1 /*
2  * arch/arm/kernel/kprobes.c
3  *
4  * Kprobes on ARM
5  *
6  * Abhishek Sagar <sagar.abhishek@gmail.com>
7  * Copyright (C) 2006, 2007 Motorola Inc.
8  *
9  * Nicolas Pitre <nico@marvell.com>
10  * Copyright (C) 2007 Marvell Ltd.
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  * General Public License for more details.
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/kprobes.h>
24 #include <linux/module.h>
25 #include <linux/slab.h>
26 #include <linux/stop_machine.h>
27 #include <linux/stringify.h>
28 #include <asm/traps.h>
29 #include <asm/cacheflush.h>
30 
31 #include "kprobes.h"
32 
33 #define MIN_STACK_SIZE(addr) 				\
34 	min((unsigned long)MAX_STACK_SIZE,		\
35 	    (unsigned long)current_thread_info() + THREAD_START_SP - (addr))
36 
37 #define flush_insns(addr, size)				\
38 	flush_icache_range((unsigned long)(addr),	\
39 			   (unsigned long)(addr) +	\
40 			   (size))
41 
42 /* Used as a marker in ARM_pc to note when we're in a jprobe. */
43 #define JPROBE_MAGIC_ADDR		0xffffffff
44 
45 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
46 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
47 
48 
arch_prepare_kprobe(struct kprobe * p)49 int __kprobes arch_prepare_kprobe(struct kprobe *p)
50 {
51 	kprobe_opcode_t insn;
52 	kprobe_opcode_t tmp_insn[MAX_INSN_SIZE];
53 	unsigned long addr = (unsigned long)p->addr;
54 	bool thumb;
55 	kprobe_decode_insn_t *decode_insn;
56 	int is;
57 
58 	if (in_exception_text(addr))
59 		return -EINVAL;
60 
61 #ifdef CONFIG_THUMB2_KERNEL
62 	thumb = true;
63 	addr &= ~1; /* Bit 0 would normally be set to indicate Thumb code */
64 	insn = ((u16 *)addr)[0];
65 	if (is_wide_instruction(insn)) {
66 		insn <<= 16;
67 		insn |= ((u16 *)addr)[1];
68 		decode_insn = thumb32_kprobe_decode_insn;
69 	} else
70 		decode_insn = thumb16_kprobe_decode_insn;
71 #else /* !CONFIG_THUMB2_KERNEL */
72 	thumb = false;
73 	if (addr & 0x3)
74 		return -EINVAL;
75 	insn = *p->addr;
76 	decode_insn = arm_kprobe_decode_insn;
77 #endif
78 
79 	p->opcode = insn;
80 	p->ainsn.insn = tmp_insn;
81 
82 	switch ((*decode_insn)(insn, &p->ainsn)) {
83 	case INSN_REJECTED:	/* not supported */
84 		return -EINVAL;
85 
86 	case INSN_GOOD:		/* instruction uses slot */
87 		p->ainsn.insn = get_insn_slot();
88 		if (!p->ainsn.insn)
89 			return -ENOMEM;
90 		for (is = 0; is < MAX_INSN_SIZE; ++is)
91 			p->ainsn.insn[is] = tmp_insn[is];
92 		flush_insns(p->ainsn.insn,
93 				sizeof(p->ainsn.insn[0]) * MAX_INSN_SIZE);
94 		p->ainsn.insn_fn = (kprobe_insn_fn_t *)
95 					((uintptr_t)p->ainsn.insn | thumb);
96 		break;
97 
98 	case INSN_GOOD_NO_SLOT:	/* instruction doesn't need insn slot */
99 		p->ainsn.insn = NULL;
100 		break;
101 	}
102 
103 	return 0;
104 }
105 
106 #ifdef CONFIG_THUMB2_KERNEL
107 
108 /*
109  * For a 32-bit Thumb breakpoint spanning two memory words we need to take
110  * special precautions to insert the breakpoint atomically, especially on SMP
111  * systems. This is achieved by calling this arming function using stop_machine.
112  */
set_t32_breakpoint(void * addr)113 static int __kprobes set_t32_breakpoint(void *addr)
114 {
115 	((u16 *)addr)[0] = KPROBE_THUMB32_BREAKPOINT_INSTRUCTION >> 16;
116 	((u16 *)addr)[1] = KPROBE_THUMB32_BREAKPOINT_INSTRUCTION & 0xffff;
117 	flush_insns(addr, 2*sizeof(u16));
118 	return 0;
119 }
120 
arch_arm_kprobe(struct kprobe * p)121 void __kprobes arch_arm_kprobe(struct kprobe *p)
122 {
123 	uintptr_t addr = (uintptr_t)p->addr & ~1; /* Remove any Thumb flag */
124 
125 	if (!is_wide_instruction(p->opcode)) {
126 		*(u16 *)addr = KPROBE_THUMB16_BREAKPOINT_INSTRUCTION;
127 		flush_insns(addr, sizeof(u16));
128 	} else if (addr & 2) {
129 		/* A 32-bit instruction spanning two words needs special care */
130 		stop_machine(set_t32_breakpoint, (void *)addr, &cpu_online_map);
131 	} else {
132 		/* Word aligned 32-bit instruction can be written atomically */
133 		u32 bkp = KPROBE_THUMB32_BREAKPOINT_INSTRUCTION;
134 #ifndef __ARMEB__ /* Swap halfwords for little-endian */
135 		bkp = (bkp >> 16) | (bkp << 16);
136 #endif
137 		*(u32 *)addr = bkp;
138 		flush_insns(addr, sizeof(u32));
139 	}
140 }
141 
142 #else /* !CONFIG_THUMB2_KERNEL */
143 
arch_arm_kprobe(struct kprobe * p)144 void __kprobes arch_arm_kprobe(struct kprobe *p)
145 {
146 	kprobe_opcode_t insn = p->opcode;
147 	kprobe_opcode_t brkp = KPROBE_ARM_BREAKPOINT_INSTRUCTION;
148 	if (insn >= 0xe0000000)
149 		brkp |= 0xe0000000;  /* Unconditional instruction */
150 	else
151 		brkp |= insn & 0xf0000000;  /* Copy condition from insn */
152 	*p->addr = brkp;
153 	flush_insns(p->addr, sizeof(p->addr[0]));
154 }
155 
156 #endif /* !CONFIG_THUMB2_KERNEL */
157 
158 /*
159  * The actual disarming is done here on each CPU and synchronized using
160  * stop_machine. This synchronization is necessary on SMP to avoid removing
161  * a probe between the moment the 'Undefined Instruction' exception is raised
162  * and the moment the exception handler reads the faulting instruction from
163  * memory. It is also needed to atomically set the two half-words of a 32-bit
164  * Thumb breakpoint.
165  */
__arch_disarm_kprobe(void * p)166 int __kprobes __arch_disarm_kprobe(void *p)
167 {
168 	struct kprobe *kp = p;
169 #ifdef CONFIG_THUMB2_KERNEL
170 	u16 *addr = (u16 *)((uintptr_t)kp->addr & ~1);
171 	kprobe_opcode_t insn = kp->opcode;
172 	unsigned int len;
173 
174 	if (is_wide_instruction(insn)) {
175 		((u16 *)addr)[0] = insn>>16;
176 		((u16 *)addr)[1] = insn;
177 		len = 2*sizeof(u16);
178 	} else {
179 		((u16 *)addr)[0] = insn;
180 		len = sizeof(u16);
181 	}
182 	flush_insns(addr, len);
183 
184 #else /* !CONFIG_THUMB2_KERNEL */
185 	*kp->addr = kp->opcode;
186 	flush_insns(kp->addr, sizeof(kp->addr[0]));
187 #endif
188 	return 0;
189 }
190 
arch_disarm_kprobe(struct kprobe * p)191 void __kprobes arch_disarm_kprobe(struct kprobe *p)
192 {
193 	stop_machine(__arch_disarm_kprobe, p, &cpu_online_map);
194 }
195 
arch_remove_kprobe(struct kprobe * p)196 void __kprobes arch_remove_kprobe(struct kprobe *p)
197 {
198 	if (p->ainsn.insn) {
199 		free_insn_slot(p->ainsn.insn, 0);
200 		p->ainsn.insn = NULL;
201 	}
202 }
203 
save_previous_kprobe(struct kprobe_ctlblk * kcb)204 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
205 {
206 	kcb->prev_kprobe.kp = kprobe_running();
207 	kcb->prev_kprobe.status = kcb->kprobe_status;
208 }
209 
restore_previous_kprobe(struct kprobe_ctlblk * kcb)210 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
211 {
212 	__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
213 	kcb->kprobe_status = kcb->prev_kprobe.status;
214 }
215 
set_current_kprobe(struct kprobe * p)216 static void __kprobes set_current_kprobe(struct kprobe *p)
217 {
218 	__get_cpu_var(current_kprobe) = p;
219 }
220 
221 static void __kprobes
singlestep_skip(struct kprobe * p,struct pt_regs * regs)222 singlestep_skip(struct kprobe *p, struct pt_regs *regs)
223 {
224 #ifdef CONFIG_THUMB2_KERNEL
225 	regs->ARM_cpsr = it_advance(regs->ARM_cpsr);
226 	if (is_wide_instruction(p->opcode))
227 		regs->ARM_pc += 4;
228 	else
229 		regs->ARM_pc += 2;
230 #else
231 	regs->ARM_pc += 4;
232 #endif
233 }
234 
235 static inline void __kprobes
singlestep(struct kprobe * p,struct pt_regs * regs,struct kprobe_ctlblk * kcb)236 singlestep(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb)
237 {
238 	p->ainsn.insn_singlestep(p, regs);
239 }
240 
241 /*
242  * Called with IRQs disabled. IRQs must remain disabled from that point
243  * all the way until processing this kprobe is complete.  The current
244  * kprobes implementation cannot process more than one nested level of
245  * kprobe, and that level is reserved for user kprobe handlers, so we can't
246  * risk encountering a new kprobe in an interrupt handler.
247  */
kprobe_handler(struct pt_regs * regs)248 void __kprobes kprobe_handler(struct pt_regs *regs)
249 {
250 	struct kprobe *p, *cur;
251 	struct kprobe_ctlblk *kcb;
252 
253 	kcb = get_kprobe_ctlblk();
254 	cur = kprobe_running();
255 
256 #ifdef CONFIG_THUMB2_KERNEL
257 	/*
258 	 * First look for a probe which was registered using an address with
259 	 * bit 0 set, this is the usual situation for pointers to Thumb code.
260 	 * If not found, fallback to looking for one with bit 0 clear.
261 	 */
262 	p = get_kprobe((kprobe_opcode_t *)(regs->ARM_pc | 1));
263 	if (!p)
264 		p = get_kprobe((kprobe_opcode_t *)regs->ARM_pc);
265 
266 #else /* ! CONFIG_THUMB2_KERNEL */
267 	p = get_kprobe((kprobe_opcode_t *)regs->ARM_pc);
268 #endif
269 
270 	if (p) {
271 		if (cur) {
272 			/* Kprobe is pending, so we're recursing. */
273 			switch (kcb->kprobe_status) {
274 			case KPROBE_HIT_ACTIVE:
275 			case KPROBE_HIT_SSDONE:
276 				/* A pre- or post-handler probe got us here. */
277 				kprobes_inc_nmissed_count(p);
278 				save_previous_kprobe(kcb);
279 				set_current_kprobe(p);
280 				kcb->kprobe_status = KPROBE_REENTER;
281 				singlestep(p, regs, kcb);
282 				restore_previous_kprobe(kcb);
283 				break;
284 			default:
285 				/* impossible cases */
286 				BUG();
287 			}
288 		} else if (p->ainsn.insn_check_cc(regs->ARM_cpsr)) {
289 			/* Probe hit and conditional execution check ok. */
290 			set_current_kprobe(p);
291 			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
292 
293 			/*
294 			 * If we have no pre-handler or it returned 0, we
295 			 * continue with normal processing.  If we have a
296 			 * pre-handler and it returned non-zero, it prepped
297 			 * for calling the break_handler below on re-entry,
298 			 * so get out doing nothing more here.
299 			 */
300 			if (!p->pre_handler || !p->pre_handler(p, regs)) {
301 				kcb->kprobe_status = KPROBE_HIT_SS;
302 				singlestep(p, regs, kcb);
303 				if (p->post_handler) {
304 					kcb->kprobe_status = KPROBE_HIT_SSDONE;
305 					p->post_handler(p, regs, 0);
306 				}
307 				reset_current_kprobe();
308 			}
309 		} else {
310 			/*
311 			 * Probe hit but conditional execution check failed,
312 			 * so just skip the instruction and continue as if
313 			 * nothing had happened.
314 			 */
315 			singlestep_skip(p, regs);
316 		}
317 	} else if (cur) {
318 		/* We probably hit a jprobe.  Call its break handler. */
319 		if (cur->break_handler && cur->break_handler(cur, regs)) {
320 			kcb->kprobe_status = KPROBE_HIT_SS;
321 			singlestep(cur, regs, kcb);
322 			if (cur->post_handler) {
323 				kcb->kprobe_status = KPROBE_HIT_SSDONE;
324 				cur->post_handler(cur, regs, 0);
325 			}
326 		}
327 		reset_current_kprobe();
328 	} else {
329 		/*
330 		 * The probe was removed and a race is in progress.
331 		 * There is nothing we can do about it.  Let's restart
332 		 * the instruction.  By the time we can restart, the
333 		 * real instruction will be there.
334 		 */
335 	}
336 }
337 
kprobe_trap_handler(struct pt_regs * regs,unsigned int instr)338 static int __kprobes kprobe_trap_handler(struct pt_regs *regs, unsigned int instr)
339 {
340 	unsigned long flags;
341 	local_irq_save(flags);
342 	kprobe_handler(regs);
343 	local_irq_restore(flags);
344 	return 0;
345 }
346 
kprobe_fault_handler(struct pt_regs * regs,unsigned int fsr)347 int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr)
348 {
349 	struct kprobe *cur = kprobe_running();
350 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
351 
352 	switch (kcb->kprobe_status) {
353 	case KPROBE_HIT_SS:
354 	case KPROBE_REENTER:
355 		/*
356 		 * We are here because the instruction being single
357 		 * stepped caused a page fault. We reset the current
358 		 * kprobe and the PC to point back to the probe address
359 		 * and allow the page fault handler to continue as a
360 		 * normal page fault.
361 		 */
362 		regs->ARM_pc = (long)cur->addr;
363 		if (kcb->kprobe_status == KPROBE_REENTER) {
364 			restore_previous_kprobe(kcb);
365 		} else {
366 			reset_current_kprobe();
367 		}
368 		break;
369 
370 	case KPROBE_HIT_ACTIVE:
371 	case KPROBE_HIT_SSDONE:
372 		/*
373 		 * We increment the nmissed count for accounting,
374 		 * we can also use npre/npostfault count for accounting
375 		 * these specific fault cases.
376 		 */
377 		kprobes_inc_nmissed_count(cur);
378 
379 		/*
380 		 * We come here because instructions in the pre/post
381 		 * handler caused the page_fault, this could happen
382 		 * if handler tries to access user space by
383 		 * copy_from_user(), get_user() etc. Let the
384 		 * user-specified handler try to fix it.
385 		 */
386 		if (cur->fault_handler && cur->fault_handler(cur, regs, fsr))
387 			return 1;
388 		break;
389 
390 	default:
391 		break;
392 	}
393 
394 	return 0;
395 }
396 
kprobe_exceptions_notify(struct notifier_block * self,unsigned long val,void * data)397 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
398 				       unsigned long val, void *data)
399 {
400 	/*
401 	 * notify_die() is currently never called on ARM,
402 	 * so this callback is currently empty.
403 	 */
404 	return NOTIFY_DONE;
405 }
406 
407 /*
408  * When a retprobed function returns, trampoline_handler() is called,
409  * calling the kretprobe's handler. We construct a struct pt_regs to
410  * give a view of registers r0-r11 to the user return-handler.  This is
411  * not a complete pt_regs structure, but that should be plenty sufficient
412  * for kretprobe handlers which should normally be interested in r0 only
413  * anyway.
414  */
kretprobe_trampoline(void)415 void __naked __kprobes kretprobe_trampoline(void)
416 {
417 	__asm__ __volatile__ (
418 		"stmdb	sp!, {r0 - r11}		\n\t"
419 		"mov	r0, sp			\n\t"
420 		"bl	trampoline_handler	\n\t"
421 		"mov	lr, r0			\n\t"
422 		"ldmia	sp!, {r0 - r11}		\n\t"
423 #ifdef CONFIG_THUMB2_KERNEL
424 		"bx	lr			\n\t"
425 #else
426 		"mov	pc, lr			\n\t"
427 #endif
428 		: : : "memory");
429 }
430 
431 /* Called from kretprobe_trampoline */
trampoline_handler(struct pt_regs * regs)432 static __used __kprobes void *trampoline_handler(struct pt_regs *regs)
433 {
434 	struct kretprobe_instance *ri = NULL;
435 	struct hlist_head *head, empty_rp;
436 	struct hlist_node *node, *tmp;
437 	unsigned long flags, orig_ret_address = 0;
438 	unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
439 
440 	INIT_HLIST_HEAD(&empty_rp);
441 	kretprobe_hash_lock(current, &head, &flags);
442 
443 	/*
444 	 * It is possible to have multiple instances associated with a given
445 	 * task either because multiple functions in the call path have
446 	 * a return probe installed on them, and/or more than one return
447 	 * probe was registered for a target function.
448 	 *
449 	 * We can handle this because:
450 	 *     - instances are always inserted at the head of the list
451 	 *     - when multiple return probes are registered for the same
452 	 *       function, the first instance's ret_addr will point to the
453 	 *       real return address, and all the rest will point to
454 	 *       kretprobe_trampoline
455 	 */
456 	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
457 		if (ri->task != current)
458 			/* another task is sharing our hash bucket */
459 			continue;
460 
461 		if (ri->rp && ri->rp->handler) {
462 			__get_cpu_var(current_kprobe) = &ri->rp->kp;
463 			get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
464 			ri->rp->handler(ri, regs);
465 			__get_cpu_var(current_kprobe) = NULL;
466 		}
467 
468 		orig_ret_address = (unsigned long)ri->ret_addr;
469 		recycle_rp_inst(ri, &empty_rp);
470 
471 		if (orig_ret_address != trampoline_address)
472 			/*
473 			 * This is the real return address. Any other
474 			 * instances associated with this task are for
475 			 * other calls deeper on the call stack
476 			 */
477 			break;
478 	}
479 
480 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
481 	kretprobe_hash_unlock(current, &flags);
482 
483 	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
484 		hlist_del(&ri->hlist);
485 		kfree(ri);
486 	}
487 
488 	return (void *)orig_ret_address;
489 }
490 
arch_prepare_kretprobe(struct kretprobe_instance * ri,struct pt_regs * regs)491 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
492 				      struct pt_regs *regs)
493 {
494 	ri->ret_addr = (kprobe_opcode_t *)regs->ARM_lr;
495 
496 	/* Replace the return addr with trampoline addr. */
497 	regs->ARM_lr = (unsigned long)&kretprobe_trampoline;
498 }
499 
setjmp_pre_handler(struct kprobe * p,struct pt_regs * regs)500 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
501 {
502 	struct jprobe *jp = container_of(p, struct jprobe, kp);
503 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
504 	long sp_addr = regs->ARM_sp;
505 	long cpsr;
506 
507 	kcb->jprobe_saved_regs = *regs;
508 	memcpy(kcb->jprobes_stack, (void *)sp_addr, MIN_STACK_SIZE(sp_addr));
509 	regs->ARM_pc = (long)jp->entry;
510 
511 	cpsr = regs->ARM_cpsr | PSR_I_BIT;
512 #ifdef CONFIG_THUMB2_KERNEL
513 	/* Set correct Thumb state in cpsr */
514 	if (regs->ARM_pc & 1)
515 		cpsr |= PSR_T_BIT;
516 	else
517 		cpsr &= ~PSR_T_BIT;
518 #endif
519 	regs->ARM_cpsr = cpsr;
520 
521 	preempt_disable();
522 	return 1;
523 }
524 
jprobe_return(void)525 void __kprobes jprobe_return(void)
526 {
527 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
528 
529 	__asm__ __volatile__ (
530 		/*
531 		 * Setup an empty pt_regs. Fill SP and PC fields as
532 		 * they're needed by longjmp_break_handler.
533 		 *
534 		 * We allocate some slack between the original SP and start of
535 		 * our fabricated regs. To be precise we want to have worst case
536 		 * covered which is STMFD with all 16 regs so we allocate 2 *
537 		 * sizeof(struct_pt_regs)).
538 		 *
539 		 * This is to prevent any simulated instruction from writing
540 		 * over the regs when they are accessing the stack.
541 		 */
542 #ifdef CONFIG_THUMB2_KERNEL
543 		"sub    r0, %0, %1		\n\t"
544 		"mov    sp, r0			\n\t"
545 #else
546 		"sub    sp, %0, %1		\n\t"
547 #endif
548 		"ldr    r0, ="__stringify(JPROBE_MAGIC_ADDR)"\n\t"
549 		"str    %0, [sp, %2]		\n\t"
550 		"str    r0, [sp, %3]		\n\t"
551 		"mov    r0, sp			\n\t"
552 		"bl     kprobe_handler		\n\t"
553 
554 		/*
555 		 * Return to the context saved by setjmp_pre_handler
556 		 * and restored by longjmp_break_handler.
557 		 */
558 #ifdef CONFIG_THUMB2_KERNEL
559 		"ldr	lr, [sp, %2]		\n\t" /* lr = saved sp */
560 		"ldrd	r0, r1, [sp, %5]	\n\t" /* r0,r1 = saved lr,pc */
561 		"ldr	r2, [sp, %4]		\n\t" /* r2 = saved psr */
562 		"stmdb	lr!, {r0, r1, r2}	\n\t" /* push saved lr and */
563 						      /* rfe context */
564 		"ldmia	sp, {r0 - r12}		\n\t"
565 		"mov	sp, lr			\n\t"
566 		"ldr	lr, [sp], #4		\n\t"
567 		"rfeia	sp!			\n\t"
568 #else
569 		"ldr	r0, [sp, %4]		\n\t"
570 		"msr	cpsr_cxsf, r0		\n\t"
571 		"ldmia	sp, {r0 - pc}		\n\t"
572 #endif
573 		:
574 		: "r" (kcb->jprobe_saved_regs.ARM_sp),
575 		  "I" (sizeof(struct pt_regs) * 2),
576 		  "J" (offsetof(struct pt_regs, ARM_sp)),
577 		  "J" (offsetof(struct pt_regs, ARM_pc)),
578 		  "J" (offsetof(struct pt_regs, ARM_cpsr)),
579 		  "J" (offsetof(struct pt_regs, ARM_lr))
580 		: "memory", "cc");
581 }
582 
longjmp_break_handler(struct kprobe * p,struct pt_regs * regs)583 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
584 {
585 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
586 	long stack_addr = kcb->jprobe_saved_regs.ARM_sp;
587 	long orig_sp = regs->ARM_sp;
588 	struct jprobe *jp = container_of(p, struct jprobe, kp);
589 
590 	if (regs->ARM_pc == JPROBE_MAGIC_ADDR) {
591 		if (orig_sp != stack_addr) {
592 			struct pt_regs *saved_regs =
593 				(struct pt_regs *)kcb->jprobe_saved_regs.ARM_sp;
594 			printk("current sp %lx does not match saved sp %lx\n",
595 			       orig_sp, stack_addr);
596 			printk("Saved registers for jprobe %p\n", jp);
597 			show_regs(saved_regs);
598 			printk("Current registers\n");
599 			show_regs(regs);
600 			BUG();
601 		}
602 		*regs = kcb->jprobe_saved_regs;
603 		memcpy((void *)stack_addr, kcb->jprobes_stack,
604 		       MIN_STACK_SIZE(stack_addr));
605 		preempt_enable_no_resched();
606 		return 1;
607 	}
608 	return 0;
609 }
610 
arch_trampoline_kprobe(struct kprobe * p)611 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
612 {
613 	return 0;
614 }
615 
616 #ifdef CONFIG_THUMB2_KERNEL
617 
618 static struct undef_hook kprobes_thumb16_break_hook = {
619 	.instr_mask	= 0xffff,
620 	.instr_val	= KPROBE_THUMB16_BREAKPOINT_INSTRUCTION,
621 	.cpsr_mask	= MODE_MASK,
622 	.cpsr_val	= SVC_MODE,
623 	.fn		= kprobe_trap_handler,
624 };
625 
626 static struct undef_hook kprobes_thumb32_break_hook = {
627 	.instr_mask	= 0xffffffff,
628 	.instr_val	= KPROBE_THUMB32_BREAKPOINT_INSTRUCTION,
629 	.cpsr_mask	= MODE_MASK,
630 	.cpsr_val	= SVC_MODE,
631 	.fn		= kprobe_trap_handler,
632 };
633 
634 #else  /* !CONFIG_THUMB2_KERNEL */
635 
636 static struct undef_hook kprobes_arm_break_hook = {
637 	.instr_mask	= 0x0fffffff,
638 	.instr_val	= KPROBE_ARM_BREAKPOINT_INSTRUCTION,
639 	.cpsr_mask	= MODE_MASK,
640 	.cpsr_val	= SVC_MODE,
641 	.fn		= kprobe_trap_handler,
642 };
643 
644 #endif /* !CONFIG_THUMB2_KERNEL */
645 
arch_init_kprobes()646 int __init arch_init_kprobes()
647 {
648 	arm_kprobe_decode_init();
649 #ifdef CONFIG_THUMB2_KERNEL
650 	register_undef_hook(&kprobes_thumb16_break_hook);
651 	register_undef_hook(&kprobes_thumb32_break_hook);
652 #else
653 	register_undef_hook(&kprobes_arm_break_hook);
654 #endif
655 	return 0;
656 }
657