		emit_sd(RV_REG_FP, -retval_off, RV_REG_ZERO, ctx);
1177 		for (i = 0; i < fmod_ret->nr_links; i++) {
1178 			ret = invoke_bpf_prog(fmod_ret->links[i], args_off, retval_off,
1179 					      run_ctx_off, true, ctx);
1180 			if (ret)
1181 				goto out;
1182 			emit_ld(RV_REG_T1, -retval_off, RV_REG_FP, ctx);
1183 			branches_off[i] = ctx->ninsns;
1184 			/* nop reserved for conditional jump */
1185 			emit(rv_nop(), ctx);
1186 		}
1187 	}
1188 
1189 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
1190 		restore_args(min_t(int, nr_arg_slots, RV_MAX_REG_ARGS), args_off, ctx);
1191 		restore_stack_args(nr_arg_slots - RV_MAX_REG_ARGS, args_off, stk_arg_off, ctx);
1192 		ret = emit_call((const u64)orig_call, true, ctx);
1193 		if (ret)
1194 			goto out;
1195 		emit_sd(RV_REG_FP, -retval_off, RV_REG_A0, ctx);
1196 		emit_sd(RV_REG_FP, -(retval_off - 8), regmap[BPF_REG_0], ctx);
1197 		im->ip_after_call = ctx->ro_insns + ctx->ninsns;
1198 		/* 2 nops reserved for auipc+jalr pair */
1199 		emit(rv_nop(), ctx);
1200 		emit(rv_nop(), ctx);
1201 	}
1202 
1203 	/* update branches saved in invoke_bpf_mod_ret with bnez */
1204 	for (i = 0; ctx->insns && i < fmod_ret->nr_links; i++) {
1205 		offset = ninsns_rvoff(ctx->ninsns - branches_off[i]);
1206 		insn = rv_bne(RV_REG_T1, RV_REG_ZERO, offset >> 1);
1207 		*(u32 *)(ctx->insns + branches_off[i]) = insn;
1208 	}
1209 
1210 	for (i = 0; i < fexit->nr_links; i++) {
1211 		ret = invoke_bpf_prog(fexit->links[i], args_off, retval_off,
1212 				      run_ctx_off, false, ctx);
1213 		if (ret)
1214 			goto out;
1215 	}
1216 
1217 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
1218 		im->ip_epilogue = ctx->ro_insns + ctx->ninsns;
1219 		emit_imm(RV_REG_A0, ctx->insns ? (const s64)im : RV_MAX_COUNT_IMM, ctx);
1220 		ret = emit_call((const u64)__bpf_tramp_exit, true, ctx);
1221 		if (ret)
1222 			goto out;
1223 	}
1224 
1225 	if (flags & BPF_TRAMP_F_RESTORE_REGS)
1226 		restore_args(min_t(int, nr_arg_slots, RV_MAX_REG_ARGS), args_off, ctx);
1227 
1228 	if (save_ret) {
1229 		emit_ld(RV_REG_A0, -retval_off, RV_REG_FP, ctx);
1230 		emit_ld(regmap[BPF_REG_0], -(retval_off - 8), RV_REG_FP, ctx);
1231 	}
1232 
1233 	emit_ld(RV_REG_S1, -sreg_off, RV_REG_FP, ctx);
1234 
1235 	if (!is_struct_ops) {
1236 		/* trampoline called from function entry */
1237 		emit_ld(RV_REG_T0, stack_size - 8, RV_REG_SP, ctx);
1238 		emit_ld(RV_REG_FP, stack_size - 16, RV_REG_SP, ctx);
1239 		emit_addi(RV_REG_SP, RV_REG_SP, stack_size, ctx);
1240 
1241 		emit_ld(RV_REG_RA, 8, RV_REG_SP, ctx);
1242 		emit_ld(RV_REG_FP, 0, RV_REG_SP, ctx);
1243 		emit_addi(RV_REG_SP, RV_REG_SP, 16, ctx);
1244 
1245 		if (flags & BPF_TRAMP_F_SKIP_FRAME)
1246 			/* return to parent function */
1247 			emit_jalr(RV_REG_ZERO, RV_REG_RA, 0, ctx);
1248 		else
1249 			/* return to traced function */
1250 			emit_jalr(RV_REG_ZERO, RV_REG_T0, 0, ctx);
1251 	} else {
1252 		/* trampoline called directly */
1253 		emit_ld(RV_REG_RA, stack_size - 8, RV_REG_SP, ctx);
1254 		emit_ld(RV_REG_FP, stack_size - 16, RV_REG_SP, ctx);
1255 		emit_addi(RV_REG_SP, RV_REG_SP, stack_size, ctx);
1256 
1257 		emit_jalr(RV_REG_ZERO, RV_REG_RA, 0, ctx);
1258 	}
1259 
1260 	ret = ctx->ninsns;
1261 out:
1262 	kfree(branches_off);
1263 	return ret;
1264 }
1265 
arch_bpf_trampoline_size(const struct btf_func_model * m,u32 flags,struct bpf_tramp_links * tlinks,void * func_addr)1266 int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags,
1267 			     struct bpf_tramp_links *tlinks, void *func_addr)
1268 {
1269 	struct bpf_tramp_image im;
1270 	struct rv_jit_context ctx;
1271 	int ret;
1272 
1273 	ctx.ninsns = 0;
1274 	ctx.insns = NULL;
1275 	ctx.ro_insns = NULL;
1276 	ret = __arch_prepare_bpf_trampoline(&im, m, tlinks, func_addr, flags, &ctx);
1277 
1278 	return ret < 0 ? ret : ninsns_rvoff(ctx.ninsns);
1279 }
1280 
arch_alloc_bpf_trampoline(unsigned int size)1281 void *arch_alloc_bpf_trampoline(unsigned int size)
1282 {
1283 	return bpf_prog_pack_alloc(size, bpf_fill_ill_insns);
1284 }
1285 
arch_free_bpf_trampoline(void * image,unsigned int size)1286 void arch_free_bpf_trampoline(void *image, unsigned int size)
1287 {
1288 	bpf_prog_pack_free(image, size);
1289 }
1290 
arch_prepare_bpf_trampoline(struct bpf_tramp_image * im,void * ro_image,void * ro_image_end,const struct btf_func_model * m,u32 flags,struct bpf_tramp_links * tlinks,void * func_addr)1291 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *ro_image,
1292 				void *ro_image_end, const struct btf_func_model *m,
1293 				u32 flags, struct bpf_tramp_links *tlinks,
1294 				void *func_addr)
1295 {
1296 	int ret;
1297 	void *image, *res;
1298 	struct rv_jit_context ctx;
1299 	u32 size = ro_image_end - ro_image;
1300 
1301 	image = kvmalloc(size, GFP_KERNEL);
1302 	if (!image)
1303 		return -ENOMEM;
1304 
1305 	ctx.ninsns = 0;
1306 	ctx.insns = image;
1307 	ctx.ro_insns = ro_image;
1308 	ret = __arch_prepare_bpf_trampoline(im, m, tlinks, func_addr, flags, &ctx);
1309 	if (ret < 0)
1310 		goto out;
1311 
1312 	if (WARN_ON(size < ninsns_rvoff(ctx.ninsns))) {
1313 		ret = -E2BIG;
1314 		goto out;
1315 	}
1316 
1317 	res = bpf_arch_text_copy(ro_image, image, size);
1318 	if (IS_ERR(res)) {
1319 		ret = PTR_ERR(res);
1320 		goto out;
1321 	}
1322 
1323 	bpf_flush_icache(ro_image, ro_image_end);
1324 out:
1325 	kvfree(image);
1326 	return ret < 0 ? ret : size;
1327 }
1328 
bpf_jit_emit_insn(const struct bpf_insn * insn,struct rv_jit_context * ctx,bool extra_pass)1329 int bpf_jit_emit_insn(const struct bpf_insn *insn, struct rv_jit_context *ctx,
1330 		      bool extra_pass)
1331 {
1332 	bool is64 = BPF_CLASS(insn->code) == BPF_ALU64 ||
1333 		    BPF_CLASS(insn->code) == BPF_JMP;
1334 	int s, e, rvoff, ret, i = insn - ctx->prog->insnsi;
1335 	struct bpf_prog_aux *aux = ctx->prog->aux;
1336 	u8 rd = -1, rs = -1, code = insn->code;
1337 	s16 off = insn->off;
1338 	s32 imm = insn->imm;
1339 
1340 	init_regs(&rd, &rs, insn, ctx);
1341 
1342 	switch (code) {
1343 	/* dst = src */
1344 	case BPF_ALU | BPF_MOV | BPF_X:
1345 	case BPF_ALU64 | BPF_MOV | BPF_X:
1346 		if (insn_is_cast_user(insn)) {
1347 			emit_mv(RV_REG_T1, rs, ctx);
1348 			emit_zextw(RV_REG_T1, RV_REG_T1, ctx);
1349 			emit_imm(rd, (ctx->user_vm_start >> 32) << 32, ctx);
1350 			emit(rv_beq(RV_REG_T1, RV_REG_ZERO, 4), ctx);
1351 			emit_or(RV_REG_T1, rd, RV_REG_T1, ctx);
1352 			emit_mv(rd, RV_REG_T1, ctx);
1353 			break;
1354 		} else if (insn_is_mov_percpu_addr(insn)) {
1355 			if (rd != rs)
1356 				emit_mv(rd, rs, ctx);
1357 #ifdef CONFIG_SMP
1358 			/* Load current CPU number in T1 */
1359 			emit_ld(RV_REG_T1, offsetof(struct thread_info, cpu),
1360 				RV_REG_TP, ctx);
1361 			/* Load address of __per_cpu_offset array in T2 */
1362 			emit_addr(RV_REG_T2, (u64)&__per_cpu_offset, extra_pass, ctx);
1363 			/* Get address of __per_cpu_offset[cpu] in T1 */
1364 			emit_sh3add(RV_REG_T1, RV_REG_T1, RV_REG_T2, ctx);
1365 			/* Load __per_cpu_offset[cpu] in T1 */
1366 			emit_ld(RV_REG_T1, 0, RV_REG_T1, ctx);
1367 			/* Add the offset to Rd */
1368 			emit_add(rd, rd, RV_REG_T1, ctx);
1369 #endif
1370 		}
1371 		if (imm == 1) {
1372 			/* Special mov32 for zext */
1373 			emit_zextw(rd, rd, ctx);
1374 			break;
1375 		}
1376 		switch (insn->off) {
1377 		case 0:
1378 			emit_mv(rd, rs, ctx);
1379 			break;
1380 		case 8:
1381 			emit_sextb(rd, rs, ctx);
1382 			break;
1383 		case 16:
1384 			emit_sexth(rd, rs, ctx);
1385 			break;
1386 		case 32:
1387 			emit_sextw(rd, rs, ctx);
1388 			break;
1389 		}
1390 		if (!is64 && !aux->verifier_zext)
1391 			emit_zextw(rd, rd, ctx);
1392 		break;
1393 
1394 	/* dst = dst OP src */
1395 	case BPF_ALU | BPF_ADD | BPF_X:
1396 	case BPF_ALU64 | BPF_ADD | BPF_X:
1397 		emit_add(rd, rd, rs, ctx);
1398 		if (!is64 && !aux->verifier_zext)
1399 			emit_zextw(rd, rd, ctx);
1400 		break;
1401 	case BPF_ALU | BPF_SUB | BPF_X:
1402 	case BPF_ALU64 | BPF_SUB | BPF_X:
1403 		if (is64)
1404 			emit_sub(rd, rd, rs, ctx);
1405 		else
1406 			emit_subw(rd, rd, rs, ctx);
1407 
1408 		if (!is64 && !aux->verifier_zext)
1409 			emit_zextw(rd, rd, ctx);
1410 		break;
1411 	case BPF_ALU | BPF_AND | BPF_X:
1412 	case BPF_ALU64 | BPF_AND | BPF_X:
1413 		emit_and(rd, rd, rs, ctx);
1414 		if (!is64 && !aux->verifier_zext)
1415 			emit_zextw(rd, rd, ctx);
1416 		break;
1417 	case BPF_ALU | BPF_OR | BPF_X:
1418 	case BPF_ALU64 | BPF_OR | BPF_X:
1419 		emit_or(rd, rd, rs, ctx);
1420 		if (!is64 && !aux->verifier_zext)
1421 			emit_zextw(rd, rd, ctx);
1422 		break;
1423 	case BPF_ALU | BPF_XOR | BPF_X:
1424 	case BPF_ALU64 | BPF_XOR | BPF_X:
1425 		emit_xor(rd, rd, rs, ctx);
1426 		if (!is64 && !aux->verifier_zext)
1427 			emit_zextw(rd, rd, ctx);
1428 		break;
1429 	case BPF_ALU | BPF_MUL | BPF_X:
1430 	case BPF_ALU64 | BPF_MUL | BPF_X:
1431 		emit(is64 ? rv_mul(rd, rd, rs) : rv_mulw(rd, rd, rs), ctx);
1432 		if (!is64 && !aux->verifier_zext)
1433 			emit_zextw(rd, rd, ctx);
1434 		break;
1435 	case BPF_ALU | BPF_DIV | BPF_X:
1436 	case BPF_ALU64 | BPF_DIV | BPF_X:
1437 		if (off)
1438 			emit(is64 ? rv_div(rd, rd, rs) : rv_divw(rd, rd, rs), ctx);
1439 		else
1440 			emit(is64 ? rv_divu(rd, rd, rs) : rv_divuw(rd, rd, rs), ctx);
1441 		if (!is64 && !aux->verifier_zext)
1442 			emit_zextw(rd, rd, ctx);
1443 		break;
1444 	case BPF_ALU | BPF_MOD | BPF_X:
1445 	case BPF_ALU64 | BPF_MOD | BPF_X:
1446 		if (off)
1447 			emit(is64 ? rv_rem(rd, rd, rs) : rv_remw(rd, rd, rs), ctx);
1448 		else
1449 			emit(is64 ? rv_remu(rd, rd, rs) : rv_remuw(rd, rd, rs), ctx);
1450 		if (!is64 && !aux->verifier_zext)
1451 			emit_zextw(rd, rd, ctx);
1452 		break;
1453 	case BPF_ALU | BPF_LSH | BPF_X:
1454 	case BPF_ALU64 | BPF_LSH | BPF_X:
1455 		emit(is64 ? rv_sll(rd, rd, rs) : rv_sllw(rd, rd, rs), ctx);
1456 		if (!is64 && !aux->verifier_zext)
1457 			emit_zextw(rd, rd, ctx);
1458 		break;
1459 	case BPF_ALU | BPF_RSH | BPF_X:
1460 	case BPF_ALU64 | BPF_RSH | BPF_X:
1461 		emit(is64 ? rv_srl(rd, rd, rs) : rv_srlw(rd, rd, rs), ctx);
1462 		if (!is64 && !aux->verifier_zext)
1463 			emit_zextw(rd, rd, ctx);
1464 		break;
1465 	case BPF_ALU | BPF_ARSH | BPF_X:
1466 	case BPF_ALU64 | BPF_ARSH | BPF_X:
1467 		emit(is64 ? rv_sra(rd, rd, rs) : rv_sraw(rd, rd, rs), ctx);
1468 		if (!is64 && !aux->verifier_zext)
1469 			emit_zextw(rd, rd, ctx);
1470 		break;
1471 
1472 	/* dst = -dst */
1473 	case BPF_ALU | BPF_NEG:
1474 	case BPF_ALU64 | BPF_NEG:
1475 		emit_sub(rd, RV_REG_ZERO, rd, ctx);
1476 		if (!is64 && !aux->verifier_zext)
1477 			emit_zextw(rd, rd, ctx);
1478 		break;
1479 
1480 	/* dst = BSWAP##imm(dst) */
1481 	case BPF_ALU | BPF_END | BPF_FROM_LE:
1482 		switch (imm) {
1483 		case 16:
1484 			emit_zexth(rd, rd, ctx);
1485 			break;
1486 		case 32:
1487 			if (!aux->verifier_zext)
1488 				emit_zextw(rd, rd, ctx);
1489 			break;
1490 		case 64:
1491 			/* Do nothing */
1492 			break;
1493 		}
1494 		break;
1495 	case BPF_ALU | BPF_END | BPF_FROM_BE:
1496 	case BPF_ALU64 | BPF_END | BPF_FROM_LE:
1497 		emit_bswap(rd, imm, ctx);
1498 		break;
1499 
1500 	/* dst = imm */
1501 	case BPF_ALU | BPF_MOV | BPF_K:
1502 	case BPF_ALU64 | BPF_MOV | BPF_K:
1503 		emit_imm(rd, imm, ctx);
1504 		if (!is64 && !aux->verifier_zext)
1505 			emit_zextw(rd, rd, ctx);
1506 		break;
1507 
1508 	/* dst = dst OP imm */
1509 	case BPF_ALU | BPF_ADD | BPF_K:
1510 	case BPF_ALU64 | BPF_ADD | BPF_K:
1511 		if (is_12b_int(imm)) {
1512 			emit_addi(rd, rd, imm, ctx);
1513 		} else {
1514 			emit_imm(RV_REG_T1, imm, ctx);
1515 			emit_add(rd, rd, RV_REG_T1, ctx);
1516 		}
1517 		if (!is64 && !aux->verifier_zext)
1518 			emit_zextw(rd, rd, ctx);
1519 		break;
1520 	case BPF_ALU | BPF_SUB | BPF_K:
1521 	case BPF_ALU64 | BPF_SUB | BPF_K:
1522 		if (is_12b_int(-imm)) {
1523 			emit_addi(rd, rd, -imm, ctx);
1524 		} else {
1525 			emit_imm(RV_REG_T1, imm, ctx);
1526 			emit_sub(rd, rd, RV_REG_T1, ctx);
1527 		}
1528 		if (!is64 && !aux->verifier_zext)
1529 			emit_zextw(rd, rd, ctx);
1530 		break;
1531 	case BPF_ALU | BPF_AND | BPF_K:
1532 	case BPF_ALU64 | BPF_AND | BPF_K:
1533 		if (is_12b_int(imm)) {
1534 			emit_andi(rd, rd, imm, ctx);
1535 		} else {
1536 			emit_imm(RV_REG_T1, imm, ctx);
1537 			emit_and(rd, rd, RV_REG_T1, ctx);
1538 		}
1539 		if (!is64 && !aux->verifier_zext)
1540 			emit_zextw(rd, rd, ctx);
1541 		break;
1542 	case BPF_ALU | BPF_OR | BPF_K:
1543 	case BPF_ALU64 | BPF_OR | BPF_K:
1544 		if (is_12b_int(imm)) {
1545 			emit(rv_ori(rd, rd, imm), ctx);
1546 		} else {
1547 			emit_imm(RV_REG_T1, imm, ctx);
1548 			emit_or(rd, rd, RV_REG_T1, ctx);
1549 		}
1550 		if (!is64 && !aux->verifier_zext)
1551 			emit_zextw(rd, rd, ctx);
1552 		break;
1553 	case BPF_ALU | BPF_XOR | BPF_K:
1554 	case BPF_ALU64 | BPF_XOR | BPF_K:
1555 		if (is_12b_int(imm)) {
1556 			emit(rv_xori(rd, rd, imm), ctx);
1557 		} else {
1558 			emit_imm(RV_REG_T1, imm, ctx);
1559 			emit_xor(rd, rd, RV_REG_T1, ctx);
1560 		}
1561 		if (!is64 && !aux->verifier_zext)
1562 			emit_zextw(rd, rd, ctx);
1563 		break;
1564 	case BPF_ALU | BPF_MUL | BPF_K:
1565 	case BPF_ALU64 | BPF_MUL | BPF_K:
1566 		emit_imm(RV_REG_T1, imm, ctx);
1567 		emit(is64 ? rv_mul(rd, rd, RV_REG_T1) :
1568 		     rv_mulw(rd, rd, RV_REG_T1), ctx);
1569 		if (!is64 && !aux->verifier_zext)
1570 			emit_zextw(rd, rd, ctx);
1571 		break;
1572 	case BPF_ALU | BPF_DIV | BPF_K:
1573 	case BPF_ALU64 | BPF_DIV | BPF_K:
1574 		emit_imm(RV_REG_T1, imm, ctx);
1575 		if (off)
1576 			emit(is64 ? rv_div(rd, rd, RV_REG_T1) :
1577 			     rv_divw(rd, rd, RV_REG_T1), ctx);
1578 		else
1579 			emit(is64 ? rv_divu(rd, rd, RV_REG_T1) :
1580 			     rv_divuw(rd, rd, RV_REG_T1), ctx);
1581 		if (!is64 && !aux->verifier_zext)
1582 			emit_zextw(rd, rd, ctx);
1583 		break;
1584 	case BPF_ALU | BPF_MOD | BPF_K:
1585 	case BPF_ALU64 | BPF_MOD | BPF_K:
1586 		emit_imm(RV_REG_T1, imm, ctx);
1587 		if (off)
1588 			emit(is64 ? rv_rem(rd, rd, RV_REG_T1) :
1589 			     rv_remw(rd, rd, RV_REG_T1), ctx);
1590 		else
1591 			emit(is64 ? rv_remu(rd, rd, RV_REG_T1) :
1592 			     rv_remuw(rd, rd, RV_REG_T1), ctx);
1593 		if (!is64 && !aux->verifier_zext)
1594 			emit_zextw(rd, rd, ctx);
1595 		break;
1596 	case BPF_ALU | BPF_LSH | BPF_K:
1597 	case BPF_ALU64 | BPF_LSH | BPF_K:
1598 		emit_slli(rd, rd, imm, ctx);
1599 
1600 		if (!is64 && !aux->verifier_zext)
1601 			emit_zextw(rd, rd, ctx);
1602 		break;
1603 	case BPF_ALU | BPF_RSH | BPF_K:
1604 	case BPF_ALU64 | BPF_RSH | BPF_K:
1605 		if (is64)
1606 			emit_srli(rd, rd, imm, ctx);
1607 		else
1608 			emit(rv_srliw(rd, rd, imm), ctx);
1609 
1610 		if (!is64 && !aux->verifier_zext)
1611 			emit_zextw(rd, rd, ctx);
1612 		break;
1613 	case BPF_ALU | BPF_ARSH | BPF_K:
1614 	case BPF_ALU64 | BPF_ARSH | BPF_K:
1615 		if (is64)
1616 			emit_srai(rd, rd, imm, ctx);
1617 		else
1618 			emit(rv_sraiw(rd, rd, imm), ctx);
1619 
1620 		if (!is64 && !aux->verifier_zext)
1621 			emit_zextw(rd, rd, ctx);
1622 		break;
1623 
1624 	/* JUMP off */
1625 	case BPF_JMP | BPF_JA:
1626 	case BPF_JMP32 | BPF_JA:
1627 		if (BPF_CLASS(code) == BPF_JMP)
1628 			rvoff = rv_offset(i, off, ctx);
1629 		else
1630 			rvoff = rv_offset(i, imm, ctx);
1631 		ret = emit_jump_and_link(RV_REG_ZERO, rvoff, true, ctx);
1632 		if (ret)
1633 			return ret;
1634 		break;
1635 
1636 	/* IF (dst COND src) JUMP off */
1637 	case BPF_JMP | BPF_JEQ | BPF_X:
1638 	case BPF_JMP32 | BPF_JEQ | BPF_X:
1639 	case BPF_JMP | BPF_JGT | BPF_X:
1640 	case BPF_JMP32 | BPF_JGT | BPF_X:
1641 	case BPF_JMP | BPF_JLT | BPF_X:
1642 	case BPF_JMP32 | BPF_JLT | BPF_X:
1643 	case BPF_JMP | BPF_JGE | BPF_X:
1644 	case BPF_JMP32 | BPF_JGE | BPF_X:
1645 	case BPF_JMP | BPF_JLE | BPF_X:
1646 	case BPF_JMP32 | BPF_JLE | BPF_X:
1647 	case BPF_JMP | BPF_JNE | BPF_X:
1648 	case BPF_JMP32 | BPF_JNE | BPF_X:
1649 	case BPF_JMP | BPF_JSGT | BPF_X:
1650 	case BPF_JMP32 | BPF_JSGT | BPF_X:
1651 	case BPF_JMP | BPF_JSLT | BPF_X:
1652 	case BPF_JMP32 | BPF_JSLT | BPF_X:
1653 	case BPF_JMP | BPF_JSGE | BPF_X:
1654 	case BPF_JMP32 | BPF_JSGE | BPF_X:
1655 	case BPF_JMP | BPF_JSLE | BPF_X:
1656 	case BPF_JMP32 | BPF_JSLE | BPF_X:
1657 	case BPF_JMP | BPF_JSET | BPF_X:
1658 	case BPF_JMP32 | BPF_JSET | BPF_X:
1659 		rvoff = rv_offset(i, off, ctx);
1660 		if (!is64) {
1661 			s = ctx->ninsns;
1662 			if (is_signed_bpf_cond(BPF_OP(code))) {
1663 				emit_sextw_alt(&rs, RV_REG_T1, ctx);
1664 				emit_sextw_alt(&rd, RV_REG_T2, ctx);
1665 			} else {
1666 				emit_zextw_alt(&rs, RV_REG_T1, ctx);
1667 				emit_zextw_alt(&rd, RV_REG_T2, ctx);
1668 			}
1669 			e = ctx->ninsns;
1670 
1671 			/* Adjust for extra insns */
1672 			rvoff -= ninsns_rvoff(e - s);
1673 		}
1674 
1675 		if (BPF_OP(code) == BPF_JSET) {
1676 			/* Adjust for and */
1677 			rvoff -= 4;
1678 			emit_and(RV_REG_T1, rd, rs, ctx);
1679 			emit_branch(BPF_JNE, RV_REG_T1, RV_REG_ZERO, rvoff, ctx);
1680 		} else {
1681 			emit_branch(BPF_OP(code), rd, rs, rvoff, ctx);
1682 		}
1683 		break;
1684 
1685 	/* IF (dst COND imm) JUMP off */
1686 	case BPF_JMP | BPF_JEQ | BPF_K:
1687 	case BPF_JMP32 | BPF_JEQ | BPF_K:
1688 	case BPF_JMP | BPF_JGT | BPF_K:
1689 	case BPF_JMP32 | BPF_JGT | BPF_K:
1690 	case BPF_JMP | BPF_JLT | BPF_K:
1691 	case BPF_JMP32 | BPF_JLT | BPF_K:
1692 	case BPF_JMP | BPF_JGE | BPF_K:
1693 	case BPF_JMP32 | BPF_JGE | BPF_K:
1694 	case BPF_JMP | BPF_JLE | BPF_K:
1695 	case BPF_JMP32 | BPF_JLE | BPF_K:
1696 	case BPF_JMP | BPF_JNE | BPF_K:
1697 	case BPF_JMP32 | BPF_JNE | BPF_K:
1698 	case BPF_JMP | BPF_JSGT | BPF_K:
1699 	case BPF_JMP32 | BPF_JSGT | BPF_K:
1700 	case BPF_JMP | BPF_JSLT | BPF_K:
1701 	case BPF_JMP32 | BPF_JSLT | BPF_K:
1702 	case BPF_JMP | BPF_JSGE | BPF_K:
1703 	case BPF_JMP32 | BPF_JSGE | BPF_K:
1704 	case BPF_JMP | BPF_JSLE | BPF_K:
1705 	case BPF_JMP32 | BPF_JSLE | BPF_K:
1706 		rvoff = rv_offset(i, off, ctx);
1707 		s = ctx->ninsns;
1708 		if (imm)
1709 			emit_imm(RV_REG_T1, imm, ctx);
1710 		rs = imm ? RV_REG_T1 : RV_REG_ZERO;
1711 		if (!is64) {
1712 			if (is_signed_bpf_cond(BPF_OP(code))) {
1713 				emit_sextw_alt(&rd, RV_REG_T2, ctx);
1714 				/* rs has been sign extended */
1715 			} else {
1716 				emit_zextw_alt(&rd, RV_REG_T2, ctx);
1717 				if (imm)
1718 					emit_zextw(rs, rs, ctx);
1719 			}
1720 		}
1721 		e = ctx->ninsns;
1722 
1723 		/* Adjust for extra insns */
1724 		rvoff -= ninsns_rvoff(e - s);
1725 		emit_branch(BPF_OP(code), rd, rs, rvoff, ctx);
1726 		break;
1727 
1728 	case BPF_JMP | BPF_JSET | BPF_K:
1729 	case BPF_JMP32 | BPF_JSET | BPF_K:
1730 		rvoff = rv_offset(i, off, ctx);
1731 		s = ctx->ninsns;
1732 		if (is_12b_int(imm)) {
1733 			emit_andi(RV_REG_T1, rd, imm, ctx);
1734 		} else {
1735 			emit_imm(RV_REG_T1, imm, ctx);
1736 			emit_and(RV_REG_T1, rd, RV_REG_T1, ctx);
1737 		}
1738 		/* For jset32, we should clear the upper 32 bits of t1, but
1739 		 * sign-extension is sufficient here and saves one instruction,
1740 		 * as t1 is used only in comparison against zero.
1741 		 */
1742 		if (!is64 && imm < 0)
1743 			emit_sextw(RV_REG_T1, RV_REG_T1, ctx);
1744 		e = ctx->ninsns;
1745 		rvoff -= ninsns_rvoff(e - s);
1746 		emit_branch(BPF_JNE, RV_REG_T1, RV_REG_ZERO, rvoff, ctx);
1747 		break;
1748 
1749 	/* function call */
1750 	case BPF_JMP | BPF_CALL:
1751 	{
1752 		bool fixed_addr;
1753 		u64 addr;
1754 
1755 		/* Inline calls to bpf_get_smp_processor_id()
1756 		 *
1757 		 * RV_REG_TP holds the address of the current CPU's task_struct and thread_info is
1758 		 * at offset 0 in task_struct.
1759 		 * Load cpu from thread_info:
1760 		 *     Set R0 to ((struct thread_info *)(RV_REG_TP))->cpu
1761 		 *
1762 		 * This replicates the implementation of raw_smp_processor_id() on RISCV
1763 		 */
1764 		if (insn->src_reg == 0 && insn->imm == BPF_FUNC_get_smp_processor_id) {
1765 			/* Load current CPU number in R0 */
1766 			emit_ld(bpf_to_rv_reg(BPF_REG_0, ctx), offsetof(struct thread_info, cpu),
1767 				RV_REG_TP, ctx);
1768 			break;
1769 		}
1770 
1771 		mark_call(ctx);
1772 		ret = bpf_jit_get_func_addr(ctx->prog, insn, extra_pass,
1773 					    &addr, &fixed_addr);
1774 		if (ret < 0)
1775 			return ret;
1776 
1777 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
1778 			const struct btf_func_model *fm;
1779 			int idx;
1780 
1781 			fm = bpf_jit_find_kfunc_model(ctx->prog, insn);
1782 			if (!fm)
1783 				return -EINVAL;
1784 
1785 			for (idx = 0; idx < fm->nr_args; idx++) {
1786 				u8 reg = bpf_to_rv_reg(BPF_REG_1 + idx, ctx);
1787 
1788 				if (fm->arg_size[idx] == sizeof(int))
1789 					emit_sextw(reg, reg, ctx);
1790 			}
1791 		}
1792 
1793 		ret = emit_call(addr, fixed_addr, ctx);
1794 		if (ret)
1795 			return ret;
1796 
1797 		if (insn->src_reg != BPF_PSEUDO_CALL)
1798 			emit_mv(bpf_to_rv_reg(BPF_REG_0, ctx), RV_REG_A0, ctx);
1799 		break;
1800 	}
1801 	/* tail call */
1802 	case BPF_JMP | BPF_TAIL_CALL:
1803 		if (emit_bpf_tail_call(i, ctx))
1804 			return -1;
1805 		break;
1806 
1807 	/* function return */
1808 	case BPF_JMP | BPF_EXIT:
1809 		if (i == ctx->prog->len - 1)
1810 			break;
1811 
1812 		rvoff = epilogue_offset(ctx);
1813 		ret = emit_jump_and_link(RV_REG_ZERO, rvoff, true, ctx);
1814 		if (ret)
1815 			return ret;
1816 		break;
1817 
1818 	/* dst = imm64 */
1819 	case BPF_LD | BPF_IMM | BPF_DW:
1820 	{
1821 		struct bpf_insn insn1 = insn[1];
1822 		u64 imm64;
1823 
1824 		imm64 = (u64)insn1.imm << 32 | (u32)imm;
1825 		if (bpf_pseudo_func(insn)) {
1826 			/* fixed-length insns for extra jit pass */
1827 			ret = emit_addr(rd, imm64, extra_pass, ctx);
1828 			if (ret)
1829 				return ret;
1830 		} else {
1831 			emit_imm(rd, imm64, ctx);
1832 		}
1833 
1834 		return 1;
1835 	}
1836 
1837 	/* LDX: dst = *(unsigned size *)(src + off) */
1838 	case BPF_LDX | BPF_MEM | BPF_B:
1839 	case BPF_LDX | BPF_MEM | BPF_H:
1840 	case BPF_LDX | BPF_MEM | BPF_W:
1841 	case BPF_LDX | BPF_MEM | BPF_DW:
1842 	case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1843 	case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1844 	case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1845 	case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1846 	/* LDSX: dst = *(signed size *)(src + off) */
1847 	case BPF_LDX | BPF_MEMSX | BPF_B:
1848 	case BPF_LDX | BPF_MEMSX | BPF_H:
1849 	case BPF_LDX | BPF_MEMSX | BPF_W:
1850 	case BPF_LDX | BPF_PROBE_MEMSX | BPF_B:
1851 	case BPF_LDX | BPF_PROBE_MEMSX | BPF_H:
1852 	case BPF_LDX | BPF_PROBE_MEMSX | BPF_W:
1853 	/* LDX | PROBE_MEM32: dst = *(unsigned size *)(src + RV_REG_ARENA + off) */
1854 	case BPF_LDX | BPF_PROBE_MEM32 | BPF_B:
1855 	case BPF_LDX | BPF_PROBE_MEM32 | BPF_H:
1856 	case BPF_LDX | BPF_PROBE_MEM32 | BPF_W:
1857 	case BPF_LDX | BPF_PROBE_MEM32 | BPF_DW:
1858 	{
1859 		bool sign_ext;
1860 		int insn_len;
1861 
1862 		sign_ext = BPF_MODE(insn->code) == BPF_MEMSX ||
1863 			   BPF_MODE(insn->code) == BPF_PROBE_MEMSX;
1864 
1865 		if (BPF_MODE(insn->code) == BPF_PROBE_MEM32) {
1866 			emit_add(RV_REG_T2, rs, RV_REG_ARENA, ctx);
1867 			rs = RV_REG_T2;
1868 		}
1869 
1870 		switch (BPF_SIZE(code)) {
1871 		case BPF_B:
1872 			insn_len = emit_load_8(sign_ext, rd, off, rs, ctx);
1873 			break;
1874 		case BPF_H:
1875 			insn_len = emit_load_16(sign_ext, rd, off, rs, ctx);
1876 			break;
1877 		case BPF_W:
1878 			insn_len = emit_load_32(sign_ext, rd, off, rs, ctx);
1879 			break;
1880 		case BPF_DW:
1881 			insn_len = emit_load_64(sign_ext, rd, off, rs, ctx);
1882 			break;
1883 		}
1884 
1885 		ret = add_exception_handler(insn, ctx, rd, insn_len);
1886 		if (ret)
1887 			return ret;
1888 
1889 		if (BPF_SIZE(code) != BPF_DW && insn_is_zext(&insn[1]))
1890 			return 1;
1891 		break;
1892 	}
1893 	/* speculation barrier */
1894 	case BPF_ST | BPF_NOSPEC:
1895 		break;
1896 
1897 	/* ST: *(size *)(dst + off) = imm */
1898 	case BPF_ST | BPF_MEM | BPF_B:
1899 		emit_imm(RV_REG_T1, imm, ctx);
1900 		if (is_12b_int(off)) {
1901 			emit(rv_sb(rd, off, RV_REG_T1), ctx);
1902 			break;
1903 		}
1904 
1905 		emit_imm(RV_REG_T2, off, ctx);
1906 		emit_add(RV_REG_T2, RV_REG_T2, rd, ctx);
1907 		emit(rv_sb(RV_REG_T2, 0, RV_REG_T1), ctx);
1908 		break;
1909 
1910 	case BPF_ST | BPF_MEM | BPF_H:
1911 		emit_imm(RV_REG_T1, imm, ctx);
1912 		if (is_12b_int(off)) {
1913 			emit(rv_sh(rd, off, RV_REG_T1), ctx);
1914 			break;
1915 		}
1916 
1917 		emit_imm(RV_REG_T2, off, ctx);
1918 		emit_add(RV_REG_T2, RV_REG_T2, rd, ctx);
1919 		emit(rv_sh(RV_REG_T2, 0, RV_REG_T1), ctx);
1920 		break;
1921 	case BPF_ST | BPF_MEM | BPF_W:
1922 		emit_imm(RV_REG_T1, imm, ctx);
1923 		if (is_12b_int(off)) {
1924 			emit_sw(rd, off, RV_REG_T1, ctx);
1925 			break;
1926 		}
1927 
1928 		emit_imm(RV_REG_T2, off, ctx);
1929 		emit_add(RV_REG_T2, RV_REG_T2, rd, ctx);
1930 		emit_sw(RV_REG_T2, 0, RV_REG_T1, ctx);
1931 		break;
1932 	case BPF_ST | BPF_MEM | BPF_DW:
1933 		emit_imm(RV_REG_T1, imm, ctx);
1934 		if (is_12b_int(off)) {
1935 			emit_sd(rd, off, RV_REG_T1, ctx);
1936 			break;
1937 		}
1938 
1939 		emit_imm(RV_REG_T2, off, ctx);
1940 		emit_add(RV_REG_T2, RV_REG_T2, rd, ctx);
1941 		emit_sd(RV_REG_T2, 0, RV_REG_T1, ctx);
1942 		break;
1943 
1944 	case BPF_ST | BPF_PROBE_MEM32 | BPF_B:
1945 	case BPF_ST | BPF_PROBE_MEM32 | BPF_H:
1946 	case BPF_ST | BPF_PROBE_MEM32 | BPF_W:
1947 	case BPF_ST | BPF_PROBE_MEM32 | BPF_DW:
1948 	{
1949 		int insn_len, insns_start;
1950 
1951 		emit_add(RV_REG_T3, rd, RV_REG_ARENA, ctx);
1952 		rd = RV_REG_T3;
1953 
1954 		/* Load imm to a register then store it */
1955 		emit_imm(RV_REG_T1, imm, ctx);
1956 
1957 		switch (BPF_SIZE(code)) {
1958 		case BPF_B:
1959 			if (is_12b_int(off)) {
1960 				insns_start = ctx->ninsns;
1961 				emit(rv_sb(rd, off, RV_REG_T1), ctx);
1962 				insn_len = ctx->ninsns - insns_start;
1963 				break;
1964 			}
1965 
1966 			emit_imm(RV_REG_T2, off, ctx);
1967 			emit_add(RV_REG_T2, RV_REG_T2, rd, ctx);
1968 			insns_start = ctx->ninsns;
1969 			emit(rv_sb(RV_REG_T2, 0, RV_REG_T1), ctx);
1970 			insn_len = ctx->ninsns - insns_start;
1971 			break;
1972 		case BPF_H:
1973 			if (is_12b_int(off)) {
1974 				insns_start = ctx->ninsns;
1975 				emit(rv_sh(rd, off, RV_REG_T1), ctx);
1976 				insn_len = ctx->ninsns - insns_start;
1977 				break;
1978 			}
1979 
1980 			emit_imm(RV_REG_T2, off, ctx);
1981 			emit_add(RV_REG_T2, RV_REG_T2, rd, ctx);
1982 			insns_start = ctx->ninsns;
1983 			emit(rv_sh(RV_REG_T2, 0, RV_REG_T1), ctx);
1984 			insn_len = ctx->ninsns - insns_start;
1985 			break;
1986 		case BPF_W:
1987 			if (is_12b_int(off)) {
1988 				insns_start = ctx->ninsns;
1989 				emit_sw(rd, off, RV_REG_T1, ctx);
1990 				insn_len = ctx->ninsns - insns_start;
1991 				break;
1992 			}
1993 
1994 			emit_imm(RV_REG_T2, off, ctx);
1995 			emit_add(RV_REG_T2, RV_REG_T2, rd, ctx);
1996 			insns_start = ctx->ninsns;
1997 			emit_sw(RV_REG_T2, 0, RV_REG_T1, ctx);
1998 			insn_len = ctx->ninsns - insns_start;
1999 			break;
2000 		case BPF_DW:
2001 			if (is_12b_int(off)) {
2002 				insns_start = ctx->ninsns;
2003 				emit_sd(rd, off, RV_REG_T1, ctx);
2004 				insn_len = ctx->ninsns - insns_start;
2005 				break;
2006 			}
2007 
2008 			emit_imm(RV_REG_T2, off, ctx);
2009 			emit_add(RV_REG_T2, RV_REG_T2, rd, ctx);
2010 			insns_start = ctx->ninsns;
2011 			emit_sd(RV_REG_T2, 0, RV_REG_T1, ctx);
2012 			insn_len = ctx->ninsns - insns_start;
2013 			break;
2014 		}
2015 
2016 		ret = add_exception_handler(insn, ctx, REG_DONT_CLEAR_MARKER,
2017 					    insn_len);
2018 		if (ret)
2019 			return ret;
2020 
2021 		break;
2022 	}
2023 
2024 	/* STX: *(size *)(dst + off) = src */
2025 	case BPF_STX | BPF_MEM | BPF_B:
2026 		emit_store_8(rd, off, rs, ctx);
2027 		break;
2028 	case BPF_STX | BPF_MEM | BPF_H:
2029 		emit_store_16(rd, off, rs, ctx);
2030 		break;
2031 	case BPF_STX | BPF_MEM | BPF_W:
2032 		emit_store_32(rd, off, rs, ctx);
2033 		break;
2034 	case BPF_STX | BPF_MEM | BPF_DW:
2035 		emit_store_64(rd, off, rs, ctx);
2036 		break;
2037 	case BPF_STX | BPF_ATOMIC | BPF_B:
2038 	case BPF_STX | BPF_ATOMIC | BPF_H:
2039 	case BPF_STX | BPF_ATOMIC | BPF_W:
2040 	case BPF_STX | BPF_ATOMIC | BPF_DW:
2041 		if (bpf_atomic_is_load_store(insn))
2042 			ret = emit_atomic_ld_st(rd, rs, insn, ctx);
2043 		else
2044 			ret = emit_atomic_rmw(rd, rs, insn, ctx);
2045 		if (ret)
2046 			return ret;
2047 		break;
2048 
2049 	case BPF_STX | BPF_PROBE_MEM32 | BPF_B:
2050 	case BPF_STX | BPF_PROBE_MEM32 | BPF_H:
2051 	case BPF_STX | BPF_PROBE_MEM32 | BPF_W:
2052 	case BPF_STX | BPF_PROBE_MEM32 | BPF_DW:
2053 	{
2054 		int insn_len, insns_start;
2055 
2056 		emit_add(RV_REG_T2, rd, RV_REG_ARENA, ctx);
2057 		rd = RV_REG_T2;
2058 
2059 		switch (BPF_SIZE(code)) {
2060 		case BPF_B:
2061 			if (is_12b_int(off)) {
2062 				insns_start = ctx->ninsns;
2063 				emit(rv_sb(rd, off, rs), ctx);
2064 				insn_len = ctx->ninsns - insns_start;
2065 				break;
2066 			}
2067 
2068 			emit_imm(RV_REG_T1, off, ctx);
2069 			emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
2070 			insns_start = ctx->ninsns;
2071 			emit(rv_sb(RV_REG_T1, 0, rs), ctx);
2072 			insn_len = ctx->ninsns - insns_start;
2073 			break;
2074 		case BPF_H:
2075 			if (is_12b_int(off)) {
2076 				insns_start = ctx->ninsns;
2077 				emit(rv_sh(rd, off, rs), ctx);
2078 				insn_len = ctx->ninsns - insns_start;
2079 				break;
2080 			}
2081 
2082 			emit_imm(RV_REG_T1, off, ctx);
2083 			emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
2084 			insns_start = ctx->ninsns;
2085 			emit(rv_sh(RV_REG_T1, 0, rs), ctx);
2086 			insn_len = ctx->ninsns - insns_start;
2087 			break;
2088 		case BPF_W:
2089 			if (is_12b_int(off)) {
2090 				insns_start = ctx->ninsns;
2091 				emit_sw(rd, off, rs, ctx);
2092 				insn_len = ctx->ninsns - insns_start;
2093 				break;
2094 			}
2095 
2096 			emit_imm(RV_REG_T1, off, ctx);
2097 			emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
2098 			insns_start = ctx->ninsns;
2099 			emit_sw(RV_REG_T1, 0, rs, ctx);
2100 			insn_len = ctx->ninsns - insns_start;
2101 			break;
2102 		case BPF_DW:
2103 			if (is_12b_int(off)) {
2104 				insns_start = ctx->ninsns;
2105 				emit_sd(rd, off, rs, ctx);
2106 				insn_len = ctx->ninsns - insns_start;
2107 				break;
2108 			}
2109 
2110 			emit_imm(RV_REG_T1, off, ctx);
2111 			emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
2112 			insns_start = ctx->ninsns;
2113 			emit_sd(RV_REG_T1, 0, rs, ctx);
2114 			insn_len = ctx->ninsns - insns_start;
2115 			break;
2116 		}
2117 
2118 		ret = add_exception_handler(insn, ctx, REG_DONT_CLEAR_MARKER,
2119 					    insn_len);
2120 		if (ret)
2121 			return ret;
2122 
2123 		break;
2124 	}
2125 
2126 	default:
2127 		pr_err("bpf-jit: unknown opcode %02x\n", code);
2128 		return -EINVAL;
2129 	}
2130 
2131 	return 0;
2132 }
2133 
bpf_jit_build_prologue(struct rv_jit_context * ctx,bool is_subprog)2134 void bpf_jit_build_prologue(struct rv_jit_context *ctx, bool is_subprog)
2135 {
2136 	int i, stack_adjust = 0, store_offset, bpf_stack_adjust;
2137 
2138 	bpf_stack_adjust = round_up(ctx->prog->aux->stack_depth, STACK_ALIGN);
2139 	if (bpf_stack_adjust)
2140 		mark_fp(ctx);
2141 
2142 	if (seen_reg(RV_REG_RA, ctx))
2143 		stack_adjust += 8;
2144 	stack_adjust += 8; /* RV_REG_FP */
2145 	if (seen_reg(RV_REG_S1, ctx))
2146 		stack_adjust += 8;
2147 	if (seen_reg(RV_REG_S2, ctx))
2148 		stack_adjust += 8;
2149 	if (seen_reg(RV_REG_S3, ctx))
2150 		stack_adjust += 8;
2151 	if (seen_reg(RV_REG_S4, ctx))
2152 		stack_adjust += 8;
2153 	if (seen_reg(RV_REG_S5, ctx))
2154 		stack_adjust += 8;
2155 	if (seen_reg(RV_REG_S6, ctx))
2156 		stack_adjust += 8;
2157 	if (ctx->arena_vm_start)
2158 		stack_adjust += 8;
2159 
2160 	stack_adjust = round_up(stack_adjust, STACK_ALIGN);
2161 	stack_adjust += bpf_stack_adjust;
2162 
2163 	store_offset = stack_adjust - 8;
2164 
2165 	/* emit kcfi type preamble immediately before the  first insn */
2166 	emit_kcfi(is_subprog ? cfi_bpf_subprog_hash : cfi_bpf_hash, ctx);
2167 
2168 	/* nops reserved for auipc+jalr pair */
2169 	for (i = 0; i < RV_FENTRY_NINSNS; i++)
2170 		emit(rv_nop(), ctx);
2171 
2172 	/* First instruction is always setting the tail-call-counter
2173 	 * (TCC) register. This instruction is skipped for tail calls.
2174 	 * Force using a 4-byte (non-compressed) instruction.
2175 	 */
2176 	emit(rv_addi(RV_REG_TCC, RV_REG_ZERO, MAX_TAIL_CALL_CNT), ctx);
2177 
2178 	emit_addi(RV_REG_SP, RV_REG_SP, -stack_adjust, ctx);
2179 
2180 	if (seen_reg(RV_REG_RA, ctx)) {
2181 		emit_sd(RV_REG_SP, store_offset, RV_REG_RA, ctx);
2182 		store_offset -= 8;
2183 	}
2184 	emit_sd(RV_REG_SP, store_offset, RV_REG_FP, ctx);
2185 	store_offset -= 8;
2186 	if (seen_reg(RV_REG_S1, ctx)) {
2187 		emit_sd(RV_REG_SP, store_offset, RV_REG_S1, ctx);
2188 		store_offset -= 8;
2189 	}
2190 	if (seen_reg(RV_REG_S2, ctx)) {
2191 		emit_sd(RV_REG_SP, store_offset, RV_REG_S2, ctx);
2192 		store_offset -= 8;
2193 	}
2194 	if (seen_reg(RV_REG_S3, ctx)) {
2195 		emit_sd(RV_REG_SP, store_offset, RV_REG_S3, ctx);
2196 		store_offset -= 8;
2197 	}
2198 	if (seen_reg(RV_REG_S4, ctx)) {
2199 		emit_sd(RV_REG_SP, store_offset, RV_REG_S4, ctx);
2200 		store_offset -= 8;
2201 	}
2202 	if (seen_reg(RV_REG_S5, ctx)) {
2203 		emit_sd(RV_REG_SP, store_offset, RV_REG_S5, ctx);
2204 		store_offset -= 8;
2205 	}
2206 	if (seen_reg(RV_REG_S6, ctx)) {
2207 		emit_sd(RV_REG_SP, store_offset, RV_REG_S6, ctx);
2208 		store_offset -= 8;
2209 	}
2210 	if (ctx->arena_vm_start) {
2211 		emit_sd(RV_REG_SP, store_offset, RV_REG_ARENA, ctx);
2212 		store_offset -= 8;
2213 	}
2214 
2215 	emit_addi(RV_REG_FP, RV_REG_SP, stack_adjust, ctx);
2216 
2217 	if (bpf_stack_adjust)
2218 		emit_addi(RV_REG_S5, RV_REG_SP, bpf_stack_adjust, ctx);
2219 
2220 	/* Program contains calls and tail calls, so RV_REG_TCC need
2221 	 * to be saved across calls.
2222 	 */
2223 	if (seen_tail_call(ctx) && seen_call(ctx))
2224 		emit_mv(RV_REG_TCC_SAVED, RV_REG_TCC, ctx);
2225 
2226 	ctx->stack_size = stack_adjust;
2227 
2228 	if (ctx->arena_vm_start)
2229 		emit_imm(RV_REG_ARENA, ctx->arena_vm_start, ctx);
2230 }
2231 
bpf_jit_build_epilogue(struct rv_jit_context * ctx)2232 void bpf_jit_build_epilogue(struct rv_jit_context *ctx)
2233 {
2234 	__build_epilogue(false, ctx);
2235 }
2236 
bpf_jit_supports_kfunc_call(void)2237 bool bpf_jit_supports_kfunc_call(void)
2238 {
2239 	return true;
2240 }
2241 
bpf_jit_supports_ptr_xchg(void)2242 bool bpf_jit_supports_ptr_xchg(void)
2243 {
2244 	return true;
2245 }
2246 
bpf_jit_supports_arena(void)2247 bool bpf_jit_supports_arena(void)
2248 {
2249 	return true;
2250 }
2251 
bpf_jit_supports_percpu_insn(void)2252 bool bpf_jit_supports_percpu_insn(void)
2253 {
2254 	return true;
2255 }
2256 
bpf_jit_inlines_helper_call(s32 imm)2257 bool bpf_jit_inlines_helper_call(s32 imm)
2258 {
2259 	switch (imm) {
2260 	case BPF_FUNC_get_smp_processor_id:
2261 		return true;
2262 	default:
2263 		return false;
2264 	}
2265 }
2266